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Abstract

Tensors are defined as multilinear forms on vector spaces
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NOTATION

Consider the vector spaceRD of dimensionD, a basisB = {e1,e2, . . . ,eD} consisting ofD basis

vectorsei , andn arbitrary vectorsx1,x2, . . . ,xn ∈ RD with vector componentsXi
1,X

i
2, . . . ,X

i
n ∈ R.

Tensor fieldsdefine tensors in every point ofRD separately. In general, with respect to a partic-

ular basis, the components of a tensor field depend on the coordinates.

We adopt Einstein’s summation convention to sum over equal indices (one pair with a super-

script and a subscript). Sometimes, sums are written out explicitly.

In what follows, the notations “x·y”, “ (x,y)” and “ 〈x | y〉” will be used synonymously for the

scalar product. Note, however, that the notation “x ·y” may be a little bit misleading; e.g. in the

case of the “pseudo-Euclidean” metric diag(+,+,+, · · · ,+,−).

For a more systematic treatment, see for instance Klingbeil [1] and Dirschmid [2]. .

MULTILINEAR FORM

A multilinear form

α : Rn 7→ R (1)

is a map satisfying

α(x1,x2, . . . ,Ax1
i +Bx2

i , . . . ,xn) = Aα(x1,x2, . . . ,x
1
i , . . . ,xn)

+Bα(x1,x2, . . . ,x
2
i , . . . ,xn) (2)

for every one of its (multi-)arguments.

COVARIANT TENSORS

A tensor of rankn

α : Rn 7→ R (3)

is a multilinear form

α(x1,x2, . . . ,xn) =
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

Xi i
1 Xi2

2 . . .Xin
n α(ei1,ei2, . . . ,ein). (4)

The

Ai1i2···in = α(ei1,ei2, . . . ,ein) (5)

are thecomponentsof the tensorα with respect to the basisB.
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Question: how many components are there?

Answer:Dn.

Question: proof that tensors are multilinear forms.

Answer: by insertion.

α(x1,x2, . . . ,Ax1
j +Bx2

j , . . . ,xn)

=
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

Xi i
1 Xi2

2 . . . [A(X1)i j
j +B(X2)i j

j ] . . .X
in
n α(ei1,ei2, . . . ,ei j , . . . ,ein)

= A
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

Xi i
1 Xi2

2 . . .(X1)i j
j . . .Xin

n α(ei1,ei2, . . . ,ei j , . . . ,ein)

+B
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

Xi i
1 Xi2

2 . . .(X2)i j
j . . .Xin

n α(ei1,ei2, . . . ,ei j , . . . ,ein)

= Aα(x1,x2, . . . ,x
1
j , . . . ,xn)+Bα(x1,x2, . . . ,x

2
j , . . . ,xn)

Basis transformations

Let B andB′ be two arbitrary bases ofRD. Then ervery vectore′i of B′ can be represented as

linear combination of basis vectors fromB:

e′i =
D

∑
j=1

a j
i ej , i = 1, . . . ,D. (6)

(Formally, we may treate′i andei as scalar variablese′i andej , respectively; such thata j
i = ∂e′i

∂ej
.)

Consider an arbitrary vectorx ∈ RD with componentsXi with respect to the basisB andX′i

with respect to the basisB′:

x =
D

∑
i=1

Xiei =
D

∑
i=1

X′ie′i . (7)

Insertion into (6) yields

x =
D

∑
i=1

Xiei =
D

∑
i=1

X′ie′i =
D

∑
i=1

X′i
D

∑
j=1

a j
i ej =

D

∑
i=1

[
D

∑
j=1

a j
i X

′i
]

ej . (8)

A comparison of coefficient yields the transformation laws of vector components

X j =
D

∑
j=1

a j
i X

′i . (9)
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The matrixa = {a j
i } is called thetransformation matrix. In terms of the coordinatesX j , it can be

expressed as

a j
i =

∂X j

∂X′
i
. (10)

A similar argument using

ei =
D

∑
j=1

a′ ji e
′
j , i = 1, . . . ,D (11)

yields the inverse transformation laws

X′ j =
D

∑
j=1

a′ ji X
i . (12)

