
CDMTCS
Research
Report
Series

Reflections on Quantum
Computing

Cristian S. Calude
Michael J. Dinneen
Department of Computer Science
University of Auckland, New Zealand

Karl Svozil
Institut für Theoretische Physik,
University of Technology Vienna, Austria

CDMTCS-130
March 2000

Centre for Discrete Mathematics and
Theoretical Computer Science



Reflections on Quantum Computing

C. S. Calude,∗ M. J. Dinneen,† K. Svozil‡

Abstract

In this rather speculative note three problems pertaining to the power
and limits of quantum computing are posed and partially answered: a)
when are quantum speedups possible?, b) is fixed-point computing a bet-
ter model for quantum computing?, c) can quantum computing trespass
the Turing barrier?

1 When are quantum speedups possible?

This section discusses the possibility that speedups in quantum computing can
be achieved only for problems which have a few or even unique solutions [12].
For instance, this includes the computational complexity class UP [15]. Typical
examples are Shor’s quantum algorithm for prime factoring [18] and Grover’s
database search algorithm [13] for a single item satisfying a given condition in
an unsorted database (see also Gruska [14]).

In quantum complexity, one popular class of problems is BQP, which is the
set of decision problems that can be solved in polynomial time (on a quantum
computer) so that the correct answer is obtained with probability at least 1

2
on all instances. Both Shor’s and Grover’s problems are in BQP. The classi-
cal complexity of the primality problem is in NP ∩ co-NP and the unsorted
database search problem is in P. However, Grover’s quantum algorithm runs in
time proportional to

√
n for databases of size n, which is somewhat surprising

since the classical lower bound is Ω(n) (for inputs of size n the algorithm runs
in time at least proportional to n).

Problems which can be efficiently solved by utilizing quantum parallelism
may belong to a complexity class which we might call “quasi-UP”. This class is
characterized by a solution space which is small (say, polynomial) with respect
to the dimension of the Hilbert space (the exponent of the number of qubits)
involved. The class quasi-UP is very similar to the complexity class fewP ⊆

∗Computer Science Department, The University of Auckland, Private Bag 92109, Auck-
land, New Zealand, e-mail: cristian@cs.auckland.ac.nz.
†Computer Science Department, The University of Auckland, Private Bag 92109, Auck-

land, New Zealand, e-mail: mjd@cs.auckland.ac.nz.
‡Institut für Theoretische Physik, University of Technology Vienna, Wiedner Hauptstraße

8-10/136, A-1040 Vienna, Austria, e-mail: svozil@tph.tuwien.ac.at.



NP that classifies problems with a fixed polynomial number of solutions per
input size [15], so one can conjecture the following Quasi-UP-thesis :

The class fewP is a subset of the class BQP, which is a subset of
quasi-UP.

We also suspect that neither NP nor BQP is a subset of the other. Here,
BQP contains all of the bounded-error probabilistic polynomial-time problems
(the class BPP), which potentially contains some co-NP problems not in NP.
Also, most problems belonging to the class non-deterministic polynomial time
NP are typically in another, dual regime: there, the number of conceivable
solutions is large with respect to the number of bits involved to define the
problem. Most NP-complete problems fall into this category, which is the
primary reason we believe NP 6⊆ BQP.

We now give one simple example of how the quasi-UP-thesis can be applied.
Suppose we are interested in the intensively-studied traveling salesman problem
(TSP) of finding the cheapest trip in cost through all of the nodes of a map.
Suppose we know (as naturally suspected) that our problem instances (i.e., in
the “real-world”) have a unique best solution (or, at worst, a few equal optimal
solutions). For these types of inputs, our restricted TSP problem is in fewP1

and thus we can expect to have an efficient quantum search algorithm.
Although we cannot give a direct proof of this quasi-UP-thesis, some infor-

mal arguments can be brought forward in its support. Efficient algorithms in
quantum computing make use of the quantum parallelism. Yet in order to be
able to extract a classically useful solution from the resulting quantum state,
one has to extract the information by proper phase transformations and inter-
ference. And it is interference—the buildup of phases at points which indicate
the problem solutions—we are mostly concerned about. Interference guarantees
that the result of the quantum calculation can be effectively read out of the
superposition of states.

A problem allowing only a single solution therefore has a better chance to
be solvable by a quantum algorithm. In particular, in the interference phase the
single solution could allow for a higher contrast2 and thus a better detection
efficiency than a situation which would allow for many solutions. Thus, for ex-
ample, suppose we apply a quantum algorithm to an unsorted database problem
that allows up to a fixed constant number of matches. Then our success with
a quantum algorithm will probably deteriorate even though the probability of
randomly finding a match increases.

