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Abstract. Since Edward Moore, finite automata theory has been in-
spired by physics, in particular by quantum complementarity. We review
automaton complementarity, reversible automata and the connections to
generalized urn models. Recent developments in quantum information
theory may have appropriate formalizations in the automaton context.

1 Physical Connections

Physics and computer science share common interests. They may pursue their
investigations by different methods and formalisms, but once in a while it is quite
obvious that the interrelations are pertinent. Take, for example, the concepts of
information and computation. Per definition, any theory of information and com-
putation, in order to be applicable, should refer to physically operationalizable
concepts. After all, information and computation is physical [1].

Conversely, concepts of computer science have increasingly influenced physics.
Two examples for these developments have been the recent developments in clas-
sical continuum theory, well known under the term “deterministic chaos,” as well
as quantum information and computation theory. Quantum systems nowadays
are often perceived as very specific and delicate (due to decoherence; i.e., the
irreversible loss of state information in measurements) reversible computations.

Whether or not this correspondence resides in the very foundations of both
sciences remains speculative. Nevertheless, one could conjecture a correspon-
dence principle by stating that every feature of a computational model should
be reflected by some physical system. Conversely, every physical feature, in par-
ticular of a physical theory, should correspond to a feature of an appropriate
computational model. This is by no means trivial, as for instance the abundant
use of nonconstructive continua in physics indicates. No finitely bounded com-
putation could even in principle store, process and retrieve the nonrecursively
enumerable and even algorithmically incompressible random reals, of which the
continuum “mostly” exists. But also recent attempts to utilize quantum com-
putations for speedups or even to solve problems which are unsolvable within
classical recursion theory [2] emphasize the interplay between physics and com-
puter science.

M. Ito and M. Toyama (Eds.): DLT 2002, LNCS 2450, pp. 93–102, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



94 Karl Svozil

Already quite early, Edward Moore attempted a formalization of quantum
complementarity in terms of finite deterministic automata [3]. Quantum com-
plementarity is the feature of certain microphysical systems not to allow the
determination of all of its properties with arbitrary precision at once. Moore
was interested in the initial state determination problem: given a particular fi-
nite automaton which is in an unknown initial state; find that initial state by the
analysis of input-output experiments on a single such automaton. Complemen-
tarity manifests itself if different inputs yield different properties of the initial
automaton state while at the same time steering the automaton into a state
which is independent of its initial one.

Moore’s considerations have been extended in many ways. Recently, different
complementarity classes have been characterized [4] and their likelihood has been
investigated [5,6]. We shall briefly review a calculus of propositions referring to
the initial state problem which resembles quantum logic in many ways [7,8].
Automaton theory can be liked to generalized urn models [9]. In developing the
analogy to quantum mechanics further, reversible deterministic finite automata
have been introduced [10]. New concepts in quantum mechanics [11] suggest yet
different finite automaton models.

2 Automaton Partition Logics

Consider a Mealy automaton 〈S, I, O, δ, λ〉, where S, I, O are the sets of states,
input and output symbols, respectively. δ(s, i) = s′ and λ(s, i) = o, s, s′ ∈ S,
i ∈ I and o ∈ O are the transition and the output functions, respectively.

The initial state determination problem can be formalized as follows. Con-
sider a particular automaton and all sequences of input/output symbols which
result from all conceivable experiments on it. These experiments induce a state
partition in the following natural way. Every distinct set of input/output symbols
is associated with a set of initial automaton states which would reproduce that
sequence. This set of states may contain one or more states, depending on the
ability of the experiment to separate different initial automaton states. A par-
titioning of the automaton states associated with an input sequence is obtained
if one considers the variety of all possible output sequences. Stated differently:
given a set of input symbols, the set of automaton states “decays” into disjoint
subsets associated with the possible output sequences. This partition can then be
identified with a Boolean algebra, with the elements of the partition interpreted
as atoms. By pasting the Boolean algebras of the “finest” partitions together,
one obtains a calculus of proposition associated with the particular automaton.
This calculus of propositions is referred to as automaton partition logic.

The converse is true as well: given any partition logic, it is always possible to
(nonuniquely) construct a corresponding automaton with the following specifica-
tions: associate with every element of the set of partitions a single input symbol.
Then take the partition with the highest number of elements and associate a
single output symbol with any one element of this partition. The automaton
output function can then be defined by associating a single output symbol per
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element of the partition (corresponding to a particular input symbol). Finally,
choose a transition function which completely looses the state information after
only one transition; i.e., a transition function which maps all automaton state
into a single one. We just mention that another, independent, way to obtain
automata from partition logics is by considering the set of two-valued states.

