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Abstract

We present two geometric proofs for KochenSpecker’s theorem [S. Kochen, E. P.
Specker: The problem of hidden variables in quantum mechanics, J. Math. Mech.
17 (1967), 5987]. A quite similar argument has been used by Cooke, Keane, Moran
[R. Cooke, M. Keane, W. Moran: An elementary proof of Gleason’s theorem, Math.
Proc. Camb. Phil. Soc. 98 (1985), 117128], and by Kalmbach in her book to derive
Gleason’s theorem.

1 Introduction

The Kochen and Specker theorem [11] (cf. also Specker [17], Zierler and Schlessinger [22]
and John Bell [3]; see the reviews by Peres [13, 14], Redhead [16], Clifton [6], Mermin
[12], and Svozil and Tkadlec [20], among others) – as it is commonly argued, e.g. by
Peres [14] and Mermin [12] – is directed against the noncontextual hidden parameter
program envisaged by Einstein, Podolsky and Rosen (EPR) [9]. Indeed, if one takes into
account the entire Hilbert logic (of dimension larger than two) and if one considers all
states thereon, any truth value assignment to quantum propositions prior to the actual
measurement yields a contradiction. This can be proven by finitistic means, that is, by
considering only a finite number of one-dimensional closed linear subspaces.

But, the Kochen Specker argument continues, it is always possible to prove the exis-
tence of separable truth assignments for classical propositional systems identifiable with
Boolean algebras. Hence, there does not exist any injective morphism from a quantum
logic into some Boolean algebra.

Rather than rephrasing the Kochen and Specker argument [11] concerning nonexistence
of truth assignments in three-dimensional Hilbert logics in its original form or in terms
of less subspaces (cf. Peres [14], Mermin [12]), or of Greechie diagrams, which represent
co–measurability (commutativity) very nicely (cf. Svozil and Tkadlec [20], Svozil [19]), we
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shall give two geometric arguments which are derived from proof methods for Gleason’s
theorem (see Piron [15], Cooke, Keane, and Moran [7], and Kalmbach [10]).

Let L be the lattice of closed linear subspaces of the three-dimensional real Hilbert
space R

3. A two-valued probability measure on L is a map v : L → {0, 1} which maps
the zero-dimensional subspace containing only the origin (0, 0, 0) to 0, the full space R

3

to 1, and which is additive on orthogonal subspaces. This means that for two orthogonal
subspaces s1, s2 ∈ L the sum of the values v(s1) and v(s2) is equal to the value of the
linear span of s1 and s2. Hence, if s1, s2, s3 ∈ L are a tripod of pairwise orthogonal
one-dimensional subspaces, then

v(s1) + v(s2) + v(s3) = v(R3) = 1.

The two-valued probability measure v must map one of these subspaces to 1 and the other
two to 0. We will show that there is no such map. In fact, we will show the assertion (∗):

there is no map v which is defined on all one-dimensional subspaces of R
3

and maps exactly one subspace out of each tripod of pairwise orthogonal one-

dimensional subspaces to 1 and the other two to 0.

In the following we often identify a one-dimensional subspace of R3 with one of its two
intersection points with the unit sphere

S2 = {x ∈ R
3 | ||x|| = 1} .

In the statements “a point (on the unit sphere) has value 0 (or value 1)” or that “two points
(on the unit sphere) are orthogonal” we always mean the corresponding one-dimensional
subspaces. Note also that the intersection of a two-dimensional subspace with the unit
sphere is a great circle.

2 First proof

To start the first proof, let us assume that a function v satisfying the above condition
exists. Let us consider an arbitrary tripod of orthogonal points and let us fix the point
with value 1. By a rotation we can assume that it is the north pole with the coordinates
(0, 0, 1). Then, by the condition above, all points on the equator {(x, y, z) ∈ S2 | z = 0}
must have value 0 since they are orthogonal to the north pole.