It therefore appears to be not totally unreasonable to speculate that de-
tection efficiency might drop linearly with the number of solutions, as for a
problem with n items the contrast drops like O(1/en). This could make most
NP problems effectively intractable for quantum algorithms. Thus the ability
to enhance contrast and detector efficiency for problems in NP appears to be

1Our problem is probably not NP-hard.
2The number of solutions seem to influence the relative minimal and maximal particle

intensities and the width thereof, as they are observed in an interference pattern depicting
the average number of clicks in a detector measuring the output of a quantum computer.

2



one of the most crucial steps a quantum algorithm has to cope with. The task
here is formidable—to single out the most favorable solution out of a sea of
possible but non-optimal ones.

2 Fixed-point quantum computations

One radically new possibility for quantum computations would be an approach
based on fixed-point computations. Stated differently, a quantum computation
may arrive at results which are fixed-points of a unitary operator or, more
precisely, eigenstates of unitary or Hermitian operators with eigenvalue 1.

One task which is impossible within the domain of classical computation
but almost trivial for quantum algorithms is the solution of diagonalization
problems. Diagonalization is based on bit switches from true to false and vice
versa. In order to solve this problem for a single qubit it can be implemented
by a unitary and self-adjoint not-operator

D̂ = not =

(
0 1
1 0

)
.

The eigenstates of D̂ are

|I〉, |II〉 =
1
√

2

[(
1
0

)
±

(
0
1

)]
, (1)

with the eigenvalues +1 and −1, respectively. The solution of the diagonaliza-
tion problem is the eigenvector |I〉 associated with the eigenvalue 1. This is a
mixture or superposition of the classical bit states true and false.

Other, more general problems may be solvable by applying the fixed-point
theorem of computability theory to quantum computations. The strategy is
to assume a normal operator A which, due to some yet unknown procedure,
encodes an algorithm ϕA. Thereby, we seek an unknown eigenstate a1 of A
with eigenvalue 1. Let us assume that we start with a totally “unbiased” state
1 which, in matrix notation, is just represented by the unit matrix. Indeed,
if we have information about the solution we may prepare the state in such a
way that the outcome of the fixed-point is more likely. (In the extreme case
we know the solution before the measurement and prepare the initial state to
be exactly the fixed-point state. The outcome of the fixed-point state is thus
certain.) As A is measured, a1 is obtained if we observe the eigenvalue 1. We
may now identify the fixed-point solution a1 with the algorithm ϕA.

3 Computing the uncomputable?

One fundamental result of theoretical computer science is Turing’s proof (in [20])
that it is undecidable to determine whether a general computer program will
halt or not. This is formally known as the halting problem. We can restrict our

3



attention to Turing machines, since they are equivalent in computational power
to any “conventional” computer [3, 1]. In what follows we present an attempt to
trespass the Turing barrier. The method discussed might in principle allow us
to “solve” the halting problem (for another proposal see Mitchison and Josza,
[16]). Thereby we are well aware of the fact that for all practical purposes (Bell
[2]) this goal will remain unreachable, at least within quantum computing.

Assume that it is possible to design a halting qubit which indicates whether
a computation has actually reached a state associated with a halting condition.
Assume further that the halting qubit starts in its non-halting state and, since
the evolution is unitary, the buildup of the amplitude is continuous in time.

In such a case, the halting qubit acquires a halting component which is
non-zero even in finite time. Therefore, a detection of a halting computation at
small time scales is conceivable even if the associated classical computation lasts
“very” long. The price to be paid is the “very small” amplitude and, associated
with it, a correspondingly small chance of detection.

To be a little bit more precise we need some rudiments of algorithmic in-
formation theory (see Chaitin [6, 7], Calude [4]). We will work with programs
with no input which produce binary strings as outputs. For any n we denote by
Pn a program of length n that halts and produces the longest string among all
outputs produced by all programs of length n that eventually stop. We denote
by Σ(n) the length of the output produced by Pn. Here Σ is the busy beaver
function [19, 8]: it grows faster than every computable function of n. Let H be
the program-size complexity, that is the length of the smallest universal program
generating a particular binary string.

