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Optimal tests of quantum nonlocality
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We present a general method for obtainingall Bell inequalities for a given experimental setup. Although the
algorithm runs slowly, we apply it to two cases. First, the Greenberger-Horne-Zeilinger setup with three
observers each performing one of two possible measurements. Second, the case of two observers each per-
forming one ofthreepossible experiments. In both cases we obtain hundreds of inequalities. Since this is the
set of all inequalities, the one that is maximally violated in a given quantum state must be among them. We
demonstrate this fact with a few examples. We also note the deep connection between the inequalities and
classical logic, and their violation with quantum logic.
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We shall present a general method for the derivation ofall
Bell inequalities for each given experimental setup. The
lidity of the method has been proved previously@1,2#. The
purpose of this paper is to turn the method into a work
algorithm and demonstrate its strength in two cases.

Consider some arbitrary elementary eventsA, B, C, . . . ,
such as‘‘the electron spin in the x direction is up,’’as well
as some of the joints of these propositions; e.g.,AB,
AC, . . . , ABC, . . . ,. In order to be consistently interpre
able, the probabilities of these eventsP(A), P(B),
P(C), . . . , P(AB), P(AC), . . . , P(ABC), . . . , must sat-
isfy some inequalities; for example:P(A)1P(B)2P(AB)
<1 or P(A)2P(AB)2P(AC)1P(BC)>0. These in-
equalities are satisfied for every possible classical probab
distributionP.

In the middle of the 19th century, George Boole@1,3–6#
investigated these inequalities and referred to them ascondi-
tions of possible experience.The number and complexity o
the inequalities increase fast as the number of events g
Among them are the famous inequalities that arise in
Einstein-Podolsky-Rosen~EPR! experiment and its general
zations, in particular the Bell/~EPR! experiment and its gen
eralizations, in particular, the Bell inequalities and Claus
Horne ~CH! inequalities@7–10#.

Consider, for example, the latter. We have four even
A1 ,A2 that correspond to Alice’s measurements on the l
andB1 ,B2 measured by Bob on the right. In order to deri
the CH inequalities we list the 24516 extreme cases wher
the probability of the elementary eventsA1 ,A2 ,B1 ,B2 are
set to be either zero or one. That is, we consider thetruth
Table I, wheret(Ai),t(Bj )P$0,1%. Assume that each of th
sixteen rows in the truth table is a vector in an eig
dimensional real space. Denote byC the convex hull of the
sixteen vectors taken as vertices.C is acorrelation polytope.
Now, let P be any classical probability distribution on th
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Boolean algebra generated by the eventsA1 ,A2 ,B1 ,B2. It is
not hard to see that the vector

p5@P~A1!, P~A2!, P~B1!, P~B2!, P~A1B1!,

P~A1B2!, P~A2B1!, P~A2B2!# ~1!

is an element ofC. Conversely, ifpPC, then there is a
probability distributionP such thatp has the representatio
~1! @1#.

Every convex polytope has two representations: One
the convex hull of its vertices~the V representation!, and the
other as the intersection of a finite number of half spac
each given by a linear inequality~the H representation!. The
problem of finding the inequalities when the vertices a
known is calledthe hull problem.

Solving the hull problem for the CH case yields
<P(AiBj )<P(Ai), P(Bj ), 1>P(Ai)1P(Bj )2P(AiBj ),
i , j 51,2, as well as21<P(A1B1)1P(A1B2)1P(A2B2)
2P(A2B1)2P(A1)2P(B2)<0, and permutations
(A1↔A2; B1↔B2! thereof.

A necessary and sufficient condition that a vectorp is an
element ofC is that its coordinates satisfy these inequalit
@1#. As is well known, some of the CH inequalities are vi
lated by the relative frequencies measured in the EPR exp
ment. This fact can be taken as an indication that the un
lying Boolean structure~classical propositional logic! should
be replaced by the nondistributive quantum logic@1,11#.

The above procedure can be applied to any numbe
events. If there aren elementary events, then we have 2n

vertices, and the dimension of the space isn1k, wherek is
the number of~pair, triple, . . . ,! intersections that we con
sider. There are algorithms to solve the hull problem but th
run in exponential time inn. ~In fact, deciding if a vectorp is
an element of the corresponding correlation polytope isNP
complete@2#.! However, for small enough cases the proble
can be solved fairly quickly by one of the available alg
rithms.

