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Stronger-Than-Quantum Correlations
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After an elementary derivation of Bell’ s inequality, classical, quantum mechanical ,
and stronger-than-quantum correlation functions for 2-particle-systems are dis-
cussed. Special functions are investigated which give rise to an extreme violation
of Bell’ s inequality by the value of 4. Referring to a specific quantum system it is
shown that under certain conditions such an extreme violation would contradict
basic laws of physics.

1. INTRODUCTION

In 1964 Bell formulated a condition for the possibility of local hidden
variable models ( 1) known as Bell’s inequality. The fact that quantum
mechanics violates Bell’s inequality has led to a great variety of experimen-
tal as well as theoretical investigations. In this paper we will focus on the
consequences of a violation of Bell’s inequality stronger than permitted by
quantum mechanics.

Consider Bell’s inequality in the form of the Clauser± Horne± Shimony±
Holt (CHSH) inequality( 2, 3 )

2 2 < E(a, b )+ E(a¢ , b ) + E(a, b ¢ ) 2 E(a¢ , b ¢ ) < 2 (1)

E is the quantum mechanical correlation function for two-particle correla-
tions, which will be explained later in detail. For the moment it is only
necessary to know that E may have values in the range of 2 1 to +1. In
general the function E could be such that the four terms in (1) can take on
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values completely independent of each other. In such a case the maximum
violation of the inequality is 4 and occurs for

E(a, b ) = E(a¢ , b )= E(a, b ¢ ) = 2 E(a¢ , b ¢ ) = 1

Now it is a well known fact that in quantum mechanics the maximum
violation of Bell’s inequality is 2 Ï 2. ( 4, 5) This implies that E is restricted to
such functions which prevent a stronger violation than 2 Ï 2. Because the
maximum possible violation 4 is not realized in quantum mechanics,
several questions arise. Is the limit of 2 Ï 2 forced by probability theory or
by physics? Is a violation larger than 2 Ï 2 consistent with the foundations
of quantum mechanics, e.g., the randomness of elementary processes?
Would a stronger violation of Bell’s inequality destroy the peaceful
coexistence of quantum mechanics and relativity theory and enable faster-
than-light communication? Related questions have been raised before by
several authors.( 6 { 11 )

Although we are not able to answer these questions in general, we will
discuss a system in which stronger-than-quantum correlations would lead
to inconsistencies with fundamental laws of physics. For this purpose we
start with a detailed discussion of classical, quantum mechanical, and
stronger-than-quantum correlations.

2. DERIVATION OF BELL’S INEQUALITY

Let us consider two correlated spin-1/2 particles or equivalent systems
like correlated polarized photons. On each one of the two particles
measurements with two possible outcomes (+1 and 2 1 ) are performed in
space-like separated regions. On the first particle a measurement of the
dichotomic (two-valued) observable Ra with the possible results ra Î { 2 1 , 1}
( e.g., the spin along a direction a

® which is defined by the angle a within the
plane perpendicular to the momentum of the particle) is made by observer A.
Likewise, the dichotomic observable Rb with rb Î { 2 1 , 1} is measured on
the second particle by experimenter B. Then for N such particle pairs a
correlation function can be defined by

E(a, b )= á RaRb ñ = lim
N ® `

1
N

+
N

i= 1

ra, i rb , i= lim
N ® `

N 2 2n(a, b)
N

( 2)

where n(a, b ) is the number of instances in which different results in the
measurements of Ra and Rb are obtained and ra, i and rb, i are the results
of the measurements on the ith particle pair. This function is +1 if all N
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results of observers A and B are equal (n(a, b ) = 0; ra, i rb , i= 2 1 2 1 or
ra, i rb, i= +1 + 1, i= 1,..., N) and 2 1 if all N results have different sign
(n(a, b) = N; ra, i rb , i= 2 1 + 1 or ra, i rb, i= +1 2 1, i= 1,..., N) . In general
this function takes on values in the range between 2 1 and +1.

