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Finding a state among a complete set of orthogonal states
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We consider the problem to single out a particular state among 2n orthogonal pure states. As it turns out, in
general the optimal strategy is not to measure the particles separately, but to consider joint properties of the
n-particle system. The required number of propositions isn. There exist 2n! equivalent operational procedures
to do so. We enumerate some configurations for three particles, in particular the Greenberger-Horne-Zeilinger
~GHZ! and W states, which are specific cases of a unitary transformation. For the GHZ case, an explicit
physical meaning of the projection operators is discussed.
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Suppose ‘‘Bob’’ is told that ‘‘Alice’’ has preparedn two-
state systems in a particular pure state amongN52n pure
states. Assume further that these pure states correspond
complete orthonormal basis of someN-dimensional Hilbert
space. Both Bob and Alice know beforehand which basi
used. Bob’s task is to find out which particular single one
the 2n states Alice has chosen to communicate to him.

The difference to a classical weighting problem~e.g.,
@1,2#! associated with finding the correct number amongn

ones encoded byn coins of two coin types is the entangle
ment of the quantum objects. That is, the information may
distributed over the objects in such a way as to make imp
sible its recovery by just looking at the individual objec
Thus the classical performance will not be improved butex-
tendedby the quantum case.

As can be expected, there exist efficient and expen
search strategies for such a task. The ‘‘worst’’ strategy~be-
sides mere repetition! would be to check the proposition co
responding to each individual pure state, asking, ‘‘is the s
tem in statei?’’ for i 51, . . . ,2n. Yet, by exploiting thejoint
propertiesof the n systems, we may expect to reduce t
complexity of Bob’s task.

In what follows we shall thus deal with the followin
questions aimed at a systematic understanding of the
determination problem.~i! What is the minimal set of propo
sitions ~i.e., operationalizable yes-no statements! which
singles out a particular pure state ofn entangled two-state
systems from other orthogonal pure states?~ii ! How many
different but equivalent sets of propositions can be defin
~iii ! What is the explicit form and physical interpretation
the propositions associated with an arbitrary basis?

As it turns out, the number of propositions required f
solving the problem can be reduced ton, which is an expo-
nential gain with respect to the worst strategy just m
tioned. This result is in agreement with Zeilinger’s found
tional principle stating thatn elementary two-state system
carry n classical bits; i.e., the answer to at mostn questions
concerning their physical properties@3#. In classical informa-
tion theory a proposition is the yes-no statement settlin
question with two possible answers. In standard quan
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logic @4–7#, quantum propositions are identified with proje
tion operators. The eigenvalues 0 and 1 of these projec
operators are identified with the two possible yes-no
swers, respectively.

Conversely, by assuming Zeilinger’s principle, it shou
be possible to definen-particle quantum states by the set
eigenvalues associated with quantum-mechanical prop
tions. When choosing the ‘‘optimal’’ strategy,n propositions
should suffice. However, one could also take an arbitr
number of consistent propositions. If these are not ‘‘optim
in a well-defined sense, then this results in nonpure quan
states.

Consider a 2n5N-dimensional Hilbert space ofn par-
ticles in two states~labeled by ‘‘1,’’ ‘‘2,’’ or ‘‘up,’’ ‘‘down,’’
or ‘‘ 1,’’ ‘‘ 2,’’ or whatever!. The standard orthonormal bas
is given by~superscript ‘‘T’’ indicates transposition!

$ue1&5u111•••1&[~1,0,0, . . . ,0!T,

A

ueN&5u222•••2&[~0,0,0, . . . ,1!T%. ~1!

Let us first concentrate on an enumeration of all propo
tions which uniquely distinguish theN vectors that form an
orthogonal basis of anN-dimensional vector space. This tas
corresponds to the construction of projection operator
which have some operational interpretation~s! in terms of
~quantum-mechanical! measurements—whose combined e
fect is the separation of each individual base state from
the other ones. In that respect, the measurement appa
and the associated propositions act as filters which ef
tively generate apartitioning of some orthonormal basis int
partitions which contain only single elements of that ba
~i.e., one basis element per partition element!. Formally, the
projections induce an equivalence relation on the set of b
states.

