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Finding a state among a complete set of orthogonal states
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We consider the problem to single out a particular state amérgtBogonal pure states. As it turns out, in
general the optimal strategy is not to measure the particles separately, but to consider joint properties of the
n-particle system. The required number of propositions iEhere exist 2! equivalent operational procedures
to do so. We enumerate some configurations for three particles, in particular the Greenberger-Horne-Zeilinger
(GHZ) and W states, which are specific cases of a unitary transformation. For the GHZ case, an explicit
physical meaning of the projection operators is discussed.
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Suppose “Bob” is told that “Alice” has prepared two-  logic [4—7], quantum propositions are identified with projec-
state systems in a particular pure state ambirg2" pure tion operators. The eigenvalues 0 and 1 of these projection
states. Assume further that these pure states correspond t®perators are identified with the two possible yes-no an-
complete orthonormal basis of sorhedimensional Hilbert —swers, respectively.
space. Both Bob and Alice know beforehand which basis is Conversely, by assuming Zeilinger’s principle, it should
used. Bob’s task is to find out which particular single one ofbe possible to defina-particle quantum states by the set of
the 2" states Alice has chosen to communicate to him. eigenvalues associated with quantum-mechanical proposi-

The difference to a classical weighting problef@.g., tions. When choosing the “optimal” strategy, propositions
[1,2]) associated with finding the correct number amofig 2 should suffice. However, one could also take an arbitrary
ones encoded by coins of two coin types is the entangle- humber of consistent propositions. If these are not “optimal”
ment of the quantum objects. That is, the information may bén a well-defined sense, then this results in nonpure quantum
distributed over the objects in such a way as to make imposstates.
sible its recovery by just looking at the individual objects. ~Consider a 2=N-dimensional Hilbert space afi par-
Thus the classical performance will not be improved &t ticles in two stateglabeled by “1,” “2,” or “up,” “down,”
tendedby the quantum case. or“+,"* —,"or whateve). The standard orthonormal basis

As can be expected, there exist efficient and expensivés given by(superscript T” indicates transposition
search strategies for such a task. The “worst” stratéoyg-
sides mere repetitiorwould be to check the proposition cor- {lep=|+++---+)=(100...,0,
responding to each individual pure state, asking, “is the sys-
temin statd ?” for i=1,...,2". Yet, by exploiting thgoint
propertiesof the n systems, we may expect to reduce the
complexity of Bob’s task. len)=|———---=)=(0,0Q...,1)7}. (1)

In what follows we shall thus deal with the following
guestions aimed at a systematic understanding of the state Let us first concentrate on an enumeration of all proposi-
determination problenti) What is the minimal set of propo- tions which uniquely distinguish thd vectors that form an
sitions (i.e., operationalizable yes-no statemeéntghich  orthogonal basis of aN-dimensional vector space. This task
singles out a particular pure state wfentangled two-state corresponds to the construction of projection operators—
systems from other orthogonal pure statés?How many  which have some operational interpretat®nin terms of
different but equivalent sets of propositions can be defined®quantum-mechanicemeasurements—whose combined ef-
(iii) What is the explicit form and physical interpretation of fect is the separation of each individual base state from all
the propositions associated with an arbitrary basis? the other ones. In that respect, the measurement apparatus

As it turns out, the number of propositions required forand the associated propositions act as filters which effec-
solving the problem can be reducedrtowhich is an expo- tively generate gartitioning of some orthonormal basis into
nential gain with respect to the worst strategy just men-artitions which contain only single elements of that basis
tioned. This result is in agreement with Zeilinger’s founda-(i.e., one basis element per partition elemeRbrmally, the
tional principle stating thah elementary two-state systems projections induce an equivalence relation on the set of base
carry n classical bits; i.e., the answer to at mosfjuestions  states.
concerning their physical propertig3]. In classical informa- We shall impose the following requirements upon the
tion theory a proposition is the yes-no statement settling @ropositions.(i) All propositions are comeasurablee., the
question with two possible answers. In standard quanturassociated projections commputéi) Any single proposition

separates half of the elements of the orthogonal base vectors
from the other half; i.e., any propositidf) generates a 50:50
*Electronic address: svozil@tuwien.ac.at; http://tph.tuwien.ac.atpartition f; with |f;|=2 and thekth elementf; , e f; of the
~svozil partition f; (note that|f; ,/=N/2 and “|x|” stands for the
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number of elements of a finite sek. (iii) For any two propo-
sitionsF; ,F;, i#], the intersection of elements of the asso-
ciated partitionsf; ,f; of some orthogonal basis reduce the
size of the elements of the partitions by a factor of two.

