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Summary. — Due to the non-vanishing average photon population of the squeezed
vacuum state, finite corrections to the scattering matrix are obtained. The lowest-
order contribution to the electron mass shift for a one-mode squeezed vacuum state
is given by δm(Ω, s)/m = α(2/π)(Ω/m)2 sinh2(s), where Ω and s stand for the
mode frequency and the squeeze parameter and α for the fine-structure constant,
respectively.

PACS 11.10.Wx – Finite-temperature field theory.
PACS 12.20.-m – Quantum electrodynamics.

The squeezed vacuum is a fascinating non-classical state of the quantized electromag-
netic field [1].

Just as for the finite-temperature case, the squeezed vacuum is populated by photons.
Therefore, the scattering matrix, and in particular renormalization, has to be re-evaluated
with these finite ground-state photons in mind.

The dependence of the scattering matrix on the vacuum state of the theory and on
exterior parameters has been studied previously for the thermal equilibrium [2], in cavity-
quantum electrodynamics [3], on fractal space-time support [4] and, to some extent, in
the presence of strong electromagnetic fields [5, 6]. Here, quantum electrodynamics is
investigated in the presence of squeezed vacuum fluctuations [7]; i.e. fluctuations with
reduced noise in amplitude or phase.

At first we shall calculate the scattering matrix by Taylor expansion up to second
order of e2. Let |i〉 = a

(r)†
e (�q )|sv〉 be the initial state, r the incoming electron’s spin, �q

its momentum and |sv〉 the squeezed vacuum state. |sv〉 is a pure photonic state and
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behaves like an ordinary Fock vacuum regarding the electron creation and annihilation
operators. The final state is 〈f| = 〈sv|a(r′)

e (�q ′). It is important to remark that the initial
squeezed vacuum state will be assumed to be the same as the final one. Hence, in this
approximation, |sv〉 is time independent.

The scattering matrix is given by

〈f|S|i〉 = 〈f|Tei
∫

d4xLW |i〉,

where LW stands for the interaction-term of the Lagrange-density, which, in QED is is
given by LW = −e :ψ/Aψ :. The expansion of S with respect to e is

S ≈ 1− ie

∫
d4x :ψ(x)/A(x)ψ(x) : +

+
(−ie)2
(2!)

∫∫
d4xd4yT [:ψ(x)/A(x)ψ(x) ::ψ(y)(/A(y)ψ(y) :].

We shall discuss the first three terms in the series expansion in e next. We find

O(e0) : 〈f|1|i〉 = δ3(�q − �q ′)δrr′ ,

O(e1) :
〈
f
∣∣∣( − ie

∫
d4x :ψ(x)/A(x)ψ(x) :

)∣∣∣i〉 = 0 .

Aµ(x) contains a term with exactly one annihilation operator and a term with exactly
one creation operator, so that 〈f|a(†)|i〉 = 0. The well-known relations 〈sv|a|sv〉 = 0 and
〈sv|a†|sv〉 = 0 hold.

O(e2) : The electron- and photon-operators do not act on each other. Hence they
commute and |sv〉 is a normal Fock vacuum for the electron operators. Therefore it is
possible to completely separate the electron and photon terms

〈f| (−ie)
2

(2!)

∫∫
d4xd4yT [:ψ(x)/A(x)ψ(x) ::ψ(y)/A(y)ψ(y) :]|i〉 =

=
−e2
2

∫∫
d4xd4yT 〈sv|Aµ(x)Aν(y)|sv〉 ×

×T 〈0|a(r′)
e (�q ′) :ψ(x)γµψ(x) ::ψ(y)γνψ(y) : a(r)†

e (�q)|0〉.

The electron term is given by

δ(�q − �q ′)δrr′〈0| :ψ(x)γµψ(x) ::ψ(y)γνψ(y) : |0〉︸ ︷︷ ︸
disconnected

+

+
eiq′x

(2π)3/2
√
2q′0

u(r′)γµiSc(x− y)γν e−iqy

(2π)3/2
√
2q0

u(r) + (x↔ y, µ↔ ν)

︸ ︷︷ ︸
connected

.

As usual, the disconnected term is regarded as non-physical.
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The calculation demonstrated that effectively it would have been possible to build up
the whole 2nd-order term by just replacing the usual photon propagator in the Feynman
rules by

iDµν(x− y) = 〈sv|T [Aµ(x)Aν(y)]|sv〉.
This expression can be evaluated as follows:

〈sv|T [Aµ(x)Aν(y)]|sv〉 = 1
(2π)3

∫∫
d3kd3k′

2(EkEk′)1/2
·

· 〈sv|θ(x0 − y0)[ε(ρ)
µ (�k)a−ρ (�k)ε

(λ)
ν (�k′)a†λ(�k

′)e−i(kx−k′y) +

+ ε(ρ)
µ (�k)a†ρ(�k)ε

(λ)
ν (�k′)a−λ (�k

′)ei(kx−k′y)] + (x↔ y)|sv〉,

where

〈sv|a†ρ(�k)a−λ (�k′)|sv〉 = −gρλδ
3(�k − �k′)n(k),

[a−ρ (�k), a
†
λ(�k

′)] = −gρλδ
3(�k − �k′),

gρλε
(ρ)
µ (�k)ε(λ)

ν (�k) = gµν .

Then,

〈sv|T [Aµ(x)Aν(y)]|sv〉 =

= −gµν

∫
d3k

(2π)32Ek
[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)eik(x−y)]−

− gµν

∫
d3k

(2π)32Ek
n(k)[θ(x0 − y0)e−ik(x−y) + θ(x0 − y0)eik(x−y) +

+ θ(y0 − x0)e−ik(y−x) + θ(y0 − x0)eik(y−x)] .