We shall impose the following requirements upon t
propositions.~i! All propositions are comeasurable~i.e., the
associated projections commute!. ~ii ! Any single proposition
separates half of the elements of the orthogonal base ve
from the other half; i.e., any propositionFi generates a 50:50
partition f i with u f i u52 and thekth elementf i ,kP f i of the
partition f i ~note thatu f i ,ku5N/2 and ‘‘uxu ’’ stands for the
t/
©2002 The American Physical Society02-1
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number of elements of a finite setx). ~iii ! For any two propo-
sitionsFi ,F j , iÞ j , the intersection of elements of the ass
ciated partitionsf i , f j of some orthogonal basis reduce t
size of the elements of the partitions by a factor of two.

We shall introduce an optimal algorithm implementin
these requirements which uses exactlyn propositions to de-
compose every orthonormal basis of theN-dimensional vec-
tor space. It implements a binary search strategy which
be enumerated as follows: separate the firstN/2 vectors from
the secondN/2. Then, within every such block, separate t
first N/4 vectors from the secondN/4. Iterate these proce
dures by reducing the block size by a factor of two in ea
step until blocks of size one are reached. This ‘‘state sie
is an optimal search strategy in the sense that in genera
shorter proposition system exists which separates each
vidual state of the standard orthonormal basis@15#.

The explicit form of the operators are~‘‘diag’’ stands for a
diagonal matrix!

~2!

~3!

~4!

and the orthogonal operatorsOi8512Oi . All these projec-
tions commute with one another. They are listed by the
verse lexicographic order of their diagonal elements. Th
associated propositions can be stated as follows:

O1[ ‘ ‘The first particle is in state1. ’ ’

O2[ ‘ ‘The second particle is in state1. ’ ’

]

On[ ‘ ‘The nth particle is in state1. ’ ’

It is easy to verify that these operators are projection op
tors and that they mutually commute; i.e.,OiOi
5Oi , @Oi ,Oj #50, for all i , j P$1, . . . ,N%. Physically, this
scheme amounts to a nondestructive successive and c
tional measurement of the propositionsO1 , . . . ,On , relating
to, say, electron spins in external magnetic fields~cf. Fig. 1
for n53!. Bob needs just one copy of the state ofN particles
to find out Alice’s selection.

Having now dealt with the question~i! of the minimal set
of propositions for the problem and having partly discusse
particular case of question~iii !, let us now turn to the ques
tion of how many equivalent systems of operators and pro
sitions exist. Notice that only diagonal matrices contain
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1s and 0s in the principal diagonal can be eigenmatrices
the standard orthonormal basis~1!. For this particular basis,
the only possible variations are obtained as follows. First,
diagonals ofO1 ,O2 , . . . ,On are written below each other. If
one considers the columns of this listing, each one of theN
columns of lengthn represents a unique numberN5a1
.a2.•••.aN21.aN50 in binary notation and in strictly
decreasing order. Other valid state sieves are obtained
exchanging two arbitrary columns. This amounts to the p
mutation ofN different n-ary columns. The total number o
such entities and thus of all equivalent systems ofn propo-
sitions isN! 52n!.

Let us demonstrate the construction by considering
casen53, N58 ~e.g., three spin 1/2 particles!. The opera-
tors can be written in a diagonal form

O15diag~1,1,1,1,0,0,0,0!, ~5!

O25diag~1,1,0,0,1,1,0,0!, ~6!

O35diag~1,0,1,0,1,0,1,0!. ~7!

Some of the permutations yielding 8!540 320 equivalent
systems of three propositions are enumerated in Table I.
cascade of filters representable by projection operators~5!–
~7! and interpretable as elementary yes-no propositions
depicted in Fig. 1. Any permutation of these measureme
yields the same partitioning of states.

FIG. 1. State sieve resulting from binary search. Success
measurements of propositionsO1 ,O2 ,O3 serve as filters to single
out the input state.D1 , . . . ,D8 indicate the final detectors; in the
lossless case, exactly one of them clicks.

