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Abstract

To every generalized urn model there exists a finite (Mealy) automaton
with identical propositional calculus. The converse is true as well.

1 Introduction of concepts

In what follows we shall explicitly and constructively demonstrate the equiva-
lence of the empirical logics (i.e., the propositional calculi) associated with the
generalized urn models (GUM) suggested by Ron Wright [1, 2], and automaton
partition logics (APL) [3, 4, 5, 6, 7]. (The result has been mentioned already in
[7, p.145], but no proof has been given). The logical equivalence of automaton
models (AM) with generalized urn models suggests that these logics are more
general and “robust” with respect to changes of the particular model than could
have been expected from the particular instances of their first appearance.

Wright’s original generalized urn model has been designed to conform to the
Foulis-Randal setup, such that color independence is implemented in the follow-
ing form [cf. the “constancy axiom” (ii) on [2, p. 889]]: if a particular symbol
can occur in two operations, it means the same in both. Stated differently, if the
same symbol appears in two different colors, then any ball on which it appears
in one color must have it in the other color as well. We shall consider a modifi-
cation of this generalized urn model: in our case, the same symbol in different
colors need not match on the same ball; i.e., the same symbols in different colors
may also appear on different balls.

1.1 Generalized urn models

A generalized urn model U = 〈U, C, L,Λ〉 is characterized as follows. Consider
an ensemble of balls with black background color. Printed on these balls are
some color symbols from a symbolic alphabet L. The colors are elements of a
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set of colors C. A particular ball type is associated with a unique combination
of mono-spectrally (no mixture of wavelength) colored symbols printed on the
black ball background. Let U be the set of ball types. We shall assume that
every ball contains just one single symbol per color. (Not all types of balls; i.e.,
not all color/symbol combinations, may be present in the ensemble, though.)

Let |U | be the number of different types of balls, |C| be the number of
different mono-spectral colors, |L| be the number of different output symbols.

Consider the deterministic “output” or “lookup” function Λ(u, c) = v, u ∈
U , c ∈ C, v ∈ L, which returns one symbol per ball type and color. One
interpretation of this lookup function Λ is as follows. Consider a set of |C|
eyeglasses build from filters for the |C| different colors. Let us assume that
these mono-spectral filters are “perfect” in that they totally absorb light of
all other colors but a particular single one. In that way, every color can be
associated with a particular eyeglass and vice versa.

When a spectator looks at a particular ball through such an eyeglass, the only
operationally recognizable symbol will be the one in the particular color which is
transmitted through the eyeglass. All other colors are absorbed, and the symbols
printed in them will appear black and therefore cannot be differentiated from
the black background. Hence the ball appears to carry a different “message” or
symbol, depending on the color at which it is viewed.

An empirical logic can be constructed as follows. Consider the set of all
ball types. With respect to a particular colored eyeglass, this set disjointly
“decays” or gets partitioned into those ball types which can be separated by the
particular color of the eyeglass. Every such partition of ball types can then be
identified with a Boolean algebra whose atoms are the elements of the partition.
A pasting of all of these Boolean algebras yields the empirical logic associated
with the particular urn model.

1.2 Automaton models

A (Mealy type) automaton A = 〈S, I, O, δ, λ〉 is characterized by the set of
states S, by the set of input symbols I, and by the set of output symbols O.
δ(s, i) = s′ and λ(s, i) = o, s, s′ ∈ S, i ∈ I and o ∈ O represent the transition
and the output functions, respectively. The restriction to Mealy automata is
for convenience only.

A typical automaton experiment aims at an operational determination of an
unknown initial state by the input of some symbolic sequence and the obser-
vation of the resulting output symbols. Every such input/output experiment
results in a state partition in the following way. Consider a particular automa-
ton. Every experiment on such an automaton which tries to solve the initial
state problem is characterized by a set of input/output symbols as a result of
the possible input/output sequences for this experiment. Every such distinct
set of input/output symbols is associated with a set of initial automaton states
which would reproduce that sequence. This state set may contain one or more
states, depending on the ability of the experiment to separate different initial
automaton states. A partitioning of the automaton states is obtained if one con-
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siders a single input sequence and the variety of all possible output sequences
(given a particular automaton). Stated differently: given a set of inputs, the
set of automaton states decays into disjoint subsets associated with the possible
output sequences. (All elements of a subset yield the same output on the same
input.)

This partition can then be identified with a Boolean algebra, with the ele-
ments of the partition interpreted as atoms. By pasting the Boolean algebras of
the “finest” partitions together one obtains an empirical partition logic associ-
ated with the particular automaton. (The converse construction is also possible,
but not unique; see below.)

