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1 Motivation

The aim of this paper is to present to philosophers of physics some results in
the theory of automata, especially the theory concerned with determining the
initial state of the automaton: results which are analogons to the phenomena of

“complementarity” or “non-Booleanness” which occur in quantum mechanics.

It has long been known that any finite input/output system can be mod-
elled by finite automata [Paz(1971)]. The study of finite automata was
motivated from the very beginning by their analogy to quantum sys-
tems [Moore(1956),Foulis and Randall(1972),Randall and Foulis(1973)]. Fi-
nite automata are universal with respect to the class of computable
functions in the (usual) sense that universal networks of automata
can compute any effectively (Turing-) computable function. Conversely,
any feature emerging from finite automata is reflected by any other
universal computational device. Their non-Boolean intrinsic proposi-
tional calculus closely resembles finite quantum mechanical systems

[Svozil(1993),Schaller and Svozil(1994),Schaller and Svozil(1995),Schaller and Svozil(1996),Dvure¢

The considerations to follow in this article are not technically complicated.
Nevertheless, the corresponding ideas turn out to be highly nontrivial and

nonclassical, sometimes mindboggling [Greenberger et al.(1993)].



2 Construction of automaton logics

In this Section, I will first summarize some elements of the theory of finite
automata; then discuss the so-called state-identification problem, and how it
gives rise to to non-Boolean lattices, analogons to those occurring in quantum
theory. Then I explicitly consider quantum logic in general and give some

examples.

2.1 Machines

2.1.1 Moore and Mealy automata, state machines and combinatorial circuits

A finite deterministic sequential machine or automaton
[Moore(1956),Hopcroft and Ullman(1979),Hartmanis and Stearns(1966)] is a
device with a finite set of inputs which can be applied in a sequence, with a
finite set of internal configurations or states, and with a finite set of outputs.
Furthermore the present internal configuration and input uniquely determine

the next internal configuration and the output.

A Mealy automaton is a quintuple M = (S, 1,0, 4, \), where

(i) S is a finite (nonempty) set of states;
(ii) I is a finite (nonempty) set of inputs;
(iii) O is a finite (nonempty) set of outputs;

(iv) 6 : S x I — S is a computable transition function;



(v) A: S x I — O is a computable output function.

A state machine is a triplet of M = (S, 1,6) with no outputs and no output

function.

A combinatorial circuit or gateis a triplet of M = (I, O, \), which maps inputs
into outputs, regardless of past history. It can also be modelled as a one state

Mealy automaton.

In what follows and if not mentioned otherwise, s,%,0 stand for a particular

internal state, input and output, respectively.

Mealy machines are represented by flow tables and state graphs. To illustrate
this, consider a Mealy machine M, = (5, I, O, d, ) which has n states, n inputs

and 2 outputs. That is

S={1,2,....,n},
I={1,2,...,n},
0={0,1}.

Its transition and output functions are (ds, stands for the Kronecker delta

function)
d(s,1) =1,
lifs=1
)‘($>i) :5571' =
0if s #1

The flow table and state graph of this Mealy automaton is given in Fig. 1,
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Fig. 1. Automaton of the Mealy type.
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2.1.2  Machine isomorphism, serial and parallel decompositions, networks

and universality

Two automata M; = (S, I1,01,01, A1) and My = (Ss, I3, 03,82, A2) of the
same type are isomorphic if and only if there exist three one-to-one map-
pings f : S — Sy, 9 : Iy — I, h : O — O such that f[01(s1,41)] =
02[f(s1),9(i1)] and h[Ai(s1,41)] = Ao[f(s1),g(i1)], where s; € S; and i; € I,
Jj € {1,2}. The triple (f, g, h) is an isomorphism between M; and M,. An iso-
morphism just renames the states, the inputs and the outputs. From a purely
input/output point of view, g as well as h (or ') are combinatory circuits
and M, performs similarly to the serial connection (see below) h™' Mg of the

machines g, M, and A~

The serial connection of the two machines M; = (S1,11,01,61, A1)
and My = (S2,15,04,09,X2) for which O; = [, is the machine

[Hartmanis and Stearns(1966), p. 42]

M = My — My = (51 x Sy, 11,04,0,\)

where d[(s1, 82), 1] = (01(81,1), 02[82, A(s1,7)]) and

A(s1, 82), 1] = Aa[s2, A1(s1,1)].