We shall introduce an optimal algorithm implementing len); e2) le2) @
these requirements which uses exactlgropositions to de-
compose every orthonormal basis of tielimensional vec- les), lea) @
tor space. It implements a binary search strategy which ca le1), -+, lea)
)

be enumerated as follows: separate the firg vectors from

)
the secondN/2. Then, within every such block, separate the
)

first N/4 vectors from the second/4. Iterate these proce- les) - les )
dures by reducing the block size by a factor of two in eacl les), e6) i

. . - . , 5/11€6 [eG> @
step until blocks of size one are reached. This “state sieve
is an optimal search strategy in the sense that in general r lex) @
shorter proposition system exists which separates each inc le7). les) X
vidual state of the standard orthonormal b44i5]. e8) @

8

The explicit form of the operators at&diag” stands for a

diagonal matrix
FIG. 1. State sieve resulting from binary search. Successive

O,=diag [1,...,1,0,...,0}, P measurements of propositio; ,0,,05 serve as filters to single
T T out the input stateD,, ... ,Dg indicate the final detectors; in the
lossless case, exactly one of them clicks.

1s and Gs in the principal diagonal can be eigenmatrices of
the standard orthonormal bagis. For this particular basis,
the only possible variations are obtained as follows. First, the
diagonals 000,,0,, ... ,0, are written below each other. If
one considers the columns of this listing, each one ofNhe
columns of lengthn represents a unique numbé&r=a;

) >a,>--->ay_1>ay=_0 in binary notation and in strictly

—_— — —— ——

02=diag(1,...,1,0,...,0,1,...,1,0,...,0), 3)
N/4 N4 N/4 N4

(4) decreasing order. Other valid state sieves are obtained by
exchanging two arbitrary columns. This amounts to the per-
mutation ofN differentn-ary columns. The total number of

. . such entities and thus of all equivalent systems gfropo-
and the orthogonal operato@ =1—0O;. All these projec- sitions isN! = 2"

tions commute with one another. They are listed by the re- Let us demonstrate the construction by considering the

verse lexicographic order of their diagonal elements. Thei'&asen=3 N=8 (e.g., three spin 1/2 particlesThe opera-
associated propositions can be stated as follows: tors can be written in a diagonal form

0,=diag (1,0,1,0, ...,1,0

N

O,=""The first particle is in statet.”

0,=diag1,1,1,1,0,0,0,0 (5)
0,=""The second particle is in state+.”

0,=diag1,1,0,0,1,1,0,0 (6)

0;=diag1,0,1,0,1,0,1,0 (7)

0,=""The nth patrticle is in statet+."
] ] o Some of the permutations yielding 840320 equivalent
It is easy to verify that these operators are projection operasystems of three propositions are enumerated in Table I. The
tors and that they mutually commute; i.eQiO;  cascade of filters representable by projection operdfes

=0;, [0;,0;]=0, for alli,je{1,... N}. Physically, this (7) and interpretable as elementary yes-no propositions are
scheme amounts to a nondestructive successive and congepicted in Fig. 1. Any permutation of these measurements
tional measurement of the propositidds, . . . ,O,, relating yields the same partitioning of states.
to, say, electron spins in external magnetic figlds Fig. 1
for n=3). Bob needs just one copy of the staté\bparticles TABLE |. Enumeration of the 8! equivalent variations of propo-
to find out Alice’s selection. sitions forn=3,N=2%=38.

Having now dealt with the questigi) of the minimal set
of propositions for the problem and having partly discussed a1110000 11110000 0000111
particular case of questidafiii), let us now turn to the ques- 11001100 - 11001100 < --- 00110011
tion of how many equivalent systems of operators and propot0101010 01101010 01010101

sitions exist. Notice that only diagonal matrices containing
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An arbitrary orthonormal basis of ad-dimensional vec-
tor space can be defined as the isometric transforms of the
standard orthonormal bas($). If the vector space is com-
plex (i.e., CV), these isometries are the unitary transforms.
Furthermore, any basis change@Y from one orthonormal
basis into another one can be represented by some unitary O5=
matrix U; i.e., |b;)=U|eg;). The group of unitary transforma-
tions U(N) in N-dimensional Hilbert space hd$® param-
eters. In the following we shall study this entire group rather
than the transformations resulting from the combined effect
of [U(2)]", which are again unitary transformatiofthis
would unnecessarily restrict the general gase
Thus the problem of finding th&l propositions for the ~©Os distinguishes the first four states from the second four
basis|b;) can simply be solved by transforming the proposi-and thus induces a partitiotwe abbreviate|;) by j)
tions for the vector space; i.eQ°=UOfU"L. Here,0 [{1.2.34.{56,7.8] of the GHZ-basis statesO, distin-
=0 for some0®e{0;, ... ,On}. These propositions have guishes 1,2,5,6 from 3,4,7,8 and 'Ehus mduce§ a .p.artmon
the same eigenvalues as the propositions, since if we identifyt 1,2.5.6.{3,4.7,8] of the GHZ-basis state©; identifies
O%le)=Ale), then OP|b)=UOCU U|e)=AUle) he relative phases and thus _mduces a partition
=\|b)). [{1,3,5,7},{2,4,6,2}] of the GHZ-basis states. The three
In Ref.[3] Zeilinger poses the following question, “What Matrices are mutually commutative. Their combined effect
are the three propositions which can be used to uniquel{ an atomic partition of the set of base states
define the eight states of the three-particle case?” Considéf 11:{2},{3},{4},{5},{6},{7},{8}] which is the formal ana-

the eight orthonormal Greenber-Horne-Zeilingé@Hz)-  logue of the experimental sieve. It is obtained by a succes-
basis states sive application of experiments, represented by the intersec-

tion of each partition element @, with all the other ones.
Notice also thaf16] O3=3(1+ 01,02403y)-

