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Quantum information in base n defined by state partitions
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We define a “nit” as a radixh measure of quantum information which is based on state partitions associated
with the outcomes ofi-ary observables and which, fae>2, is fundamentally irreducible to a binary coding.
Properties of this measure for entangled many-particle states are disdupsgticles specifik nits in such a
way thatk mutually commuting measurements of observables withossible outcomes are sufficient to
determine the information.
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The formal concept of information is tied to physics, atnal ones, whose two eigenvalues can be identified with the
least as far as applicability is a concern. There seems to bHwo states. For three or more particles, this is no longer pos-
one issue, which, despite notable exceptitmg.,[1], foot-  sible.
note 6 and2]), has not yet been acknowledged widely: the It should be emphasized that only the case of an entangle-
principal irreducibility of quantum information in bage  ment between different particles but not within each particle
Define a “nit” as a unit of information equal to the amount is considered. If more than one observable could be associ-
of information obtained by learning which afequally likely — ated with each particle, then these can become entangled as
events occurred. Am-state particle can be prepared in awell, and thenk n-ary observables will no longer be suffi-
single one of possible states. Then, this particle carries onecient to describe particles.
nit of information, namely, it is in a single one ofdifferent For a singlen-state particle, the nit can be formalized as a
states. Subsequent measurements may confirm this stagate partition that is fine grained intoelements, one state
ment. The most natural code basis for such a configuration iger element. That is, if the set of states is represented by
n-fold, and not binary. {1, ... n}, then the nit is defined by{1}, ... {n}}. Of

Classically, there is no preferred code basis whatsoevegourse, any labeling would suffice, as long as the structure is
Every classical state is postulated to be determined by RAreserved. It does not matter whether one calls the states, for
point in phase space. Formally, this amounts to an infiniténstance, %+,” “0,” and “ —,” or “1,” “2,” and “3,” re-
amount of information in whatever base. Operationally, onlysulting in a trit represented by{{+},{0},{—}} or
a finite amount of classical information is accessible. Yet, theé{1},{2},{3}}. (Here, the term “trit” stands for a nit with
particular base in which this finite amount of classical infor-n=3.) Thus, nits are defined modulo isomorphistns.,
mation is represented is purely conventional. The same holdane-to-one translation®f the state labels. To complete the
true for discrete classical systems, sucmasodes of vibra-  setup of the single-particle case, let us recall that any such
tion on a string, where the restriction to these particularstate set would correspond to an orthonormal basis of
states is rather arbitrary. n-dimensional Hilbert space.

The fundamental difference between classical and quan- Before proceeding to the most general case, we shall con-
tum information with respect to code bases could be illusssider the case of two particles with three states per particle in
trated by the following example. Physically, each nit couldall details. We shall adopt amary search strategy. Assume
be represented by amlevel system. A single measurement that the first and the second particle have three orthogonal
collapses am-state superposition and yields only one output,states labeled by, ,b,,c, anda,,b,,c,, respectively. Then
not logn outputs. In the nonentanglddparticle case, th&  nine product states can be formed and labeled from 1 to 9 in
mutually commuting observables could be some physicalexicographic order; i.ea,a,=1, ... .c,=9. Consider a
quantity (e.g., energy levelsassociated with each particle. set of two comeasurable three-valued observables inducing
This sets the stage for the more general observables assotivo state partitions of the set of statbs-{1,2, ... ,9 with
ated with “entangled” states. Referenddd and[3] discuss three partition elements with the properties tkiatthe set
examples with Bell states and Greenberger-Horne-Zeilingetheoretic intersection of any two elements of the two parti-
states for the binary case, respectively. tions is a single state, an@) the union of all these nine

In what follows, let us always consider a complete systenintersections is just the set of sta& As can be easily
of basis statesd3 associated with a unique “context” or checked, an example for such state partitions is

“communication frame”F={F,,F,, ... Fy}, which corre- F,={{1,2,3,{4,5,6/,{7,8,9}

sponds to comeasurable observables witbhutcomes. For

n=2, their explicit form has been enumerated 3. In this ={{as}.{bs}.{ci}},

particular case, thE’s can be identified with certain projec- _ 1)

tion operators from the set of all possible mutually orthogo- Fo={{1.4.7.{2.58.{36.9}
={{az}.{b2}.{ca}t}

*Electronic address: svozil@tuwien.ac.at Operationally, the trif=; can be obtained by measuring the
URL: http://tph.tuwien.ac.at/svozil first particle statef1,2,3} is associated with state, {4,5,6}
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is associated wit,, and{7,8,9 is associated witls;. The  with n elements per partition in such a way that
trit F, can be obtained by measuring the state of the seconebery singleproduct state is obtained by the set
particle:{1,4,7} is associated with stat,, {2,5,8 is asso- theoretic intersection of k elements of all the dif
ciated with b,, and {3,6,9 is associated withc,. This ferent partitions

amounts to the operationalization of the tiifs as state fil- Every single such partition can be interpreted as a nit. All
ters. In the above case, the filters are “local” and can besuch sets are generated by permuting the set of states, which
realized on single particles, one trit per particle. In the moreamounts ton*! equivalent sets of state partitions. However,
general case of rotated “entangled” stat@s. below), the  since they are mere one-to-one translations, they represent
trits (more generally, nilsbecome inevitably associated with the same nits. This equivalence, however, does not concern
joint properties of ensembles of particles. Measurement ofhe property of(nonentanglement, since the permutations
the propositions “the particle is in stafd,2,3}” and “the take entangled states into nonentangled ones. We shall give
particle is in stat¢3,6,9}” can be evaluated by taking the set an example below.

theoretic intersection of the respective sets; i.e., by the Again, the standard orthonormal basisndtdimensional
proposition, “the particle is in statfl,2,3}N{3,6,9,=3." In Hilbert space is identified with the set of states

Fig. 1, the state partitions are drawn as cells of a two={1,2,...n*}; i.e., (superscript T” indicates transposi-
dimensional square spanned by the single cells of the twtion)

three-state particles. _ T_ _ o
A Hilbert space representation of this setting can be ob- 1= 0= d= e e,
tained as follows. Define the states i@ to be one- . @)
dimensional linear subspaces of nine-dimensional Hilbert '
space; e.g., %(1,0,0,0,0,0,0,0,0),..,9 nk=(0,...,27=|n, ... n)=[n)®---®|n).