In that way, a multitude of worlds can be constructed, many of which fea-
ture quantum complementarity. For example, consider the Mealy automaton
〈{1, 2, 3}, {1, 2, 3}, {0, 1}, δ = 1, λ(s, i) = δsi〉 (the Kronecker function δsi =
1 if s = i, and zero otherwise). Its states are partitioned into {{1}, {2, 3}},
{{2}, {1, 3}}, {{3}, {1, 2}}, for the inputs 1, 2, and 3, respectively. Every parti-
tion forms a Boolean algebra 22. The partition logic depicted in Fig. 1 is obtained
by “pasting” the three algebras together; i.e., by maintaining the order structure
and by identifying identical elements; in this case ∅, {3, 1, 2}. It is a modular,
nonboolean lattice MO3 of the “chinese lantern” form. A systematic study [8,
pp. 38-39] shows that automata reproduce (but are not limited to) all finite
subalgebras of Hilbert lattices of finite-dimensional quantum logic.
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Fig. 1. Automaton partition logic corresponding to the Mealy automaton
〈{1, 2, 3}, {1, 2, 3}, {0, 1}, δ = 1, λ(s, i) = δsi〉.

Mealy automata are logically equivalent to generalized urn model (GUM)
[12,13] 〈U, C, L, Λ〉 which is an ensemble U of ball types with black background
color. Printed on these balls are some symbols from a symbolic alphabet L. These
symbols are colored. The colors are elements of a set of colors C. A particular
ball type is associated with a unique combination of mono-spectrally (no mixture
of wavelength) colored symbols printed on the black ball background.
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Suppose you have a number of colored eyeglasses built from filters for the |C|
different colors. They should absorb every other light than one of a particular
single color. When a spectator looks at a particular ball through such an eyeglass,
the only recognizable symbol will be the one in the particular color which is
transmitted through the eyeglass. All other colors are absorbed, and the symbols
printed in them will appear black and therefore cannot be differentiated from
the black background. Hence the ball appears to carry a different “message”
or symbol, depending on the color at which it is viewed. The above procedure
could be formalized by a “lookup” function Λ(u, c) = v, which depends on the
ball type u ∈ U and on the color c ∈ C, and which returns the symbol v ∈ L
printed in this color. (Note the analogy to the output function λ.)

Again, an empirical logic can be constructed as follows. Consider the set of
all ball types. With respect to a particular colored eyeglass, this set gets parti-
tioned into those ball types which can be separated by the particular color of
the eyeglass. Every such state partition can then be identified with a Boolean
algebra whose atoms are the elements of the partition. A pasting of all of these
Boolean algebras yields the calculus of propositions. The corresponding correla-
tion polytope formed by the set of two-valued states characterizes all probability
measures.

In order to define an automaton partition logic associated with a Mealy
automaton 〈S, I, O, δ, λ〉 from a GUM 〈U, C, L, Λ〉, let u ∈ U , c ∈ C, v ∈ L, and
s, s′ ∈ S, i ∈ I, o ∈ O, and assume |U | = |S|, |C| = |I|, |L| = |O|. The following
identifications can be made with the help of the bijections tS , tI and tO:

tS(u) = s, tI(c) = i, tO(v) = o,
δ(s, i) = si for fixed si ∈ S and arbitrary s ∈ S, i ∈ I,
λ(s, i) = tO

(
Λ(t−1

S (s), t−1
I (i))

)
.

(1)

Conversely, consider an arbitrary Mealy automaton 〈S, I, O, δ, λ〉. Just as
before, associate with every single automaton state s ∈ S a ball type u, associate
with every input symbol i ∈ I a unique color c, and associate with every output
symbol o ∈ O a unique symbol v; i.e., again |U | = |S|, |C| = |I|, |L| = |O|. The
following identifications can be made with the help of the bijections τU , τC and
τL:

τU (s) = u, τC(i) = c, τL(o) = v, Λ(u, c) = τL(λ(τ−1
U (u), τ−1

C (c))). (2)

A direct comparison of (1) and (2) yields

τ−1
U = tS , τ−1

C = tI , τ−1
L = tO. (3)

For example, for the automaton partition logic depicted in Fig. 1, the above
construction yields a GUM with three ball types: type 1 has a red “0” printed
on it and a green and blue “1;” type 2 has a green “0” printed on it and a
red and blue “1;” type 3 has a blue “0” printed on it and a red and green “1.”
Hence, if an experimenter looks through a red eyeglass, it would be possible to
differentiate between ball type 1 and the rest (i.e., ball types 2 and 3).
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3 Reversible Finite Automata

The quantum time evolution between two measurements is reversible, but the
previously discussed Moore and Mealy automata are not. This has been the
motivation for another type of deterministic finite automaton model [10,8] whose
combined transition and output function is bijective and thus reversible.

