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Logic of Reversible Automata†
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The empirical logic of reversible automata is studied.

1. GENERAL DISCUSSION

Reversible computation is a computation which can be reversed com-
pletely: one may run the entire computation backward by inserting the output
as new input, thereby obtaining the input one started with.

In more formal terms, reversible computation can be characterized by
one-to-one operations; i.e., by a reversible, bijective evolution of the computer
states onto themselves [Lan61, Ben73, FT82, Ben82, Lan94, LH90]. If only
a finite number of such states are involved, this amounts to their permutation.
For such a restricted regime, many-to-one operations such as deletion of bits
or one-to-many operations such as copying are not allowed.

The flow diagram depicted in Fig. 1 was introduced by Landauer
[Lan94]. It illustrates differences between one-to-one, many-to-one, and one-
to-many information flows.

We shall concentrate on a particular class of reversible finite automata
which were first discussed in the UMC’98 workshop in Auckland [Svo98b].
Just like irreversible Mealy automata [HU79, Bra84], reversible ones will be
characterized by the following properties:

• a finite set S of states
• a finite input alphabet I
• a finite output alphabet O
• temporal transition function d: S 3 I → S
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Fig. 1. In this flow diagram, the lowest “root” represents the initial state of the computer.
Forward computation represents upward motion through a sequence of states represented
by open circles. Different symbols correspond to different computer states. (a) One-to-one
computation. (b) Many-to-one junction, which is information discarding. Several computational
paths, moving upward, merge into one. (c) One-to-many computation is allowed only if no
information is created and discarded; e.g., in copy operations on blank memory. From Lan-
dauer [Lan94].

• output function l: S 3 I → O

We additionally require one-to-one reversibility and assume that the set
of input and output symbols is identical, i.e.,

I 5 O.

Further we shall require that the combined (state and output) temporal evolu-
tion is associated with a one-to-one (bijective) map

u: (s, i) → (d(s, i), l(s, i)) (1)

with s P S and i P I. As will be discussed below, neither d nor l needs to
be a bijection. Note that the temporal evolution is characterized by the
transition and output function combined.

The elements of the Cartesian product S 3 I can be arranged as a linear
list of length n, just like a vector C; i.e., Cj is the jth element in the vectorial
representation of (s, i). In this sense, u can be identified with an n 3 n-
matrix which will be denoted by U. In analogy to quantum theory, we shall
call this matrix U the evolution matrix. Let Ujk be the element of U in the
jth row and the kth column.

We shall specify the form of the evolution matrix U next. Due to
conditions of determinism, uniqueness, and invertibility, we require the
following:

• Ujk 5 H1 iff the image of the jth element is the kth element
0 else
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That is, for a discrete time evolution labeled by T P Z, C(T 1 1)
5 UC(n).

• Orthogonality: U21 5 U t (superscript t means transposition); i.e.,
(U21)jk 5 Ukj.

• Doubly stochasticity: the sum of each row and column is one. That
is, (n

j51 Ujk 5 (n
k51 Ujk 5 1 [Lan73, Per93, Lou97].

Since U is a square matrix whose elements are either one or zero and which
has exactly one nonzero entry in each row and exactly one in each column,
it is a permutation matrix.

Before we consider examples, let us mention the connection between
permutation matrices and reversible automata. In fact, the correspondence
between permutation matrices and reversible automata is straightforward.2

Per definition [cf. Equation (1)], every reversible automaton is representable
by some permutation matrix. That every n 3 n permutation matrix corresponds
to an automaton can be demonstrated by considering the simplest case of a
one-state automaton with n input/output symbols. In this particular but rather
trivial case, the transition function is many-to-one (in fact, n-to-one), but the
output function is one-to-one (in fact, n-to-n).