Let q = (qx, qy, qz) be a point in the northern hemisphere, but not equal to the north
pole, that is 0 < qz < 1. Let C(q) be the unique great circle which contains q and the

points ±(qy,−qx, 0)/
√

q2x + q2y in the equator, which are orthogonal to q. Obviously, q is

the northern-most point on C(q). To see this, rotate the sphere around the z-axis so that
q comes to lie in the {y = 0}-plane; see Figure 1. Then the two points in the equator
orthogonal to q are just the points ±(0, 1, 0), and C(q) is the intersection of the plane
through q and (0, 1, 0) with the unit sphere, hence

C(q) = {p ∈ R
3 | (∃ α, β ∈ R) α2 + β2 = 1 and p = αq + β(0, 1, 0)} .
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This shows that q has the largest z-coordinate among all points in C(q).

q

C(q)

z

x

north pole (0,0,1)

between C(q) 
and the equator

Figure 1: The great circle C(q)

Assume that q has value 0. We claim that then all points on C(q) must have value 0.

Indeed, since q has value 0 and the orthogonal point (qy,−qx, 0)/
√

q2x + q2y on the equator

also has value 0, the one-dimensional subspace orthogonal to both of them must have
value 1. But this subspace is orthogonal to all points on C(q). Hence all points on C(q)
must have value 0.

Now, still assuming that q has value 0, we consider an arbitrary point q̃ on C(q) in the
northern hemisphere. We have just seen that q̃ has value 0. We claim that now by the same
argument as above also all points on the great circle C(q̃) must have value 0. Namely,

C(q̃) is the unique great circle which contains q̃ and the points ±(q̃y,−q̃x, 0)/
√

q̃2x + q̃2y
in the equator, which are orthogonal to q̃. Since q̃ has value 0 and the orthogonal point

(q̃y,−q̃x, 0)/
√

q̃2x + q̃2y in the equator has value 0, the one-dimensional subspace orthogonal

to both of them must have value 1. But this subspace is orthogonal to all points on C(q̃).
Hence all points on C(q̃) must have value 0.

The great circle C(q) divides the northern hemisphere into two regions, one containing
the north pole, the other consisting of the points below C(q) or “lying between C(q) and
the equator”, see Figure 1. The circles C(q̃) with q̃ ∈ C(q) certainly cover the region
between C(q) and the equator.1 Hence any point in this region must have value 0.

But the circles C(q̃) cover also a part of the other region. In fact, we can iterate this
process. We say that a point p in the northern hemisphere can be reached from a point q in
the northern hemisphere, if there is a finite sequence of points q = q0, q1, . . . , qn−1, qn = p
in the northern hemisphere such that qi ∈ C(qi−1) for i = 1, . . . , n. Our consideration
above shows that if q has value 0 and p can be reached from q, then also p has value 0.

1This will be shown formally in the proof of the geometric lemma below.
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The following geometric lemma due to Piron [15] (see also Cooke, Keane, and Moran
[7] or Kalmbach [10]) is a consequence of the fact that the curve C(q) is tangent to the
horizontal plane through the point q.

If q and p are points in the northern hemisphere with pz < qz, then p can be

reached from q.

This lemma will be proved in an appendix. We conclude that, if a point q in the northern
hemisphere has value 0, then every point p in the northern hemisphere with pz < qz must
have value 0 as well.

Consider the tripod (1, 0, 0), (0, 1√
2
, 1√

2
), (0,− 1√

2
, 1√

2
). Since (1, 0, 0) (on the equator)

has value 0, one of the two other points has value 0 and one has value 1. By the geometric
lemma and our above considerations this implies that all points p in the northern hemi-
sphere with pz <

1√
2
must have value 0 and all points p with pz >

1√
2
must have value 1.

But now we can choose any point p′ with 1√
2
< p′z < 1 as our new north pole and deduce

that the function v must have the same form with respect to this pole. This is clearly
impossible. Hence, we have proved our assertion (∗).

3 Second proof

In the following we give a second topological and geometric proof for (∗). In this proof we
shall not use the geometric lemma above.