The elements of the Cartesian product S × I can be arranged as a linear list
Ψ of length n, just like a vector. Consider the automaton 〈S, I, I, δ, λ〉 ≡ 〈Ψ, U〉
with I = O and U : (s, i) → (δ(s, i), λ(s, i)), whose time evolution can in be
rewritten as

n∑
j=1

UijΨj (4)

U is a n × n-matrix which, due to the requirement of determinism, uniqueness
and invertability is a permutation matrix. The class of all reversible automata
corresponds to the group of permutations, and thus reversible automata are
characterized by permutations.

Do reversible automata feature complementarity? Due to reversibility, it
seems to be always possible to measure a certain aspect of the initial state
problem, copy this result to a “save place,” revert the evolution and measure
an arbitrary other property. In that way, one effectively is able to work with
an arbitrary number of automaton copies in the same initial state. Indeed, as
already Moore has pointed out, such a setup cannot yield complementarity.

The environment into which the automaton is embedded is of conceptual
importance. If the environment allows for copying; i.e., one-to-many evolutions,
then the above argument applies and there is no complementarity. But if this
environment is reversible as well, then in order to revert the automaton back to
its original initial state, all information has to be used which has been acquired
so far; i.e., all changes have to be reversed, both in the automaton as well as
in the environment. To put it pointedly: there is no “save place” to which the
result of any measurement could be copied and stored and afterwards retrieved
while the rest of the system returns to its former state. This is an automaton
analogue to the no-cloning theorem of quantum information theory.

For example, a reversible automaton corresponding to the permutation whose
cycle form is given by (1,2)(3,4) corresponds to an automaton

〈{1, 2}, {0, 1}, {0, 1}, δ(s, i) = s, λ(s, i) = (i + 1) mod 2〉 ,

or, equivalently, 〈


(1, 0)
(1, 1)
(2, 0)
(2, 1)


 ,




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




〉
. (5)

A pictorial representation may be given in terms of a flow diagram which repre-
sent the permutation of the states in one evolution step.
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4 Counterfactual Automata

Automaton partition logic is nondistributive and thus nonclassical (if Boolean
logic is considered to be classical). Yet it is not nonclassical as it should be, in par-
ticular as compared to quantum mechanics. The partitions have a set theoretic
interpretation, and automaton partition logic allows for a full set of two-valued
states; i.e., there are a sufficient number of two-valued states for constructing
lattice homomorphisms. This is not the case for Hilbert lattices associated with
quantum mechanical systems of dimension higher than two. Probably the most
striking explicit and constructive demonstration of this fact has been given by
Kochen and Specker [14]. They enumerated a finite set of interconnected orthog-
onal tripods in threedimensional real Hilbert space with the property that the
tripods cannot be colored consistently in such a way that two axes are green and
one is red. Stated differently, the chromatic number of the threedimensional real
unit sphere is four. The entire generated system of associated properties is not
finite. Just as for all infinite models, denumerable or not, it does not correspond
to any finite automaton model.

Since the colors “green” and “red” can be interpreted as the truth values
“false” and “true” of properties of specific quantum mechanical systems, there
has been much speculation as to the existence of complementary quantum physi-
cal properties. One interpretation supposes that counterfactual properties differ-
ent from the ones being measured do not exist. While this discussion may appear
rather philosophical and not to the actual physical point, it has stimulated the
idea that a particle does not carry more (counterfactual) information than it has
been prepared for. I.e., a n-state particle carries exactly one nit of information,
and k n-state particles carry exactly k nits of information [11,15,16]. As a con-
sequence, the information may not be coded into single particles alone (one nit
per particle), but in general may be distributed over ensembles of particles, a
property called entanglement. Furthermore, when measuring properties different
from the ones the particle is prepared for, the result may be irreducible random.
The binary case is n = 2. Note that, different from classical continuum theory,
where the base of the coding is a matter of convention and convenience, the base
of quantum information is founded on the n-dimensionality of Hilbert space of
the quantized system, a property which is unique and measurable.

A conceivable automaton model is one which contains a set of input symbols
I which themselves are sets with n elements corresponding to the n different
outputs of the n-ary information. Let 〈I × O, I, O, δ, λ〉 with S = I to reflect
the issue of state preparation versus measurement. Since the information is in
base n, O = {1, . . . , n}. Furthermore, require that after every measurement, the
automaton is in a state which is characterized by the measurement; and that
random results are obtained if different properties are measured than the ones
the automaton has been prepared in. I.e.,

δ((s, os), i) =
{

(i, RANDOM(O)) if s �= i,
(s, os) if s = i,

,

λ((s, os), i) =
{

RANDOM(O) if s �= i,
os if s = i,

(6)
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The state (s, os) ∈ I × O is characterized by the mode s the particle has been
prepared for, and the corresponding output os. The input i determines the “con-
text” (a term borrowed from quantum logic) of measurement, whereas the output
value 1 ≤ os ≤ n defines the actual outcome. RANDOM(O) is a function whose
value is a random element of O.