The assumption of local hidden variables implies the existence of a
hidden classical arena. The reader may think of a mechanism determining
the results of all measurements observer A (B) may perform for each
individual pair of correlated particles. In the following we consider the
measurements Ra, Ra¢ of observer A and Rb , Rb ¢ of observer B. With the
assumption of local hidden variables the results of both measurements,
Ra , Ra¢ and Rb , Rb ¢ , respectively, are defined simultaneously for each
individual pair of correlated particles. Consider a series of N such particle
pairs. For each pair the values of ra, ra¢ ( rb , rb ¢ ) are determined. Writing
down these values for all N particle pairs, we get four lists as shown in
Fig. 1. For our considerations arbitrary lists of results can be chosen. We
will demonstrate that any results which can be listed in such a way have
to fulfill a simple condition which is equivalent to Bell’s inequality. This

Fig. 1. For N pairs of correlated particles the results of measurements which
may be performed by observer A (Ra , Ra¢ ) and B (Rb , Rb ¢ ) are shown ( `̀+’’
stands for +1 , `̀ 2 ’’ stands for 2 1 ). As expressed by Eq. (2) the correlation
function E(a, b) is given by the number of different results in lists a and b

n(a, b ). In such a way the correlation of the results in lists a¢ and b ¢ is defined
by n(a¢ , b ¢ ) ( `̀outer path’’). At the same time a limit on the number n(a¢ , b ¢ ) is
imposed by the values of n(a, b), n(a¢ , b) , and n(a, b ¢ ) (E(a, b) , E(a¢ , b) , and
E(a, b ¢ ) ) ( `̀ inner path’’). Only in the case of local realistic results is the value of
n(a¢ , b ¢ ) within this limit. Then the results of all four measurements can be
defined simultaneously in agreement with E(a, b) and consequently written
down as shown in this picture.
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condition imposes a restriction on the correlation of the results and there-
fore on the correlation function E.

To find out the restriction for the correlation function E(a, b ) , we
determine the number of different signs (results) in the four pairs of lists
(a¢ , b ) , (a, b ) , (a, b ¢ ) , and (a¢ , b ¢ ) . As expressed by Eq. (2) for N particle
pairs the correlation function E(a, b ) is given by the number of cases
n(a, b ) in which different results are obtained in the measurements of Ra

and Rb . Having determined the four values n(a¢ , b ) , n(a, b ) , n(a, b ¢ ) , and
n(a¢ , b ¢ ) (cf. Fig. 1), we make a simple observation.(12)

A limit on the number n(a¢ , b ¢ ) ( `̀ outer path’’ in Fig. 1) and thus on
the correlation function E(a¢ , b ¢ ) (cf. Eq. (2) ) is imposed by the values of
n(a¢ , b ) , n(a, b ) , and n(a, b ¢ ) . Along the `̀ inner path’’ a¢ ® b ® a ® b ¢ from
list a¢ to list b ¢ in Fig. 1 we have to change n(a¢ , b ) signs in the first step
to get list b, n(a, b ) signs in the second step to get list a, and n(a, b ¢ ) signs
in the last step to obtain list b ¢ . At the end of this procedure the number
of different signs in lists a¢ and b ¢ n(a¢ , b ¢ ) can be no greater than n(a¢ , b ) +
n(a, b )+ n(a, b ¢ ) .3 This can be expressed by the inequality

n(a¢ , b ) + n(a, b ) + n(a, b ¢ ) > n(a¢ , b ¢ ) ( 3)

The probability P Þ (a, b ) for different signs ( results) in measurements
of Ra and Rb on N particle pairs can be approximated by the relative fre-
quency n(a, b )/N. Analogously, the probability for equal signs P = (a, b ) is
approximately given by 1 2 n(a, b )/N. By definition (2), the correlation
function can be written as

E(a, b )= P= (a, b ) 2 P Þ (a, b ) = 2P= (a, b ) 2 1 (4)

Using these identities, Eq. ( 3) can easily be rewritten into the CHSH
inequality( 2) form

E(a, b )+ E(a¢ , b )+ E(a, b ¢ ) 2 E(a¢ , b ¢ ) < 2 (5)

The bound from below

E(a, b ) + E(a¢ , b )+ E(a, b ¢ ) 2 E(a¢ , b ¢ ) > 2 2 (6)

can be derived by a similar argument, considering the number of equal
signs (results) u(a, b )= N 2 n(a, b ) instead of the number of different signs
( results). u(a, b ) satisfies the same inequality ( 3) as n(a, b ) . Bell’s inequality
in the form of Eq. ( 1) is given by the combination of ( 5) and (6).
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We have seen that the value of the correlation function E(a¢ , b ¢ ) is
related to the values of E(a, b ) , E(a¢ , b ) , and E(a, b ¢ ) . Only results which
can be represented as shown in Fig. 1 and thus are defined simultaneously
and locally for all four possible experiments Ra, Ra9 and Rb , Rb 9 ( as by local
realistic models) fulfill this relation and therefore also Bell’s inequality.