(Again, formally, we may treate′i and ei as scalar variablese′i and ej , respectively; such that

a′ ji = ∂ei
∂e′j

.) Thereby,

ei =
D

∑
j=1

a′ ji e
′
j =

D

∑
j=1

a′ ji
D

∑
k=1

ak
jek =

D

∑
j=1

D

∑
k=1

[a′ ji a
k
j ]ek, (13)

which, due to the linear independence of the basis vectorsei odB, is only satisfied if

a′ ji a
k
j = δk

i or a′a = I. (14)

That is,a′ is the inverse matrix ofa. In terms of the coordinatesX j , it can be expressed as

a′ ji =
∂X′ j

∂Xi
. (15)

Transformation of Tensor components

Because of multilinearity (!) and by insertion into (6),

α(e′j1,e
′
j2, . . . ,e

′
jn) = α

(
D

∑
i1=1

ai1
j1

ei1,
D

∑
i2=1

ai2
j2

ei2, . . . ,
D

∑
in=1

ain
jnein

)

=
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

ai1
j1

ai2
j2
· · ·ain

jnα(ei1,ei2, . . . ,ein) (16)

or

A′j1 j2··· jn =
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

ai1
j1

ai2
j2
· · ·ain

jnAi1i2...in. (17)
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CONTRAVARIANT TENSORS

Definition of contravariant basis

Consider again a covariant basisB = {e1,e2, . . . ,eD} consisting ofD basis vectorsei . We shall

define now acontravariantbasisB∗ = {e1,e2, . . . ,eD} consisting ofD basis vectorsei by the

requirement that the scalar product obeys

δ j
i = ei ·ej ≡ (ei ,ej)≡ 〈ei | ej〉=

 1 if i = j

0 if i 6= j
. (18)

To distinguish elements of the two bases, the covariant vectors are denoted bysubscripts, whereas

the contravariant vectors are denoted bysuperscripts. The last termei · ej ≡ (ei ,ej) ≡ 〈ei | ej〉

recalls different notations of the scalar product.

The entire tensor formalism developed so far can be applied to definecontravarianttensors as

multinear forms

β : Rn 7→ R (19)

by

β(x1,x2, . . . ,xn) =
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

Ξ1
i1Ξ2

i2 . . .Ξn
inβ(ei1,ei2, . . . ,ein). (20)

The

Bi1i2···in = β(ei1,ei2, . . . ,ein) (21)

are thecomponentsof the contravariant tensorβ with respect to the basisB∗.

Connection between the transformation of covariant and contravariant entities

Because of linearity, we can make the Ansatz

e′ j = ∑
i

b j
i e

i , (22)

where{b j
i } = b is the transformation matrix associated with the contravariant basis. How isb

related toa, the transformation matrix associated with the covariant basis?

By exploiting (18) one can find the connection between the transformation of covariant and

contravariant basis elements and thus tensor components.

δ j
i = e′i ·e′

j = (ak
i ek) · (b j

l e
l ) = ak

i b
j
l ek ·el = ak

i b
j
l δl

k = ak
i b

j
k, (23)
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and

b = a−1 = a′. (24)

The entire argument concerning transformations of covariant tensors and components can be car-

ried through to the contravariant case. Hence, the contravariant components transform as

β(e′ j1,e′ j2, . . . ,e′ jn) = β

(
D

∑
i1=1

a′ j1i1 ei1,
D

∑
i2=1

a′ j2i2 ei2, . . . ,
D

∑
in=1

a′ jnin ein

)

=
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

a′ j1i1 a′ j2i2 · · ·a
′ jn
in β(ei1,ei2, . . . ,ein) (25)

or

B′ j1 j2··· jn =
D

∑
i1=1

D

∑
i2=1

· · ·
D

∑
in=1

a′ j1i1 a′ j2i2 · · ·a
′ jn
in Bi1i2...in. (26)

ORTHONORMAL BASES

For orthonormal bases,

δ j
i = ei ·ej ⇐⇒ ei = ei , (27)

and thus the two bases are identical

B = B∗ (28)

and formally any distinction between covariant and contravariant vectors becomes irrelevant. Con-

ceptually, such a distinction persists, though.