For the sake of simplicity, we shall assume that every experiment just deals
with a single input/output combination. That is, the finest partitions are
reached already after the first symbol. This does not impose any restriction
on the partition logic, since given any particular automaton, it is always pos-
sible to construct another automaton with exactly the same partition logic as
the first one with the above property.

More explicitly, given any partition logic, it is always possible to construct a
corresponding automaton with the following specification: associate with every
element of the set of partitions a single input symbol. Then take the parti-
tion with the highest number of elements and associate a single output symbol
with any element of this partition. (There are then sufficient output symbols
available for the other partitions as well.) Different partitions require different
input symbols; one input symbol per partition. The output function can then
be defined by associating a single output symbol per element of the partition
(associated with a particular input symbol). Finally, choose a transition func-
tion which completely looses the state information after only one transition; i.e.,
a transition function which maps all automaton state into a single one.

2 Proof of logical equivalence

From the definitions and constructions mentioned in the previous sections it is
intuitively clear that, with respect to the empirical logics, generalized urn mod-
els and finite automata models are equivalent. Every logic associated with a
generalized urn model can be interpreted as an automaton partition logic asso-
ciated with some (Mealy) automaton (actually an infinity thereof). Conversely,
any logic associated with some (Mealy) automaton can be interpreted as a logic
associated with some generalized urn model (an infinity thereof). We shall proof
these claims by explicit construction. Essentially, the lookup function Λ and the
output function λ will be identified. Again, the restriction to Mealy automata
is for convenience only. The considerations are robust with respect to variations
of finite input/output automata.
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2.1 Direct construction of AM from GUM

In order to define an APL associated with a Mealy automaton A = 〈S, I, O, δ, λ〉
from a GUM U = 〈U, C, L,Λ〉, let u ∈ U , c ∈ C, v ∈ L, and s, s′ ∈ S, i ∈ I,
o ∈ O, and assume |U | = |S|, |C| = |I|, |L| = |O|. The following identifications
can be made with the help of the bijections tS , tI and tO:

tS(u) = s, tI(c) = i, tO(v) = o,
δ(s, i) = si for fixed si ∈ S and arbitrary s ∈ S, i ∈ I,
λ(s, i) = tO

(

Λ(t−1

S (s), t−1

I (i))
)

.
(1)

More generally, one could use equivalence classes instead of a bijection. Since
the input-output behavior is equivalent and the automaton transition function
is trivially |L|-to-one, both entities yield the same propositional calculus.

2.2 Direct construction of GUM from AM

Conversely, consider an arbitrary Mealy automaton A = 〈S, I, O, δ, λ〉 and its
associated propositional calculus APL.

Just as before, associate with every single automaton state s ∈ S a ball
type u, associate with every input symbol i ∈ I a unique color c, and associate
with every output symbol o ∈ O a unique symbol v; i.e., again |U | = |S|,
|C| = |I|, |L| = |O|. The following identifications can be made with the help of
the bijections τU , τC and τL:

τU (s) = u, τC(i) = c, τL(o) = v, Λ(u, c) = τL(λ(τ−1

U (u), τ−1

C (c))). (2)

A direct comparison of (1) and (2) yields

τ−1

U = tS , τ−1

C = tI , τ−1

L = tO. (3)

2.3 Schemes using dispersion-free states

Another equivalence scheme uses the fact that both automaton partition logics
and the logic of generalized urn models have a separating (indeed, full) set of
dispersion-free states. (In what follows, the terms “dispersion-free state” “two-
valued state” “valuation” “dispersion-free probability measure” are synonyms
for measures which take on only the values zero and one. We thereby explicitly
exclude dispersion-free measures which take on other values, such as 1/2 and
0, as introduced by Wright [1].) Stated differently, given a finite atomic logic
with a separating set of states, then the enumeration of the complete set of
dispersion-free states enables the explicit construction of generalized urn models
and automaton logics whose logic corresponds to the original one.

This can be achieved by “inverting” the set of two-valued states as follows.
(The method is probably best understood by considering the examples below.)
Let us start with an atomic logic with a separating set of states.
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(i) In the first step, every atom of this lattice is labeled by some natural
number, starting from “1” to “n”, where n stands for the number of
lattice atoms. The set of atoms is denoted by A = {1, 2, . . . , n}.

(ii) Then, all two-valued states of this lattice are labeled consecutively by natu-
ral numbers, starting from “m1” to “mr”, where r stands for the number of
two-valued states. The set of states is denoted by M = {m1, m2, . . . , mr}.

