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Abstract

After an elementary derivation of Bell’s inequality, classical, quan-
tum mechanical and stronger-than-quantum correlation functions for
2-particle-systems are discussed. In particular hypothetical stronger-
than-quantum correlation functions are investigated which give rise
to an extreme violation of Bell’s inequality. Referring to a specific
quantum system it is shown that such an extreme violation would
contradict basic laws of physics.

1 Introduction

In 1964 Bell formulated a condition for the possibility of local hidden variable
models [1] known as Bell’s inequality. The fact that quantum mechanics
violates Bell’s inequality has caused a great variety of experimental as well as
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theoretical investigations. In this paper we will focus on the consequences of a
violation of Bell’s inequality stronger than permitted by quantum mechanics.

Consider Bell’s inequality in the form of the Clauser-Horne-Shimony-Holt
(CHSH) inequality [2, 3]

−2 ≤ E(α, β) + E(α′, β) + E(α, β′)− E(α′, β′) ≤ 2 . (1)

E is the quantum mechanical correlation function for two particle correlations
which will be explained later in detail. For the moment it is only necessary
to know that E may have values in the range of −1 to +1. In general
the function E could be such that the four terms in (1) can take on values
completely independent of each other. In such a case the maximum violation
of the inequality is 4 and occurs for

E(α, β) = E(α′, β) = E(α, β′) = −E(α′, β′) = 1.

Now it is a well known fact that in quantum mechanics the maximum
violation of Bell’s inequality is 2

√
2 [4, 5]. This implies that E is restricted

to such functions which prevent a stronger violation than 2
√

2. Because the
maximum possible violation 4 is not realized in quantum mechanics several
questions arise. Is the limit of 2

√
2 forced by probability theory or by physics?

Is a violation larger than 2
√

2 consistent with the foundations of quantum
mechanics, e.g. the randomness of elementary processes? Would a stronger
violation of Bell’s inequality destroy the peaceful coexistence of quantum
mechanics and relativity theory and enable faster-than-light communication?
Related questions have been raised before by several authors [6, 7, 8, 9, 10,
11].

Although we are not able to answer these questions in general, we will
discuss a system in which stronger-than-quantum correlations would lead to
inconsistencies with fundamental laws of physics. For this purpose we start
with a detailed discussion of classical, quantum mechanical and stronger-
than-quantum correlations.

2 Derivation of Bell’s inequality

Let’s consider two correlated spin-1/2 particles or equivalent systems like
correlated polarized photons. On each one of the two particles measure-
ments with two possible outcomes (+1 and −1) are performed in space-like
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separated regions. On the first particle a measurement of the dichotomic
(two-valued) observable Rα with the possible results rα ∈ {−1, 1} (e.g. the
spin along a direction ~α which is defined by the angle α within the plan per-
pendicular to the momentum of the particle) is made by observer A. Likewise,
the dichotomic observable Rβ with rβ ∈ {−1, 1} is measured on the second
particle by experimenter B. Then for N such particle pairs a correlation
function can be defined by

E(α, β) = 〈RαRβ〉 = lim
N→∞

1

N

N∑
i=1

rα,irβ,i = lim
N→∞

N − 2n(α, β)

N
, (2)

where n(α, β) is the number of instances in which different results in the
measurements of Rα and Rβ are obtained and rα,i and rβ,i are the results
of the measurements on the i − th particle pair. This function is +1 if all
N results of observers A and B are equal (n(α, β) = 0 ; rα,irβ,i = −1 − 1
or rα,irβ,i = +1 + 1, i = 1 . . . N) and −1 if all N results have different sign
(n(α, β) = N ; rα,irβ,i = −1 + 1 or rα,irβ,i = +1− 1, i = 1 . . . N). In general
this function takes on values in the range between −1 and +1.

