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The conventionalistic aspects of physical world perception are reviewed with an
emphasis on the constancy of the speed of light in relativity theory and the
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1. KNOW THYSELF

This inscription on the Oracle of Apollo at Delphi, Greece, dates from 6th
century B.C., and it is still of tremendous importance today. For we do not
and never will see the world ‘‘as is,’’ but rather as we perceive it. And how
we perceive the world is mediated by our senses which serve as interfaces to
the world ‘‘out there’’ (if any); but not to a small extend also by what we
project onto it. Conventions are projections which we have to adopt in
order to be able to cope with the phenomena ‘‘streaming in’’ from the
senses. Conventions are a necessary and indispensable part of operatio-
nalizable2 phenomenology and tool-building. There is no perception and

2 In what follows we shall adopt Bridgman’s concept of ‘‘operational’’ as one of quite simple-
minded experimental testability, even in view of its difficulties which this author approached
later on. (1–5)

intervening without conventions. They lie at the very foundations of our
world conceptions. Conventions serve as a sort of ‘‘scaffolding’’ from
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which we construct our scientific worldview. Yet, they are so simple and
almost self-evident that they are hardly mentioned and go unreflected.

To the author, this unreflectedness and unawareness of conventio-
nality appears to be the biggest problem related to conventions, especially
if they are mistakenly considered as physical ‘‘facts’’ which are empirically
testable. This confusion between assumption and observational, operational
fact seems to be one of the biggest impediments for progressive research pro-
grams, in particular if they suggest postulates which are based on conven-
tions different from the existing ones.

In what follows we shall mainly review and discuss conventions in the
two dominating theories of the 20th century: quantum mechanics and
relativity theory.

2. CONVENTIONALITY OF THE CONSTANCY OF THE
CHARACTERISTIC SPEED

Suppose two observers called Alice and Bob measure space and time
in two coordinate frames. Operationally their activities amount to the
following. They have constructed ‘‘identical’’ clocks and scales of ‘‘equal’’
length which they have compared in the distant past; when Bob lived
together with Alice. Then they have separated. Alice has decided to depart
from Bob and, since then, is moving with constant speed away from him.
How do Bob’s and Alice’s scales and clocks compare now? Will they be
identical, or will they dephase?

These are some of the questions which ‘‘relativity’’ theory deals with.
It derives its name from Poincaré’s 1904 ‘‘principle of relativity’’ stating
that (see, for instance, Ref. 6, p. 74) ‘‘the laws of physical phenomena must
be the same for a stationary observer as for an observer carried along in a
uniform translation; so that we have not and can not have any means of dis-
cerning whether or not we are carried along in such a motion.’’ Formally, this
amounts to the requirement of form invariance or covariance of the physi-
cal equations of motion.

One of the seemingly mindboggling features of the theory of relativity
is the fact that simultaneity and even the time order of two spatially
separated events needs no longer be conserved. It may indeed happen that
Alice perceives the first event before the second, while Bob perceives both
events as happening at the same time; or even the second event ahead of
the first. Simultaneity can only be defined ‘‘relative’’ to a particular refer-
ence frame. If true there, it is false in any different frame.

The first part of Einstein’s seminal paper (7) is dedicated to a detailed
study of the intrinsically operational procedures and methods which are
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necessary to conceptualize the comparison of Alice’s and Bob’s reference
frames. This part contains certain ‘‘reasonable’’ conventions for defining
clocks, scales, velocities and in particular simultaneity, without which no
such comparison could ever be achieved. These conventions appear to be
rather evident and natural, almost trivial, and yield a convenient for-
malization of space-time transformations, but they are nevertheless arbi-
trary. The simultaneity issue has been much debated in the contemporary
discussions on conventionality. (8–10)

There is another element of conventionality present in relativity theory
which has gotten less attention. (11) It is the assumption of the constancy of
the speed of light. Indeed, the International System of units assumes light
to be constant. It was decided in 1983 by the General Conference on
Weights and Measures that the accepted value for the speed of light would
be exactly 299, 792, 458 meters per second. The meter is now thus defined
as the distance traveled by light in a vacuum in 1/299, 792, 458 second.
With the speed of light no longer being an empirical fact but a convention,
the proper empirical statement is that the length of a rod neither depends
on the orientation nor on the inertial frame where that body is at rest. (12)

Despite the obvious conventionality of the constancy of the speed of
light, many introductions to relativity theory present this proposition not
as a convention but rather as an important empirical finding. Indeed, it is
historically correct to claim that experiments like the ones of Fizeau, Hoek
and Michelson–Morley, which produced a null result by attempting to
measuring the earth’s motion against some kind of ‘‘ether,’’ preceded
Einstein’s special theory of relativity.

But this may be misleading. First of all, Einstein’s major reason for
introducing the Lorentz transformation seems to have been the elimination
of asymmetries which appeared in the electromagnetic formalism of the
time but are not inherent in the phenomena, thereby unifying electromag-
netism. Secondly, not too much consideration has been given to the possi-
bility that experiments like the one of Michelson and Morley may be a
kind of ‘‘self-fulfilling prophecy,’’ a circular, closed tautologic exercise.
If the very instruments which should indicate a change in the velocity of
light are themselves dilated, then any dilation effect will be effectively
nullified. This possibility has already been imagined in the 18th century
by Boskovich (13) and was later put forward by FitzGerald (14) (see also
John Bell (15, 16)), Lorentz, Poincaré and others in the context of the ether
theory. (6)3

3 In stressing the conventionality aspect of these effects, the author would like to state that he
does not want to promote any ether-type theory, nor is he against any such attempts.
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But what is the point in arguing that the constancy of the speed of
light is a convention rather than an empirical finding? Is this not a vain
question; devoid of any operational testability?

