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Abstract

Tensors are defined as multilinear forms on vector spaces



NOTATION

Consider the vector spa@’ of dimensiorD, a basisB = {e;, e, ...,ep} consisting oD basis
vectorse;, andn arbitrary vectorsq, X, . .., X, € RP with vector component}'_q, X;, . ,X,Q € R.

Tensor fieldslefine tensors in every point &° separately. In general, with respect to a partic-
ular basis, the components of a tensor field depend on the coordinates.

We adopt Einstein’s summation convention to sum over equal indices (one pair with a super-
script and a subscript). Sometimes, sums are written out explicitly.

In what follows, the notationsX-y”, “ (x,y)” and “ (x| y)” will be used synonymously for the
scalar product Note, however, that the notatiorx* y” may be a little bit misleading; e.g. in the
case of the “pseudo-Euclidean” metric diag+,+,---,+,—).

For a more systematic treatment, see for instance Klingbeil [1] and Dirschmid [2]. .

MULTILINEAR FORM

A multilinear form

a:R"—R (1)
is a map satisfying
(X1, X2, ..., A% +BX, .. A (X1, X, ... X, ... %)
+BO (XL, X2, - X, Xn) 2)
for every one of its (multi-)arguments.
COVARIANT TENSORS
A tensor of rankn
a:R"—R 3)
is a multilinear form
D D D
G<X15X27' -5 X Z Z X (apazv aa ) (4)
|1:1|2:1 in=1
The
AiliZ"'in :a(al’az7"‘7an> (5)

are thecomponentsf the tenson with respect to the basis.
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Question: how many components are there?

Answer:D".

Question: proof that tensors are multilinear forms.

Answer: by insertion.

G(X]_,Xz, AX:-I'—I—B)(2 )
D D

C Y Y Y XK A B0 Xpa(e, 06

i1—1i2 1 In—l

— Z Z zthlz . Xing (81,858, 6)

i1= 1|2 1 |n 1
D

+BZ z ZXi'XéZ (X 2)'jj...Xri]“cx(al,eiz,...,eij,...,an)
i1=1lip=1 i,=1

= AU(XL, X2, X, %) + Ba(Xe, Xz, . X, Xn)

Basis transformations

Let B and®’ be two arbitrary bases &P. Then ervery vectog of B’ can be represented as

linear combination of basis vectors fraBx
D .
§=Yale, i=1...D. (6)
=1

(Formally, we may treat! ande as scalar variableg ande;, respectively; such tha# = 6e )

Consider an arbitrary vectore RP with componentsK' with respect to the basi and X’ !

D D .
X= i;x'a = i;x"e{. (7)

with respect to the basiB’:

Insertion into (6) yields

SLR AL 1 SEh 1) L O

A comparison of coefficient yields the transformation laws of vector components

D . .
Xl =5 ax". (9)
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The matrixa = {aij} is called theransformation matrixIn terms of the coordinates!, it can be

expressed as

ox1
aﬁ::axf (10)
A similar argument using
a:Za’,'e(], i=1,...,D (11)
j=1
yields the inverse transformation laws
1 o /i
=5 a'X. (12)
A%

(Again, formally, we may treatl ande as scalar variableg and e;, respectively; such that
al = g—ea,j.) Thereby,

D . D .D ’
z =3 4 za,-eK: PIDALEALS (13)
=1 =1L  K=1 i
which, due to the linear independence of the basis veef@d 3, is only satisfied if
a”ak =3 or ada=I (14)

That is,d is the inverse matrix od. In terms of the coordinate$!, it can be expressed as

, ox/!
al = - 15
Transformation of Tensor components
Because of multilinearity (!) and by insertion into (6),
i i D .
O(€],, €y € Z aj e, Z dle,.. Y ale,
i1=1 ir=1 in=
D D D
Z Z Z aJl 12 aja(e,e,,....a,) (16)
i1=1lir=1 ip=1
or
D D |
/ n
Al jo- ln:_z Z z i1 12 -8, Aligip...in- (17)
i1=1lip=1 i,=1