Now let us consider a system whose correlations are such that the
maximum number of sign changes along the `̀ inner path’’ (n(a¢ , b ) +
n(a, b )+ n(a, b ¢ ) ) is smaller than the number of sign changes along the
`̀outer path’’ (n(a¢ , b ¢ ) ). Then not a single set of lists (a, b, a¢ , b ¢ ) exists,
which satisfies all the correlations as defined by n(a¢ , b ) , n(a, b ) , n(a, b ¢ ) ,
and n(a¢ , b ¢ ) (E(a¢ , b ) , E(a, b ) , E(a, b ¢ ) , and E(a¢ , b ¢ ) ) simultaneously.
A certain fraction of the results in lists a¢ and b ¢ would always be inconsis-
tent with the values of the correlation functions. For the maximum viola-
tion of Bell’s inequality permitted by quantum mechanics, 2 Ï 2, this
fraction is ( Ï 2 2 1) 100f 40%. For stronger-than-quantum correlations
this fraction reaches 100% in the limit of a violation of Bell’s inequality
with the maximum value 4 ( cf. Sec. 4).

3. CLASSICAL AND QUANTUM MECHANICAL

CORRELATIONS

Bell’s inequality is a condition which must be fulfilled by local realistic,
i.e., classical correlation functions. Quantum mechanical correlation func-
tions violate Bell’s inequality by a maximum value of 2 Ï 2:

|Eqm (a¢ , b )+ Eqm (a, b )+ Eqm (a, b ¢ ) 2 Eqm (a¢ , b ¢ ) | < 2 Ï 2

In the following we will give an example for a classical as well as a quan-
tum mechanical correlation function.

First of all we consider pairs of correlated classical particles with total
angular momentum zero. Ò® 1 and Ò® 2 are the classical angular momenta of
particle 1 and 2, respectively. Then, by measuring the angular momentum
of particle 1 ( 2) along a direction a

® ( b
®
) defined by the angle a ( b ) within

the plane perpendicular to the momentum of the particles the classical
observable Ra= sgn(a® . Ò® 1 ) (Rb = sgn( b

®
. Ò® 2 ) ) can be defined. It can be

shown [Ref. 1, Eq. (10) ] (see also Refs. 13 and 14) that for such observ-
ables the classical correlation function is given by

Ec(a, b )= Ec(h)=
2h

p
2 1 (7)
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where h is the relative angle |a2 b |. By comparing this function with
Eq. ( 4) we find that

P= (h)=
h

p
( 8)

This corresponds to the expectation that the probability for equal results in
measurements of Ra and Rb (P= (h) ) is proportional to the relative angle
h. By inserting (7) into (5) one can easily see that Bell’s inequality is not
violated, which also implies that condition (3) is fulfilled.

To derive a quantum mechanical correlation function we now consider
two particles of spin j in a singlet state. Then the correlation function is
given by (cf. the Appendix and Ref. 15)

C(h) = 2
j( j+ 1)

3
cos h ( 9)

Again h is the relative angle |a2 b | of two angles within the plane per-
pendicular to the momentum of the particles. To be comparable to the
classical correlation function, the quantum correlation function must be
normalized such that Eqm (p ) = 2 Eqm( 0)= 1 (Eqm (h) = 3/[ j( j+ 1) ] C(h) ) .
Thus for two correlated spin-1

2 particles in a singlet state the quantum
mechanical correlation function is given by

Eqm (a, b ) = 2 a
® . b

®
= Eqm (h) = 2 cos h ( 10)

Fig. 2. Ec(h), Eqm(h) , and Es(h).
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where the vectors a
® and b

®
are defined by the angles a and b within the

plane perpendicular to the momentum of the particles.
Ec(h) and Eqm(h) are drawn in Fig. 2. One can see that for almost all

angles h, the quantum mechanical correlations are stronger than the classi-
cal ones. Therefore Eqm violates Bell’s inequality but the violation does not
exceed 2 Ï 2 as one can prove by inserting (10) into (5). Results described
by a quantum mechanical correlation function Eqm cannot, in general, be
represented consistently by local realistic models. As demonstrated for the
angles a, a¢ and b, b ¢ the results of the measurements Ra9 and Rb 9 cannot be
defined in such a way as to correspond to Eqm(a¢ , b ¢ ) as well as to
Eqm (a, b ) , Eqm(a¢ , b ) , and Eqm(a, b ¢ ).