The answer to this concern is twofold. First, a misinterpretation might
give rise to a doctrinaire and improper preconception of relativity theory
by limiting the scope of its applicability. Indeed, as it turns out, for reasons
mentioned below, (11) the special theory of relativity is much more generally
applicable as is nowadays appreciated. It applies also to situations in which
the velocity of light needs not necessarily be the highest possible limit
velocity for signaling and travel. Secondly, it is not totally unreasonable to
ask the following question. What if one adopts a different convention by
assuming a different velocity than that of light to be the basis for frame
generation? Such a velocity may be anything, sub- but also superluminal.
What will be the changes to Alice’s and Bob’s frames, and how do these
new coordinates relate to the usual ‘‘luminal’’ frames?

These issues have been discussed by the author (11) on the basis of a
geometrical theorem by Alexandrov (17–20) and Borchers and Hegerfeldt (21)

reviewed in Refs. 22 and 23 (see also previous articles (24, 25)). Alexandrov’s
theorem requires the convention that some speed is the same in Bob’s and
Alices’s frames. Furthermore, if two space-time points are different in Alice’s
frame, then these points must also be mapped into different points in Bob’s
frame and vice versa; i.e., the mapping must be one-to-one, a bijection. It
can be proven that under these conditions, the mapping relating Alice’s and
Bob’s frames must be an affine Lorentz transformation, with some fun-
damental speed playing the role of light in the usual Lorentz transforma-
tions of relativity theory. The nontrivial geometric part of a proof uses the
fundamental theorem of affine geometry, which results in the linearity of
the transformation equations. No Poincaré’s 1904 ‘‘principle of relativity,’’
no relativistic form invariance or covariance is needed despite the postulate
or convention of equality of a single speed in all reference frames. The
derivation uses geometry, not physics. The Appendix contains a detailed
derivation of Alexandrov’s theorem which should be conprehensive for a
larger audience.

To repeat the gist: it is suggested that the signalling velocity occurring
in the Lorentz transformation is purely conventional. This effectively turns
the interpretation of relativity theory upside down and splits it into two
parts, one geometric and one physical, as will be discussed next.

So where is the physics gone? The claim of conventionality arouses
suspicions. The proper space-time transformations cannot be purely con-
ventional or even a matter of epistemology! After all, the Michelson–
Morley experiment and most of its various pre- and successors actual
yielded null results, which are valid physical observations as can be. The
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experimenters never explicitly acknowledged the conventionality of the con-
stancy of the speed of light and approved their instruments according to
these specifications. Just on the contrary, they first assumed to measure the
inequality and anisotropy of the speed of light. And what if Alice and Bob
assume, say, the constancy of the speed of sound instead of light? Would
the mere assumption change the reading of the instruments in a Michelson–
Morley experiment using sound instead of light? This seems to be against all
intuitions and interpretations and the huge accumulated body of evidence.

The answer to these issues can be sketched as follows. First of all, the
physics is in the form invariance of the electromagnetic equations under a
particular type of Lorentz transformations: those which contain the speed
of electromagnetic signals; i.e., light, as the invariant speed. Thus, merely
the convention of the constancy of the speed of light in all reference frames
yields the desirable relativistic covariance of the theory of electromagnetism.
This is a preference which cannot be motivated by geometry or epistemology;
it is purely physical.

However, any such Lorentz transformation will result in a non-
invariance of the theory of sound or any other phenomena which are not
directly dominated by electromagnetism. Operationally, the length of rods
which are stabilized by the interactions represented by the non-invariant
laws would depend on the inertial frame where they are at rest. (12) Further-
more, an asymmetry will appear, singling out a particular frame of reference
from all the other ones.

Thus, one may speculate that the most efficient ‘‘symmetric’’ repre-
sentation of the physical laws is by transformations which assume the con-
vention of the invariant signalling velocity which directly reflects the
phenomena involved. For electromagnetic phenomena it is the speed of electro-
magnetic waves; i.e., light. For sound phenomena it is the speed of sound.
For gravity it is the speed of gravitational waves. Thus the conventionality
of relativity theory not only relativizes simultaneity but must also reflect
the particular class of phenomena; in particular their transmission speed(s).
In that way, a general form invariance or covariance is achieved, satisfying
Poincaré’s 1904 ‘‘principle of relativity’’ mentioned earlier, which is not only
limited to electromagnetism but is valid also for a wider class of systems.

Secondly, it is not unreasonable to assume that in the particular
context of the Michelson–Morley and similar experiments, all relevant
physical system parameters and instruments are governed by electromag-
netic phenomena and not by sound, gravity or something else. Thus,
although not explicitly intended, the experiments are implicitly implement-
ing the conventionality of the constancy of light. Of course, the experimenter
could decide to counteract the most natural way to gauge the instruments
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and measure space and time differently than as suggested by the instru-
ments. For instance, one may adopt scales to measure space which are ani-
sotropic and velocity dependent. But this would be a highly unreasonable,
inconvenient and complicating thing to do.

One may neverthless speculate that, if all phenomena could be explained
by a single unified interaction, then the speed of this interaction should be
taken as the fundamental speed which should be invariant in all reference
frames. Thus such an interaction would make a strong suggestion towards
this particular choice of conventions. But then, one may ask whether
this could still be considered a free choice, or simply would reflect a dis-
tinguished feature of the physical world.

Hence, from a system theoretic standpoint, the proper convention
suggests itself by the dominating type of interaction, and only in this way
corresponds to a physical proposition. The result is a generalized principle
of relativity.