We have chosen theCDD package@12# which is an effi-
cient implementation of the double description method@13#
due to Fukuda, Prodon, and Rosta@14–16#, as well as the
LPOLY package due to Kreuzer and Skarke@17#. We have
©2001 The American Physical Society02-1
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TABLE I. Truth table corresponding to the CH inequalities.

A1 A2 B1 B2 A1B1 A1B2 A2B1 A2B2

t(A1) t(A2) t(B1) t(B2) t(A1)t(B1) t(A1)t(B2) t(A2)t(B1) t(A2)t(B2)
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selected two examples by which to demonstrate the me
and the violation of the inequalities by quantum frequenc
The first is the Greenberger-Horne-Zeilinger~GHZ! case of
three particles and two possible measurements on each
ticle. The second is the case of two particles andthreepos-
sible measurements on each one. This last case may b
particular interest to experimentalists. Here, one obtain
considerable improvement of the results~in the strength of
violation of the inequalities, and in thenumberof inequali-
ties that are violated! without an intractable increase in th
complexity of the experiment.

In the Mermin version@18,19# of the GHZ case@20,21#,
the relevant propositions involve three particles, denoted
A,B,C, and two properties, denoted by 1,2, respectively. T
set of 26 propositions involve all three-particle events and
given by $A1 , A2 , B1 , B2 , C1 , C2 , A1B1 , A1C1 , A1B2 ,
A1C2 , A2B1 , A2C1 , A2B2 , A2C2 , B1C1 , B1C2 , B2C1 ,
B2C2 , A1B1C1 , A1B1C2 , A1B2C1 , A1B2C2 , A2B1C1 ,
A2B1C2 , A2B2C1 , A2B2C2%.

The resulting correlation polytope is 26-dimensional a
has 64 vertices and 53 856 faces corresponding to an e
amount of Boole-Bell type inequalities. For a complete li
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ing of all Boole-Bell type inequalities, see Ref.@22#. Many
of these inequalities are trivial; e.g.,P(A1B1)
>P(A1B1C1)>0 or P(A1)1P(A1B1C1)>P(A1B1)
1P(A1C1). Many inequalities can be reduced to others
the symmetries. There are two types of symmetries. O
kind is obtained by permuting the events, the second type
complementingthe events. If an inequality is valid for a
eventA then it is also valid for its complementĀ. Thus, we
can substituteP(Ā)512P(A) instead ofP(A) in the in-
equality, substitute P(ĀB)5P(B)2P(AB) instead of
P(AB), and replace P(ABC) by P(ĀBC)5P(BC)
2P(ABC). Each event can be complemented in this w
resulting in additional 26564 symmetry operations. In
equalities which have been discussed in this context by L
son and Semitecolos@23# and by de Barros and Suppes@24#
have similar counterparts in the enumeration. See also K
zlikowski et al. @25# for a related approach. We stress he
that our method producesoptimal Boole-Bell inequalities in
the sense that they represent thebest possible upper bound
for the conceivable classical probabilities. In what follow
we shall enumerate some of the new Boole-Bell inequalit
2>2P~A1!12P~A2!1P~B1!1P~B2!2P~C1!12P~C2!2P~A1B1!1P~A1C1!12P~A1B2!1P~A1C2!

2P~A2B1!1P~A2C1!22P~A2B2!23P~A2C2!1P~B1C1!2P~B2C1!2P~B1C2!22P~B2C2!12P~A1B1C1!

22P~A2B1C1!22P~A1B2C1!22P~A1B1C2!12P~A2B2C1!12P~A2B1C2!2P~A1B2C2!13P~A2B2C2!, ~2!

3>12P~A2!13P~B2!12P~C2!12P~A1C1!2P~A1C2!1P~A2B1!2P~A2C1!23P~A2B2!2P~A2C2!1P~B1C2!

23P~B2C2!1P~A1B1C1!22P~A2B1C1!23P~A1B2C1!22P~A1B1C2!12P~A2B2C1!22P~A2B1C2!

12P~A1B2C2!12P~A2B2C2!, ~3!

0>23P~A1!22P~B1!2P~C1!12P~A1B1!1P~A1C1!13P~A1B2!13P~A1C2!12P~A2B1!1P~A2C1!

22P~A2B2!2P~A2C2!1P~B1C1!1P~B2C1!12P~B1C2!22P~B2C2!1P~A1B1C1!22P~A2B1C1!

