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Abstract

We present a general method for obtaining all Bell inequalities for a given experimental set-up.

Although the algorithm runs slowly we apply it to two cases. Firstly, the GHZ set up with three

observers each performing one of two possible measurements. Secondly, the case of two observers

each performing one of three possible experiments. In both cases we obtain hundreds of inequalities.

Since this is the set of all inequalities, the one that is maximally violated in a given quantum state

must be among them. We demonstrate this fact with a few examples. We also note the deep

connection between the inequalities and classical logic, and their violation with quantum logic.
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BOOLE-BELL INEQUALITIES

We shall present a general method for the derivation of all Bell inequalities for each

given experimental set-up. The validity of the method has been proved previously [1, 2].

The purpose of this paper is to turn the method into a working algorithm and demonstrate

its strength in two cases.

Consider some arbitrary elementary events A, B, C, . . . , such as “the electron spin

in the x-direction is up”, as well as some of the joints of these propositions; e.g.,

AB, AC, . . . , ABC, . . .. In order to be consistently interpretable, the probabilities of these

events P (A), P (B), P (C), . . . , P (AB), P (AC), . . . , P (ABC), . . . must satisfy some in-

equalities; for example: P (A)+P (B)−P (AB) ≤ 1 or P (A)−P (AB)−P (AC)+P (BC) ≥ 0.

These inequalities are satisfied for every possible classical probability distribution P .

In the middle of the 19th century George Boole [1, 3–6] investigated these inequalities

and referred to them as conditions of possible experience. The number and complexity of

the inequalities increase fast as the number of events grow. Among them are the famous

inequalities that arise in the EPR experiment and its generalizations. In particular, Bell

inequalities and Clauser-Horne (CH) inequalities [7–10].

Consider, for example, the latter. We have four events: A1, A2 that correspond to Alice’s

measurements on the left, and B1, B2 measured by Bob on the right. In order to derive the

CH inequalities we list the 24 = 16 extreme cases where the probability of the elementary

events A1, A2, B1, B2 are set to be either zero or one. That is, we consider the truth table

I, where t(Ai), t(Bj) ∈ {0, 1}. Assume that each of the sixteen rows in the truth table

is a vector in an eight dimensional real space. Denote by C the convex hull of the sixteen

vectors taken as vertices. C is a correlation polytope. Now, let P be any classical probability

distribution on the Boolean algebra generated by the events A1, A2, B1, B2. It is not hard

to see that the vector

p = (P (A1), P (A2), P (B1), P (B2), P (A1B1), P (A1B2), P (A2B1), P (A2B2)) (1)

is an element of C. Conversely, if p ∈ C , then there is a probability distribution P such

that p has the representation (1) [1].

Every convex polytope has two representations: One as the convex hull of its vertices (the

V-representation), and the other as the intersection of a finite number of half-spaces, each
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TABLE I: Truth table corresponding to the CH inequalities.

A1 A2 B1 B2 A1B1 A1B2 A2B1 A2B2

t(A1) t(A2) t(B1) t(B2) t(A1)t(B1) t(A1)t(B2) t(A2)t(B1) t(A2)t(B2)

given by a linear inequality (the H-representation). The problem of finding the inequalities

when the vertices are known is called the hull problem.

Solving the hull problem for the CH case yields

0 ≤ P (AiBj) ≤ P (Ai), P (Bj) i = 1, 2, j = 1, 2

1 ≥ P (Ai), P (Bj), P (AiBj) i = 1, 2, j = 1, 2

−1 ≤ P (A1B1) + P (A1B2) + P (A2B2)− P (A2B1)− P (A1)− P (B2) ≤ 0

−1 ≤ P (A2B1) + P (A2B2) + P (A1B2)− P (A1B1)− P (A2)− P (B2) ≤ 0

−1 ≤ P (A1B2) + P (A1B1) + P (A2B1)− P (A2B2)− P (A1)− P (B1) ≤ 0

−1 ≤ P (A2B2) + P (A2B1) + P (A1B1)− P (A1B2)− P (A2)− P (B1) ≤ 0

A necessary and sufficient condition that a vector p is an element of C is that its co-

ordinates satisfy these inequalities [1]. As is well known, some of the CH inequalities are

violated by the relative frequencies measured in the EPR experiment. This fact can be taken

as an indication that the underlying Boolean structure (classical propositional logic) should

be replaced by the non-distributive quantum logic [1, 11].