3. CONVENTIONALITY OF QUANTUM MEASUREMENTS

In what follows, the idea is put forward and reviewed that measure-
ments in quantum mechanics, or indeed in any reversible system, are (at
least in principle) purely conventional. More precisely, it is purely conven-
tional and subjective what exactly an ‘‘observer’’ calls ‘‘measurement.’’ There
is no distinction between ‘‘measurement’’ and ordinary (unitary) quantum
evolution other than the particular interpretation some (conscious?) agent
ascribes to a particular process. (26) Indeed, the mere distinction between
an ‘‘observer’’ and the ‘‘object’’ measured is purely conventional. Stated
pointedly. measurement is a subjective illusion. We shall call this the ‘‘no
measurement’’ interpretation of quantum mechanics.

The idea that measurements, when compared to other processes
(involving entanglement), are nothing special, seems to be quite widespread
among the quantum physics community; but it is seldom spelled out
publicly. (27, 28) Indeed, the possibility to ‘‘undo’’ a quantum measurement
has been experimentally documented, (29) while it is widely acknowledged
that practical bounds to maintain quantum coherence pose an effective
upper limit on the possibility to reconstruct a quantum state. We shall not
be concerned with this upper bounds, which does not seem to reflect some
deep physical truth but rather depends on technology, financial commit-
ments and cleverness on the experimenter’s side.

Rather, we shall discuss the differences between the two types of time
evolution which are usually postulated in quantum mechanics: (i) unitary,
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one-to-one, isometric time evolution between two measurements and (ii)
many-to-one state reduction at the measurement.

Between two measurements, the quantum state undergoes a determi-
nistic,unitary time evolution,which is reversibleand one-to-one. This amounts
to arbitrary generalized isometries—distance-preserving maps—in complex
Hilbert space. A discrete analogue of this situation is the permutation of
states. An ‘‘initial message’’ is constantly being re-encoded. As the evolu-
tion is reversible, there is no principle reason why it should not be possible
to ‘‘undo’’ it. (There may be insurmountable practical obstacles, though.)

Any irreversible measurement is formally accompanied by a state
reduction or ‘‘wave function collapse’’ which is many-to-one. Indeed, this
many-to-oneness is the formal mathematical expression of irreversibility.

What is a measurement? Besides all else, it is associated with a some
sort of ‘‘information’’ transfer through a fictitious boundary between some
‘‘measurement apparatus’’ and the ‘‘object.’’ In the following we shall call
this fictitious boundary the ‘‘interface.’’ The interface has no absolute phy-
sical relevance but is purely conventional. It serves as a scaffolding to
mediate and model the exchange. In principle, it can be everywhere. It is
symmetric: the role of the observer and the observed system is interchan-
geable and a distinction is again purely conventional.

In more practical terms, it is mostly rather obvious what is the obser-
ver’s side. It is usually inhabited by a conscious experimenter and his mea-
surement device. It should be also in most cases quite reasonable to define
the interface as the location where some agent serving as the experimenter
looses control of one-to-onenness. This is the point where ‘‘the quantum
turns classical.’’ But from the previous discussion it should already be quite
clear that any irreversibility in no way reflects a general physical principle
but rather the experimenter’s ability to reconstruct previous states. Another
‘‘observer’’ equipped with another technology (or just more money) may
draw very different interface lines.

In this line of thought, one pragmatic argument against the conven-
tionality of measurements can be put forward as follows. In a typical ideal-
ized experiment, an observer registers some click in a counter, or looks at a
lamp which flashes if a particle has been detected. An observer looking at
the lamp will become aware of this new fact, which may be seen as an ele-
mentary act of measurement. Any such observation may then be inter-
preted as a gain of knowledge about the physical world and thus, it may be
argued, could not be perceived as being a subjective illusion. In this line of
thought, the cut between observer and observed object could not be shifted
arbitrarily, and therefore measurements are not merely conventional.

Such view assumes that the awareness of a conscious observer is some-
thing beyond the domain of the reversible system in which the observer is
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embedded. Pointedly stated, the conscious observer cannot ‘‘unthink’’ a
measurement, since consciousness resides in a domain which is metaphysi-
cal and beyond the reach of the reversible physical system. [If it were not
so, there would be no obstacle to (at least in principle) ‘‘unthink’’ any
elementary act of observation on the observer’s side.]

Yet even if no transcendence on the observer’s side is involved,
‘‘unthinking’’ a measurement for all practical purposes will never happen,
as the task of reconstruction of the observer’s state turns out to be too
hard. The ‘‘objective physical reality’’ emerges from a consensus of such
‘‘macroscopic’’ intrinsic observers. ‘‘Macroscopic’’ here means ‘‘impossible
to reconstruct.’’ In this scenario, although principally acknowledging the
conventionality of measurement, the cut between observer and observed
object emerges due to effective inabilities to reconstruct previous states of
reversible physical systems.

Let me add here one particular aspect of quantum information.
Assume as an axiom that a physical system always consists of a natural
number of n quanta which are in a single pure state among q others. Any
single such particle is thus the carrier of exactly one q-it, henceforth called
‘‘quit.’’ (In the spin-one half case, this reduces to the bit.) That is, encoded
in such a quantum system are always n quits of information. The quit is an
irreducible amount of classical and quantum information. The quits need
not be located at any single particle (i.e., one quit per particle), but they
may be spread over the n particles. (30) In this case one calls the state of the
particles ‘‘entangled.’’ According to Schrödinger’s own interpretation, (31)

the quantum wave function (or quantum state) is a ‘‘catalogue of expecta-
tion values’’ about this state; and in particular about the quits. Since an
experimenter’s knowledge about a quantum system may be very limited,
the experimenter might not have operational access to the ‘‘true’’ pure state
out there. (In particular, it need not be clear which questions have to be
asked to sort out the valid pure state from other ones.) This ignorance on
the experimenter’s side is characterized by a nonpure state. Thus one
should differentiate between the ‘‘true’’ quantum state out there and the
experimenter’s ‘‘poor man’s version’’ of it. Both type of states undergo a
unitary time evolution, but their ontological status is different.