The assumption of local hidden variables implies the existence of a hidden
classical arena. The reader may think of a mechanism determining the results
of all measurements observer A (B) may perform for each individual pair of
correlated particles. In the following we consider the measurements Rα,
Rα′ of observer A and Rβ, Rβ′ of observer B. With the assumption of local
hidden variables the results of both measurements, Rα, Rα′ and Rβ, Rβ′ ,
respectively, are defined simultaneously for each individual pair of correlated
particles. Consider a series of N such particle pairs. For each pair the values
of rα , rα′ (rβ , rβ′) are determined. Writing down these values for all N
particle pairs, we get four lists as shown in Fig.1. For our considerations
arbitrary lists of results can be chosen. We will demonstrate that any results
which can be listed in such a way have to fulfill a simple condition which is
equivalent to Bell’s inequality. This condition imposes a restriction on the
correlation of the results and therefore on the correlation function E.

To find out the restriction for the correlation function E(α, β), we deter-
mine the number of different signs (results) in the four pairs of lists (α′, β),
(α, β), (α, β′) and (α′, β′). As expressed by Eq.(2) for N particle pairs the
correlation function E(α, β) is given by the number of cases n(α, β) in which
different results are obtained in the measurements of Rα and Rβ. Having
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Figure 1: For N pairs of correlated particles the results of measurements
which may be performed by observer A (Rα, Rα′) and B (Rβ, Rβ′) are shown
(“+” stands for +1, “−” stands for −1). As expressed by Eq.(2) the cor-
relation function E(α, β) is given by the number of different results in lists
α and β n(α, β). In such a way the correlation of the results in lists α′ and
β′ is defined by n(α′, β′) (“outer path”). At the same time a limit on the
number n(α′, β′) is imposed by the values of n(α, β), n(α′, β) and n(α, β′)
(E(α, β), E(α′, β) and E(α, β′)) (“inner path”). Only in case of local realis-
tic results the value of n(α′, β′) is within this limit. Then the results of all
four measurements can be defined simultaneously in agreement with E(α, β)
and consequently written down as shown in this picture.

4



determined the four values n(α′, β), n(α, β), n(α, β′) and n(α′, β′) (cf. Fig.
1), we make a simple observation [12].

A limit on the number n(α′, β′) (“outer path” in Fig. 1) and thus on the
correlation function E(α′, β′) (cf.Eq.(2)) is imposed by the values of n(α′, β),
n(α, β) and n(α, β′). Along the “inner path” α′ → β → α → β′ from list α′ to
list β′ in Fig. 1 we have to change n(α′, β) signs in the first step to get list β,
n(α, β) signs in the second step to get list α, and n(α, β′) signs in the last step
to obtain list β′. At the end of this procedure the number of different signs in
lists α′ and β′ n(α′, β′) can be no greater than n(α′, β) + n(α, β) + n(α, β′)1.
This can be expressed by the inequality

n(α′, β) + n(α, β) + n(α, β′) ≥ n(α′, β′) . (3)

The probability P 6=(α, β) for different signs (results) in measurements of
Rα and Rβ on N particle pairs can be approximated by the relative frequency
n(α, β)/N . Analogously, the probability for equal signs P=(α, β) is approx-
imately given by 1 − n(α, β)/N . By definition (2), the correlation function
can be written as

E(α, β) = P=(α, β)− P 6=(α, β) = 2P=(α, β)− 1 . (4)

Using these identities, Eq. (3) can easily be rewritten into the CHSH in-
equality [2] form

E(α, β) + E(α′, β) + E(α, β′)− E(α′, β′) ≤ 2 . (5)

The bound from below

E(α, β) + E(α′, β) + E(α, β′)− E(α′, β′) ≥ −2 (6)

can be derived by a similar argument, considering the number of equal signs
(results) u(α, β) = N − n(α, β) instead of the number of different signs
(results). u(α, β) satisfies the same inequality (3) as n(α, β). Bell’s inequality
in the form of Eq. (1) is given by the combination of (5) and (6).

We have seen that the value of the correlation function E(α′, β′) is related
to the values of E(α, β), E(α′, β) and E(α, β′). Only results which can be
represented as shown in Fig. 1 and thus are defined simultaneously and

1Without loss of generality we have assumed that n(α′, β) + n(α, β) + n(α, β′) ≤ N
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locally for all four possible experiments Rα, Rα′ and Rβ, Rβ′ (as by local
realistic models) fulfill this relation and therefore also Bell’s inequality.

