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ABSTRACT. We present two geometric proofs for Kochen{Specker's theorem. A

quite similar argument has been used by Cooke, Keane, Moran, and by Kalmbach

in her book to derive Gleason's theorem.

1. Introduction

The Kochen {Specker theorem [11] (cf. also S p e c k e r [17], Z i e r l e r and

S c h l e s s i n g e r [22] and John B e l l [3]; see the reviews by P e r e s [13, 14],

R e d h e a d [16], C l i f t o n [6], M e rm i n [12], and S v o z i l and T k a d l e c

[20], among others)|as it is commonly argued, e.g., by P e r e s [14] and

M e r m i n [12]| is directed against the noncontextual hidden parameter pro-

gram envisaged by E i n s t e i n , P o d o l s k y and R o s e n (EPR) [9]. Indeed,

if one takes into account the entire Hilbert logic (of dimension larger than two)

and if one considers all states thereon, any truth value assignment to quantum

propositions prior to the actual measurement yields a contradiction. This can

be proven by �nitistic means, that is, by considering only a �nite number of

one-dimensional closed linear subspaces.

But, the Kochen{Specker argument continues, it is always possible to prove

the existence of separable truth assignments for classical propositional systems

identi�able with Boolean algebras. Hence, there does not exist any injective

morphism from a quantum logic into some Boolean algebra.

Rather than rephrasing the Kochen and Specker argument [11] concerning

the nonexistence of truth assignments in three-dimensional Hilbert logics in its
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original form or in terms of less subspaces (cf. P e r e s [14], M e r m i n [12]), or

of Greechie diagrams, which represent co{measurability (commutativity) very

nicely (cf. S v o z i l and T k a d l e c [20], S v o z i l [19l]), we shall give two geo-

metric arguments which are derived frommethods of proof for Gleason's theorem

(see P i r o n [15], C o o k e , K e a n e , and M o r a n [7], K a l m b a c h [10], and

D v u r e �c e n s k i j [8]).

Let L be the lattice of closed linear subspaces of the three-dimensional real

Hilbert space R

3

. A two-valued probability measure on L is a map v : L! f0; 1g

which maps the zero-dimensional subspace containing only the origin (0; 0; 0)

to 0, the full space R

3

to 1, and which is additive on orthogonal subspaces.

This means that for two orthogonal subspaces s

1

; s

2

2 L the sum of the values

v(s

1

) and v(s

2

) is equal to the value of the linear span of s

1

and s

2

. Hence,

if s

1

; s

2

; s

3

2 L are a tripod of pairwise orthogonal one-dimensional subspaces,

then

v(s

1

) + v(s

2

) + v(s

3

) = v(R

3

) = 1 :

The two-valued probability measure v must map one of these subspaces to 1

and the other two to 0. We will show that there is no such map. In fact, we will

show the assertion (�) :

There is no map v which is de�ned on all one-dimensional subspaces

of R

3

and maps exactly one subspace out of each tripod of pairwise

orthogonal one-dimensional subspaces to 1 and the other two to 0.

In the following we often identify a one-dimensional subspace of R

3

with one

of its two intersection points with the unit sphere

S

2

=

�

x 2 R

3

: kxk = 1

	

:

In the statements \a point (on the unit sphere) has value 0 (or value 1)" or

that \two points (on the unit sphere) are orthogonal" we always mean the cor-

responding one-dimensional subspaces. Note also that the intersection of a two-

dimensional subspace with the unit sphere is a great circle.

2. First proof

To start the �rst proof, let us assume that a function v satisfying the above

condition exists. Let us consider an arbitrary tripod of orthogonal points and let

us �x the point with value 1. By a rotation we can assume that it is the north

pole with the coordinates (0; 0; 1). Then, by the condition above, all points on

the equator

�

(x; y; z) 2 S

2

: z = 0

	

must have value 0 since they are orthogonal

to the north pole.
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Let q = (q

x

; q

y

; q

z

) be a point in the northern hemisphere, but not equal to

the north pole, that is 0 < q

z

< 1. Let C(q) be the unique great circle which

contains q and the points �

�

q

y

;�q

x

; 0

�

.

q

q

2

x

+ q

2

y

in the equator, which are

orthogonal to q .

Obviously, q is the northern-most point on C(q) . To see this, rotate the

sphere around the z-axis so that q comes to lie in the fy=0g-plane; see Figure 1.

Then the two points in the equator orthogonal to q are just the points �(0; 1; 0),

and C(q) is the intersection of the plane generated by q and (0; 1; 0) with the

unit sphere, hence

C(q) =

�

p 2 R

3

: (9�; � 2 R) �

2

+ �

2

= 1 and p = �q + �(0; 1; 0)

	

:

This shows that q has the largest z-coordinate among all points in C(q) .

q

C(q)

z

x

north pole (0,0,1)

between C(q) 
and the equator

Figure 1. The great circle C(q)

Assume that q has value 0. We claim that then all points on C(q) must have

value 0. Indeed, since q has value 0 and the orthogonal point

�

q

y

;�q

x

; 0

�

.

q

q

2

x

+ q

2

y

on the equator also has value 0, the one-dimensional subspace ortho-

gonal to both of them must have value 1. But this subspace is orthogonal to all

points on C(q) . Hence all points on C(q) must have value 0.

