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Quantum information in base n defined by state partitions
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We define a ‘‘nit’’ as a radixn measure of quantum information which is based on state partitions associated
with the outcomes ofn-ary observables and which, forn.2, is fundamentally irreducible to a binary coding.
Properties of this measure for entangled many-particle states are discussed.k particles specifyk nits in such a
way that k mutually commuting measurements of observables withn possible outcomes are sufficient to
determine the information.
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The formal concept of information is tied to physics,
least as far as applicability is a concern. There seems t
one issue, which, despite notable exceptions~e.g.,@1#, foot-
note 6 and@2#!, has not yet been acknowledged widely: t
principal irreducibility of quantum information in basen.
Define a ‘‘nit’’ as a unit of information equal to the amou
of information obtained by learning which ofn equally likely
events occurred. Ann-state particle can be prepared in
single one ofn possible states. Then, this particle carries o
nit of information, namely, it is in a single one ofn different
states. Subsequent measurements may confirm this s
ment. The most natural code basis for such a configuratio
n-fold, and not binary.

Classically, there is no preferred code basis whatsoe
Every classical state is postulated to be determined b
point in phase space. Formally, this amounts to an infin
amount of information in whatever base. Operationally, o
a finite amount of classical information is accessible. Yet,
particular base in which this finite amount of classical info
mation is represented is purely conventional. The same h
true for discrete classical systems, such asn modes of vibra-
tion on a string, where the restriction to these particu
states is rather arbitrary.

The fundamental difference between classical and qu
tum information with respect to code bases could be ill
trated by the following example. Physically, each nit cou
be represented by ann-level system. A single measureme
collapses ann-state superposition and yields only one outp
not log2n outputs. In the nonentangledk-particle case, thek
mutually commuting observables could be some phys
quantity ~e.g., energy levels! associated with each particle
This sets the stage for the more general observables as
ated with ‘‘entangled’’ states. References@1# and@3# discuss
examples with Bell states and Greenberger-Horne-Zeilin
states for the binary case, respectively.

In what follows, let us always consider a complete syst
of basis statesB associated with a unique ‘‘context’’ o
‘‘communication frame’’F5$F1 ,F2 , . . . ,Fk%, which corre-
sponds to comeasurable observables withn outcomes. For
n52, their explicit form has been enumerated in@3#. In this
particular case, theF ’s can be identified with certain projec
tion operators from the set of all possible mutually orthog
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nal ones, whose two eigenvalues can be identified with
two states. For three or more particles, this is no longer p
sible.

It should be emphasized that only the case of an entan
ment between different particles but not within each parti
is considered. If more than one observable could be ass
ated with each particle, then these can become entangle
well, and thenk n-ary observables will no longer be suffi
cient to describek particles.

For a singlen-state particle, the nit can be formalized as
state partition that is fine grained inton elements, one state
per element. That is, if the set of states is represented
$1, . . . ,n%, then the nit is defined by$$1%, . . . ,$n%%. Of
course, any labeling would suffice, as long as the structur
preserved. It does not matter whether one calls the states
instance, ‘‘1, ’’ ‘‘0,’’ and ‘‘ 2, ’’ or ‘‘1,’’ ‘‘2,’’ and ‘‘3,’’ re-
sulting in a trit represented by$$1%,$0%,$2%% or
$$1%,$2%,$3%%. ~Here, the term ‘‘trit’’ stands for a nit with
n53.) Thus, nits are defined modulo isomorphisms~i.e.,
one-to-one translations! of the state labels. To complete th
setup of the single-particle case, let us recall that any s
state set would correspond to an orthonormal basis
n-dimensional Hilbert space.