The parallel connection of the two machines My = (Sy, I1, 01,01, A1) and My =

(S, Iz, Og, 02, \2) is the machine [Hartmanis and Stearns(1966), p. 48]

M = M1||M2 = (Sl X Sg,]l X [2,01 X 02,(5, )\)



where 0[(s1, s2), (i1,12)] = (01(s1,71),02(s2,42)) and A[(s1, $2), (i1,42)] =

(>\1(517 i1)7 /\2(327 Z2>)

By suitable serial and parallel connections it is possible to construct networks
of automata or combinatorial circuits (gates) which are universal relative to
the class of Turing-computable algorithms. That is, all algorithms computable
on a Turing machine are computable by serial and parallel connections of finite

automata and vice versa.

2.2 Construction of automaton partition logics

Introduction by example

Suppose that the only unknown feature of an automaton is its initial
state; all else is known. The automaton is presented in a black box,
with input and output interfaces. The task in this complementarity game
is to find (partial) information about the initial state of the automaton
[Moore(1956)]. This is sometimes referred to as the state identification prob-

lem [Conway(1971),Brauer(1984)].

To illustrate this, consider the Mealy automaton M, discussed above. In-
put/output experiments can be performed by inputting of one symbol i (in
this example, more inputs yield no finer partitions). Let us assume that one

inputs ¢ = 5. This experiment is able to distinguish between state s = 5 and



1={1,2,...,n}

{5} {1,2,3,4,6,....n}

Fig. 2. Boolean algebra 22

all the other states; hence it induces a partition (suppose n > 5)

v(5) = {{5},{1,2,3,4,6,...,n}}.

After this experiment, information about the initial state is lost (so that the
model is “irreversible” in some sense). Now consider the partitions v(i) of all
possible experiments with one input x (all of them non-co-measurable). Every
one of them generates a Boolean algebra of events with two atoms; e.g., v(5)
generates a four-element Boolean algebra 22 whose Hasse diagram is drawn in

Fig. 2.

The automaton propositional calculus and the associated partition logic is the

set of all partitions
P={v(i)|iel}.

Lattice theoretically, this amounts to a pasting [Navara and Rogalewicz(1991)]
of all the v(i)’s. In the specific example, the pasting is just the horizontal
sum—only the least and greatest elements 0 and 1 of each 2% are identified

with each other—and one obtains a Chinese lantern lattice MO,,.



Formal definition

The logical structure of the complementarity game (initial-state identification
problem) can be defined as follows. Let us call a proposition concerning the
initial state of the machine experimentally decidable if there is an experiment
FE which determines the truth value of that proposition. This can be done by
performing F| i.e., by the input of a sequence of input symbols i1, 49,13, ..., %,

associated with E, and by observing the output sequence

)\E(S> = )\(8, il), /\((5(8, i1>,i2), ey )\(5( c 6(S,i1) s 7in—1>7in>-

n—1 times

The most general form of a prediction concerning the initial state s of the
machine is that the initial state s is contained in a subset P of the state set
S. Therefore, we may identify propositions concerning the initial state with
subsets of S. A subset P of S is then identified with the proposition that the

initial state is contained in P.

Let E be an experiment (a preset or adaptive one), and let A\g(s) denote
the output obtained when one performs E on an initial state s. Ag defines
a mapping of S to the set of output sequences O*. We define an equivalence

relation on the state set S by

s Z ¢ iff Ap(s) = Ap(t)

E E

for any s,t € S. We denote the partition of S corresponding to = by S/

Obviously, the propositions decidable by the experiment F are the elements



of the Boolean algebra generated by S/ é, denoted by Bg.

There is also another way to construct the experimentally decidable propo-
sitions of an experiment E. Let Ag(P) = U Ag(s) be the direct image of
seP

P under A\g for any P C S. We denote the direct image of S by Og; i.e.,

Op = Ae(S).

It follows that the most general form of a prediction concerning the outcome
W of the experiment F is that W lies in a subset of Og. Therefore, the
experimentally decidable propositions consist of all inverse images A" (Q) of
subsets @) of Og, a procedure which can be constructively formulated (e.g.,
as an effectively computable algorithm), and which also leads to the Boolean

algebra Bpg.