The above procedure can be applied to any number of events. If there are n elementary

events then we have 2n vertices, and the dimension of the space is n + k where k is the

number of (pair, triple,...) intersections that we consider. There are algorithms to solve the

hull problem but they run in exponential time in n. (In fact, deciding if a vector p is an

element of the corresponding correlation polytope is NP-complete [2].) However, for small

enough cases the problem can be solved fairly quickly by one of the available algorithms.

We have chosen the cdd package [12] which is an efficient implementation of the double

description method [13] due to Komei Fukuda [14–16], as well as the LPoly package due

to Maximian Kreuzer and Harald Skarke [17]. We have selected two examples by which to

demonstrate the method and the violation of the inequalities by quantum frequencies. The

first is the GHZ case of three particles and two possible measurements on each particle.

The second is the case of two particles and three possible measurements on each. This
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last case may be of particular interest to experimentalists. Here one obtains a considerable

improvement of the results (in the strength of violation of the inequalities, and in the number

of inequalities that are violated) without an intractable increase in the complexity of the

experiment.

GHZ CASE: THREE PARTICLES AT TWO ANGLES

In the Mermin version [18, 19] of the GHZ case [20, 21], the relevant propositions involve

three particles, denoted by A, B, C, and two properties, denoted by 1, 2, respectively. The

set of 26 propositions involve all three-particle events and is given by {A1, A2, B1, B2, C1,

C2, A1B1, A1C1, A1B2, A1C2, A2B1, A2C1, A2B2, A2C2, B1C1, B1C2, B2C1, B2C2, A1B1C1,

A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B1C2, A2B2C1, A2B2C2}.

The resulting correlation polytope is 26-dimensional and has 64 vertices and 53856 faces

corresponding to an equal amount of Boole-Bell type inequalities. For a complete listing

of all Boole-Bell type inequalities, see Ref. [22]. Many of these inequalities are trivial;

e.g., P (A1B1) ≥ P (A1B1C1) ≥ 0 or P (A1) + P (A1B1C1) ≥ P (A1B1) + P (A1C1). Many

inequalities can be reduced to others by the symmetries. There are two types of symmetries.

One kind is obtained by permuting the events. The second type by complementing the

events. If an inequality is valid for an event A then it is also valid for its complement A.

Thus, we can substitute P (A) = 1 − P (A) instead of P (A) in the inequality, substitute

P (AB) = P (B)− P (AB) instead of P (AB) and replace P (ABC) by P (ABC) = P (BC)−

P (ABC). Each event can be complemented in this way resulting in additional 26 = 64

symmetry operations. Inequalities which have been discussed in this context by Larsson

and Semitecolos [23] and by de Barros and Suppes [24] have similar counterparts in the

enumeration. See also Kaszlikowski et al. [25] for a related approach. We stress here that

our method produces optimal Boole-Bell inequalities in the sense that they represent the

best possible upper bounds for the conceivable classical probabilities. In what follows we shall

enumerate some of the new Boole-Bell inequalities.

2 ≥ −P (A1) + 2P (A2) + P (B1) + P (B2)− P (C1) + 2P (C2)− P (A1B1)

+P (A1C1) + 2P (A1B2) + P (A1C2)− P (A2B1) + P (A2C1)− 2P (A2B2)

−3P (A2C2) + P (B1C1)− P (B2C1)− P (B1C2)− 2P (B2C2) + 2P (A1B1C1)
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−2P (A2B1C1)− 2P (A1B2C1)− 2P (A1B1C2) + 2P (A2B2C1) + 2P (A2B1C2)

−P (A1B2C2) + 3P (A2B2C2), (2)

3 ≥ +2P (A2) + 3P (B2) + 2P (C2) + 2P (A1C1)− P (A1C2) + P (A2B1)

−P (A2C1)− 3P (A2B2)− P (A2C2) + P (B1C2)− 3P (B2C2) + P (A1B1C1)

−2P (A2B1C1)− 3P (A1B2C1)− 2P (A1B1C2) + 2P (A2B2C1)− 2P (A2B1C2)

+2P (A1B2C2) + 2P (A2B2C2), (3)

0 ≥ −3P (A1)− 2P (B1)− P (C1) + 2P (A1B1) + P (A1C1)