INVARIANT TENSORS AND PHYSICAL MOTIVATION

METRIC TENSOR

Metric tensors are defined in metric vector spaces. A metric vector space (sometimes also

refered to as “vector space with metric” or “geometry”) is a vector space with inner or scalar

product.

This includes (pseudo-) Euclidean spaces with indefinite metric. (I.e., the distance needs not

be positive or zero.)
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Definition inner or scalar product

Thescalaror inner product, is a symmetric bilinear functionalRD×RD 7→ R such that

• (x+y,z) = (x,z)+(y,z) for all x,y,z∈ RD;

• (x,y+z) = (x,y)+(x,z) for all x,y,z∈ RD;

• (αx,y) = α(x,y) for all x,y∈ RD,α ∈ R;

• (x,αy) = α(x,y) for all x,y∈ RD,α ∈ R;

• (x,y) = (y,x) for all x,y∈ RD

Axioms 1 and 3 assert that the scalar product is linear in the first variable. Axioms 2 and 4 assert

that the scalar product is linear in the second variable. Axiom 5 asserts the bilinear function is

symmetric.

Definition metric

A metric is a functionalRD 7→ R with the following properties

• ||x−y||= 0 ⇐⇒ x = y,

• ||x−y||= ||x−y|| (symmetry),

• ||x−z|| ≤ ||x−y||+ ||y−z|| (triangle inequality).

Construction of a metric from a scalar product by metric tensor

Themetrictensor is defined by the scalar product

gi j = ei ·ej ≡ (ei ,ej)≡ 〈ei ,ej〉. (29)

and

gi j = ei ·ej ≡ (ei ,ej)≡ 〈ei ,ej〉. (30)

Likewise,

gi
j = ei ·ej ≡ (ei ,ej)≡ 〈ei ,ej〉= δi

j . (31)
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Note that it easy to change a covarant tensor into a contravariant andvice versaby the application

of a metric tensor. This can be seen as follows. Because of linearity, any contravariant basis vector

ei can be written as a linear sum of covariant basis vectors:

ei = Ai j ej . (32)

Then,

gik = ei ·ek = (Ai j ej) ·ek = Ai j (ej ·ek) = Ai j δk
j = Aik (33)

and thus

ei = gi j ej (34)

and

ei = gi j ej . (35)

Question: Show that, for orthonormal basis, the metric tensor can be represented as a Kronecker

delta function in all basis (form invariant); i.e.,δi j ,δi
j ,δ

j
i ,δ

i j .

Question: Why isg a tensor? Show its multilinearity.

What can the metric tensor do for us?

Most often it is used to raise/lower the indices; i.e., to change from contravariant to covariant

and conversely from covariant to contravariant.

In the previous section, the metric tensor has been derived from the scalar product. The

converse is true as well. The metric tensor represents the scalar product between vectors: let

x = Xiei ∈ RD andy = Y jej ∈ RD be two vectors. Then (”T” stands for the transpose),

x ·y≡ (x,y)≡ 〈x | y〉= Xiei ·Y jej = XiY jei ·ej = XiY jgi j = XTgY. (36)

It also characterizes the length of a vector: in the above equation, sety = x. Then,

x ·x≡ (x,x)≡ 〈x | x〉= XiX jgi j ≡ XTgX, (37)

and thus

||x||=
√

XiX jgi j =
√

XTgX. (38)

The square of an infinitesimal vectords= {dxi} is

(ds)2 = gi j dxidxj = dxTgdx. (39)

Question: Prove that||x|| mediated byg is indeed a metric.
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Transformation of the metric tensor

Insertion into the definitions and coordinate transformations (10) and (15) yields

gi j = ei ·ej = a′li e
′
l ·a′

m
j e′m = a′li a

′m
j e′l ·e′m = a′li a

′m
j g′lm =

∂X′l

∂Xi

∂X′m

∂X j g′lm. (40)

Conversely,

g′i j = e′i ·e′j = al
i el ·am

j em = al
i a

m
j el ·em = al

i a
m
j glm =

∂Xl

∂X′i
∂Xm

∂X′ j glm. (41)

If the geometry (i.e., the basis) is locally orthonormal,glm = δlm, theng′i j = ∂Xl

∂X′ i
∂Xl

∂X′ j .