Now, still assuming that q has value 0, we consider an arbitrary point ~q on

C(q) in the northern hemisphere. We have just seen that ~q has value 0. We

claim that now by the same argument as above also all points on the great circle

C(~q) must have value 0. Namely, C(~q) is the unique great circle which contains

~q and the points �

�

~q

y

;�~q

x

; 0

�

.

q

~q

2

x

+ ~q

2

y

in the equator, which are orthogonal

to ~q . Since ~q has value 0 and the orthogonal point

�

~q

y

;�~q

x

; 0

�

.

q

~q

2

x

+ ~q

2

y

in

the equator has value 0, the one-dimensional subspace orthogonal to both of

them must have value 1. But this subspace is orthogonal to all points on C(~q) .

Hence all points on C(~q) must have value 0.
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The great circle C(q) divides the northern hemisphere into two regions, one

containing the north pole, the other consisting of the points below C(q) or \lying

between C(q) and the equator", see Figure 1. The circles C(~q) with ~q 2 C(q)

certainly cover the region between C(q) and the equator.

1

Hence any point in

this region must have value 0.

But the circles C(~q) also cover a part of the other region. In fact, we can

iterate this process. We say that a point p in the northern hemisphere can be

reached from a point q in the northern hemisphere, if there is a �nite sequence

of points q = q

0

; q

1

; : : : ; q

n�1

; q

n

= p in the northern hemisphere such that

q

i

2 C(q

i�1

) for i = 1; : : : ; n . Our consideration above shows that if q has

value 0 and p can be reached from q , then also p has value 0.

The following geometric lemma due to P i r o n [15] (see also C o o k e ,

K e a n e , and Mo r a n [7], K a l m b a c h [10] or D v u r e �c e n s k i j [8]) is a

consequence of the fact that the curve C(q) is tangent to the horizontal plane

through the point q .

Lemma. If q and p are points in the northern hemisphere with p

z

< q

z

, then

p can be reached from q .

This lemma will be proved in the Appendix. We conclude that, if a point

q in the northern hemisphere has value 0, then every point p in the northern

hemisphere with p

z

< q

z

must have value 0 as well.

Consider the tripod (1; 0; 0),

�

0;

1

p

2

;

1

p

2

�

,

�

0;�

1

p

2

;

1

p

2

�

. Since (1; 0; 0) (on

the equator) has value 0, one of the two other points has value 0 and one has

value 1. By the geometric lemma and our above considerations this implies that

all points p in the northern hemisphere with p

z

<

1

p

2

must have value 0 and all

points p with p

z

>

1

p

2

must have value 1. But now we can choose any point p

0

with

1

p

2

< p

0

z

< 1 as our new north pole and deduce that the function v must

have the same form with respect to this pole. This is clearly impossible. Hence,

we have proved our assertion (�) .

3. Second proof

In the following we give a second topological and geometric proof of (�) . In

this proof we shall not use the geometric lemma above.

Fix an arbitrary point on the unit sphere with value 0. The great circle

consisting of points orthogonal to this point splits into two disjoint sets, the set

of points with value 1, and the set of points orthogonal to these points. They

1

This will be shown formally in the proof of the geometric lemma below.
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have value 0. If one of these two sets were open, then the other would have to be

open as well. But this is impossible since the circle is connected and cannot be

the union of two disjoint open sets. Hence the circle must contain a point p with

value 1 and a sequence of points q(n) , n = 1; 2; : : : with value 0 converging

to p . By a rotation we can assume that p is the north pole and the circle lies

in the fy = 0g-plane. Furthermore we can assume that all points q

n

have the

same sign in the x-coordinate. Otherwise, choose an in�nite subsequence of the

sequence q(n) with this property. In fact, by a rotation we can assume that all

points q(n) have positive x-coordinate (i.e., all points q(n) , n = 1; 2; : : : lie as

the point q in Figure 1 and approach the northpole as n tends to in�nity). All

points on the equator have value 0. By the �rst step in the proof of the geometric

lemma in the appendix, all points in the northern hemisphere which lie between

C

�

q(n)

�

(the great circle through q(n) and �(0; 1; 0)) and the equator can

be reached from q(n) . Hence, as we have seen in the �rst proof, v

�

q(n)

�

= 0

implies that all these points must have value 0. Since q(n) approaches the

northpole, the union of the regions between C

�

q(n)

�

and the equator is equal

to the open right half fq 2 S

2

: q

z

> 0 ; q

x

> 0g of the northern hemisphere.