Let B be the set of all Boolean algebras Bgr. We call the partition logic
R = (5,B) an automaton propositional calculus. That is, we paste all Boolean
subalgebras together. For instance, in the particular example discussed above,

the Boolean subalgebras are v(1),v(2),...,v(n).

If one does not know the automaton’s initial state, one has to choose which
experiment to perform. Computational complementarity manifests itself in the
following way. Let us assume that no experiment gives a definite answer to
the initial-state identification problem. (The classical “initial value problem”
has a very different meaning in physics.) Suppose further that the actual per-

formance of any one experiment makes impossible all the other experimental

10



measurements—this can, for instance be achieved by irreversible transition
and output functions (0 and/or A\ are many—to—one). Then the first (and
only) experiment decides which one of the possible observables is actually
being measured. “Observable” here means a statement such as “the automa-
ton is in state m or in state n.” After this measurement, the other remaining
observables cannot be measured any more. We shall refer to such a class of

observables as complementary ones.

2.3 Construction of quantum logics

Quantum logic, as pi-
oneered by Birkhoff and von Neumann [Birkhoff and von Neumann(1936)],
is usually derived from Hilbert space. There, the logical primitives, such as

79

propositions and the logical operators “and”, “or” and “not” are defined by
Hilbert space entities. For instance, consider the threedimensional, real Hilbert
space R? with the usual scalar product (v,w) 1= X7, vaw;, v,w € R3. Any
proposition is identified with a closed linear subspace of R®. For instance, the
zero vector corresponds to a false statement. Any line spanned by a nonzero
vector corresponds to the statement that the physical system has an observ-
able property associated with the projection operator corresponding to the
ondimensional subspace spanned by the vector. Any plane formed by linear

combinations of two (non-collinear) vectors v, w corresponds to the statement

that the physical system has either the property corresponding to v or the

11



property corresponding to w. The whole Hilbert space R? corresponds to the
tautology (true propositions). The logical “and”-operation is identified with
the set theoretical intersection of two propositions; e.g., with the intersection
of two planes. The logical “not”-operation, or the “complement”, is identified
with taking the orthogonal subspace; e.g., the complement of a line is the

planes orthogonal to that line.

In this top-down approach, one arrives at a propositional calculus which re-
sembles the classical one, but differs from it in several important aspects. They

are non-Boolean, i.e., non-distributive, algebraic structures.

Furthermore, as was
first pointed out by Kochen and Specker in the context of partial algebras
[Kochen and Specker(1967),Zierler and Schlessinger(1965),Redhead(1990),Mermin(1993)],
there exist certain finite sets of lines, such that the partial Boolean algebra
generated by this set does not admit of any monomorphism into the two—

element Boolean algebra.

It has been demonstrated recently [Svozil and Tkadlec(1996)] that no Kochen-
Specker-type constructions are possible in automaton partition logic. This
can be understood intuitively as arising from the definiteness and context-
independence of any proposition regarding an automaton state: automaton
partition logic is nonclassical (e.g., nondistributive) but context-independent.

The context-dependence associated with the Kochen-Specker construction is

12



deeply rooted in the infinite propositional structure of quantum logic derived
from Hilbert space. Although the explicit construction operates with a finite
number of rays (corresponding to elementary true-false propositions), it gen-

erates an infinite number of such propositions [Havlicek and Svozil(1996)].

2.4 Algebraic structure of logics

Let (£,V,A,,0,1) be an algebraic structure. Thereby, £ is a non-empty set
of elements to be interpreted as propositions which are, at least in principle,
operational. V, A are binary operations interpretable as “or” and “and,” re-

"is a unary operation interpretable as “not.” 0,1 are elements of

spectively.
£ interpretes as the proposition which is always false and always true (tautol-

ogy), respectively.

A partially ordered set (poset) is a system £ in which a binary order relation
< (inverse >) is defined, which satisfies (i) a < a, for all a € £ (reflexivity);
(ii) e < band b < ¢ = a < ¢ (transitivity); (ili) a < band b < a = a=0>

(antisymmetry).