4. STRONGER-THAN-QUANTUM CORRELATIONS

We now turn our attention to± ± merely hypothetical± ± `̀ extremely non-
classical correlations’’ and assume a stronger-than-quantum correlation
function of the form

E s(a, b )= E s(h) = sgn(2h/p 2 1)= sgn(Ec(h) ) ( 11)

where Ec(h) is the classical correlation function (7). Es(h) , along with Ec(h)
and Eqm (h) , is drawn in Fig. 2. One can clearly see that E s(h) takes the
tendency of the quantum correlation function to exceed classical correla-
tions to an extreme. This is also expressed by the fact that, since for
x= 2h/p 2 1 and 0 < h < p

sgn(x) = 5
2 1 ,
0,
+1 ,

for x< 0
for x= 0
for 0< x,

=
4
p

+
`

n = 0

sin[ (2n+ 1) x]
(2n+ 1)

=
4
p

+
`

n = 0

( 2 1 ) n cos[ ( 2n+ 1)(x 2 p/2)]
(2n+ 1)

( 12)

the quantum mechanical correlation function can be attributed to the first
summation term in Eq. (12). By considering also terms of higher order in
expansion (12) we get correlations which are stronger than the quantum
correlations. Then Bell’s inequality is violated by a larger value than 2 Ï 2.

977Stronger-Than- Quantum Correlations



The extreme correlation expressed by E s(h) implies that for angles a, b

with p/2 < |a2 b | < p, the results of observers A and B are perfectly
correlated (E s(h)= 1, ra, i rb , i= ++ or 2 2 , i= 1,..., N) , whereas they are
perfectly anticorrelated (E s(h)= 2 1; ra, i rb , i= + 2 or 2 + , i= 1,..., N) for
angles a, b with 0 < |a2 b | < p/2. This cannot be accommodated by any
classical theory under the assumption of local realism, nor can we think of
any quantum correlation satisfying it.

The hypothetical correlation function Es(h) gives rise to a maximum
violation of Bell’s inequality, since for the four angles a= p, a¢ = 6p/8,
b= p/8, and b ¢ = 3p/8

E s(a, b ) + E s(a¢ , b ) + E s(a, b ¢ ) 2 E s(a¢ , b ¢ ) = 4

A violation of Bell’s inequality by the maximum value of 4 has also been
studied by Popescu and Rohrlich ( 8) and, for a classical system, by Aerts. ( 16 )

As already mentioned in the introduction it has been shown that the maxi-
mum violation of Bell’s inequality permitted by quantum mechanics is
2 Ï 2. ( 4, 5)

Fig. 3. For the angles a= p, a¢ = 6p/8, b= p/8, and b ¢ = 3p/8 results are shown
which are correlated in a way defined by Es(a, b) (11). Again, `̀+’’ stands for +1
and `̀ 2 ’’ for 2 1. The correlation of the results in lists a¢ and b ¢ as defined by the
`̀ inner path’’ (n(a¢ , b )= n(a, b)= n(a, b ¢ )= 0, Es(a, b)= Es(a¢ , b)= Es(a, b ¢ )= 1, i.e.,
no sign changes) is completely inconsistent with the correlation of the same results
as defined by the `̀outer path’’ (n(a¢ , b ¢ ) = N, Es(a¢ , b ¢ ) = 2 1 , i.e., N sign changes).
Therefore the two lists b ¢ in and b ¢out are completely sing-reversed. For correlation
functions E which violate Bell’s inequality, the fraction of different results in the two
lists b ¢in and b ¢out is given by the extent of the violation and reaches 100% for the
hypothetical correlation function Es as shown in this figure. Such an extreme
correlation would be a two-particle analogue to the GHZ argument.
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Table I. Table of Classical (c), Quantum Mechanical (qm), and Stronger-than-Quantum (s)
Probabilities and Correlation Functionsa

c qm s

P= (h)= 2P++ (h)= 2P { { (h) h/p sin2(h/2) H(2h/p 2 1)
P Þ (h)= 2P+ { (h)= 2P { + (h) 1 2 h/p cos2(h/2) H(1 2 2h/p)

E(h)= P= (h) 2 P Þ (h) 2h/p 2 1 2 cos (h) sgn( 2h/p 2 1)

a H is the Heaviside function.