Examples

For a more systematic treatment, see for instance Snapper&Troyer [3].

D-dimensional Euclidean space

g≡ {gi j}= diag(1,1, . . . ,1︸ ︷︷ ︸
D times

) (42)

One application in physics is quantum mechanics, whereD stands for the dimension of a com-

plex Hilbert space. All definitions can be easily adopted to accommodate the complex numbers.

E.g., axiom 5 of the scalar product becomes(x,y) = (x,y)∗, where “∗ ” stands for complex conju-

gation. Axiom 4 of the scalar product becomes(x,αy) = α∗(x,y).

Lorentz plane

g≡ {gi j}= diag(1,−1) (43)

Minkowski space of dimension D

In this case the metric tensor is called the Minkowski metric and is often denoted by “η”:

η ≡ {ηi j}= diag(1,1, . . . ,1︸ ︷︷ ︸
D−1 times

,−1) (44)
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One application in physics is the theory of special relativity, whereD = 4. Alexandrov’s

theorem states that the mere requirement of the preservation of zero distance (i.e., lightcones),

combined with bijectivity of the transformation law yields the Lorentz transformations ([4–8] are

original articles reviewed in [9, 10]; see also [11] for an elementary proof).

Negative Euclidean space of dimension D

g≡ {gi j}= diag(−1,−1, . . . ,−1︸ ︷︷ ︸
D times

) (45)

Artinian four-space

g≡ {gi j}= diag(+1,+1,−1,−1) (46)

General relativity

In general relativity, the metric tensorg is linked to the energy-mass distribution. There, it

appears as the primary concept when compared to the scalar product. In the case of zero gravity,

g is just the Minkowski metric (often denoted by “η”) diag(1,1,1,−1) corresponding to “flat”

space-time.

The best known non-flat metric is the Schwarzschild metric

g≡


(1−2m/r)−1 0 0 0

0 r2 0 0

0 0 r2sin2θ 0

0 0 0 −(1−2m/r)

 (47)

with respect to the spherical space-time coordinatesr,θ,φ, t.

Computation of the metric tensor of the ball

Consider the transformation from the standard orthonormal three-dimensional “cartesian” co-

ordinatesX1 = x, X2 = y, X3 = z, into spherical coordinatesX′
1 = r, X′

2 = θ, X′
3 = ϕ. In
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terms ofr,θ,ϕ, the cartesian coordinates can be written asX1 = r sinθcosϕ ≡ X′
1sinX′

2cosX′
3,

X2 = r sinθsinϕ ≡ X′
1sinX′

2sinX′
3, X3 = r cosθ ≡ X′

1cosX′
2. Furthermore, since we are dealing

with the cartesian orthonormal basis,gi j = δi j ; hence finally

g′i j =
∂Xl

∂X′i
∂Xl

∂X′ j ≡ diag(1, r2, r2sin2θ), (48)

and

(ds)2 = (dr)2 + r2(dθ)2 + r2sin2θ(dϕ)2. (49)

The expression(ds)2 = (dr)2 + r2(dϕ)2 for polar coordinates (D = 2) is obtained by setting

θ = π/4 anddθ = 0.

Computation of the metric tensor of the Moebius strip

Parameter representation of the Moebius strip:

Φ(u,v) =


(1+vcos(u

2))sinu

(1+vcos(u
2))cosu

vsin(u
2)

 (50)

with u∈ [0,2π] represents the position of the point on the circle, andv∈ [−a,a] a > 0, where 2a

is the “width” of the Moebius strip.