A partially ordered system £ with order relation < (inverse >) is a lattice if
and only if any pair a, b of its elements has (i) a greatest lower bound a A b

and (ii) a least upper bound a V b.

a’ is called the orthocomplement (orthogonal complement) of a, if a V a' = 1,

13



aNad =0, (a) =aandif a <b= da >¥. The structure (£,V,A,,0,1) is

called the ortholattice.

A Boolean algebra is an ortholattice which satisfies the distributive laws a V
(bAc) = (aVb)A(aVe) and aA(bVe) = (aAb)V (aAc). A Boolean algebra with
n atoms is denoted by 2". An atom a of a lattice £ covers the least element

0; i.e., 0 < a and that 0 < x < a implies = a.

The structure is modular if the modular law (a Vb) Ac = a V (b A ¢) is
satisfied for all a < ¢. The structure is orthomodular if the orthomodular law

a<b=b=aV(bAd) is satisfied.

2.5  Construction by examples

Besides automaton logics, there are other “quasi-classical” examples
of mnon-Boolean algebras, such as Wright’'s generalized urn models
[Wright(1990), Wright(1978)] and Aerts’ models [Aerts(1995)]. Another inter-
esting example is Cohen’s “firefly in a box” scenario [Cohen(1989)] with a

three-chamber box [Dvurecenskij et al.(1995)] as depicted in Fig. 3.

The firefly flies around the three chambers. Furthermore, it is free to light up or
not to light up. The sides of the box are windows with vertical lines down their
centers. Consider the three experiments, corresponding to the three windows

A, B and C'. For each experiment F, one records lg, rg, ng if one sees a light

14



) A ra
window A

Fig. 3. Firefly in a three-chamber box.

Fig. 4. Hasse diagram of the scenario for a firefly in a three-chamber box.

to the left (Ig) or to the right (rg) of the center line or if one sees no light at
all (ne). One can identify r4 = lc =: e, r¢ = lp =: ¢, rg = 4 =: a (but one
should not identify f :=mna, b :=np, d := ne). The propositional logic of this

model is represented by the Hasse diagram drawn in Fig. 4.

15



3 Miniatlas of low-complex Hasse diagrams

The following miniatlas contains a sample collection of Hasse diagrams. It is

by no means intended as a complete collection of Hasse diagram features.

One difference between automaton logic and quantum logic should be kept
in mind. The Hasse diagrams originating from finite automata are finite al-
most by definition. The Hasse diagrams originating from Hilbert-space quan-
tum mechanics [Birkhoff and von Neumann(1936)] are continuously (X;) in-
finite. Furthermore, any finite quantum propositional structure which does
not allow a two-valued measure (classically interpretable as the logical values
“true” and “false”) and therefore implements a Kochen-Specker type contra-
diction is embedded into an countably infinite (Xy) propositional structure
[Svozil and Tkadlec(1996),Havlicek and Svozil(1996)]. Therefore, it will never

be possible to completely reduce quantum logic to automaton logic.

Nevertheless, finite structures are worth studying. They can serve as models for
complementarity. They show non-classical features not observed in quantum
physics. For instance, the propositional structure needs not be a partially
ordered set (cf. section 3.1.5). It could be transitive and Boolean, but in a

peculiar way feature complementary (cf. section 3.1.6).

It can be shown by a straightforward construction [Svozil(1993), pp. 154-155]

that every partition logic corresponds to an automaton logic.

16



3.1 Pastings

3.1.1 @,22

Hasse diagram

1, 1o 13
® @ @ e
ai bl a9 bg as bg
04 02 03

1=ur,1;
] al >b
= U?:loi

0

Realization

(i) Quantum mechanics

The quantum mechanics of spin-1/2 particles in n different directions. { MO, |

MO,, = ®(2*)",n € N}, together with the trivial lattice 2! form all finite sub-

17



lattices of twodimensional Hilbert space R?. [The complete sublattice structure
of R? contains a continuum of (undenumerable many) 2%; n € R becomes a

continuous variable.]