For the angles a= p, a¢ = 6p/8, b= p/8, and b ¢ = 3p/8 we now try to
write down results which are correlated as defined by E s(a, b ) in the same
way as shown in Fig. 1. Because n(a¢ , b ) = n(a, b ) = n(a, b ¢ )= 0 (E s(a, b ) =
Es(a¢ , b )= E s(a, b ¢ ) = 1) the results in lists a¢ and b ¢ have to be identical.
This demand is satisfied by the list b ¢in in Fig. 3. At the same time these
results have to be sign-reversed because n(a¢ , b ¢ )= N (E s(a¢ , b ¢ )= 2 1 ),
which is expressed by the list b ¢out .

In contrast to the classical case (Fig. 1) it is now no longer possible to
find four lists of results which satisfy the correlations as described by
Es(a, b ) ( 11). Therefore two different lists b ¢ ( b ¢in , b ¢out ) are shown in Fig. 3.
Of course the fraction of different results in these two lists may vary
depending on the function E. A comparison of the correlation functions
discussed in this paper (Ec , Eqm , and E s) is given in Table I. For E s the
fraction of different results in lists b ¢in and b ¢out is 100% (cf. Fig. 3). For
classical correlation functions (Ec ) this fraction is 0% ( b ¢in = b ¢out = b ¢ ) and
for quantum mechanical correlation functions (Eqm ) it is smaller than
( Ï 2 2 1) 100f 41.42%. Whereas Eqm contradicts local-realistic models
only on a statistical level, E s leads to a complete contradiction. This means
that out of all N particle pairs there is not a single one to which a consis-
tent quadruple of outcomes ( ra, ra9 , rb , and rb 9 ) can be assigned. Conse-
quently a violation of Bell’s inequality by the maximum value of 4 would
be a two-particle analogue to the GHZ argument.( 17)

5. DISCUSSION

We have seen that in the case of an extreme violation of Bell’s
inequality with the value 4 the results of observers A and B are either per-
fectly correlated (E s(h)= 1) (11) or perfectly anticorrelated (Es(h )= 2 1 ),
depending on the relative angle h= |a2 b |. If the angle b is fixed, observer
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A may `̀ switch’’ between perfect correlation and perfect anticorrelation by
changing the angle a adequately. One might think that in such a way
superluminal signals can be sent from observer A to observer B.

It becomes clear that this is impossible if one takes into account that
the outcomes of the single measurements on either side cannot be con-
trolled and occur at random. Experimenter A recording the outcomes for
particle 1 of subsequent particle pairs would for instance measure a ran-
dom sequence ++ 2 + 2 2 . . . , whereas, depending on the relative angle
h, observer B, recording the outcomes for the second particle of the respec-
tive pairs, would measure either the sequence++ 2 + 2 2 . . . ( for
h> p/2), or the sequence 2 2 + 2 ++ . . . ( for h< p/2). Since for both
experimenters the sequences of outcomes appear totally uncontrollable and
at random it is impossible to infer the value of h on the basis of one of
those sequences alone. This expresses the impossibility of faster-than-light
communication due to the outcome independence. Thus, as long as one
assumes unpredictability and/or randomness of the single outcomes ( cf.
Ref. 8) , the stronger-than-quantum correlation function Es saturates the
Roy ± Singh inequalities.( 18 ) See Refs. 19± 21 for other works which find max-
imal violation of the CHSH inequality consistent with relativity.

Whereas for 2-particle systems there seems to be no reason why
stronger-than-quantum correlations should be inconsistent either with the
foundations of physics or with probability theory, stronger-than-quantum
correlations lead to inconsistencies in 3-particle systems, as will be
demonstrated in the following.

Consider an entangled system of three spin-1
2 particles. Spin measure-

ments are performed on the particles in space-like separated regions by
three observers. The state is such that each observer gets the result +1 or
2 1 with equal probability independent of the direction along which the
spin is measured and of course also independent of the measurements per-
formed on the other particles. We divide the data of observers 1 and 2 into
two subensembles by a simple rule: If observer 3 gets the result 2 1 (+1 ),
the corresponding results of observers 1 and 2 are put into subensemble 2
(+ ). In such a way two subensembles of the results of observers 1 and 2
are defined by the results of observer 3. We can now investigate the two-
particle correlations in each subensemble applying Bell’s inequality.
Although in quantum mechanics the maximum violation of Bell’s inequality
is 2 Ï 2, ( 4, 5) we may discuss hypothetical situations in which stronger
correlations occur. Especially we are interested in the question, if the
results within the subensembles can in principle ( i.e., without leading to
inconsistencies, either with special relativity or probability theory) be
correlated in such a way that Bell’s inequality (1) is violated by the maxi-
mum value of 4.
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Consider the results of observers 1 and 2 before the separation into
subensembles took place. We assume that observers 1 and 2 have per-
formed spin measurements yielding a value of the correlation function (2)
different from zero, meaning that less than half of the results are equal, i.e.,
have equal sign (++ , 2 2 ) , or that less than half of the results are dif-
ferent, i.e., have different sign (+ 2 , 2 + ). It will turn out that this
assumption is sufficient to obtain an example for a case in which a viola-
tion of Bell’s inequality by the maximum value of 4 would be inconsistent
with special relativity.