23P~A1B2C1!24P~A1B1C2!1P~A2B2C1!2P~A2B1C2!2P~A1B2C2!13P~A2B2C2!, ~4!

0>2P~A1!22P~B1!22P~C1!12P~A1B1!12P~A1C1!1P~A1B2!1P~A1C2!1P~A2B1!1P~A2C1!

2P~A2B2!2P~A2C2!12P~B1C1!12P~B2C1!12P~B1C2!22P~B2C2!2P~A1B1C1!22P~A2B1C1!

23P~A1B2C1!23P~A1B1C2!2P~A2B2C1!2P~A2B1C2!2P~A1B2C2!14P~A2B2C2!. ~5!
s

rs
Suppose the elementary experiences or propositions
clicks in a counter of a three particle interferometer as d
cussed by Greenberger, Horne, Shimony, and Zeilinger@21#.
In the interferometric case@21#, P(Ai)5P(Bi)5P(Ci)
51/2 and P(AiBj )5P(AiCj )5P(BiCj )51/4, where i , j
51,2. The joint quantum probabilities of events depend
re
-

n

three anglesf1 ,f2 ,f3 in each one of the detector group
A,B,C, respectively. They are given byP(AiBjCk)
5(1/8)@12sin(fA,i1fB,j1fC,k)#, where again i , j ,k51,2.
For example,C2 corresponds to the proposition,‘‘the first
detector of the detector group C at anglefC,2 clicks’’ ~we
only consider clicks in the first one of the two detecto
2-2
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here!. Yet it should be stressed that the derived inequali
are in no way dependent on this particular interpretati
Any other, in particular, one evolving spin-state measu
ments, would do just as well. Let us specify the angles
f l ,150 andf l ,25p/2 for all particles labeled byl 5A,B,C.
Then, Eqs.~2!–~5! are among the 1329 equalities~out of
53 856! which violate Boole’s condition of possible exper
ence. The corresponding factors are 2:9/8, 3:25/8, 0:
0:1/2, respectively. Figure 1 represents a numerical stud
the casef l ,150 and 0<f l ,2<p ~the drawing isp periodic!
for all particles labeled byl 5A,B,C. All inequalities of the
form x>y have been rewritten as functionsf (x,y)5y2x,
such that the zero baseline indicates the borderline betw
the conditions of possible classical experience and the q
tum violation thereof.

Notice that the inequalities can also be written in a fo
containing only coincidence probabilities of three events.
instance, Eq.~5! yields

0>2P~A1B1C1!22P~A2B1C1!23P~A1B2C1!

23P~A1B1C2!2P~A2B2C1!2P~A2B1C2!

2P~A1B2C2!14P~A2B2C2!, ~6!

which is maximally violated by 1:0.55 forf l ,150 andf l ,2
'1.45. We find that it is not possible to obtain a violation
Boole-Bell type inequalities if only single-particle and thre
particle coincidences are taken into account. This occ
only if the two-particle coincidences are also added.

We shall next consider the case of two particles, labe
by A,B, and three properties per particle, denoted by 1,2
respectively. The set of 15 propositions involve all thre
particle events and is given by$A1 , A2 , A3 , B1 , B2 , B3 ,
A1B1 , A1B2 , A1B3 , A2B1 , A2B2 , A2B3 , A3B1 , A3B2 ,
A3B3%.

The resulting correlation polytope is 15-dimensional a
has 684 faces, corresponding to 684 Boole-Bell type
equalities. For a complete listing of all Boole-Bell type i
equalities, see Ref.@26#. Again, many of these inequalitie
are trivial; e.g.,P(A2)>P(A1B3)>0. Many inequalities are
familiar ones, such as the inequalities associated with
Bell-Wigner polytope ($A1 ,A2 ,A3 ,A1A2 ,A1A3 ,A2A3%);
i.e.,

FIG. 1. Evaluation of the quantum expressions correspondin
all Boole-Bell type inequalities forf l ,150 and 0<f l ,2<p for all
particles labeled byl 5A,B,C. Any value above the zero baselin
indicates violation of the conditions of possible experience.
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1>1P~A2!1P~B3!1P~A1B1!2P~A1B3!

2P~A2B1!2P~A2B3!

>1P~A1!1P~A2!1P~A3!2P~A1A2!