CONTRAVARIANT TENSORS
Definition of contravariant basis

Consider again a covariant ba¥s= {e;, ey, ...,ep} consisting oD basis vectors;. We shall
define now acontravariantbasis®* = {e',€?,...,e°} consisting ofD basis vector€ by the

requirement that the scalar product obeys
lifi=]j
0ifi£j

To distinguish elements of the two bases, the covariant vectors are denateldayiptswhereas

5=e-e=(ae)=(ee)= (18)

the contravariant vectors are denotedsyperscripts The last termg - el = (e, ¢)) = (& | g;)
recalls different notations of the scalar product.
The entire tensor formalism developed so far can be applied to defimeavarianttensors as

multinear forms

B:R"—R (19)
by
D D D o _
BOXE X, ... X" = >SSy =L=2 . 2B, e?, .. @) (20)
i1=1li)=1 ip=1
The
Bii2in — g(d1 d2,... dn) (21)

are thecomponentsf the contravariant tens@with respect to the basiB*.

Connection between the transformation of covariant and contravariant entities

Because of linearity, we can make the Ansatz
¢ =S plé, (22)
IZ |
Where{bij} = b is the transformation matrix associated with the contravariant basis. Hbw is
related toa, the transformation matrix associated with the covariant basis?

By exploiting (18) one can find the connection between the transformation of covariant and

contravariant basis elements and thus tensor components.
o = ¢i-¢' = (da) - (ble) = ablec- & = ab/8) = ], (23)
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and
b=atl=4d. (24)

The entire argument concerning transformations of covariant tensors and components can be car-
ried through to the contravariant case. Hence, the contravariant components transform as

[3(e“'1,e/j2 e“” = (Z a’ijlle'1 Z a"ze'2 Sy a’ij:ei”>

i1=1 io=1 in=1

D D D .
_ Z z z a/]la/JZ . /JnB(ell e|2 |n) (25)

i1:1i2:1 In:].

or
S D D D . S
Btz — z Z Z a’illla’ilzz...a’iJ:Blllz-~.ln_ (26)
i1=1li)=1 in=1
ORTHONORMAL BASES
For orthonormal bases,
5 =g e e=g=¢, (27)
and thus the two bases are identical
B = B* (28)

and formally any distinction between covariant and contravariant vectors becomes irrelevant. Con-

ceptually, such a distinction persists, though.

INVARIANT TENSORS AND PHYSICAL MOTIVATION

METRIC TENSOR

Metric tensors are defined in metric vector spaces. A metric vector space (sometimes also
refered to as “vector space with metric” or “geometry”) is a vector space with inner or scalar
product.

This includes (pseudo-) Euclidean spaces with indefinite metric. (l.e., the distance needs not

be positive or zero.)



Definition inner or scalar product

Thescalaror inner product is a symmetric bilinear function®P x RP — R such that
o (X+Y,2) = (%,2)+(y,2) forall x,y,z€ RP;

o (X,y+2) = (x,y)+(x,2) forall x,y,zc RP;

e (ax,y) =a(x,y) forallx,y € RP,a € R;

e (x,ay) =a(xy) forallx,yc R° a c R;

e (x,y) = (y,x) for all x,y € RP

Axioms 1 and 3 assert that the scalar product is linear in the first variable. Axioms 2 and 4 assert
that the scalar product is linear in the second variable. Axiom 5 asserts the bilinear function is

symmetric.

Definition metric

A metricis a functionalRP — R with the following properties
o |[x—y||=0 < x=Y,
o [x=y||=[x—Y|| (symmetry),

o || x—2Z|| <||x—VY||+||ly—7Z]| (triangle inequality).