+3P (A1B2) + 3P (A1C2) + 2P (A2B1) + P (A2C1)− 2P (A2B2)

−P (A2C2) + P (B1C1) + P (B2C1) + 2P (B1C2)− 2P (B2C2)

+P (A1B1C1)− 2P (A2B1C1)− 3P (A1B2C1)− 4P (A1B1C2)

+P (A2B2C1)− P (A2B1C2)− P (A1B2C2) + 3P (A2B2C2), (4)

0 ≥ −P (A1)− 2P (B1)− 2P (C1)

+2P (A1B1) + 2P (A1C1) + P (A1B2) + P (A1C2) + P (A2B1) + P (A2C1)

−P (A2B2)− P (A2C2) + 2P (B1C1) + 2P (B2C1) + 2P (B1C2)− 2P (B2C2)

−P (A1B1C1)− 2P (A2B1C1)− 3P (A1B2C1)− 3P (A1B1C2)

−P (A2B2C1)− P (A2B1C2)− P (A1B2C2) + 4P (A2B2C2) (5)

Suppose the elementary experiences or propositions are clicks in a counter of a three

particle interferometer as discussed by Greenberger, Horne, Shimony and Zeilinger [21]. In

the interferometric case [21], P (Ai) = P (Bi) = P (Ci) = 1/2 and P (AiBj) = P (AiCj) =

P (BiCj) = 1/4, where i, j = 1, 2. The joint quantum probabilities of events depend on

three angles φ1, φ2, φ3 in each one of the detector groups A, B, C, respectively. They are

given by P (AiBjCk) = (1/8)[1 − sin(φA,i + φB,j + φC,k)], where again i, j, k = 1, 2. For

example, C2 corresponds to the proposition, “the first detector of the detector group C at

angle φC,2 clicks” (we only consider clicks in the first one of the two detectors here). Yet it

should be stressed that the derived inequalities are in no way dependent on this particular

interpretation. Any other, in particular one evolving spin state measurements, would do

just as well. Let us specify the angles at φl,1 = 0 and φl,2 = π/2 for all particles labeled

by l = A, B, C. Then, (2)–(5) are among the 1329 equalities (out of 53856) which violate

Boole’s condition of possible experience. The corresponding factors are 2 : 9/8, 3 : 25/8,
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0 : 1/2, 0 : 1/2, respectively. Figure 1 represents a numerical study of the case φl,1 = 0

and 0 ≤ φl,2 ≤ π (the drawing is π periodic) for all particles labeled by l = A, B, C. All

inequalities of the form x ≥ y have been rewritten as functions f(x, y) = y−x such that the

zero baseline indicates the borderline between the conditions of possible classical experience

and the quantum violation thereof. Notice that the inequalities can also be written in a

form containing only coincidence probabilities of three events. For instance, (5) yields

0 ≥ −P (A1B1C1)− 2P (A2B1C1)− 3P (A1B2C1)− 3P (A1B1C2)

−P (A2B2C1)− P (A2B1C2)− P (A1B2C2) + 4P (A2B2C2),

(6)

which is maximally violated by 1 : 0.55 for φl,1 = 0 and φl,2 ≈ 1.45. We find that it is

not possible to obtain a violation of Boole-Bell type inequalities if only single-particle and

three-particle coincidences are taken into account. This occurs only if also the two-particle

coincidences are added.

TWO PARTICLES AT THREE ANGLES

We shall next consider the case of two particles, labeled by A, B, and three properties per

particle, denoted by 1, 2, 3, respectively. The set of 15 propositions involve all three-particle

events and is given by {A1, A2, A3, B1, B2, B3, A1B1, A1B2, A1B3, A2B1, A2B2, A2B3,

A3B1, A3B2, A3B3}.

The resulting correlation polytope is 15-dimensional and has 684 faces, corresponding to

684 Boole-Bell type inequalities. For a complete listing of all Boole-Bell type inequalities,

see Ref. [26]. Again, many of these inequalities are trivial; e.g., P (A2) ≥ P (A1B3) ≥ 0.