Why has the no-measurement interpretation of quantum mechanics
been not wider accepted and has attracted so little attention so far? One
can only speculate about the reasons.

For one thing, the interpretation seems to have no operational, testable
consequences. Indeed, hardly any interpretation does. So, what is any kind of
interpretation of some formalism good for if it cannot be operationalized?

Think of the Everett interpretation of quantum mechanics, which is
nevertheless highly appreciated among some circles, mainly in the quantum
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computation community. It has to offer no operationalizable consequences,
just mindboggling scenarios.

Or consider Bohr’s ‘‘Copenhagen’’ interpretation, whatever that means
to its successors or to Bohr himself. It is the canonical interpretation of quan-
tum mechanics, a formalism co-created by people, most notably Einstein,
Schrödinger and De Broglie, who totally disagreed with that interpretation.
This does not seem to be the case for Heisenberg and von Neumann. The
latter genius even attempted to state an inapplicable theorem directed
against hidden parameters to support some of Bohr’s tendencies. Nowa-
days, many eminent researchers in the foundations of quantum mechanics
still stick with Bohr’s interpretation or whatever sense they have made out
of it. But does Bohr’s ‘‘Copenhagen’’ interpretation have any operational
consequences?

With the advent of quantum information theory, the notion of infor-
mation seems to be the main interpretational concept. Consequently,
information interpretations of quantum mechanics begin to be widespread.
Yet, despite the heavy use of the term ‘‘information,’’ the community does
not seem to have settled upon an unambiguous meaning of the term
‘‘information.’’ And also in this case, the interpretations do not seem to
have operational consequences.

Many recent developments in quantum information theory are consis-
tent with the no-measurement interpretation. Unitarity and the associated
one-to-onenness even for one quantum events seems to be the guiding
principle. Take, for example, the no-cloning theorem, quantum teleporta-
tion, entanglement swapping, purification and so on. (32, 33) Actually, the
no-measurement interpretation seems to promote the search for new phe-
nomena in this regime, and might thus contribute to a progressive research
program.

Indeed, it is the author’s belief that being helpful in developing novel
theories and testing phenomena is all one can ever hope for a good
interpretation. Any ‘‘understanding’’ of or ‘‘giving meaning’’ to the for-
malism is desirable only to the effect that it yields new predictions,
phenomena and technologies. And in this sense, the no-measurement
interpretation claiming the conventionality of quantum measurements
should be perceived. It too cannot offer direct operationalizable conse-
quences, yet may facilitate thoughts in new, prosperous directions.

4. SUMMARY

We have reviewed conventions in two of the dominating theories of
contemporary physics, the theory of relativity and quantum mechanics. In
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relativity theory we suggest to accept the constancy of one particular speed
as a convention. Lorentz-type transformation laws can then be geometri-
cally derived under mild side assumptions. In order for a generalzied prin-
ciple of relativity and thus generalized form invariance to hold, the partic-
ular signalling type entering the transformations should correspond to the
dominating type of physical interactions.

The no-measurement interpretation of quantum mechanics suggests
that there is no such thing as an irreversible measurement. In fact, there is
no measurement at all, never. This kind of irreversibility associated with
the measurement process is just an idealistic, subjective construction on the
experimenter’s side to express the for-all-practical-purposes impossibility to
undo a measurement.

APPENDIX: PROOF OF ALEXANDROV’S THEOREM

Alexandrov’s theorem states that, for Rn, n \ 3 with the metric
diag(+,+,+,...,+, −) and a one-to-one map rW rŒ preserving light cones
(i.e., zero distance) such that for all r, s ¥ Rn,

(r−s, r−s)=0. (rŒ−sŒ, rŒ−sŒ)=0

rW rŒ is essentially a Lorentz transformation; i.e., it has the form rW rŒ=
aLr+a for some nonzero a ¥ R, a ¥ Rn, and a linear one-to-one map
L: RnW Rn satisfying (Lr, Ls)=(r, s) for all r and s in Rn.

In what follows we shall review a complete proof of Alexandrov’s
theorem very similar to the one sketched by Lester. (23) The proof consists of
three stages:

(I) a proof that, given Rn, n \ 3 with the metric diag(+,+,...,
+, −) and a one-to-one map preserving light cones (i.e., zero
distance), all lines are mapped onto lines;

(II) a proof of the fundamental theorem of affine geometry stating
that a one-to-one map from Rn, n \ 2 onto itself which maps all
lines onto lines must be affine; i.e., must be a linear map
followed by a translation;

(III) a proof that, given Rn, n \ 2 with the metric diag(+,...,+, −)
and a linear one-to-one map preserving a single light cone (i.e.,
zero distance) must be essentially a Lorentz transformation (up
to a translation and a dilatation); i.e., it has the form rW
aLr+a for some nonzero a ¥ R, a ¥ Rn, and a linear one-to-one
map L: RnW Rn satisfying (Lr, Ls)=(r, s) for all r and s in Rn.
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In what follows, a constant translation is taken account of by addition
of a vector a ¥ Rn. The remaining transformation preserves the origin; i.e.,
0W 0Œ. We shall often refer to this remaining transformation (after the
constant parallel shift moving the map of the origin back into the origin)
simply as (homogeneous) transformation. (Note that if f: rW aLr+a,
then the homogeneous part is obtained by subtracting a=f(0).) This
constant shift a has to be added to the final mapping.

The geometric proof of (I) proceeds in five steps, covering the
mapping of (i) lightlike (null) lines onto lightlike lines; (ii) lightlike (null)
planes onto null planes; (iii) spacelike lines onto spacelike lines; (iv) timelike
planes onto planes; and finally (v) timelike lines onto lines.