Construction of a metric from a scalar product by metric tensor

Themetrictensor is defined by the scalar product

gj=6e-¢ = (e,) = (a,€). (29)
and
gl =¢€.el=(,e)=(d,é). (30)
Likewise,
d,=¢€ e =(,e)=(c,g) =8 (31)
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Note that it easy to change a covarant tensor into a contravariani@ndersaby the application
of a metric tensor. This can be seen as follows. Because of linearity, any contravariant basis vector

€ can be written as a linear sum of covariant basis vectors:

g = Aijej. (32)
Then,
g == (Aley) & = Al (g ) = NG = A (33)
and thus
d=dle (34)
and
a=gje. (35)

Question: Show that, for orthonormal basis, the metric tensor can be represented as a Kronecker

delta function in all basis (form invariant); i.&;, ij,6ij,6”.

Question: Why ig) a tensor? Show its multilinearity.

What can the metric tensor do for us?

Most often it is used to raise/lower the indices; i.e., to change from contravariant to covariant
and conversely from covariant to contravariant.

In the previous section, the metric tensor has been derived from the scalar product. The
converse is true as well. The metric tensor represents the scalar product between vectors: let

x = X'g € RP andy = Ylej € RP be two vectors. Then {” stands for the transpose),
x-y=(xy) = (x|y)=Xe-Yie, = XYig g = X'Yig; = XTgY. (36)
It also characterizes the length of a vector: in the above equatiop=sgt Then,
X-x = (x,X) = (x| x) = XXIgj; = XTgX, (37)

and thus
IX|| = /X XIgij = v XTgX. (38)

The square of an infinitesimal vectos= {dx} is
(d9)? = gijdxdx = dx" gdx (39)
Question: Prove thdtx|| mediated byg is indeed a metric.
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Transformation of the metric tensor

Insertion into the definitions and coordinate transformations (10) and (15) yields

g—eie—a’lda’me(m—a’la’mqdn—alla’mg’ —GLIIMQ’ (40)
L ] — i j — 4 — i Im—axi GXj Im-
Conversely,
ox! axm
o = ¢ = aa-afen=aaya - an=aalgm = -7 = 59m. (41)
If the geometry (i.e., the basis) is locally orthonorntgh, = dm, thengi’j = %ﬂl,%.
Examples
For a more systematic treatment, see for instance Snapper&Troyer [3].
D-dimensional Euclidean space
={gij} =diag/1,1,...,1 42
9= {9} o ) (42)

D times
One application in physics is quantum mechanics, wbBestands for the dimension of a com-

plex Hilbert space. All definitions can be easily adopted to accommodate the complex numbers.
E.g., axiom 5 of the scalar product beconfey) = (x,y)*, where “* ” stands for complex conju-

gation. Axiom 4 of the scalar product beconigsay) = a*(x,y).

Lorentz plane

g={gj} =diag(1,-1) (43)

Minkowski space of dimension D

In this case the metric tensor is called the Minkowski metric and is often denoteyl'by “

n={n;} =diag1,1,...,1,-1) (44)

D—1times



One application in physics is the theory of special relativity, where- 4. Alexandrov’s
theorem states that the mere requirement of the preservation of zero distance (i.e., lightcones),

combined with bijectivity of the transformation law yields the Lorentz transformations ([4-8] are

original articles reviewed in [9, 10]; see also [11] for an elementary proof).

Negative Euclidean space of dimension D

g={gij} =diag—1,-1,...,-1) (45)
N e’
D times
Artinian four-space
0= {gij} =diag(+1,+1,-1,-1) (46)

General relativity

In general relativity, the metric tensgris linked to the energy-mass distribution. There, it
appears as the primary concept when compared to the scalar product. In the case of zero gravity,

g is just the Minkowski metric (often denoted by™) diag(1,1,1,—1) corresponding to “flat”

space-time.
The best known non-flat metric is the Schwarzschild metric
(1-2m/r)~t 0 0 0
0 r? 0 0
9= 0 0 r?sirf@ 0 47)
0 0 0 —(1-2m/r)

with respect to the spherical space-time coordingt&p, t.