Fix an arbitrary point on the unit sphere with value 0. The great circle consisting of
points orthogonal to this point splits into two disjoint sets, the set of points with value 1,
and the set of points orthogonal to these points. They have value 0. If one of these two
sets were open, then the other had to be open as well. But this is impossible since the
circle is connected and cannot be the union of two disjoint open sets. Hence the circle
must contain a point p with value 1 and a sequence of points q(n), n = 1, 2, . . . with value
0 converging to p. By a rotation we can assume that p is the north pole and the circle
lies in the {y = 0}-plane. Furthermore we can assume that all points qn have the same
sign in the x-coordinate. Otherwise, choose an infinite subsequence of the sequence q(n)
with this property. In fact, by a rotation we can assume that all points q(n) have positive
x-coordinate (i.e. all points q(n), n = 1, 2, . . . lie as the point q in Figure 1 and approach
the northpole as n tends to infinity). All points on the equator have value 0. By the
first step in the proof of the geometric lemma in the appendix, all points in the northern
hemisphere which lie between C(q(n)) (the great circle through q(n) and ±(0, 1, 0)) and
the equator can be reached from q(n). Hence, as we have seen in the first proof, v(q(n)) = 0
implies that all these points must have value zero. Since q(n) approaches the northpole,
the union of the regions between C(q(n)) and the equator is equal to the open right half
{q ∈ S2 | qz > 0, qx > 0} of the northern hemisphere. Hence all points in this set have value
0. Let q be a point in the left half {q ∈ S2 | qz > 0, qx < 0} of the northern hemisphere. It

forms a tripod together with the point (qy,−qx, 0)/
√

q2x + q2y in the equator and the point

(−qx,−qy,
q2x + q2y

qz
)/||(−qx,−qy,

q2x + q2y
qz

)||
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in the right half. Since these two points have value 0, the point q must have value 1. Hence
all points in the left half of the northern hemisphere must have value 1. But this leads
to a contradiction because there are tripods with two points in the left half, for example
the tripod (−1

2
, 1√

2
, 1
2
), (−1

2
,− 1√

2
, 1
2
), ( 1√

2
, 0, 1√

2
). This completes the second proof for (∗)

and, hence, for the fact that there is no two-valued probability measure on the lattice of
subspaces of the three-dimensional Euclidean space which preserves the lattice operations
at least for orthogonal elements.

4 Final comments

Do the partial order and lattice operations of a quantum logic correspond to the logical
implication and connectives of classical logic? Kochen and Specker’s theorem answers the
above question in the negative. However, this answer is just one among different possible
ones, not all negative. In a forthcoming article [5] we discuss the above question in terms of
mappings of quantum worlds into classical ones, more specifically, in terms of embeddings
of quantum logics into classical logics; depending upon the type of restrictions imposed
on embeddings the question may get negative or positive answers.

Appendix: Proof of the geometric lemma

In this appendix we are going to prove the geometric lemma due to Piron [15] which was
formulated in Section 2.2. First let us restate it. Consider a point q in the northern
hemisphere of the unit sphere S2 = {p ∈ R

3 | ||p|| = 1}. By C(q) we denote the unique

great circle which contains q and the points ±(qy,−qx, 0)/
√

q2x + q2y in the equator, which

are orthogonal to q, compare Figure 1. We say that a point p in the northern hemisphere
can be reached from a point q in the northern hemisphere, if there is a finite sequence of
points q = q0, q1, . . . , qn−1, qn = p in the northern hemisphere such that qi ∈ C(qi−1) for
i = 1, . . . , n. The lemma states:

If q and p are points in the northern hemisphere with pz < qz, then p can be

reached from q.