Many inequalities are familiar ones, such as the inequalities associated with the Bell-Wigner

polytope ({A1, A2, A3, A1A2, A1A3, A2A3}); i.e.,

1 ≥ +P (A2) + P (B3) + P (A1B1)− P (A1B3)− P (A2B1)− P (A2B3) (7)

≥ +P (A1) + P (A2) + P (A3)− P (A1A2)− P (A1A3)− P (A2A3),

if one identifies Ai ≡ Bi, i = 1, 2, 3 [recall that P (A1A1) = P (A1)]. The following Boole-Bell

inequalities are less known.

3 ≥ 2P (A1) + P (A2) + P (B2) + 2P (B3)− P (A1B1)− P (A1B2)− P (A1B3)
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FIG. 1: Evaluation of the quantum expressions corresponding to all Boole-Bell type inequalities

for φl,1 = 0 and 0 ≤ φl,2 ≤ π for all particles labeled by l = A,B, C. Any value above the zero

baseline indicates violation of the conditions of possible experience.

+P (A2B1)− P (A2B2)− P (A2B3) + P (A3B2)− P (A3B3), (8)

1 ≥ −P (A1) + P (A2)− P (B2) + P (B3) + P (A1B1) + P (A1B2)− P (A2B1)

+P (A2B2)− P (A2B3) + P (A3B1)− P (A3B2)− P (A3B3), (9)

1 ≥ P (A2)− P (A3)− 2P (B1) + P (B3) + P (A1B1) + P (A1B2)− P (A1B3)

+P (A2B1)− P (A2B2)− P (A2B3) + P (A3B1) + P (A3B3), (10)

2 ≥ P (A2) + P (A3) + P (B1) + P (B3) + P (A1B1)− P (A1B2)− P (A1B3)

−P (A2B1) + P (A2B2)− P (A2B3)− P (A3B1)− P (A3B2), (11)

0 ≥ −P (A1)− P (A2)− P (B1)− P (B2)− P (A1B1) + P (A1B2) + P (A1B3)

+P (A2B1) + P (A2B3) + P (A3B1) + P (A3B2)− P (A3B3), (12)

0 ≥ −P (A1)− P (B3) + P (A1B2) + P (A1B3)− P (A2B2) + P (A2B3). (13)

Let us specify our experiment now by choosing the common spin state measurements of

two spin 1/2-particles prepared in a singlet state. Thereby, every elementary proposition Ax

can be stated as, “the spin of particle A in the direction x is up.” It is well known that, for

the singlet state of spin 1/2-particles, the probability to find the particles both either in spin

“up” or both in spin “down” states is given by P ↑↑(θ) = P ↓↓(θ) = (1/2) sin2[(θ/2)], where θ is

the angle between the measurement directions. Likewise, the probabilities for different spin

states is given by P ↑↓(θ) = P ↓↑(θ) = (1/2) cos2[(θ/2)]. In searching for possible violations

of the inequalities, one may choose a symmetric configuration such as θ(A1 = B1) = 0,

θ(A2 = B2) = 2π/3, θ(A3 = B3) = 4π/3, in which case one obtains for the parallel case

(↑↑ or ↓↓) a violation of 0 : 1/4 for (12) and of 0 : 1/8 for (13). Figure 2 is a plot of

the combined evaluation of quantum expressions for all the 684 equations corresponding

to inequalities. The zero baseline indicates a threshold for a violation of Boole-Bell type

inequalities. For the opposite case (↑↓ or ↓↑), the violation of (7) is 1 : 9/8 and of (11)

is 2 : 5/4. In the less symmetric configuration θ(A1) = 0, θ(B1) = −π/4, θ(A2) = π/2,

θ(B2) = π/4, θ(A3) = 2π/3, θ(B3) = π/3, more inequalities violate the Bell inequalities,

although to a lesser degree. In Figure 3 the violations of classical conditions of possible
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FIG. 2: Evaluation of the quantum expressions corresponding to all 648 Boole-Bell type inequalities

for θ(A1 = B1) = 0, 0 ≤ θ(A2 = B2) = 2π − θ(A3 = B3) ≤ π. (The periodicity is π.) Any value

above the zero baseline indicates violation of the conditions of possible experience.

experience are plotted for a variety of angles.

SUMMARY AND OUTLOOK

Besides its conceptual clarity as a royal road to the understanding and constructive gen-

eration of Boole-Bell type inequalities, the importance of the correlation polytopes method

lies in the fact that, unlike previous methods, these inequalities can be guaranteed to yield

maximal bounds for consistent conditions of possible classical experience.
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