In what follows, the configurations are demonstrated for R3 with the
metric (r, s)=r1s1+r2s2−(1/c2) r3s3. For arbitrary dimensions we refer to
Ref. 22. In this section, the velocity of light c will be set to unity; i.e., c=1.
The terms ‘‘null’’ and ‘‘lightlike’’ will be used synonymously.

To show (i) let us first define a null cone with vertex a by

C(a)={r ¥ R3 | (r−a, r−a)=0}

By assumption, light cones are preserved, i.e., C(a)Y C(aŒ).
As illustrated in Fig. 1(a), any null (lightlike) line is the intersection

of two tangent null cones. Since null cones are preserved, so are null
(lightlike) lines. Thus, null lines are mapped into null lines. The same is true
for the inverse map. Hence, null lines are mapped onto null lines. (The
same is true for the other proof steps as well but will not be mentioned
explicitly.)

To show (ii), notice that, as illustrated in Fig. 1(b), a null cone with
vertex on some null plane is tangent to that plane along a null line. Points
of R3 are on the null plane if and only if they either lie on this null line or
on no null cone with vertex on this line. The latter sentence could be
understood as follows. Imagine any point of R3 outside of the null plane
(either ‘‘below’’ or ‘‘above’’). Any such point is element of some null cone
with vertex on the null line mentioned. On the contrary, any point on the
null plane cannot be reached by such null cones (except the cones located
on the null line mentioned), but by other null cones whose vertex is not on
that null line. Null lines and cones are preserved; thus null planes are
preserved as well.

To show (iii), notice that, as illustrated in Fig. 1(c), any spacelike line
is the intersection of two null planes. Since null planes are preserved,
spacelike lines are preserved.

To show (iv), notice that, as illustrated in Fig. 1(d), the points in a
timelike plane are covered by infinitely many intersecting null and spacelike
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Fig. 1. Illustrations of the proof that (a) lightlike (null)
lines into lightlike lines; (b) lightlike (null) planes into
null planes; (c) spacelike lines into spacelike lines;
(d) timelike planes map into planes.

lines in that plane. By fixing, for instance, a triangle formed by the vertices
a, b, c of three such lines (e.g., two null and one spacelike line) ‘‘spans’’ the
timelike plane. Because of the one-to-oneness of the mapping, the image of
the triangle with the vertices aŒ, bŒ, cŒ ‘‘spans’’ the transformed plane (dif-
ferent points are mapped onto different points). Therefore, the three lines
forming the transformed triangle must be coplanar. In general, the images
of all lines lying in the original timelight plane must be coplanar. Thus,
timelike planes map into planes.

To show (v), notice that any timelight line is the intersection of two
timelight planes. Since timelike planes are mapped onto planes, they
intersect into a line. Thus, any timelike line is mapped into a line.

In summary, all three types of lines—lightlike (null), spacelike and
timelike lines—are mapped onto lines. (Recall that the same arguments
apply for the inverse transformation as well.)

The geometric proof of (II), in particular the linearity of the trans-
formation proceeds from the preservation of lines essentially by utilizing
the preservation of parallelism among lines. As will be demonstrated below,
the preservation of parallelism implies that the transformation is additive.

490 Svozil

File: KAPP/825-foop/32-4 371742 - Page : 12/24 - Op: GC - Time: 09:46 - Date: 05:04:2002



The associated transformation of the field R is an automorphism. It then
only remains to be proven that the only automorphism of R is the identity
function.

Let us first introduce some notation. For a much more comprehensive
approach the reader is referred to the literature (e.g., the book by
Gruenberg and Weir (34)). Let a be a fixed ‘‘translation’’ vector of Rn andM
be a linear subspace of Rn. [Recall that a subset S … Rn is called a (linear)
subspace if S is a vector space in its own right with respect to the same
vector addition and scalar multiplication than Rn.] Then a+M denotes the
set of all vectors a+M={a+m | m ¥M}. It is called translated subspace
or coset or affine subspace of Rn. The dimension of a translated subspace
a+M is the dimension of the linear subspace M; i.e., dim(a+M)=
dim(M). Translated subspaces of dimensions 0, 1, 2 are called points, lines
and planes, respectively. Let the join S1 p S2 of two translated subspaces
S1, S2 be the intersection of all translated subspaces in Rn which contain
both S1 and S2. (The join is again a translated subspace.) Furthermore, if
S … Rn is any set of vectors in Rn, we denote by the (linear) span span(S)
the intersection of all the subspaces of Rn which contain S.

We shall call an automorphism a one-to-one mapping of Rn onto itself
preserving all translated subspaces. The fundamental theorem of affine
geometry (e.g., Ref. 34, Theorem 5) states that, for Rn, n \ 2, any auto-
morphism induces a linear transformation L and a translation vector a
such that rW rŒ=Lr+a.

In what follows, a proof of the fundamental theorem of affine geom-
etry will be given for the case of the vector space Rn, n \ 2 with field R.
First, a proof will be given that any such automorphism of Rn implies an
automorphism on the field of reals R (a definition will be given below). By
invoking the preservation of parallelism one obtains both the uniqueness of
the associated mapping of the field R onto itself and furthermore the
additivity of the transformation as a whole.

Note that the automorphism preserves parallelism. This can be seen by
‘‘fixing’’ appropriate four points a, b, c, d on two lines which are originally
parallel, drawing two nonparallel lines through them which meet in another
point e. Since by assumption all lines are preserved, so are their meeting
points aŒ, bŒ, cŒ, dŒ. Furthermore, because of bijectivity, two parallel lines
have no point in common. Thus, the two lines which are originally parallel
are mapped onto copanar lines which are disjoint; i.e., they are again par-
allel. Hence, parallelism is conserved. A concrete configuration illustrating
this geometrical argument is drawn in Fig. 2.