(i) Partition (automaton) logic

We return to the example at the start of Section 2.3: that is, to the partition P
on the states of M,
P={{{1},{2,3,...,n}},

{{2},{1,3,...,n}},
{{3},{1,2,...,n}},

() (12,3, n—11})

This lattice MO,, occurs in quantum mechanics (logic) if one considers the
measurement of the spin component of an electron in n directions. So, in a
finitistic sense, the “Mealy electron” M, defined in Fig. 1 faithfully represents
the spin observables of an electron. But quantum mechanics supposes that the
spin component of an electron can be measured along an arbitrary, continuous
direction. In this sense, already two-dimensional Hilbert space implies that a
complete representation of a quantum object such as spin cannot be given by

finitistic entities.

18



3.1.2 Horizontal sum @,23

Cf. below with m = 0.

3.1.8 (81,2%) & (&,2%)

Hasse diagram

n+m

dp, d .

n+m

Realization

(i) Quantum mechanics

The lattices are not modular but orthomodular and have finite length.

19



(i) Partition (automaton) logic

Exercise.

314 Sln = @?:1<23i)

Baroque Hasse diagram

Realization

(i) Quantum mechanics

L1 is a subortholattice of threedimensional Hilbert space $)5. It is there-
fore embeddible into the quantum logic of threedimensional Hilbert space.

A quantum mechanical realization has been given by Foulis and Randall

20



[Foulis and Randall(1972), example III]. Consider a device which, from time
to time, emits a particle and projects it along a linear scale. Suppose two types
of experiments are performed. Experiment A measures whether or not there
is a particle present. If there is no particle present, one records the outcome
of A as the symbol ay. If there is, one measures its position coordinate x. If
x > 1, we record the outcome of A as the symbol a;, otherwise one records the
symbol b;. Similarly for experiment B: If no particle is present, one records the
outcome of B as the symbol ay (same as for no particle in A). If a particle is
detected, then one measures the z—component p, of its momentum. If p, > 1,
one records by, otherwise one records az. The resulting propositional logic is

£12. For a further physical realization, see [Giuntini(1991), p. 159-162].

Lins2 1s not a subortholattice of threedimensional Hilbert space $s
[Svozil and Tkadlec(1996)]. It is a nontrivial pasting. It is not a horizontal

sum as the logics before.

(i) Partition (automaton) logic

We again mention that every partition logic corresponds to an automaton

logic. In the next particular example, let

P={{{1}{2}{3,....n}},
{25, 35 {1, 4,....n}},
({3}, {4},{1,2,5,...,n}},

.{{n -1 {n},{1,2,3,...,n — 2}}}.

21



One (but not the only one) particular way to construct a corresponding au-
tomaton logic would be to define a Mealy automaton with as many input
symbols as there are elements of P. The number of output symbols should be
three. The transition function could be trivial; i.e., 6(s) = 1 for all s;nS. The
output function should reflect the partitions; e.g., A(1,1) = 1, A(2,1) = 2,

A2,1) = = A(2,1) = 3.

22



9.1.5 @2 2%

Hasse diagram

Realization

Partition (automaton) logic

P={{{1},{2},{3,4}},
{{1,2}, {3}, {4}}}

23



The resulting propositional structure is not transitive, since there is an ex-
periment deciding the “implication” 1 “—” (1 V 2) and another one deciding
the “implication” (1V 2) “=” (1V 2V 3), but none deciding the “implica-
tion” 1 “—" (1V 2V 3). The reason for this is that the last “relation” is not

experimentally testable.

8.1.6 @Y 2% =21—A classical Boolean system featuring complementarity

Hasse diagram

24



Realization

Partition (automaton) logic

P={{{1}, {2}, {3.4}},
{{1}, {3}, {2,4}},
{{1},{4},{2,3}},
{{2}, {3}, {1, 4}},
{{2}, {4}, {1, 3}},
{{3}, {4}, {1, 2}}}

The resulting propositional calculus is Boolean, but has a non-classical feature
of complementarity insofar as there exists no experiment deciding between any
one of the different initial states. As in the last example, the reason for this
feature is that certain “relations” are not experimentally testable. That is,
there is simply no experiment which could be made to verify, for instance, 1
“—7 {1,2,3}, although the statements 1 “—” {1,3} and {1,3} “=”" {1,2,3}

are testable singularly.