There exist less trivial identifications. For example, let

U1 5 I 5 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2, U2 5 1
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

2
U3 5 1

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

2, U4 5 U2U3 5 1
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

2
The transition and output functions of the four corresponding reversible
automata are listed in Table I. Here, we have made the identifications

C 5 ((s1, l1), (s1, l2), (s2, l1), (s2, l2))

The associated flow diagrams are drawn in Fig. 2.
Let us now attempt to model the measurement process within a system

whose states evolve according to a one-to-one evolution. This is distinct from
the orthodox quantum mechanical conception of an irreversible measurement

2 Indeed, by taking the pairs (s, i) P S 3 I as states of a new finite automaton (with empty
output), the permutation matrix is just the adjacency matrix of the transition diagram of this
automaton [LM95, Ei174, Big93].
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Table I. Transition and Output Table of Four Reversible Automata M1, M2, M3, and M4

with Two States S 5 {s1, s2} and Two Input/Output Symbols I 5 {1, 2}a

d l

S \ I 1 2 1 2

M1

s1 s1 s1 1 2
s2 s2 s2 1 2

M2

s1 s1 s2 1 1
s2 s1 s2 2 2

M3

s1 s1 s1 2 1
s2 s2 s2 1 2

M4

s1 s1 s2 2 1
s2 s1 s2 1 2

a For M1, the transition as well as the output function is one-to-one. For M2, the transition
function is many-to-one, but the output function is one-to-one. For M3, the transition function
is one-to-one, but the output function is many-to-one. M4 is a concatenation of M3 and M2.
Both its transition function as well as its output function are many-to-one.

associated with the reduction of the state vector or with the notorious “wave
function collapse.”

In what follows we shall artificially divide a reversible system into an
“inside” and an “outside” region [Bos55, Tof78, Svo83, Svo86a, Svo86b,
Rös87, Rös92, GW92, Svo93, Chapter 6]. This can be suitably represented
by introducing a black box which contains the “inside” region—the subsystem
to be measured—whereas the remaining “outside” region is interpreted as
the measurement apparatus. An input and an output interface mediate all
interactions of the “inside” with the “outside,” of the “observed” and the
“observer” by symbolic exchange. Let us assume that, despite such symbolic
exchanges via the interfaces (for all practical purposes), to an outside observer
what happens inside the black box is a hidden, inaccessible arena. This
establishes an (arguably artificial) cut between the observer and the observed.

Throughout temporal evolution, not only is information transformed
one-to-one (bijectively, isomorphically) inside the black box, but this informa-
tion is handled one-to-one after it appears on the black box interfaces. It
might seem evident at first glance that the symbols appearing on the interfaces
should be treated as classical information, which could in principle be copied.
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Fig. 2. Flow diagram of one evolution cycle of the reversible automata listed in Table I.

The possibility to copy the experiment (input and output) enables the applica-
tion of Bennett’s strategy [Ben73]: in such a case, one keeps the experimental
finding by copying it, reverses the system evolution, and starts with a “fresh”
black box system in its original initial state. The result is a classical Boolean
calculus with no computational complementarity [CCŞ98].

The scenario is drastically changed, however, if we assume a one-to-
one evolution also for the environment at and outside of the black box. That
is, one deals with a homogeneous and uniform one-to-one evolution “inside”
and “outside” of the black box, thereby assuming that the experimenter also
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evolves one-to-one and not classically. In our toy automaton model, this could,
for instance, be realized by some automaton corresponding to a permutation
operator U inside the black box, and another reversible automaton correspond-
ing to another U 8 outside of it. Conventionally, U and U 8 correspond to the
measured system and the measurement device, respectively.

In such a case, as there is no copying due to one-to-one evolution, and
in order to set back the system to its original initial state, the experimenter
would have to invest all knowledge bits of information acquired so far. The
experiment would have to evolve back to the initial state of the measurement
device and the measured system prior to the measurement. This is similar to
the opening, closing, and reopening of Schrödinger’s catalogue of expectation
values [Sch35, p. 823; GY89, HKWZ95]).

As a result, the representation of measurement results in one-to-one
reversible systems may cause a particular class [Svo93, SS96, DPS95,
Svo98a] of complementarity due to the impossibility of measuring all variants
of the representation at once.
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