Now let us consider a system whose correlations are such that the max-
imum number of sign changes along the “inner path” (n(α′, β) + n(α, β) +
n(α, β′)) is smaller than the number of sign changes along the “outer path”
(n(α′, β′)). Then not a single set of lists (α, β, α′, β′) exists, which satis-
fies all the correlations as defined by n(α′, β), n(α, β), n(α, β′) and n(α′, β′)
(E(α′, β), E(α, β), E(α, β′) and E(α′, β′)) simultaneously. A certain fraction
of the results in lists α′ and β′ would always be inconsistent with the values of
the correlation functions. For the maximum violation of Bell’s inequality per-
mitted by quantum mechanics – 2

√
2 – this fraction is (

√
2− 1)100 ≈ 40%.

For stronger-than-quantum correlations this fraction reaches 100% in the
limit of a violation of Bell’s inequality with the maximum value 4 (cf. sec-
tion 4).

3 Classical and quantum mechanical correla-

tions

Bell’s inequality is a condition which must be fulfilled by local realistic, i.e.
classical correlation functions. Quantum mechanical correlation functions
violate Bell’s inequality by a maximum value of 2

√
2:

| Eqm(α′, β) + Eqm(α, β) + Eqm(α, β′)− Eqm(α′, β′) |≤ 2
√

2 .

In the following we will give an example for a classical as well as a quantum
mechanical correlation function.

First of all we consider pairs of correlated classical particles with total
angular momentum zero. ~j1 and ~j2 are the classical angular momenta of
particle 1 and 2, respectively. Then, by measuring the angular momentum
of particle 1 (2) along a direction ~α (~β) defined by the angle α (β) within the
plane perpendicular to the momentum of the particles the classical observable
Rα = sgn(~α · ~j1) (Rβ = sgn(~β · ~j2)) can be defined. It can be shown [1, Eq. 10]
(see also [13, 14]) that for such observables the classical correlation function
is given by

Ec(α, β) = Ec(θ) =
2θ

π
− 1 , (7)
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where θ is the relative angle |α − β|. By comparing this function with Eq.
(4) we find that

P=(θ) =
θ

π
. (8)

This corresponds to the expectation that the probability for equal results in
measurements of Rα and Rβ (P=(θ)) is proportional to the relative angle
θ. By inserting (7) into (5) one can easily see that Bell’s inequality is not
violated, which also implies that condition (3) is fulfilled.

To derive a quantum mechanical correlation function we now consider
two particles of spin j in a singlet state. Then the correlation function is
given by (cf. appendix and ref. [15])

C(θ) = −j(j + 1)

3
cos θ . (9)

Again θ is the relative angle |α − β| of two angles within the plane perpen-
dicular to the momentum of the particles. To be comparable to the classical
correlation function, the quantum correlation function must be normalized
such that Eqm(π) = −Eqm(0) = 1 (Eqm(θ) = 3/[j(j + 1)]C(θ)). Thus for
two correlated spin-1

2
particles in a singlet state the quantum mechanical

correlation function is given by

Eqm(α, β) = −~α · ~β = Eqm(θ) = − cos θ , (10)

where the vectors ~α and ~β are defined by the angles α and β within the plane
perpendicular to the momentum of the particles.