Hence we obtain

iDµν(x− y) = 〈sv|T [Aµ(x)Aν(y)]|sv〉 =(1)

= −gµν

(∫
d3k

(2π)3
1

2Ek
[θ(x0 − y0)e−ik(x−y) + θ(y0 − x0)eik(x−y)]+

+
∫

d3k

(2π)3
1

2Ek
n(k)[eik(x−y) + e−ik(x−y)]

)
.

Notice, as remarked above, that by defining the photon propagator, the squeezed
vacuum state had to be assumed “quasi-stationary,” otherwise the final state of the
vacuum cannot be identified with the initial state. (This assumption can be justified only
within the appropriate spatial and temporal ranges.) The propagator can be rewritten
using contour-integral techniques

iDµν(x− y) = i

∫
d4k

(2π)4
e−ik(x−y)Dµν(k) ,(2)

iDµν(k) = −igµν

[
1

k2 + iε
− 2πiδ(k2)n(k)

]
.
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For the one-mode squeezed state, n(k; Ω, s) = Ω sinh2(s)δ(Ek − Ω), where Ek is the
photon energy parameter and Ω and s stand for the frequency of the squeezed mode and
the squeezing parameter, respectively. The electron propagator S(p) = 1/(/p−m+ iε), as
well as the bare vertex γµ remain unchanged. Notice however that a preferred frame of
reference has been introduced due to the non-covariant choice of the density n(k; Ω, s),
i.e. the one at rest with respect to the squeezed vacuum.

In what follows, the lowest-order correction to the radiative mass of the electron will
be calculated. This can be done by evaluating the second-order contribution to the
self-energy of the electron

−iΣ(p; Ω, s) =
∫

d4k

(2π)4
[iDµν(k; Ω, s)](−ie)γµ i

/p− /k −m
(−ie)γν .(3)

The physical mass is interpreted as the pole of the renormalized electron propagator. For
δm(Ω, s) � m,

m(Ω, s) ≈ m− δm+Σ(p; Ω, s)|/p=m
(4)

= m− δm+Σ(p; s = 0)|/p=m
+ δΣ(p; Ω, s)|/p=m

= m+ δm(Ω, s),

where m stands for the renormalized non-squeezed mass of the electron.
The correction term δm(Ω, s) = δΣ(p; Ω, s)|/p=m

due to squeezing adds up coherently
to the renormalization contributions of m. Its explicit form is given by

δm(Ω, s) = − e2

(2π)3

∫
d4kδ(k2)n(k; Ω, s)γµ

/p− /k +m

(p− k)2 −m2 + iε
γµ |/p=m

=
∫

d4kδ(k2)n(k)γµ
/p− /k +m

(p− k)2 −m2 + iε
γµ|/p=m

= −2
∫

d4kδ(k2)n(k)
/k +m

2pk − iε
|/p=m

= −
∫

d3�kdk0[
δ(k0 − |�k|)

|2k0| +
δ(k0 + |�k|)

|2k0| ]n(k)
k0γ0 − �k�γ +m

k0p0 − �k�p− iε
|/p=m

.

As the epsilon is not needed, it will be dropped,

= −
∫

d3kn(|�k|)[ |
�k|γ0 − �k�γ + 2m

2|�k|(|�k| − �k�p)
+

−|�k|γ0 − �k�γ + 2m

2|�k|(−|�k|p0 − �k�p)︸ ︷︷ ︸
�k→−k

]|/p=m
(5)

= −
∫

d3kn(|�k|)[ |�k|γ0 − �k�γ

|�k|(|�k|p0 − �k�p)
|/p=m

= −
∫

d3kn(|�k|) kµγ
µ

|�k|(pk)
|/p=m, e.o.m.: k2=0

=
α

2π2

Iµ(p)pµ

m
|p2=m2 ,
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where δ(k2) = δ(k0 − |�k|)/2k0 + δ(k0 + |�k|)/2k0 and Gordon’s identity, which reduces to
γµ = pµ/m (remind pµγ

µ = m, p2 = m2), have been used, α = e2/4π stands for the
fine-structure constant and

Iµ(p) =
∫

d3�k
kµ

|�k|(pk)
n(|�k|; Ω, s)|e.o.m.: k2=0.(6)

In the rest frame of the squeezed vacuum this expression can be evaluated, yielding

δm(Ω, s)/m = α(2/π)(Ω/m)2 sinh2(s).(7)

For optical frequencies, δm(s)/m ≈ 10−13 sinh2(s).
One has to bear in mind that the above calculation did not take into explicit account

the spatial and temporal characteristics of the squeezed vacuum states. So our calcu-
lation is only a first estimation of magnitude of the expected results. After all, a more
careful calculation should take into account the nonstationary property of the squeezed
vacuum. However, even the above rather simple model calculations suggest that physical
parameters (electron mass, charge and magnetic moment) depend on external conditions.

The squeezed vacuum is arguably the simplest theoretically treatable yet experimen-
tally realizable state. Indeed, the generation of squeezed states as proposed by [8] has
recently been performed by [9] and belongs to the advanced experimental methods of
modern physics. Indeed, in view of the difficulties associated with the detection of
squeezed light, the obtained results may be used as an indication of the presence of
the squeezed state, making it a valuable contribution to the advancements of quantum
optical techniques.

In this paper, we have evaluated the electron-mass shift. Measuring the renormaliza-
tion effects on the electron mass due to the squeezed vacuum is certainly a challenging
yet difficult task beyond the scope of this presentation. Calculations of charge shift and
of corrections to the magnetic moment are still to be done.
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