Φv =
∂Φ
∂v

=


cos1

2usinu

cos1
2ucosu

sin1
2u

 (51)

Φu =
∂Φ
∂u

=


−1

2vsin1
2usinu+

(
1+vcos1

2u
)

cosu

−1
2vsin1

2ucosu−
(
1+vcos1

2u
)

sinu
1
2vcos1

2u

 (52)

(
∂Φ
∂v

)T ∂Φ
∂du

=


cos1

2usinu

cos1
2ucosu

sin1
2u


T

−1
2vsin1

2usinu+
(
1+vcos1

2u
)

cosu

−1
2vsin1

2ucosu−
(
1+vcos1

2u
)

sinu
1
2vcos1

2u


= −1

2

(
cos

1
2

usin2u

)
vsin

1
2

u− 1
2

(
cos

1
2

ucos2u

)
vsin

1
2

u

+
1
2

(
sin

1
2

u

)
vcos

1
2

u = 0 (53)
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(
∂Φ
∂v

)T ∂Φ
∂v

=


cos1

2usinu

cos1
2ucosu

sin1
2u


T

cos1
2usinu

cos1
2ucosu

sin1
2u


= cos2

1
2

usin2u+cos2
1
2

ucos2u+sin2 1
2

u = 1 (54)

(
∂Φ
∂u

)T ∂Φ
∂u

=


−1

2vsin1
2usinu+

(
1+vcos1

2u
)

cosu

−1
2vsin1

2ucosu−
(
1+vcos1

2u
)

sinu
1
2vcos1

2u


T

−1
2vsin1

2usinu+
(
1+vcos1

2u
)

cosu

−1
2vsin1

2ucosu−
(
1+vcos1

2u
)

sinu
1
2vcos1

2u


=

1
4

v2sin2 1
2

usin2u+cos2u+2
(
cos2u

)
vcos

1
2

u+
(
cos2u

)
v2cos2

1
2

u

+
1
4

v2sin2 1
2

ucos2u+sin2u+2
(
sin2u

)
vcos

1
2

u+
(
sin2u

)
v2cos2

1
2

u

+
1
4

v2cos2
1
2

u =
1
4

v2 +v2cos2
1
2

u+1+2vcos
1
2

u

= (1+vcos(
u
2
))2 +

1
4

v2 (55)

Thus the metric tensor is given by

g′i j =
∂Xs

∂X′i
∂Xt

∂X′ j gst ==
∂Xs

∂X′i
∂Xt

∂X′ j δst ≡

 Φu ·Φu Φv ·Φu

Φv ·Φu Φv ·Φv

= diag

(
(1+vcos(

u
2
))2 +

1
4

v2,1

)
.

(56)

INVARIANT TENSORS AND PHYSICAL MOTIVATION

What makes some touples (or matrix, or tensor components in general) of numbers or scalar

functions a tensor? It is the interpretation of the scalars as tensor componentswith respect to a

particular basis. In another basis, if we were talking about the same tensor, the tensor components;

i.e., the numbers or scalar functions would be different.

The tensor components are scalars and can thus be treated as scalars. For instance, due to com-

mutativity and associativity, one can exchange their order. (Notice, though, that this is generally

not the case for differential operators such as∂i = ∂/∂xi .)

A form invariant tensor with respect to certain transformations is a tensor which retains the

same functional form if the transformations are performes; i.e., if the basis changes accord-

ingly. That is, numbers are mapped into the same numbers (not just any numbers). Functions
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remain the same but with the new parameter components as arguement. For instance; 47→ 4 and

f (X1,X2,X3) 7→ f (X′
1,X

′
2,X

′
3). If a tensor is invariant with respect to one transformation, it need

not be invariant with respect to another transformation, or with respect to changes of the scalar

product; i.e., the metric.