Consider an arbitrary nonzero vector a ¥ Rn. According to the assump-
tions, any line 0 p a=span(a) is transformed into a line 0Œ p aŒ=span(aŒ),
thereby inducing a one-to-one mapping of all points of span(a) onto
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Fig. 2. Geometrical proof of the preservation of paral-
lelism due to the preservation of lines.

the points of span(aŒ). That is, the transformation defines a one-to-one
mapping

z: xW xŒ (1)

of the field of real numbers onto itself by the definition

(xa)Œ=xŒaŒ (2)

It immediately follows that z: 0W 0Œ as well as z: 1W 1Œ. It will be shown
that z is an automorphism; i.e., a one-to-one mapping of R onto itself with
the properties that z(x+y)=z(x)+z(y), as well as z(xy)=z(x) z(y).

First it is shown that z does not depend on the particular choice of
a ¥ Rn. (i) Case 1: Consider two linearly independent vectors a, b of Rn,
(xa)Œ=xŒaŒ and (xb)Œ=xœbŒ, xŒ ] xœ. Since 0=0Œ=0œ, one can assume
that x ] 0. The join xa p xb is the intersection of all the subspaces of Rn

containing both xa and xb. Since xa and xb are vectors, this is just the line
joining them. xa p xb is parallel to a p b. (Rescaling does not affect
parallelism; cf. Fig. 3.) The transformation preserves parallelism, and
therefore aŒ p bŒ must also be parallel to xŒa p xŒbŒ and xŒa p xœbŒ, the lines
connecting xŒa with xŒbŒ and xŒa with xœbŒ. This can only be satisfied for
xŒ=xœ. Hence, z is independent of the argument and only depends on the
transformation.

Fig. 3. Rescaling does not
effect parallelism.
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Fig. 4. Geometrical proof of the preservation of
any parallelogram and of additivity due to the con-
servation of parallelism.

(ii) Case 2: Consider two linearly dependent vectors a, b of Rn. In this
case, choose a third vector c which does not lie in the linear subspace
span(a) spanned by a and b. Then, by the argument used in case 1, z is the
same for a, c and b, c; thus z is also the same for a, b. Hence, to sum up the
finding in the two cases, z is independent of the argument vector and only
depends on the transformation.

We shall pursue the proof that, given the preservation of lines, the
associated mapping is additive (up to translations). A geometric interpre-
tation of this proof is drawn in Fig. 4. (i) Case 1: If a and b are linearly
independent nonzero vectors (the zero vector case is trivial) of Rn, then the
parallelogram a, 0, b, a+b is mapped into the parallelogram aŒ, 0Œ, bŒ,
aŒ+bŒ and

(a+b)Œ=aŒ+bŒ (3)

This is also true if a or b is the zero vector.
(ii) Case 2: If a and b are linearly dependent and nonzero, choose a

third vector c ¨ span(a) (so that c is linearly independent of a and b),
and apply the above considerations for the pairs a+b & c rendering
a+b+cW (a+b)Œ+cŒ, a & b+c rendering a+b+cW aŒ+(b+c)Œ, b & c
rendering b+cW bŒ+cŒ, such that (a+b)Œ+cŒ=aŒ+bŒ+cŒ, which is
satisfied only if again (a+b)Œ=aŒ+bŒ.

Two further properties assuring that z is an automorphism can be
deduced from the uniqueness of Eq. (2) and Eq. (3) and the usual axioms
of linear vector spaces. (i) Automorphism property 1: Let aŒ ] 0, then for
all x, y ¥ R,

(x+y)Œ aŒ=[(x+y) a]Œ=(xa+ya)Œ=(xa)Œ+(ya)Œ

=xŒaŒ+yŒaŒ=(xŒ+yŒ) aŒ (4)

and thus

(x+y)Œ=xŒ+yŒ (5)
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(ii) Automorphism property 2: By the assumption of vector spaces,
(xy) a=x(ya) for all x, y ¥ R and a ¥ Rn. Therefore,

(xy)ŒaŒ=xŒ(ya)Œ=xŒ(yŒaŒ)=(xŒyŒ) aŒ (6)

and thus

(xy)Œ=xŒyŒ (7)

In order to complete the proof of linearity, it will be shown that
the only automorphism of the field R into itself is the identity function
id: xW x. This can be demonstrated by realizing that the algebraic proper-
ties of neutral elements 0, 1 with regard to addition and multiplication have
to be preserved; i.e., 0W 0 and 1W 1. Furthermore, since 1 has to be pre-
served and any natural number n ¥N is the sum of n 1’s, N has only a
single automorphism–the identity function id. A very similar argument
holds for Z. Since any element of the positive rationals can be represented
by the quotient n/m with n, m ¥N, again Q has only a single auto-
morphism–the identity function id. In order to be able to obtain the same
result for R, one has to make sure the Dedekind construction of the reals
works; in particular the preservation of Dedekind sections. This requires
the preservation of the order relation ‘‘ < ’’ in R, which is equivalent to
the preservation of positivity, since x < y can always be rewritten into
0 < y−x. Notice that every positive 0 < x ¥ R can be written as x=y2,
y ¥ R, y ] 0. Since x=y2 is mapped onto xŒ=(y2)Œ=(yŒ)2 with yŒ ] 0
(recall that 0W 0), xŒ > 0. This allows the Dedekind construction of the
reals using the rationals, which in turn yields the desired fact that R has
only a single automorphism–the identity function id. (This is not true for
example for C, since for example x+iyW x−iy is an automorphism but
not the identity.)