The results of observers 1 and 2 are now separated into subensembles
following the procedure described above. Because by assumption half of the
results of observer 3 are 2 (+ ) , this separation cannot result in two suben-
sembles with the absolute value of the correlation function being 1 in both
subensembles. 4 However for a maximum violation of Bell’s inequality (by
the value of 4) it is a necessary condition that the values of the correlation
functions in (1) are 1. As soon as only one correlation function in (1) has
an absolute value smaller than 1, a maximum violation is no longer
possible. Therefore in our special case the results within at least one of the
subensembles (either subensemble + or 2 ) can never be correlated in a
way leading to a maximum violation of Bell’s inequality. The reason which
strictly excludes this possibility is the fact that for observer 3 the probabil-
ity to measure + or 2 must not depend on the kind of measurements
performed by observers 1 and 2, since such a dependence would enable
faster-than-light communication.

It now becomes clear that we have two conflicting assumptions in our
consideration, which prohibit the selection of subensembles appropriate for
a maximum violation of Bell’s inequality: on the one hand, the assumption
that less than half of the results of observers 1 and 2 are equal (different)
and, on the other hand, the assumption that observer 3 gets the result
+ and 2 with equal probability, independent of the correlations (measure-
ments) measured (performed) by observers 1 and 2. Because the second
assumption expresses the impossibility of superluminal signaling we may
conclude that in the special case denoted by the first assumption a correla-
tion within the subensembles leading to a violation of Bell’s inequality by
the maximum value of 4 would be inconsistent with special relativity.

However, if the first assumption is violated, i.e., if observers 1 and 2
find that the overall correlation function is zero, a maximum violation of
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Bell’s inequality is no longer inconsistent with special relativity, since then
half of the results of observers 1 and 2 have equal (different) sign. There-
fore, in contrast to the case discussed above, these results can in principle
be separated into one subensemble including only results with equal sign
and another one including only results with different sign, because by
assumption half of the results of observer 3 are + ( 2 ) . Thus the absolute
value of the correlation function is 1 in both subensembles and a maximum
violation of Bell’s inequality becomes feasible. Consequently, in order to
satisfy both requirements, maximal correlations and relativity, one is
restricted to the case where the overall correlation function is zero for
observers 1 and 2.

APPENDIX: QUANTUM EXPECTATION VALUE OF TWO

PARTICLES OF SPIN j IN A SINGLET STATE

C(h)= á J= 0, M= 0 | a . JÃ A Ä b . JÃ B |J= 0, M= 0 ñ

= +
m , m 9

á 00 | jm , j 2 m ñ á jm ¢ , j 2 m ¢ | 00 ñ

_ A á jm |B á j 2 m | a . JÃ A Ä b . JÃ B | jm ¢ ñ A | j 2 m ¢ ñ B

= +
m , m 9

á 00 | jm , j 2 m ñ á jm ¢ , j 2 m ¢ | 00 ñ

_ á jm | a . JÃ A | jm ¢ ñ á j 2 m | b . JÃ B | j 2 m ¢ ñ

= +
m , m 9

( 2 1 ) j { m ( 2 1 ) j { m 9

2 j+ 1
á jm | JÃ A

z | jm ¢ ñ á j 2 m | b . JÃ B | j 2 m ¢ ñ

= +
m , m 9

( 2 1 ) j { m ( 2 1 ) j { m 9

2 j+ 1
m dmm 9 á j 2 m | b . JÃ B | j 2 m ¢ ñ

= +
m

m
( 2 1 ) 2 j { 2m

2 j+ 1
á j 2 m | b . JÃ B | j 2 m ñ

=
1

2 j+ 1
+
m

2 m 2b z

= 2
1

2 j+ 1
cos h +

j

m = { j

m 2, for 0 < h < p

= 2
j( j+ 1)

3
cos h, for 0 < h < p
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