Nevertheless, totally symmetric (antisymmetric) tensors remain totally symmetric (antisym-

metric) in all cases:

Ai1i2...isit ...in = Ai1i2...it is...in =⇒ A′j1i2... js jt ... jn = ai1
j1

ai2
j2
· · ·ais

jsa
it
jt · · ·a

in
jnAi1i2...isit ...in

= ai1
j1

ai2
j2
· · ·ais

jsa
it
jt · · ·a

in
jnAi1i2...it is...in

= ai1
j1

ai2
j2
· · ·ait

jt a
is
js · · ·a

in
jnAi1i2...it is...in

= A′j1i2... jt js... jn (57)

Ai1i2...isit ...in =−Ai1i2...it is...in = =⇒ A′j1i2... js jt ... jn = ai1
j1

ai2
j2
· · ·ais

jsa
it
jt · · ·a

in
jnAi1i2...isit ...in

=−ai1
j1

ai2
j2
· · ·ais

jsa
it
jt · · ·a

in
jnAi1i2...it is...in

=−ai1
j1

ai2
j2
· · ·ait

jt a
is
js · · ·a

in
jnAi1i2...it is...in.

=−A′j1i2... jt js... jn (58)

In physics, it would be nice if the natural laws could be written into a form which does not de-

pend on the particular reference frame or basis used. Form invariance thus is a gratifying physical

feature, reflecting thesymmetryagainst changes of coordinated and bases. Therefore, physicists

tend to be crazy to write down everything in a form invariant manner. One strategy to accomplishe

this to start out with form invariant tensors and compose everything from them. This method

guarantees form invarince (at least in the 0’th order).

SOME TRICKS

There are some tricks which are commonly used. Here, some of them are enumerated:

• Indices which appear as internal sums can be renamed arbitrarily (provided their name is

not already taken by some other index).

• With the euclidean metric,δii = D.

• ∂Xi/∂X j = δi
j .
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• With the euclidean metric,∂Xi/∂Xi = D.

• For D = 3 and the euclidean metric, theGrassmann identityholds:

εi jkεklm = δil δ jm−δimlδ jl .

• For D = 3 and the euclidean metric,

|a×b|=
√

εi jkεista jasbkbt =
√
|a|2|b|2− (a·b)2 =

√√√√√det

 a·a a·b

a·b b·b

= |a||b|sinθab.

• Let u,v ≡ X′
1,X

′
2 be two parameters associated with an orthonormal cartesian basis

{(0,1),(1,0)} and letΦ : (u,v) 7→ R3 be a mapping from some area ofR2 into a twodi-

mensional surface ofR3. Then the metric tensor is given bygi j = ∂Φk

∂X′i
∂Φm

∂X′ j δkm.

SOME COMMON MISCONCEPTIONS

Confusion between component representation and “the real thing”

Given a particular basis, a tensor is uniquely characterized by its components. However, with-

out reference to a particular basis, any components are just blurbs.

Example (wrong!): a rank-1 tensor (i.e., a vector) is given by(1,2).

Correct: with respect to the basis{(0,1),(1,0)}, a rank-1 tensor (i.e., a vector) is given by

(1,2).

A matrix is a tensor

See the above section.

Example (wrong!): A matrix is a tensor of rank 2.

Correct: with respect to the basis{(0,1),(1,0)}, a matrix represents a rank-2 tensor. The

matrix components are the tensor components.

Decomposition of tensors

Although a tensor of rankn transforms like the tensor product ofn tensors of rank 1, not all

rank-n tensors can be decomposed into a single tensor product ofn tensors of rank 1.
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Nevertheless, any rank-n tensor can be decomposed into the sum ofDn tensor products ofn

tensors of rank 1.

Form invariance of tensors

Although form invariance is a gratifying feature, a tensor (field) needs not be form invariant.

Indeed, while

S≡

(
x2

2 −x1x2

−x1x2 x2
1

)
(59)

is a form invariant tensor field with respect to the basis{(0,1),(1,0)} and orthogonal transforma-

tions (rotations around the origin) (
cosϕ sinϕ

−sinϕ cosϕ

)
, (60)

T ≡

(
x2

2 x1x2

x1x2 x2
1

)
(61)

is not (please verify). This, however, does not mean thatT is not a respectable tensor field; its just

not form invariant under rotations.

Note that the tensor product of form invariant tensors is again a form invariant tensor.

∗ Electronic address: svozil@tuwien.ac.at ; URL: http://tph.tuwien.ac.at/
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