For the proof we follow Cooke, Keane, and Moran [7] and Kalmbach [10]). We consider
the tangent plane H = {p ∈ R

3 | pz = 1} of the unit sphere in the north pole and the
projection h from the northern hemisphere onto this plane which maps each point q in the
northern hemisphere to the intersection h(q) of the line through the origin and q with the
plane H. This map h is a bijection. The north pole (0, 0, 1) is mapped to itself. For each
q in the northern hemisphere (not equal to the north pole) the image h(C(q)) of the great
circle C(q) is the line in H which goes through h(q) and is orthogonal to the line through
the north pole and through h(q). Note that C(q) is the intersection of a plane with S2,
and h(C(q)) is the intersection of the same plane with H; see Figure 2. The line h(C(q))
divides H into two half planes. The half plane not containing the north pole is the image
of the region in the northern hemisphere between C(q) and the equator. Furthermore note
that qz > pz for two points in the northern hemisphere if and only if h(p) is further away
from the north pole than h(q). We proceed in two steps.
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✉ ✉

the north pole

(0, 0, 1)

the image of the

region between C(q)

and the equator
h(q)

h(C(q))

Figure 2: The plane H viewed from above

Step 1. First, we show that, if p and q are points in the northern hemisphere and p
lies in the region between C(q) and the equator, then p can be reached from q. In fact,
we show that there is a point q̃ on C(q) such that p lies on C(q̃). Therefore we consider
the images of q and p in the plane H; see Figure 3. The point h(p) lies in the half plane
bounded by h(C(q)) not containing the north pole. Among all points h(q′) on the line

✉ ✉

the north pole

(0, 0, 1)

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✑✑
✑✑

✉

❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏
❏

✉

h(q)

h(p)

h(q̃)

h(C(q̃))

h(C(q))

Figure 3: The point p can be reached from q

h(C(q)) we set q̃ to be one of the two points such that the line trough the north pole and
h(q′) and the line through h(q′) and h(p) are orthogonal. Then this last line is the image
of C(q̃), and C(q̃) contains the point p. Hence p can be reached from q. Our first claim is
proved.

Step 2. Fix a point q in the northern hemisphere. Starting from q we can wander
around the northern hemisphere along great circles of the form C(p) for points p in the
following way: for n ≥ 5 we define a sequence q0, q1, . . . , qn by setting q0 = q and by
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choosing qi+1 to be that point on the great circle C(qi) such that the angle between
h(qi+1) and h(qi) is 2π/n. The image in H of this configuration is a shell where h(qn) is
the point furthest away from the north pole; see Figure 4. First, we claim that any point p

r

h(q) = h(q0)
h(q16)

d0

h(q2)

h(q1)

h(q14)

h(q15)
d14

d15

d16

Figure 4: The shell in the plane H for n = 16

on the unit sphere with pz < (qn)z can be reached from q. Indeed, such a point corresponds
to a point h(p) which is further away from the north pole than h(qn). There is an index
i such that h(p) lies in the half plane bounded by h(C(qi)) and not containing the north
pole, hence such that p lies in the region between C(qi) and the equator. Then, as we have
already seen, p can be reached from qi and hence also from q. Secondly, we claim that qn
approaches q as n tends to infinity. This is equivalent to showing that the distance of h(qn)
from (0, 0, 1) approaches the distance of h(q) from (0, 0, 1). Let di denote the distance of
h(qi) from (0, 0, 1) for i = 0, . . . , n. Then di/di+1 = cos(2π/n), see Figure 4. Hence
dn = d0 · cos(2π/n)

−n. That dn approaches d0 as n tends to infinity follows immediately
from the fact that cos(2π/n)n approaches 1 as n tends to infinity. For completeness sake2

we prove it by proving the equivalent statement that log(cos(2π/n)n) tends to 0 as n
tends to infinity. Namely, for small x we know the formulae cos(x) = 1 − x2/2 + O(x4)
and log(1 + x) = x+O(x2). Hence, for large n,

log(cos(2π/n)n) = n · log(1− 2
π2

n2
+O(n−4))

2Actually, this is an exercise in elementary analysis.
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= n · (−2
π2

n2
+O(n−4))

= −
2π2

n
+O(n−3) .

This ends the proof of the geometric lemma.
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