=(0,0,0,0,0,0,0,0,1). The trit operators are given (bye
terms “trit operator,” “observable,” and the corresponding The single-particle states are also labeled by 1 throvygimd

state partition will be used synonymously the tensor product states are formed and ordered lexico-
graphically (0<1).
Fi=diaga,a,a,b,b,b,c,c,c), The nit operators are defined via diagonal matrices which
_ (2)  contain equal amounts~ ! of mutually n different numbers
F,=diaga,b,c,a,b,c,a,b,c), such as different primes,, ... .,q,; i.e.,

for a,b,ceR, a#b#c+#a. F.,=dia sl s

If F,=diag(d,e,f,d,e,f,d,e,f) anda,b,c,d,e,f, are six ' g(\ql’ i { ql)
different prime numbers, then, due to the uniqueness of a7 dimes nf L times
prime decompositions, the two trit operators can be com- 0 times
bined to a single “context” operator

C=F1F=FaFy Fo=diag(qi, ...oq1s - sqns---sqn)s
=diagad,ae,af,bd,bebf,cd,cecf) ©) S s ﬁme; ¥nk72 — ’

which acts on both particles and has nine different eigenval- al times
ues. Just as for the two-particle ca®l, there exist 3!
=91=362 880 permutations of operators which are all able
to separate the nine states. They are obtained by forming a
(2X9) matrix whose rows are the diagonal components of
F, andF, from Eq.(2) and permuting all the columns. The
resulting new operator§; andF are also trit operators. F=diag(q, 4.

A generalization tdk particles inn states per particle is N
straightforward. We obtaik partitions of the product states nkL times 5)
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The operators implement amary search strategy, filtering
the search space intoequal partitions of states, such that a lc1)=
successive applications of all such filters renders a single
state.
There existn®! sets of nit operators, which are are ob-
tained by forming an < n*) matrix whose rows are the laz)=
diagonal components &4, ... ,F, from Eqg. (5) and per-
muting all the columns. The resulting new operators @)
Fi,...,Fg are also nit operators. ,
All partitions discussed so far are equally weighted and |b)=
well balanced, as all elements of them contain an equal
number of states. In principle, one could also consider L
nonbalar.u.:ed _ partitions.  For example, - one could take Ie5) = —=(|ascy) + byby) + | c1az)).
the partition F;={{1},{2,3,{4,5,6,7,8,9} instead of F, J3
in Eq. (1), represented by the trit diagonal operator
diag(a,b,b,c,c,c,c,c,c). Yet any such attempt would result
in a deviation from the optimat-ary search strategy, and in
an nonoptimal measurement procedures. Another, great

(|a;cp) +[bsaz) +]ciby)),

ol

(laaz)+|bscy) +]ciby)),

ol -

(|aiby) +[biaz) +]cicy)),

ol

3

The new orthonormal basis states are “entangled” with re-
gpect to the old bases and vice versa. Their tensor products

disadvantage would be the fact that such a state separati gnerate a cqmplete set of basis states in a New nine-
could not reflect the inevitable-arity of the quantum choice. dimensional Hilbert space. In terms of the new basis states,
In terms of partitions, entanglement occurs for diagonal oh€ trits can be written a&;=1{{a;},{b;}.{c;}} and F;
antidiagonal arrangements of states which do not add up & {{82}{b2}.{c2}}. The associated bases will be calléd
completed blocks. Take, for example, the state partitiorRgonal basesNote that the permutation that produces the
scheme of Fig. 1, which results in nonentangled states an@ntangled casé6) from the nonentangledl) one is -1,
state measurements. A modified, entangled scheme can Be»9, 3—5, 4-6, 5-2, 67, 7—-8, 84, 93, or
established by just grouping the states into diagonal anfl1)(2,9,3,5)(4,6,7,8) in cycle form. A generalization to di-
counterdiagonal groups as drawn in Fig. 2. The corresponddgonal bases associated with an arbitrary number of nits is

ing trits are straightforward.
In summary, we have shown that, by adoptingraary
F1=1{{1,5,9,{2,6,7,{3,4,8}, search strategk particles(entangled or notspecifyk nits in
(6) such a way thak mutually commuting measurements of ob-
F.={{1,6,8,{2,4,9,{3,5,7}}. servables withn outcomes are necessary and sufficient to
We can now introduce new>23 basis vectors grouped determine the information. This finding is compatible to
into the two basega; ,b;,c;} and{a;,b;,c5} by Zeilinger’s foundational principle for quantum mechanics
1 [1]. In general, the main emphasis in the area of quantum
|a}) = —=(|a;a,) +|b1by) +|cicy)), computation has been in the area of binary decision prob-
V3 lems. It is suggested that these investigations should be ex-
1 tended to decision problems with alternatives(e.g., [[4],
Ib)=——(]ab,) +|b1C,) + |c1ay)), pp. 332-340), for which quantum information theory seems
J3 to be extraordinarily well equipped.
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