Computation of the metric tensor of the ball

Consider the transformation from the standard orthonormal three-dimensional “cartesian” co-

ordinatesX; = X, X2 =y, X3 = z into spherical coordinateX; =r, X; =8, X3 =¢. In
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terms ofr, 6,9, the cartesian coordinates can be writterXas= r sinfcosp = X; sinX;cosX3,
Xo = rsin@sing = X;sinXjsinXg, X3 = rcosb = X; cosX;. Furthermore, since we are dealing
with the cartesian orthonormal basig, = &jj; hence finally
dg = %% = diag(1,r?,r?sin’e), (48)
and
(d9)? = (dr)®+r?(d8)*+ rsin”(dd)>. (49)
The expressiorids)? = (dr)? +r?(d¢)? for polar coordinates = 2) is obtained by setting
6 = 11/4 anddB = 0.

Computation of the metric tensor of the Moebius strip

Parameter representation of the Moebius strip:
(1+vcog3))sinu
®(u,v) = | (1+vcog}y))cosu (50)
vsin(3)
with u € [0, 217 represents the position of the point on the circle, ard—a,a] a > 0, where 2

is the “width” of the Moebius strip.

coszusinu
od

b, = — = 1 51
v Py COSzUCOosu (51)

inl
Slnzu

—Jvsinjusinu+ (1+ vcosu) cosu
0P 1oeinl 1,0 o
b, = 30— | —2vsinzucosu— (1+vcossu) sinu (52)

1 1
QVCOS? u

.

cosgusinu —3vsinJusinu+ (1+ vcosiu) cosu
(ai))Tai = | cosiucosu lysiniucosu— (14 vcosiu) sin
) 3du — U —3vsinsu — (1+vcoszu) sinu

ind 1 1
Slnzu EVCOSEU

_ 1 coslusinzu vsinlu— ! coslucoszu vsinlu
2 2 2 2 2 2
1/ .1 1
+§ <S|n§u> veos;u= 0 (53)
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.
cossusinu cosgusinu

00 ;00

_ 1 1
= | cosiucosu coslucosu
(av) ov 2 2
1 1
sin3u sin3u
1 . 1 o1
— co§éusm2u+co§§uco§u+sm2§u:1 (54)
T
—Jvsinjusinu+ (1+ vcosu) cosu —Jvsinjusinu+ (1+ vcosju) cosu
(@)Tai) = | —3vsinjucosu— (1+vcoszu) sinu —2vsinducosu— (1+ vcosiu) sinu
au’ u ZVsing > 2vsing 2
1 1 1 1
7VCOS§U EVCOSQU

1 .1 1 1
- Zv25|n2§u5|n2u+co§u+2(coszu) veosZu+ (coszu)vzcoszéu
1 o1 ) . 1 . 1
+Zv25|n2 iucoszu+3|n2u+2 (sirfu) veossu-+ (sirfu) v?cos Su
1 1 1 1 1
+Zv20052 Su= Zv2+v20052 Su+ 1+2vcos§u
1
= (1+veos5))+ 3V (55)
Thus the metric tensor is given by

0Xs aX! aXxs axt Dy Dy Gy P : 1
gi/j = T Aav ] It T i A Ot = Lo :d|ag((1+VCOS(E))2+—V271>-
X" aX oX" oX o, D, D, Dy 2 4

(56)

INVARIANT TENSORS AND PHYSICAL MOTIVATION

What makes some touples (or matrix, or tensor components in general) of numbers or scalar
functions a tensor? It is the interpretation of the scalars as tensor compaengntespect to a
particular basis In another basis, if we were talking about the same tensor, the tensor components;
i.e., the numbers or scalar functions would be different.

The tensor components are scalars and can thus be treated as scalars. For instance, due to com-
mutativity and associativity, one can exchange their order. (Notice, though, that this is generally
not the case for differential operators sucldas 9/9x'.)

A form invarianttensor with respect to certain transformations is a tensor which retains the
same functional form if the transformations are performes; i.e., if the basis changes accord-

ingly. That is, numbers are mapped into the same numbers (not just any numbers). Functions
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remain the same but with the new parameter components as arguement. For instantand
f (X1, X2,X3) — f(X{,X5,X3). If a tensor is invariant with respect to one transformation, it need
not be invariant with respect to another transformation, or with respect to changes of the scalar
product; i.e., the metric.