(iii) Now partitions are defined as follows. For every atom, a set is created
whose members are the numbers or “labels” of the two-valued states which
are “true” or take on the value “1” on this atom. More precisely, the
elements pi(a) of the partition Pj corresponding to some atom a ∈ A are
defined by

pi(a) = {k | mk(a) = 1, k ∈ M} .

The partitions are obtained by taking the unions of all pi which belong to
the same subalgebra Pj . That the corresponding sets are indeed partitions
follows from the properties of two-valued states: two-valued states (are
“true” or) take on the value “1” on just one atom per subalgebra and
(“false” or) take on the value “0” on all other atoms of this subalgebra.

(iv) Let there be t partitions labeled by “1” through “t”. The partition logic
is obtained by a pasting of all partitions Pj , 1 ≤ j ≤ t.

(v) In the following step, a corresponding GUM or automaton model is ob-
tained from the partition logic just constructed.

(a) A GUM is obtained by the following identifications (see also [1, p.
271]).

• Take as many ball types as there are two-valued states; i.e., r
types of balls.

• Take as many colors as there are subalgebras or partitions; i.e.,
t colors.

• Take as many symbols as there are elements in the partition(s)
with the maximal number of elements; i.e., max1≤j≤t |Pj | ≤ n.
To make the construction easier, we may just take as many sym-
bols as there are atoms; i.e., n symbols. (In most cases, much
less symbols will suffice). Label the symbols by vl. Finally, take
r “generic” balls with black background. Now associate with ev-
ery measure a different ball type. (There are r two-valued states,
so there will be r ball types.)

• The ith ball type is painted by colored symbols as follows: Find
the atoms for which the ith two-valued state mi is 1. Then
paint the symbol corresponding to every such lattice atom on the
ball, thereby choosing the color associated with the subalgebra
or partition the atom belongs to. If the atom belongs to more
than one subalgebra, then paint the same symbol in as many
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colors as there are partitions or subalgebras the atom belongs to
(one symbol per subalgebra).

This completes the construction.

(b) A Mealy automaton is obtained by the following identifications (see
also [3, pp. 154–155]).

• Take as many automaton states as there are two-valued states;
i.e., r automaton states.

• Take as many input symbols as there are subalgebras or parti-
tions; i.e., t symbols.

• Take as many output symbols as there are elements in the parti-
tion(s) with the maximal number of elements (plus one additional
auxiliary output symbol “∗”, see below); i.e., max1≤j≤t |Pj | ≤
n + 1.

• The output function is chosen to match the elements of the state
partition corresponding to some input symbol. Alternatively, let
the lattice atom aq ∈ A must be an atom of the subalgebra
corresponding to the input il. Then one may choose an output
function such as

λ(mk, il) =

{

aq if mk(aq) = 1
∗ if mk(aq) = 0

with 1 ≤ k ≤ r and 1 ≤ l ≤ t. Here, the additional output
symbol “∗” is needed.

• The transition function is r–to–1 (e.g., by δ(s, i) = s1, s, s1 ∈ S,
i ∈ I), i.e., after one input the information about the initial state
is completely lost.

This completes the construction.

2.4 Example 1: The generalized urn logic L12

In what follows we shall illustrate the above constructions with a couple of
examples. First, consider the generalized urn model

〈{u1, . . . , u5}, {red, green}, {1, . . . , 5}, Λ〉

with Λ listed in Table 1(a).
The associated Mealy automaton can be directly constructed as follows.

Take tS = tO = id, where id represents the identity function, and take tI(red) =
0 and tI(green) = 1, respectively. Furthermore, fix a (five×two)-to-one transi-
tion function by δ(., .) = 1. The transition and output tables are listed in Table
1(b). Both empirical structures yield the same propositional logic L12.
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ball type red green
1 1 3
2 1 4
3 2 3
4 2 4
5 5 5

δ λstate
1 2 3 4 5 1 2 3 4 5

0 1 1 1 1 1 1 1 2 2 5
1 1 1 1 1 1 3 4 3 4 5

(a) (b)

Table 1: (a) Ball types in Wright’s generalized urn model [2] (cf. also [7,
p.143ff]). (b) Transition and output table of an associated automaton model.

colors
c1 c2ball type

“red” “green”
1 ∗ ∗ ∗ ∗ 5 ∗ ∗ ∗ ∗ 5
2 ∗ 2 ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
3 ∗ 2 ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗
4 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 4 ∗
5 1 ∗ ∗ ∗ ∗ ∗ ∗ 3 ∗ ∗

Table 2: Representation of the sign coloring scheme Λ. “∗” means no sign at
all (black) for the corresponding atom.