Before proceeding to the most general case, we shall c
sider the case of two particles with three states per particl
all details. We shall adopt ann-ary search strategy. Assum
that the first and the second particle have three orthogo
states labeled bya1 ,b1 ,c1 anda2 ,b2 ,c2, respectively. Then
nine product states can be formed and labeled from 1 to
lexicographic order; i.e.,a1a2[1, . . . ,c1c2[9. Consider a
set of two comeasurable three-valued observables indu
two state partitions of the set of statesS5$1,2, . . . ,9% with
three partition elements with the properties that~i! the set
theoretic intersection of any two elements of the two pa
tions is a single state, and~ii ! the union of all these nine
intersections is just the set of stateS. As can be easily
checked, an example for such state partitions is

F15ˆ$1,2,3%,$4,5,6%,$7,8,9%‰

[ˆ$a1%,$b1%,$c1%‰,
~1!F25ˆ$1,4,7%,$2,5,8%,$3,6,9%‰

[ˆ$a2%,$b2%,$c2%‰.

Operationally, the tritF1 can be obtained by measuring th
first particle state:$1,2,3% is associated with statea1 , $4,5,6%
©2002 The American Physical Society06-1
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FIG. 1. Representation of stat
partitions as cells of a two-
dimensional square spanned b
the single cells of the two three
state particles.
o

b
or

h
t

t
th

o
tw

ob

e

g

m

va

bl
ng

o
e

s

t
t

f

All
hich
r,
sent
cern
ns
give

ico-

ich
is associated withb1, and$7,8,9% is associated withc1. The
trit F2 can be obtained by measuring the state of the sec
particle:$1,4,7% is associated with statea2 , $2,5,8% is asso-
ciated with b2, and $3,6,9% is associated withc2. This
amounts to the operationalization of the trits~1! as state fil-
ters. In the above case, the filters are ‘‘local’’ and can
realized on single particles, one trit per particle. In the m
general case of rotated ‘‘entangled’’ states~cf. below!, the
trits ~more generally, nits! become inevitably associated wit
joint properties of ensembles of particles. Measuremen
the propositions ‘‘the particle is in state$1,2,3% ’’ and ‘‘the
particle is in state$3,6,9% ’’ can be evaluated by taking the se
theoretic intersection of the respective sets; i.e., by
proposition, ‘‘the particle is in state$1,2,3%ù$3,6,9%53.’’ In
Fig. 1, the state partitions are drawn as cells of a tw
dimensional square spanned by the single cells of the
three-state particles.

A Hilbert space representation of this setting can be
tained as follows. Define the states inS to be one-
dimensional linear subspaces of nine-dimensional Hilb
space; e.g., 1[(1,0,0,0,0,0,0,0,0),. . . ,9
[(0,0,0,0,0,0,0,0,1). The trit operators are given by~the
terms ‘‘trit operator,’’ ‘‘observable,’’ and the correspondin
state partition will be used synonymously!

F15diag~a,a,a,b,b,b,c,c,c!,
~2!

F25diag~a,b,c,a,b,c,a,b,c!,

for a,b,cPR, aÞbÞcÞa.
If F25diag(d,e, f ,d,e, f ,d,e, f ) anda,b,c,d,e, f , are six

different prime numbers, then, due to the uniqueness
prime decompositions, the two trit operators can be co
bined to a single ‘‘context’’ operator

C5F1•F25F2•F1

5diag~ad,ae,a f ,bd,be,b f ,cd,ce,c f ! ~3!

which acts on both particles and has nine different eigen
ues. Just as for the two-particle case@3#, there exist 32!
59!5362 880 permutations of operators which are all a
to separate the nine states. They are obtained by formi
(239) matrix whose rows are the diagonal components
F1 andF2 from Eq. ~2! and permuting all the columns. Th
resulting new operatorsF18 andF28 are also trit operators.

A generalization tok particles inn states per particle is
straightforward. We obtaink partitions of the product state
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with n elements per partit ion in such a way tha
every single-product state is obtained by the se
theoretic intersection o f k elements o f all the di-
f erent partit ions.

Every single such partition can be interpreted as a nit.
such sets are generated by permuting the set of states, w
amounts tonk! equivalent sets of state partitions. Howeve
since they are mere one-to-one translations, they repre
the same nits. This equivalence, however, does not con
the property of~non!entanglement, since the permutatio
take entangled states into nonentangled ones. We shall
an example below.

Again, the standard orthonormal basis ofnk-dimensional
Hilbert space is identified with the set of statesS
5$1,2, . . . ,nk%; i.e., ~superscript ‘‘T’’ indicates transposi-
tion!