We shall now concentrate on a proof of (III). Let us first note that, in
the case of a linear map, the preservation of a single light cone is a suffi-
cient condition for the preservation of all of them. For, given the trans-
formation xW aLx+a, any shift of the null cone C(p) with vertex p by a
vector s=q−p results in a null cone C(q)=C(p)+s with vertex q=p+s.
The latter null cone C(q) is mapped onto the null cone

C(q)W aLC(q)+a=aL(C(p)+s)+a

=aLC(p)+aLs+a

=(aLC(p)+a)+aLs

=C(pŒ)+aLs,

which again is a null cone.

494 Svozil

File: KAPP/825-foop/32-4 371742 - Page : 16/24 - Op: GC - Time: 09:46 - Date: 05:04:2002



A way to get rid of the factor a is by considering the tangent hyper-
boloid x2+y2−z2=1 of the null cone x2+y2−z2=0, translating it once
and then back to the original figure. The requirement that this should
result in the same hyperboloid fixes a. (35)

Recall that in Einstein’s original work, (7, 3) linearity was never derived
but was assumed for physical reasons. ‘‘In the first place it is clear that the
equations must be linear on account of the properties of homogeneity which
we attribute to space and time.’’ [[‘‘Zunächst ist klar, daß die Gleichungen
linear sein müssen wegen der Homogenitätseigenschaften, welche wir Raum
und Zeit beilegen.’’]] That is, straight particle trajectories should transform
into straight particle trajectories.

Let us first prove the invariance of the scalar product (Ls, Ls)=(s, s)
for arbitrary s=(x, y, z, t) under the assumption of linearity and preserva-
tion of zero distances for the metric diag(1, 1, 1, −c) in R4 (c is often set to
1 for convenience). Because of linearity of the transformations, (Ls, Ls)
must have the following form:

(sŒ)2=(Ls, Ls)=(xŒ)2+(yŒ)2+(zŒ)2+(ctŒ)2

=Ac2t2+Bx2+Cy2+Dz2

+Ictx+Jcty+Kctz+Lyz+Mzx+Nxy (8)

Because of preservation of zero distances, a necessary condition for (sŒ)2 to
be zero is

s2=x2+y2+z2−c2t2=0 (9)

Equation (9) is satisfied in the following cases: (i) s=(±1, 0, 0, 1), (ii) s=
(0, ±1, 0, 1), (iii) s=(0, 0, ±1, 1), (iv) s=(1, 1, 0,`2), (v) s=(1, 0, 1,`2),
and (vi) s=(0, 1, 1,`2). From (i), we obtain

A+B±I=0 and thus I=0, B=−A (10)

by insertion into Eq. (8). From (ii)–(vi) we obtain

C=D=−A, J=K=L=M=N=0 (11)

respectively.
Insertion into Eq. (8) yields

(sŒ)2=(xŒ)2+(yŒ)2+(zŒ)2+(ctŒ)2=A[(x)2+(y)2+(z)2+(ct)2]=As2

(12)
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Because of linearity, A could only depend on the velocity v. By a back-
transformation one obtains A(v) A(−v)=1. The assumption that A(v)
does not depend on the direction of v (isotropy assumption, see also below)
yields A(s)=±1. Finally, for zero velocity v=0, the case with the minus
sign can be eliminated, yielding A(v)=1 and thus (Ls, Ls)=(s, s) for
arbitrary s.

Preservation of (r, s) follows immediately from the linearity and
symmetry of the metric. Take q=r+s with arbitrary r. Then,

(L[r+s], L[r+s])=(r+s, r+s),

2(Lr, Ls)+(Ls, Ls)+(Lr, Lr)=2(r, s)+(s, s)+(r, r),

2(Lr, Ls)+(s, s)+(r, r)=2(r, s)+(s, s)+(r, r),

(Lr, Ls)=(r, s)

In what follows we shall closely follow Einstein’s original argument
rendering L to be the Lorentz transformations. Take the standard four
dimensional space-time case R4, and consider, for the sake of simplicity, the
quasi-twodimensional case (one space and the time coordinate) of the con-
stant motion along the x-axis of K with velocity v of a coordinate frame
KŒ with the components (xŒ, yŒ, zŒ, tŒ) against another coordinate frame ‘‘at
rest’’ K with the components (x, y, z, t). (Otherwise, K can be rotated such
that the direction of motion is along the x axis.) Again, c stands for the
velocity of light.

Now define a particular series (in time) of points x̄=x−vt. Notice
that the ‘‘worldlines’’ (x=vt, 0, 0, t) just mark the parametrization by the
time parameter t of all points at rest with respect to the moving frame KŒ.
That is, any such point has constant x̄, y, z throughout all times t. It is
sometimes convenient (cf. below) to write the parameters of events in terms
of (x̄, y, z, t) instead of (x, y, z, t).

Let us construct ‘‘radar coordinates’’ of KŒ by utilizing a light clock
starting at some arbitrary point x̄=0 at t −0, traveling some distance Dx̄ to a
mirror, where it arrives and is instantly reflected at KŒ-time t −1 towards the
original source mirror and arrives there at KŒ-time t −2 [cf. Fig. 5(a)]. If one
adopts the usual conventions for synchronization, t −1 is just the arithmetic
mean of the two times t −0 and t −2; i.e.,

t1=
1
2 (t

−

0+t
−

2) (13)

In order to find the transformation mapping K onto KŒ, rewrite
the transformed coordinates as functions of the original system; e.g., tŒ=
tŒ(x̄, y, z, t). In this parametrization, the coordinates are given by
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Fig. 5. Generation of radar coordinates by a light clock
following Einstein’s procedures and conventions (a) from
within the system KŒ; (b) the same procedure seen from the
system K.