2.5 Example 2: The automaton partition logic L12

Let us start with an automaton whose transition and output tables are listed
in Table 1(b) and indirectly construct a logically equivalent GUM by using
dispersion-free states. The first thing to do is to figure out all dispersion-free
states of L12. There are five of them, which we might write in vector form; i.e.,
in lexicographic order:

m1 = (0, 0, 0, 0, 1), m2 = (0, 1, 0, 1, 0), m3 = (0, 1, 1, 0, 0),
m4 = (1, 0, 0, 1, 0), m5 = (1, 0, 1, 0, 0).

(4)

Now define the following GUM as follows. There are two subalgebras with
the atoms 1, 2, 5 and 3, 4, 5, respectively. Since there are five two-valued mea-
sures corresponding to five ball types. They are colored according to the coloring
rules defined above. and Λ as listed in Table 2.

2.6 Example 3: GUM of the Kochen-Specker “bug” logic

Another, less simple example, is a logic which is already mentioned by Kochen
and Specker [8] (this is a subgraph of their Γ1) whose automaton partition logic
is depicted in Fig. 1. (It is called “bug” by Professor Specker [9] because of the
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a3 = {10, 11, 12, 13, 14} a4 = {2, 6, 7, 8} a5 = {1, 3, 4, 5, 9}

a2 = {4, 5, 6, 7, 8, 9} a6 = {2, 6, 8, 11, 12, 14}

a1 = {1, 2, 3} a7 = {7, 10, 13}

a13 =

{1, 4, 5, 10, 11, 12}

a12 = {4, 6, 9, 12, 13, 14} a8 = {3, 5, 8, 9, 11, 14}

a11 = {5, 7, 8, 10, 11} a10 = {3, 9, 13, 14} a9 = {1, 2, 4, 6, 12}
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Figure 1: Greechie diagram of automaton partition logic with a nonfull set of
dispersion-free measures.

similar shape with a bug.) There are 14 dispersion-free states which are listed
in Table 3(a). The associated GUM is listed in Table 3(b).

3 Discussion

We have explicitly demonstrated the logical equivalence of generalized urn mod-
els and and the logic of finite automata, both by a direct construction and by an
indirect construction utilizing the set of two-valued states. This logical equiva-
lence stresses the importance of these empirical structures.

GUMs and automata are capable to serve as models for particular types of
lattices with a sufficient number of two-valued states (e.g., with a separating set
of states). Yet it is this very property which makes impossible the realization
of other, more exotic states, which have no classical and not even a quantum
mechanical counterpart. Take, as an example, the Wright state [1, 7] on the
pentagon (or any n-agon, with odd n > 3, n = 2k + 1, k = 2, 3, . . .) Greechie
diagram with value 1/2 on the five vertices and 0 on each middle atom (three
atoms per subalgebra). The 11 two-valued measures suffice to generate GUMs
and finite automata with that logical structure, but none such model realizes
the Wright state.
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lattice atoms colors
mr and

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 c1 c2 c3 c4 c5 c6 c7ball type

1 1 0 0 0 1 0 0 0 1 0 0 0 1 1 5 5 9 9 1 13
2 1 0 0 1 0 1 0 0 1 0 0 0 0 1 4 6 9 9 1 4
3 1 0 0 0 1 0 0 1 0 1 0 0 0 1 5 5 8 10 3 10
4 0 1 0 0 1 0 0 0 1 0 0 1 1 2 5 5 9 9 12 13
5 0 1 0 0 1 0 0 1 0 0 1 0 1 2 5 5 8 11 11 13
6 0 1 0 1 0 1 0 0 1 0 0 1 0 2 4 6 9 9 12 4
7 0 1 0 1 0 0 1 0 0 0 1 0 0 2 4 7 7 11 11 4
8 0 1 0 1 0 1 0 1 0 0 1 0 0 2 4 6 8 11 11 4
9 0 1 0 0 1 0 0 1 0 1 0 1 0 2 5 5 8 10 12 10
10 0 0 1 0 0 0 1 0 0 0 1 0 1 3 3 7 7 11 11 13
11 0 0 1 0 0 1 0 1 0 0 1 0 1 3 3 6 8 11 11 13
12 0 0 1 0 0 1 0 0 1 0 0 1 1 3 3 6 9 9 12 13
13 0 0 1 0 0 0 1 0 0 1 0 1 0 3 3 7 7 10 13 10
14 0 0 1 0 0 1 0 1 0 1 0 1 0 3 3 6 8 10 12 10

Table 3: Dispersion-free states of the Kochen-Specker “bug” logic with 14
dispersion-free states. and the associated GUM (all blank entries “∗”have been
omitted).
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