Assume that any program which halts requires a running time at least pro-
portional to the length of its output. If an n-bit program p halts, then the time
t it takes to halt satisfies H(t) ≤ n + c. So if p has run for time T without
halting, and T has the property that if t ≥ T , then H(t) > n + c, then p will
never halt. This shows that the running times of the programs in the sequence
P1, P2, . . . Pn, . . . grow faster than any computable function.

We are now ready to present the argument. Let us assume the halting qubit
is represented by

|Halt〉 = ch(t)|h〉+ cn(t)|n〉,

where |h〉, |n〉 represent the halting state and non-halting state and ch(t), cn(t)
are time-dependent amplitudes thereof, respectively.

Initially, let |ch(t)| = |cn(t)| − 1 = 0. As a worst-case scenario derived from
the above analysis, for a linear buildup of the amplitude we obtain

|ch(t)|2 ∝ (Σ(H(n) +O(1)))−1.

The setup of a detection of |Halt〉 is a simple transmission measurement
of the halting qubit. Although the buildup may be very slow, there is a non-
vanishing chance to obtain a solution of the halting problem in finite time. Of
course, the solution is probabilistic (one can argue that all mathematical proofs
or computer programs are ultimately probabilistic, see Davis [9], De Millo, Lip-
ton, Perlis [11]), but goes beyond the capability of any classical computation:

4



even the best probabilistic algorithms are not able to achieve this computa-
tional power (by a classical result [10], probabilistic algorithms are equivalent
to Turing machines).

Let us finally notice that by virtue of the same information-theoretic argu-
ment, the possibility of time-travel (see, for example, Nahin [17]) would not
solve the halting problem, unless one could travel back and forth in time at a
pace exceeding the growth of any computable function.

Acknowledgment

We thank Greg Chaitin, Garry Tee and Marius Zimand for criticism and en-
couragement.

References

[1] J. D. Barrow. Impossibility–The Limits of Science and the Science of Lim-
its, Oxford University Press, Oxford, 1998.

[2] John S. Bell. Speakable and Unspeakable in Quantum Mechanics, Cam-
bridge University Press, Cambridge, 1987.

[3] C. Calude. Theories of Computational Complexity, North-Holland, Ams-
terdam, 1988.

[4] C. Calude. Information and Randomness–An Algorithmic Perspective,
Springer-Verlag, Berlin, 1994.

[5] C. S. Calude, J. Casti, M. J. Dinneen (eds.). Unconventional Models of
Computation, Springer-Verlag, Singapore, 1998.

[6] G. J. Chaitin. Information, Randomness and Incompleteness, Papers on
Algorithmic Information Theory, World Scientific, Singapore, 1987. (2nd
ed., 1990)

[7] G. J. Chaitin. The Unknowable, Springer-Verlag, Singapore, 1999.

[8] G. J. Chaitin, A. Arslanov, C. Calude. Program-size complexity computes
the halting problem, EATCS Bull. 57 (1995), 198-200.

[9] P. J. Davis. Fidelity in mathematical discourse: Is one and one really two?
Amer. Math. Monthly 79(1972), 252-263.

[10] K. De Leeuw, E. F. Moore, C. E. Shannon, N. Shapiro. Computability by
probabilistic machines, in C. E. Shannon, J. McCarthy (eds.). Automata
Studies, Princeton University Press, Princeton, N.J., 1956, 183-212.

[11] R. De Millo, R. Lipton, A. Perlis. Social processes and proofs of theorems
and programs, Comm. ACM 22(1979), 271-280.

5



[12] G. Gottlob. Private communication to K. Svozil, 1998.

[13] L. K. Grover. A fast quantum mechanical algorithm for database search,
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory
of Computing, 1996, 212–219.

[14] J. Gruska. Quantum Computing, McGraw-Hill, London, 1999.

[15] D. S. Johnson. A catalog of complexity classes, in J. van Leeuwen (ed.).
Handbook of Theoretical Computer Science, Vol. A, Elsevier, Amsterdam,
1990, 69–161.

[16] G. Mitchison, R. Josza. Counterfactual computation, quant-ph/9907007.

[17] P. J. Nahin. Time Machines, Springer-Verlag, New York, 1999.

[18] P. W. Shor. Algorithms for quantum computation: discrete log and factor-
ing, Proceedings of the 35th IEEE Annual Symposium on Foundations of
Computer Science, 1994, 124–134.

[19] T. Rado. On non-computable functions, Bell System Technical Journal 41
(1962), 877–884.

[20] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, Series 2,
42–43 (1936-7), 230-265, 544–546.

6