t −0=tŒ(0, 0, 0, t) (14)

t −1=tŒ 1Dx̄, 0, 0, t+
Dx̄
c2−v2
2 (15)

t −2=tŒ 10, 0, 0, t+
Dx̄
c2−v2

+
Dx̄
c2+v2
2 (16)

where

t0=t, t1=t+
Dx̄
c2−v2

t2=t+
Dx̄
c2−v2

+
Dx̄
c2+v2

results from the following consideration. The K-time Dt1=t1−t0 it takes
for light to arrive at the first mirror is given by the total distance it takes
for light to travel to it, divided by the velocity of light. Since the mirror
travels with velocity v,

Dt1=
Dx̄+v Dt1
c

=
Dx̄
c−v

(17)
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A similar argument yields

Dt1=t2−t1=
Dx̄−v Dt1
c

=
Dx̄
c+v

Inserting Eqs. (14)–(16) into (13) yields

tŒ 1Dx̄, 0, 0, t+ Dx̄
c2−v2
2=1
2
5tŒ(0, 0, 0, t)+tŒ 10, 0, 0, t+ Dx̄

c2−v2
+
Dx̄
c2+v2
26

(18)

Dx̄ can be arbitrarily small. A partial derivation of (18) by “t −

“Dx̄ in the limit of
infinitesimal Dx̄ yields

“tŒ
“x̄
+
1
c−v

“tŒ
“t
=
1
2
1 1
c−v
+
1
c+v
2 “tŒ
“t

(19)

and thus

“tŒ
“x̄
+

1
c2−v2

“tŒ
“t
=0 (20)

Likewise, (“tŒ/“y)=(“tŒ/“z)=0. As a result of this and Eq. (20), tŒ must
be a linear function of t and x̄ of the form

tŒ(x̄, y, z, t)=a(v) 1 t− v
c2−v2

x̄2 (21)

a(v) is a yet arbitrary scale factor depending only on v. Note that, without
loss of generality, the origins of K and KŒ has been chosen such that
t=tŒ=0. By substituting the explicit parameters for x̄=x−vt one obtains

tŒ(x̄, y, z, t)=a(v)
1
1− v

2

c2

1 t− v
c2
x2 (22)

The transformation rules of the xŒ parameter can be obtained by con-
sidering the propagation of a light ray in KŒ which starts at the origin of K
and KŒ (same origins) and moves along the x- and xŒ-axes. The convention
of the constancy of the speed of light requires

xŒ=ctŒ=a(v) c 1 t− v
c2−v2

x̄2 (23)
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Fig. 6. Velocity vy of a light ray propagating along the positive yŒ axis of a system
traveling with velocity v along the x- and xŒ-axes.

Now recall that, in terms of the K-parameters, this propagation of this
light ray is given by Eq. (17); i.e., by t=x̄/(c−v) (the differences D can be
omitted because of the ray starting at the coordinate origins). By substituting
t in (23) one obtains

xŒ=a(v)
c2

c2−v2
x̄=a(v)

1
1− v

2

c2

x̄=a(v)
1
1− v

2

c2

(x−vt) (24)

Let us now turn to the transformation of coordinates y, z perpendi-
cular to the direction of motion x. Consider a light ray propagating along
the yŒ-axis, and hence x̄=0. Inside the system K, the y-component of the
light propagation follows from the Pythagorean theorem, which is illustrated
in Fig. 6; i.e., vy=`c2−v2 . Hence,

yŒ=ctŒ=a(v) c 1 t− v
c2−v2

x̄2 (25)

for x̄=0 and t=y/vy=y/`c2−v2

yŒ=a(v)
1
=1− v

2

c2

y (26)

The same consideration applies to the transformation of the z- and zŒ-axes.
Summing up, we obtain a transformation of the coordinates xW xŒ=Lx
given by

L(v)=a(v)
1
=1− v

2

c2

R
1
=1− v

2

c2

0 0 −
v
=1− v

2

c2

0 1 0 0

0 0 1 0

−
v

c2 =1− v
2

c2

0 0
1
=1− v

2

c2

S (27)

We now fix the factor a(v) by the conventional requirement that a
back-transformation should recover the original coordinates. For this
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purpose we invent a third coordinate frame Kœ which propagates with the
reverse (relative to KŒ) velocity −v (measured in K) along the x-, xŒ-, and
its xœ-axes. The successive application of the transformation (27) with L(v)
and L(−v) should bring back the coordinates to their original form; i.e.,

L(v) L(−v)=I4 (28)

where I4=diag(1, 1, 1, 1) stands for the four-dimensional unit matrix.
After evaluating the matrix product and comparing the coefficients, one
obtains

a(v) a(−v)=1−
v2

c2
(29)

That a(v)=a(|v|) only depends on the absolute value of the velocity can be
seen by symmetry and isotropy arguments. For the length lŒ of a rod
{pŒ ¥ R4 | xŒ=0, 0 [ yŒ [ l, zŒ=0} which is at rest along the yŒ-axis with
respect to the system KŒ traveling along the x-axis should not depend on
the direction of motion; i.e., should only depend on the absolute magnitude
of the velocity. If this is granted, one obtains

a(v)==1−v
2

c2
(30)

and finally the transformation laws xW xŒ=Lx with

L(v)=R
1
=1− v

2

c2

0 0 −
v
=1− v

2

c2

0 1 0 0

0 0 1 0

−
v

c2 =1− v
2

c2

0 0
1
=1− v

2

c2

S (31)

up to constant translations a ¥ R4. As can be easily checked, L preserves
the distance of any two points; i.e., (Lr, Ls)=(r, s) for all r and s in R4.

It would be nice to have a more general result using a more general
metric and/or relaxation of bijectivity. For instance, by maintaining
the metric but requiring bijectivity only for finite space-time points,
one may speculate to be able to recover space-time transformations among
accelerated frames.
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