Nevertheless, totally symmetric (antisymmetric) tensors remain totally symmetric (antisym-
metric) in all cases:

A1 4i2 is Ait inp . L.
=a;a’---a>a; "'ajr:]Alllz..,lslt...ln

Ay igit...in = Aijin..itis.in = Aj1i2~~-jsjt--~jn i85 . aj;

__ahah'”aiah”'aﬂAuumman

_allal2 altals oqlnpa
= a; aj, - a;a; ajnA|1|2...|t|S.‘.|n

= Al jtis-In (57)
Asip...igit..in = —Agigeitisnin = = Ay icitjn = aijllaifz : --aifsaijtt : "aijr:]Ailiz...iSit“.in

= _aijllaijzz T aijssaijtt o 'aij%AiliZ...itiS...in

= _aijllaijz Tt aijttaijss T aijzAiliz...itis”.in'

- _A/11i2-~itjs~-~jn (58)

In physics, it would be nice if the natural laws could be written into a form which does not de-
pend on the particular reference frame or basis used. Form invariance thus is a gratifying physical
feature, reflecting theymmetryagainst changes of coordinated and bases. Therefore, physicists
tend to be crazy to write down everything in a form invariant manner. One strategy to accomplishe
this to start out with form invariant tensors and compose everything from them. This method

guarantees form invarince (at least in the 0’'th order).

SOME TRICKS

There are some tricks which are commonly used. Here, some of them are enumerated:

¢ Indices which appear as internal sums can be renamed arbitrarily (provided their name is

not already taken by some other index).
e With the euclidean metri®; = D.

e 0X'/0X) =8|

13



e With the euclidean metri@X' /0X' = D.

e ForD = 3 and the euclidean metric, tldrassmann identitjolds:

&ijkEim = il Ojm — OimIOjI -

e ForD = 3 and the euclidean metric,

a-a a-b _

lax b| = /gijEistajasbihy = v/[a]?|b]2 — (a-b)? = |det = |al|b| sinB4p.

a-b b-b
e Let uv = X{,X; be two parameters associated with an orthonormal cartesian basis
{(0,1),(1,0)} and let® : (u,v) — R3 be a mapping from some area®f into a twodi-
. 3 . . . i aq)k opm

mensional surface d&&*. Then the metric tensor is given Iy, = Wax—uékm'

SOME COMMON MISCONCEPTIONS

Confusion between component representation and “the real thing”

Given a particular basis, a tensor is uniquely characterized by its components. However, with-
out reference to a particular basis, any components are just blurbs.

Example (wrong!): a rank-1 tensor (i.e., a vector) is giver{hy).

Correct: with respect to the basf$0,1),(1,0)}, a rank-1 tensor (i.e., a vector) is given by
(1,2).

A matrix is a tensor

See the above section.
Example (wrong!): A matrix is a tensor of rank 2.
Correct: with respect to the basf$0,1),(1,0)}, a matrix represents a rank-2 tensor. The

matrix components are the tensor components.

Decomposition of tensors

Although a tensor of rank transforms like the tensor product oftensors of rank 1, not all

rank tensors can be decomposed into a single tensor prodadeosors of rank 1.
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Nevertheless, any ranktensor can be decomposed into the sunDbftensor products off

tensors of rank 1.

Form invariance of tensors

Although form invariance is a gratifying feature, a tensor (field) needs not be form invariant.

X2 XX
s=( "2 (59)
—Xxe X

is a form invariant tensor field with respect to the bds$i3 1), (1,0)} and orthogonal transforma-

Indeed, while

tions (rotations around the origin)

< co-s¢ sin¢> | (60)

—sing cosd

T= ( % Xl)f) 61)
X1X2 X1

is not (please verify). This, however, does not meanThigtnot a respectable tensor field; its just
not form invariant under rotations.

Note that the tensor product of form invariant tensors is again a form invariant tensor.
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