2P~A1A3!2P~A2A3!, ~7!

if one identifies Ai[Bi , i 51,2,3 @recall that P(A1A1)
5P(A1)#. The following Boole-Bell inequalities are les
known.

3>2P~A1!1P~A2!1P~B2!12P~B3!2P~A1B1!

2P~A1B2!2P~A1B3!1P~A2B1!2P~A2B2!

2P~A2B3!1P~A3B2!2P~A3B3!, ~8!

1>2P~A1!1P~A2!2P~B2!1P~B3!1P~A1B1!

1P~A1B2!2P~A2B1!1P~A2B2!2P~A2B3!

1P~A3B1!2P~A3B2!2P~A3B3!, ~9!

1>P~A2!2P~A3!22P~B1!1P~B3!1P~A1B1!

1P~A1B2!2P~A1B3!1P~A2B1!2P~A2B2!

2P~A2B3!1P~A3B1!1P~A3B3!, ~10!

2>P~A2!1P~A3!1P~B1!1P~B3!1P~A1B1!

2P~A1B2!2P~A1B3!2P~A2B1!1P~A2B2!

2P~A2B3!2P~A3B1!2P~A3B2!, ~11!

0>2P~A1!2P~A2!2P~B1!2P~B2!2P~A1B1!

1P~A1B2!1P~A1B3!1P~A2B1!1P~A2B3!

1P~A3B1!1P~A3B2!2P~A3B3!, ~12!

0>2P~A1!2P~B3!1P~A1B2!1P~A1B3!

2P~A2B2!1P~A2B3!. ~13!

Let us specify our experiment now by choosing the co
mon spin-state measurements of two spin 1/2 particles
pared in a singlet state. Thereby, every elementary prop
tion Ax can be stated as, ‘‘the spin of particleA in the

to
FIG. 2. Evaluation of the quantum expressions correspondin

all 648 Boole-Bell type inequalities foru(A15B1)50, 0<u(A2

5B2)52p2u(A35B3)<p. ~The periodicity is p.! Any value
above the zero baseline indicates violation of the conditions of p
sible experience.
2-3



les:

e by

BRIEF REPORTS PHYSICAL REVIEW A 64 014102
FIG. 3. Contour plot of the violations of classical conditions of possible experience for three scenarios using different ang~a!
u(A15B1)50, 0<u(A25B2),u(A35B3)<2p, ~b! u(A15B1)50, u(A2)5p/3, u(A3)52p/3, 0<u(B2),u(B3)<2p, ~c! u(A15B1)
50, u(A2)5p/2, u(A3)52p/3, 0<u(B2),u(B3)<2p. A nonblack region indicates the violation of conditions of possible experienc
the quantum values.
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directionx is up .’’ It is well known that, for the singlet state
of spin 1/2 particles, the probability to find the particles bo
either in spin-‘‘up’’ or both in spin-‘‘down’’ states is given
by P↑↑(u)5P↓↓(u)5(1/2)sin2(u/2), whereu is the angle
between the measurement directions. Likewise, the p
abilities for different spin states is given byP↑↓(u)
5P↓↑(u)5(1/2)cos2(u/2). In searching for possible viola
tions of the inequalities, one may choose a symmetric c
figuration such as u(A15B1)50, u(A25B2)52p/3,
u(A35B3)54p/3, in which case one obtains for the para
lel case (↑↑ or ↓↓) a violation of 0:1/4 for~12! and of 0:1/8
for ~13!. Figure 2 is a plot of the combined evaluation
quantum expressions for all the 684 equations correspon
to inequalities. The zero baseline indicates a threshold f
violation of Boole-Bell type inequalities. For the opposi
c

s

r

01410
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case (↑↓ or ↓↑), the violation of~7! is 1:9/8 and of~11! is
2:5/4. In the less symmetric configurationu(A1)50,
u(B1)52p/4, u(A2)5p/2, u(B2)5p/4, u(A3)52p/3,
u(B3)5p/3, more inequalities violate the Bell inequalitie
although to a lesser degree. In Figure 3 the violations
classical conditions of possible experience are plotted fo
variety of angles.

Besides its conceptual clarity as a royal road to the und
standing and constructive generation of Boole-Bell type
equalities, the importance of the correlation polytop
method lies in the fact that, unlike previous methods, th
inequalities can be guaranteed to yield maximal bounds
consistent conditions of possible classical experience.
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