1[~1, . . . ,0!T[u1, . . . ,1&5u1& ^ •••^ u1&,

A ~4!

nk[~0, . . . ,1!T[un, . . . ,n&5un& ^ •••^ un&.

The single-particle states are also labeled by 1 throughn, and
the tensor product states are formed and ordered lex
graphically (0,1).

The nit operators are defined via diagonal matrices wh
contain equal amountsnk21 of mutuallyn different numbers
such as different primesq1 , . . . ,qn ; i.e.,

~5!
6-2
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FIG. 2. Entanglement by di-
agonalization and counterdiago
nalization of the product state
space.
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The operators implement ann-ary search strategy, filtering
the search space inton equal partitions of states, such that
successive applications of all such filters renders a sin
state.

There existnk! sets of nit operators, which are are o
tained by forming an (nk3nk) matrix whose rows are the
diagonal components ofF1 , . . . ,Fk from Eq. ~5! and per-
muting all the columns. The resulting new operato
F18 , . . . ,Fk8 are also nit operators.

All partitions discussed so far are equally weighted a
well balanced, as all elements of them contain an eq
number of states. In principle, one could also consi
nonbalanced partitions. For example, one could t
the partition F̄15$$1%,$2,3%,$4,5,6,7,8,9%% instead of F1
in Eq. ~1!, represented by the trit diagonal operat
diag(a,b,b,c,c,c,c,c,c). Yet any such attempt would resu
in a deviation from the optimaln-ary search strategy, and i
an nonoptimal measurement procedures. Another, gre
disadvantage would be the fact that such a state separ
could not reflect the inevitablen-arity of the quantum choice

In terms of partitions, entanglement occurs for diagona
antidiagonal arrangements of states which do not add u
completed blocks. Take, for example, the state partit
scheme of Fig. 1, which results in nonentangled states
state measurements. A modified, entangled scheme ca
established by just grouping the states into diagonal
counterdiagonal groups as drawn in Fig. 2. The correspo
ing trits are

F15$$1,5,9%,$2,6,7%,$3,4,8%%,
~6!

F25$$1,6,8%,$2,4,9%,$3,5,7%%.
We can now introduce new 233 basis vectors groupe

into the two bases$a18 ,b18 ,c18% and$a28 ,b28 ,c28% by

ua18&5
1

A3
~ ua1a2&1ub1b2&1uc1c2&),

ub18&5
1

A3
~ ua1b2&1ub1c2&1uc1a2&),
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uc18&5
1

A3
~ ua1c2&1ub1a2&1uc1b2&),

ua28&5
1

A3
~ ua1a2&1ub1c2&1uc1b2&),

~7!

ub28&5
1

A3
~ ua1b2&1ub1a2&1uc1c2&),

uc28&5
1

A3
~ ua1c2&1ub1b2&1uc1a2&).

The new orthonormal basis states are ‘‘entangled’’ with
spect to the old bases and vice versa. Their tensor prod
generate a complete set of basis states in a new n
dimensional Hilbert space. In terms of the new basis sta
the trits can be written asF1[$$a18%,$b18%,$c18%% and F2

[$$a28%,$b28%,$c28%%. The associated bases will be calleddi-
agonal bases. Note that the permutation that produces t
entangled case~6! from the nonentangled~1! one is 1→1,
2→9, 3→5, 4→6, 5→2, 6→7, 7→8, 8→4, 9→3, or
(1)(2,9,3,5)(4,6,7,8) in cycle form. A generalization to d
agonal bases associated with an arbitrary number of nit
straightforward.

In summary, we have shown that, by adopting ann-ary
search strategy,k particles~entangled or not! specifyk nits in
such a way thatk mutually commuting measurements of o
servables withn outcomes are necessary and sufficient
determine the information. This finding is compatible
Zeilinger’s foundational principle for quantum mechani
@1#. In general, the main emphasis in the area of quan
computation has been in the area of binary decision pr
lems. It is suggested that these investigations should be
tended to decision problems withn alternatives~e.g., @@4#,
pp. 332–340#!, for which quantum information theory seem
to be extraordinarily well equipped.
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