Ec(θ) and Eqm(θ) are drawn in Fig.2. One can see that for almost all
angles θ, the quantum mechanical correlations are stronger than the classical
ones. Therefore Eqm violates Bell’s inequality but the violation does not
exceed 2

√
2 as one can proof by inserting (10) into (5). Results described

by a quantum mechanical correlation function Eqm can in general not be
represented consistently by local realistic models. As demonstrated for the
angles α, α′ and β, β′ the results of the measurements Rα′ and Rβ′ can not be
defined in such a way as to correspond to Eqm(α′, β′) as well as to Eqm(α, β),
Eqm(α′, β) and Eqm(α, β′).
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4 Stronger-than-quantum correlations

We now turn our attention to —merely hypothetical— “extremely nonclas-
sical correlations” and assume a stronger-than-quantum correlation function
of the form

Es(α, β) = Es(θ) = sgn(2θ/π − 1) = sgn(Ec(θ)) , (11)

where Ec(θ) is the classical correlation function (7). Es(θ), along with Ec(θ)
and Eqm(θ), is drawn in Fig. 2. One can clearly see that Es(θ) takes the
tendency of the quantum correlation function to exceed classical correlations
to an extreme. This is also expressed by the fact that, since for x = 2θ/π−1
and 0 ≤ θ ≤ π

sgn(x) =


−1 for x < 0

0 for x = 0
+1 for 0 < x

=
4

π

∞∑
n=0

sin[(2n + 1)x]

(2n + 1)

=
4

π

∞∑
n=0

(−1)n cos[(2n + 1)(x− π/2)]

(2n + 1)
, (12)

the quantum mechanical correlation function can be attributed to the first
summation term in Eq. (12). By considering also terms of higher order
in expansion (12) we get correlations which are stronger than the quantum
correlations. Then Bell’s inequality is violated by a larger value than 2

√
2.

The extreme correlation expressed by Es(θ) implies that for angles α, β
with π/2 ≤ |α − β| ≤ π, the results of observers A and B are perfectly
correlated (Es(θ) = 1, rα,i rβ,i = + + or− −, i = 1 . . . N), whereas they are
perfectly anticorrelated (Es(θ) = −1, rα,i rβ,i = + − or− +, i = 1 . . . N) for
angles α, β with 0 ≤| α − β |≤ π/2. This cannot be accommodated by any
classical theory under the assumption of local realism, nor can we think of
any quantum correlation satisfying it.

The hypothetical correlation function Es(θ) gives rise to a maximum vio-
lation of Bell’s inequality, since for the four angles α = π, α′ = 6π/8, β = π/8
and β′ = 3π/8

Es(α, β) + Es(α
′, β) + Es(α, β′)− Es(α

′, β′) = 4.
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Figure 2: Ec(θ), Eqm(θ) and Es(θ).
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A violation of Bell’s inequality by the maximum value of 4 has also been
studied by Popescu and Rohrlich [8] and, for a classical system, by Aerts
[16]. As already mentioned in the introduction it has been shown that the
maximum violation of Bell’s inequality permitted by quantum mechanics is
2
√

2 [4, 5].
For the angles α = π, α′ = 6π/8, β = π/8 and β′ = 3π/8 we now

try to write down results which are correlated as defined by Es(α, β) in
the same way as shown in Fig.1 . Because n(α′, β) = n(α, β) = n(α, β′) = 0
(Es(α, β) = Es(α

′, β) = Es(α, β′) = 1) the results in lists α′ and β′ have to be
identical. This demand is satisfied by the list β′in in Fig.3. At the same time
these results have to be sign-reversed because n(α′, β′) = N (Es(α

′, β′) =
−1), which is expressed by the list β′out.

In contrast to the classical case (Fig.1) it’s now no longer possible to find
four lists of results which satisfy the correlations as described by Es(α, β)
(11). Therefore two different lists β′ (β′in, β′out) are shown in Fig. 3. Of course
the fraction of different results in these two lists may vary depending on the
function E. A comparison of the correlation functions discussed in this paper
(Ec, Eqm and Es) is given in table 1. For Es the fraction of different results in
lists β′in and β′out is 100% (cf. Fig.3). For classical correlation functions (Ec)
this fraction is 0% (β′in = β′out = β′) and for quantum mechanical correlation
functions (Eqm) it is smaller than (

√
2 − 1)100 ≈ 41.42%. Whereas Eqm

contradicts local-realistic models only on a statistical level, Es leads to a
complete contradiction. This means that out of all N particle pairs there is
not a single one to which a consistent quadruple of outcomes (rα,rα′ , rβ and
rβ′) can be assigned. Consequently a violation of Bell’s inequality by the
maximum value of 4 would be a two-particle analogue to the GHZ argument
[17].