TABLE I. Enumeration of the 8! equivalent variations of propo
sitions forn53, N52358.

11110000 11110000 00001111
11001100 ↔ 11001100 ↔•••↔ 00110011
10101010 01101010 01010101
2-2
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An arbitrary orthonormal basis of anN-dimensional vec-
tor space can be defined as the isometric transforms of
standard orthonormal basis~1!. If the vector space is com
plex ~i.e., CN), these isometries are the unitary transform
Furthermore, any basis change inCN from one orthonormal
basis into another one can be represented by some un
matrix U; i.e., ubi&5Uuei&. The group of unitary transforma
tions U(N) in N-dimensional Hilbert space hasN2 param-
eters. In the following we shall study this entire group rath
than the transformations resulting from the combined eff
of @U(2)#n, which are again unitary transformations~this
would unnecessarily restrict the general case!.

Thus the problem of finding theN propositions for the
basisubi& can simply be solved by transforming the propo
tions for the vector space; i.e.,Oi

b5UOi
eU21. Here, O

5Oe for someOeP$O1 , . . . ,ON%. These propositions hav
the same eigenvalues as the propositions, since if we ide
Oeuei&5luei&, then Obubi&5UOeU21Uuei&5lUuei&
5lubi&.

In Ref. @3# Zeilinger poses the following question, ‘‘Wha
are the three propositions which can be used to uniqu
define the eight states of the three-particle case?’’ Cons
the eight orthonormal Greenber-Horne-Zeilinger~GHZ!-
basis states

uc1&5
1

A2
~ u111&1u222&)[~1,0,0,0,0,0,0,1!T[u111&

]

uc8&5
1

A2
~ u211&2u122&)[~0,0,0,1,21,0,0,0!T

[u000&. ~8!

They can be interpreted as follows. The relative directions
the three spins are fixed but their respective values unde
mined. Thus, one measurement on each one of the t
particles will suffice to know the exact values of all spins.
is possible to characterize the states according to the t
value of the propositions below byu111& to u000&. Just
as before, let us define the vector components of
standard orthonormal basis states asu111&
[(1,0,0,0,0,0,0,0)T, . . . ,u222&[(0,0,0,0,0,0,0,1)T. Let
UGHZ be the unitary matrix which transforms this standa
basis into the GHZ-basis. An explicit calculation shows th
the matricesOi5Oi

GHZ5UGHZOi
e(UGHZ)21, i 51,2,3, can

be written as follows:

O15diag~1,1,0,0,0,0,1,1!, ~9!

O25diag~1,0,1,0,0,1,0,1!, ~10!
04430
he

.

ry

r
t

-

ify

ly
er

f
er-
ee
t
th

e

t

O35
1

2 1
1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0

0 0 1 0 0 1 0 0

0 0 0 1 1 0 0 0

0 0 0 1 1 0 0 0

0 0 1 0 0 1 0 0

0 1 0 0 0 0 1 0

1 0 0 0 0 0 0 1

2 . ~11!

O1 distinguishes the first four states from the second f
and thus induces a partition~we abbreviateuc j& by j )
@$1,2,3,4%,$5,6,7,8%# of the GHZ-basis states.O2 distin-
guishes 1,2,5,6 from 3,4,7,8 and thus induces a parti
@$1,2,5,6%,$3,4,7,8%# of the GHZ-basis states.O3 identifies
the relative phases and thus induces a partit
@$1,3,5,7%,$2,4,6,8%# of the GHZ-basis states. The thre
matrices are mutually commutative. Their combined eff
is an atomic partition of the set of base stat
@$1%,$2%,$3%,$4%,$5%,$6%,$7%,$8%# which is the formal ana-
logue of the experimental sieve. It is obtained by a succ
sive application of experiments, represented by the inters
tion of each partition element ofOi with all the other ones.
Notice also that@16# O35 1

2 (11s1xs2xs3x).
The propositions associated with these operators ar

follows. O1 corresponds to the statement that ‘‘the spin
the first and the spin of the second particle are the sam
the z direction.’’ O2 corresponds to the statement that ‘‘th
spin of the first and the spin of the third particle are the sa
in thez direction.’’ O3 corresponds to the statement that ‘‘a
even number of spins is pointing down when measured in
x direction.’’ This result can be generalized to the case on
particles in a straightforward manner. Thereby,n21 propo-
sitions characterize the relative spins of the particles,
also thenth proposition is the same as above.