N| -

11)

R O O O O O O -
O B O O O O +— O
o O »r O O Fr O O
o O O P Pk O O O
O O O Pk P O O O
O O »r O O Fr O O
O »r O O O O +— O
o O O O O o

1 The propositions associated with these operators are as
ly=—=(+++)+|———))=(1,0,0,0,0,0,0,'=|112) follows. O; corresponds to the statement that “the spin of
2 the first and the spin of the second particle are the same in

the z direction.” O, corresponds to the statement that “the
spin of the first and the spin of the third particle are the same
in the z direction.” O5 corresponds to the statement that “an
even number of spins is pointing down when measured in the
x direction.” This result can be generalized to the casa of

1 - particles in a straightforward manner. Thereby; 1 propo-
|e) = E(|—++)—|+ —-—))=(0,0,0,1-1,0,0,0 sitions characterize the relative spins of the particles, and
also thenth proposition is the same as above.
=/000). (8) Another, equivalent but permutated set of propositions

was proposed by Cereced8,9]: T;=1(1+ T1x02y03y),

T,=3(1+ O1y0x03y), and Tg= 1(1+ T1,02,03x). Since
They can be interpreted as follows. The relative directions ofhe transformation matrixJ " remains the same, the pro-
the three spins are fixed but their respective values undetejection operators differ from the previous on@—(11) by a
mined. Thus, one measurement on each one of the t hrgegermutation of the propositional syste(d)—(7) yielding
particles will suffice to know the exact values of all spins. It equivalent, though not identical propositions. This can be
is possible to characterize the states according to the trutbxplicitly seen by taking row permutations of the operators
value of the propositions below bj111) to [000). Just (5)—(7)
as before, let us define the vector components of the

standard  orthonormal basis states a$+++) 0,=diag0,1,1,0,1,0,0, (12)
=(1,0,0,0,0,0,0,0), ... ,|——-)=(0,0,0,0,0,0,0,1). Let

UCHZ pe the unitary matrix which transforms this standard 0,=diag0,1,1,0,0,1,1,9 (13
basis into the GHZ-basis. An explicit calculation shows that

the matricesO;=0°"=UC"?08(UCH) "1 i=1,2,3, can 0,=diag0,1,0,1,1,0,1,0 (14)

be written as follows:
such thatT;=U®H?0,(U®H%) 1 i=1,2,3. The physical in-
terpretations ofT; [cf. question(iii)] are as followq8]. T,
0,=diag 1,1,0,0,0,0,1,1, (9)  corresponds to the statement that “the product of the spin of
particles 1, 2, and 3 along the axey, andy, respectively, is
equal to 1."T, corresponds to the statement that “the prod-
0,=diag 1,0,1,0,0,1,0,1, (10 uct of the spin of particles 1, 2, and 3 along the axes and

044302-3



BRIEF REPORTS PHYSICAL REVIEW A 65 044302

y, respectively, is equal to 1.T; corresponds to the state- state systems) propositions are enough to find and separate
ment that “the product of the spin of particles 1, 2, andany individual pure state from others of an arbitrary orthogo-
3 along the axey, y, andx, respectively, is equal to 1.” The nal basis. There exist"2 equivalent sets ofi propositions

associated GHZ-base state partitions areachieving this. They all differ by permutations from one an-
[{1,4,6,%,{2,3,5,8] for O;, [{1,4,5,8,{2,3,6,4] for O,, other. By considering the simplest case of the standard or-
and[{1,3,6,8.,{2,4,5,7] for O, respectively. thogonal basis, we have been able to explicitly construct

The method proposed here is quite general and can, idpese sets of propositions and their (_:orrespondlng projection

sponding more general projection operators can be obtained
from this standard orthogonal one by unitary transforma-
rt,jons,. We have explicitly discussed two equivalent solutions
%T the state determination problem for the GHZ-base states
U . nd mentioned thgV state and more general cases. We con-
prOJectlon operatorQJ-:UWO?UW*, J=1.2,3, can _be_ de- clude that the optimal strategy to single out particular states
fined, whereby the operato@®, ,0,,03 produce parti- tions g general based on a measurement of the joint properties
[{1,2,3.4,{5,6,7,8], [{1,2.58,{3478],  and  f the particles rather than the properties of the individual
[{1,3,5,%,{2,4,6,8] of the original basis, respectivel{Any particles.
vertical permutation thereof would be equally suitabkss
before, allQ; can be given a direct physical interpretation in ~ The authors would like to acknowledge stimulating dis-
terms of “clicks in a counterT12], but their meaning cannot cussions and suggestions byastav Brukner and Anton
be expressed in elementary statements. Zeilinger. We also would like to thank Daniel Greenberger
In summary, we have shown that, giverquantized two-  for pointing out similarities to classical weighting cases.

of eight-dimensional Hilbert space which contains the
state introduced i110] and discussed ifl1]. Still another
orthonormal basis contains all elements of the standard o
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