This straightforward implementation may not be regarded very elegant or
even appropriate, since it contains a random function in the definition of a finite
automaton. A conceptually more appealing Ansatz might be to get rid of the
case s �= i in which the automaton is prepared with a state information different
from the one being retrieved. One may speculate that the randomization of
the output effectively originates from the environment which “translates” the
“wrong” question into the one which can be answered by the automaton (which
is constrained by s = i) at the price of randomization. It also remains open if
the automaton analogue to entanglement is merely an automaton which cannot
be decomposed into parallel single automata.

The formalism developed for quantum information in base n defined by state
partitions can be fully applied to finite automata [16]. A k-particle system whose
information is in base n is described by k nits which can be characterized by
k comeasurable partitions of the product state of the single-particle states with
n elements each; every such element has nk−1 elements. Every complete set of
comeasurable nits has the property that (i) the set theoretic intersection of any
k elements of k different partitions is a single particle state, and (ii) the union of
all these nk intersections is just the set of single particle states. The set theoretic
union of all elements of a complete set of comeasurable nits form a state partition.
The set theoretic union of all of the nk! partitions (generated by permutations
of the product states) form an automaton partition logic corresponding to the
quantum system.

We shall demonstrate this construction with the case k = 2 and n = 3. Sup-
pose the product states are labeled from 1 through 9. A typical element is formed
by {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} for the first trit, and {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}
for the second trit. Since those trits are comeasurable, their Cartesian prod-
uct forms the first partition {{{1, 2, 3}, {1, 4, 7}}, . . . , {{7, 8, 9}, {3, 6, 9}}}. The
complete set of 9!/(2 · 3! · 3!) = 5040 different two-trit sets can be evaluated
numerically; i.e., in lexicographic order,

{{{{1, 2, 3}, {4, 6, 8}, {5, 7, 9}} × {{1, 4, 5}, {2, 6, 7}, {3, 8, 9}}}, (7)
{{{1, 2, 3}, {4, 6, 9}, {5, 7, 8}} × {{1, 4, 5}, {2, 6, 7}, {3, 8, 9}}}, (8)

...
{{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}} × {{{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}}, (9)

...
{{{1, 6, 9}, {2, 5, 7}, {3, 4, 8}} × {{1, 7, 8}, {2, 4, 9}, {3, 5, 6}}}, (10)
{{{1, 6, 9}, {2, 5, 8}, {3, 4, 7}} × {{1, 7, 8}, {2, 4, 9}, {3, 5, 6}}}}. (11)
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Fig. 2. Two trits yield a unique tessellation of the two-particle product state space;
the two trits per line correspond to Eqs. (7)—(11).
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The associated partition logic is the horizontal sum of 5040 Boolean algebras with
nine atoms (i.e., 29) and corresponds to a rather elaborate but structurally simple
automaton with 9 states {1, . . . , 9}, 2 × 5040 input symbols {1, . . . , 10080} and
9 output symbols {1, . . . , 9}. Every one of the Boolean algebras is the quantum
analogue of a particular set of comeasurable propositions associated with the two
trits. Together they form a complete set of trits for the two-particle three-state
quantized case. A graphical representation of the state single-particle state space
tesselation is depicted in Fig 2.

5 Applicability

Despite some hopes, for instance stated by Einstein [17, p. 163], to express
finite, discrete physical systems by finite, algebraic theories, a broader acceptance
of automata models in physics would require concrete, operationally testable
consequences. One prospect would be to search for phenomena which cannot
happen according to quantum mechanics but are realizable by finite automata.
The simplest case is characterized by a Greechie hyperdiagram of triangle form,
with three atoms per edge. Its automaton partition logic is given by

{{{1}, {2}, {3, 4}}, {{1}, {2, 4}, {3}}, {{1, 4}, {2}, {3}}}. (12)

A corresponding Mealy automaton is 〈{1, 2, 3, 4}, {1, 2, 3}, {1, 2, 3}, δ = 1, λ〉,
where λ(1, 1) = λ(3, 2) = λ(2, 3) = 1, λ(3, 1) = λ(2, 2) = λ(1, 3) = 2, and
λ(2, 1) = λ(4, 1) = λ(1, 2) = λ(4, 2) = λ(3, 3) = λ(4, 3) = 3.

Another potential application is the investigation of the “intrinsic physical
properties” of virtual realities in general, and computer games in particular.
Complementarity and the other discussed features are robust and occur in many
different computational contexts, in particular if one is interested in the intrinsic
“look and feel” of computer animated worlds.
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