5 Discussion

We have seen that in case of an extreme violation of Bell’s inequality with
the value 4 the results of observers A and B are either perfectly correlated
(Es(θ) = 1) (11) or perfectly anticorrelated (Es(θ) = −1), depending on the
relative angle θ = |α − β|. If the angle β is fixed, observer A may “switch”
between perfect correlation and perfect anticorrelation by changing the angle
α adequately. One might think that in such a way superluminal signals can
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Figure 3: For the angles α = π, α′ = 6π/8, β = π/8 and β′ = 3π/8 results
are shown which are correlated in a way defined by Es(α, β) (11). Again,
“+” stands for +1 and “−” for −1. The correlation of the results in lists
α′ and β′ as defined by the “inner path” (n(α′, β) = n(α, β) = n(α, β′) = 0,
Es(α, β) = Es(α

′, β) = Es(α, β′) = 1, i.e. no sign changes) is completely
inconsistent with the correlation of the same results as defined by the “outer
path” (n(α′, β′) = N , Es(α

′, β′) = −1, i.e. N sign changes). Therefore the
two lists β′in and β′out are completely sign-reversed. For correlation functions
E which violate Bell’s inequality the fraction of different results in the two
lists β′in and β′out is given by the extent of the violation and reaches 100%
for the hypothetical correlation function Es as shown in this figure. Such an
extreme correlation would be a two-particle analogue to the GHZ-argument.
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c qm s

P=(θ) = 2P++(θ) = 2P−−(θ) θ/π sin2(θ/2) H(2θ/π − 1)
P 6=(θ) = 2P+−(θ) = 2P−+(θ) 1− θ/π cos2(θ/2) H(1− 2θ/π)

E(θ) = P=(θ)− P 6=(θ) 2θ/π − 1 − cos(θ) sgn(2θ/π − 1)

Table 1: Table of classical (c), quantum mechanical (qm) and stronger-than-
quantum (s) probabilities and correlation functions. H is the Heaviside-
function.

be sent from observer A to observer B.
It becomes clear that this is impossible if one takes into account that

the outcomes of the single measurements on either side cannot be controlled
and occur at random. Experimenter A recording the outcomes for particle 1
of subsequent particle pairs would for instance measure a random sequence
+ + − + − − · · ·, whereas, depending on the relative angle θ, observer B,
recording the outcomes for the second particle of the respective pairs, would
measure either the sequence = ++−+−−· · · (for θ > π/2), or the sequence
= −−+−++· · · (for θ < π/2). Since for both experimenters the sequences of
outcomes appear totally uncontrollable and at random it is impossible to infer
the value of θ on the basis of one of those sequences alone. This expresses the
impossibility of faster-than-light communication due to the outcome indepen-
dence. Thus, as long as one assumes unpredictability and/or randomness of
the single outcomes (cf. [8]), the stronger-than-quantum correlation function
Es saturates the Roy-Singh inequalities [18]. See references [19, 20, 21] for
other works which find maximal violation of the CHSH inequality consistent
with relativity.

Whereas for 2-particle systems there seems to be no reason why stronger-
than-quantum correlations should be inconsistent either with the foundations
of physics or with probability theory, stronger-than-quantum correlations
lead to inconsistencies in 3-particle systems, as will be demonstrated in the
following.

Consider an entangled system of 3 spin-1
2

particles. Spin measurements
are performed on the particles in space-like separated regions by three ob-
servers. The state is such that each observer gets the result +1 or −1 with
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equal probability independent of the direction along which the spin is mea-
sured and of course also independent of the measurements performed on the
other particles. We divide the data of observers 1 and 2 into two subensem-
bles by a simple rule: If observer 3 gets the result −1 (+1), the corresponding
results of observers 1 and 2 are put into subensemble − (+). In such a way
two subensembles of the results of observers 1 and 2 are defined by the re-
sults of observer 3. We can now investigate the two-particle correlations in
each subensemble applying Bell’s inequality. Although in quantum mechan-
ics the maximum violation of Bell’s inequality is 2

√
2 [4, 5] we may discuss

hypothetical situations in which stronger correlations occur. Especially we
are interested in the question, if the results within the subensembles can in
principle (i.e. without leading to inconsistencies, either with special relativ-
ity or probability theory) be correlated in such a way that Bell’s inequality
(1) is violated by the maximum value of 4.