3.2  Products

25



3.21 2'@xr==x

Hasse diagram

el 1 1
® —
e( 0 0

@ 2n = 2"
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3.2.2 2% 22

Hasse diagram

{b1, 12}

{b1, 02}

by

{11} ={a1, b1} and {15} = {az, b2} do not belong to the diagram, because—as
they do not include propositions about the second or first automaton factor—

they cannot be realized in any experiment.

27



Realization

Partition (automaton) logic

P={{{1}, {2}, {3.4}},
{{1}, {3}, {2,4}},
{{2},{4}.{1.3}},
{{3}, {4}, {1, 2}}}

One automaton realization is the Mealy automaton M, which can be par-
allel decomposed into two Mealy automata M;, My such that M = M;||Ms

according to

M=1"911 2 3 4|2 2 2 1)

311 2 3 4(3 3 1 2

411 2 3 4|3 2 3 3
s/ila bia b s/i|i i |1 il
M=t a0a Blo o M= 1|7 11fo o
BlAa B|1 1 mlr |11

The proper identifications relating the states of M, My, My are A = {1, 2},

28



A-II,3=DB-1,

B={3,4}, I ={1,3}, Il = {24} and 1 = A- I, 2
4 = B - II. Here, the “”-product of two sets of states is their set theoretic
intersection [Hartmanis and Stearns(1966), p. 4,5]. The proper identifications

relating the input symbols of My, My, M are ai = 1, ait = 2, bi = 3, bit = 4.

Note that the output table of M reproduces the partition logic P. The ¢'th
input generates the i’th partition by associating the output symbol j to the

j’th element of the i’th partition.

29
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Realization

Partition (automaton) logic

Let ay =1,a3 =2,a3 =3, by =4, by =5, b3 = 6. A partition logic isomorphic

222 22®2%is

P = {{{1}7 {2}7 {3}7 {4’ 5 6}}7
{{1}.{5}.{3}.{2,4,6}},
{{1}.{2}.{6},{3,4,5}},
{{1},{5},{6},{2,3,4}},
{{4}. {2}, {3}.{1,5,6}},
{{4}, {5}, {3}, {1,2,6}},
{{4}.{2},{6},{1,3,5}},
{{4}.{5}.{6}.{1,2,3}}}.

One automaton realization is the Mealy automaton M, which can be parallel
decomposed into two Mealy automata M, My such that M = M| Ms||M;

according to
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M=1"311 923456 12|33 443211/
401 2 3 456 1 2[4 4 44 433 2
501 23 456 1 2|42 421 41 3
6|1 23 456 7 8|4 433114 4
s/ila bia b s/i]i i1 il

M, = , My = , M3 =

The proper identifications relating the states of M, My, My are A = {1, 2,3},

B ={4,5,6}, I = {1,5,6}, II = {2,3,4}, T = {1,3,5}, A = {2,4,6}, and
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1=A-1-T2=A-11 - AJ3=A-11-T,4=B-1I-A,5=B-1-T,
6 = B-1-A. Note again that the output table of M reproduces the partition

logic P.

4 Conclusion

I have attempted to enumerate some rationally conceivable forms of comple-
mentarity, or, more specifically, of the logico—algebraic structure of proposi-
tions about observable phenomena. This is in the spirit of Foulis and Randall
[Foulis and Randall(1972),Randall and Foulis(1973)], but with a definite algo-
rithmic flavour. Thereby, structures in algorithmics have been related to and
compared with logical and physical forms. A small collection of low-complexity
structures has been discussed. These examples mainly originate from quantum
systems and automata theory, including the serial and parallel composition of

deterministic Moore and Mealy automata.

It should be emphasized that complementarity is not directly related to diag-
onalization [G6del(1931),Turing(1937),Rogers, Jr.(1967),0difreddi(1989)]; it
is, rather, a second, independent source of undecidability. It is already realiz-
able at an elementary ‘pre-diagonalization’ level, i.e., without the requirement
of computational universality or its arithmetic equivalent. The corresponding

machine model is the class of finite automata.

Since any finite state automaton can be simulated by a universal computer,
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complementarity is a feature of sufficiently complex deterministic universes as
well. To put it pointedly: if the physical universe is conceived as the product
of a universal computation, then complementarity is an inevitable feature of

the perception of observers.
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