Another, equivalent but permutated set of propositio
was proposed by Cereceda@8,9#: T15 1

2 (11s1xs2ys3y),
T25 1

2 (11s1ys2xs3y), and T35 1
2 (11s1ys2ys3x). Since

the transformation matrixUGHZ remains the same, the pro
jection operators differ from the previous ones~9!–~11! by a
permutation of the propositional system~5!–~7! yielding
equivalent, though not identical propositions. This can
explicitly seen by taking row permutations of the operato
~5!–~7!

O15diag~0,1,1,0,1,0,0,1!, ~12!

O25diag~0,1,1,0,0,1,1,0!, ~13!

O35diag~0,1,0,1,1,0,1,0!, ~14!

such thatTi5UGHZOi(U
GHZ)21, i 51,2,3. The physical in-

terpretations ofTi @cf. question~iii !# are as follows@8#. T1
corresponds to the statement that ‘‘the product of the spin
particles 1, 2, and 3 along the axesx, y, andy, respectively, is
equal to 1.’’T2 corresponds to the statement that ‘‘the pro
uct of the spin of particles 1, 2, and 3 along the axesy, x, and
2-3
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y, respectively, is equal to 1.’’T3 corresponds to the state
ment that ‘‘the product of the spin of particles 1, 2, a
3 along the axesy, y, andx, respectively, is equal to 1.’’ The
associated GHZ-base state partitions
@$1,4,6,7%,$2,3,5,8%# for O1 , @$1,4,5,8%,$2,3,6,7%# for O2,
and @$1,3,6,8%,$2,4,5,7%# for O3, respectively.

The method proposed here is quite general and can
instance, be applied to another set of orthonormal base s
of eight-dimensional Hilbert space which contains theW
state introduced in@10# and discussed in@11#. Still another
orthonormal basis contains all elements of the standard
thogonal basis equally weighted. For the above ca
projection operatorsQj5UWOi

eUW†, j 51,2,3, can be de-
fined, whereby the operatorsO1 ,O2 ,O3 produce parti- tions
@$1,2,3,4%,$5,6,7,8%#, @$1,2,5,6%,$3,4,7,8%#, and
@$1,3,5,7%,$2,4,6,8%# of the original basis, respectively.~Any
vertical permutation thereof would be equally suitable.! As
before, allQi can be given a direct physical interpretation
terms of ‘‘clicks in a counter’’@12#, but their meaning canno
be expressed in elementary statements.

In summary, we have shown that, givenn quantized two-
-
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state systems,n propositions are enough to find and separ
any individual pure state from others of an arbitrary orthog
nal basis. There exist 2n! equivalent sets ofn propositions
achieving this. They all differ by permutations from one a
other. By considering the simplest case of the standard
thogonal basis, we have been able to explicitly constr
these sets of propositions and their corresponding projec
operators. Any other orthogonal basis system and the co
sponding more general projection operators can be obta
from this standard orthogonal one by unitary transform
tions. We have explicitly discussed two equivalent solutio
of the state determination problem for the GHZ-base sta
and mentioned theW state and more general cases. We co
clude that the optimal strategy to single out particular sta
is in general based on a measurement of the joint prope
of the particles rather than the properties of the individ
particles.
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The tensor product̂ of two second degree tensorsa,b repre-
sentable by twon3n andm3m matrices whose component
areai j andbk,l can be represented by annm3nm matrix

~a^b!s,t5ads/me,dt/mebs2b(s21)/mcm,t2b(t21)/mcm , s,t51, . . . ,nm,

wheredxe stands for the smallest integer greater than or eq
to x, andbxc stands for the greatest integer less than or equa
x, respectively.
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