Consider the results of observers 1 and 2 before the separation into
subensembles took place. We assume that observers 1 and 2 have performed
spin measurements yielding a value of the correlation function (2) different
from zero, meaning that less than half of the results are equal, i.e. have equal
sign (++, −−), or that less than half of the results are different, i.e. have
different sign (+−, −+). It will turn out, that this assumption is sufficient
to obtain an example for a case in which a violation of Bell’s inequality by
the maximum value of 4 would be inconsistent with special relativity.

The results of observers 1 and 2 are now separated into subensembles
following the procedure described above. Because by assumption half of the
results of observer 3 are −(+) this separation cannot result in two subensem-
bles with the absolute value of the correlation function being 1 in both
subensembles.2 However for a maximum violation of Bell’s inequality (by
the value of 4) it is a necessary condition that the values of the correlation
functions in (1) are 1. As soon as only one correlation function in (1) has
an absolute value smaller than 1 a maximum violation is no longer possible.
Therefore in our special case the results within at least one of the subensem-
bles (either subensemble + or −) can never be correlated in a way leading to
a maximum violation of Bell’s inequality. The reason which strictly excludes

2The absolute value of the correlation function is 1 only if all results within an ensemble
have different or equal sign. In the considered case this is impossible because half of the
results of observers 1 and 2 are put into subensemble − (+), but only less than half of all
results of observers 1 and 2 are equal (different).
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this possibility is the fact, that for observer 3 the probability to measure +
or − must not depend on the kind of measurements performed by observers
1 and 2, since such a dependence would enable faster-than-light communica-
tion.

It now becomes clear that we have two conflicting assumptions in our
consideration, which prohibit the selection of subensembles appropriate for
a maximum violation of Bell’s inequality. On the one hand the assumption,
that less than half of the results of observers 1 and 2 are equal (different)
and on the other hand the assumption, that observer 3 gets the result + and
− with equal probability, independent of the correlations (measurements)
measured (performed) by observers 1 and 2. Because the second assumption
expresses the impossibility of superluminal signalling we may conclude, that
in the special case denoted by the first assumption a correlation within the
subensembles leading to a violation of Bell’s inequality by the maximum
value of 4 would be inconsistent with special relativity.
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Appendix: Quantum expectation value of two particles of spin j in
a singlet state

C(θ) = 〈J = 0, M = 0 | α · ĴA ⊗ β · ĴB | J = 0, M = 0〉
=

∑
m,m′

〈00 | jm, j −m〉〈jm′, j −m′ | 00〉 ×

×A〈jm |B 〈j −m | α · ĴA ⊗ β · ĴB | jm′〉A | j −m′〉B

=
∑

m,m′
〈00 | jm, j −m〉〈jm′, j −m′ | 00〉 ×

×〈jm | α · ĴA | jm′〉〈j −m | β · ĴB | j −m′〉

=
∑

m,m′

(−1)j−m(−1)j−m′

2j + 1
〈jm | ĴA

z | jm′〉〈j −m | β · ĴB | j −m′〉

=
∑

m,m′

(−1)j−m(−1)j−m′

2j + 1
mδmm′〈j −m | β · ĴB | j −m′〉

=
∑
m

m
(−1)2j−2m

2j + 1
〈j −m | β · ĴB | j −m〉

=
1

2j + 1

∑
m

−m2βz

= − 1

2j + 1
cos θ

j∑
m=−j

m2 for 0 ≤ θ ≤ π

= −j(j + 1)

3
cos θ for 0 ≤ θ ≤ π .
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