Hence all points in this set have value 0. Let q be a point in the left half

fq 2 S

2

: q

z

> 0 ; q

x

< 0g of the northern hemisphere. It forms a tripod

together with the point

�

q

y

;�q

x

; 0

�

.

q

q

2

x

+ q

2

y

in the equator and the point

�

� q

x

;�q

y

;

q

2

x

+ q

2

y

q

z

��













�

� q

x

;�q

y

;

q

2

x

+ q

2

y

q

z

�













in the right half. Since these two points have value 0, the point q must have

value 1. Hence all points in the left half of the northern hemisphere must

have value 1. But this leads to a contradiction because there are tripods with

two points in the left half, for example the tripod

�

�

1

2

;

1

p

2

;

1

2

�

,

�

�

1

2

;�

1

p

2

;

1

2

�

,

�

1

p

2

; 0;

1

p

2

�

. This completes the second proof of (�) and, hence, of the fact

that there is no two-valued probability measure on the lattice of subspaces of

the three-dimensional Euclidean space which preserves the lattice operations at

least for orthogonal elements.

4. Final comments

Do the partial order and lattice operations of a quantum logic correspond to

the logical implication and connectives of classical logic? Kochen and Specker's

theorem answers the above question in the negative. However, this answer is

just one among di�erent possible ones, not all negative. In a forthcoming article

[5] we discuss the above question in terms of mappings of quantum worlds into
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classical ones, more speci�cally, in terms of embeddings of quantum logics into

classical logics; depending upon the type of restrictions imposed on embeddings

the question may get negative or positive answers.

Appendix: Proof of the geometric lemma

In this appendix we are going to prove the geometric lemma due to P i r o n

[15] which was formulated in Section 2. First let us restate it. Consider a point

q in the northern hemisphere of the unit sphere S

2

= fp 2 R

3

: kpk = 1g .

By C(q) we denote the unique great circle which contains q and the points

�(q

y

;�q

x

; 0)

.

q

q

2

x

+ q

2

y

on the equator, which are orthogonal to q , compare

Figure 1. We say that a point p in the northern hemisphere can be reached

from a point q in the northern hemisphere, if there is a �nite sequence of points

q = q

0

; q

1

; : : : ; q

n�1

; q

n

= p in the northern hemisphere such that q

i

2 C(q

i�1

)

for i = 1; : : : ; n . The lemma states:

Lemma. If q and p are points in the northern hemisphere with p

z

< q

z

, then

p can be reached from q .

For the proof we follow C o o k e , K e a n e , and Mo r a n [7] and K a l m -

b a c h [10]. We consider the tangent plane H = fp 2 R

3

: p

z

= 1g of the unit

sphere in the north pole and the projection h from the northern hemisphere

onto this plane which maps each point q in the northern hemisphere to the

intersection h(q) of the line through the origin and q with the plane H . This

map h is a bijection. The north pole (0; 0; 1) is mapped to itself. For each q in

the northern hemisphere (not equal to the north pole) the image h

�

C(q)

�

of the

great circle C(q) is the line in H which goes through h(q) and is orthogonal

to the line through the north pole and through h(q) . Note that C(q) is the

intersection of a plane with S

2

, and h

�

C(q)

�

is the intersection of the same

plane with H ; see Figure 2.

The line h

�

C(q)

�

divides H into two half planes. The half plane not con-

taining the north pole is the image of the region in the northern hemisphere

between C(q) and the equator. Furthermore note that q

z

> p

z

for two points

in the northern hemisphere if and only if h(p) is further away from the north

pole than h(q) . We proceed in two steps.

Step 1. First, we show that, if p and q are points in the northern hemisphere

and p lies in the region between C(q) and the equator, then p can be reached

from q . In fact, we show that there is a point ~q on C(q) such that p lies on

C(~q) . Therefore we consider the images of q and p in the plane H ; see Figure 3.

The point h(p) lies in the half plane bounded by h(C(q)) not containing the
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u u

the north pole

(0; 0; 1)

the image of the

region between C(q)

and the equator

h(q)

h

�

C(q)

�

Figure 2. The plane H viewed from above

north pole. Among all points h(q

0

) on the line h(C(q)) we set ~q to be one of

the two points such that the line through the north pole and h(q

0

) and the line

through h(q

0

) and h(p) are orthogonal. Then this last line is the image of C(~q) ,

and C(~q) contains the point p . Hence p can be reached from q . Our �rst claim

is proved.

u u

the north pole

(0; 0; 1)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

u

J

J

J

J

J

J

J

J

J

J

J

J

J

u

h(q)

h(p)

h(~q)

h(C(~q))

h(C(q))

Figure 3. The point p can be reached from q

Step 2. Fix a point q in the northern hemisphere. Starting from q we can

wander around the northern hemisphere along great circles of the form C(p)

for points p in the following way: for n � 5 we de�ne a sequence q

0

; q

1

; : : : ; q

n

by setting q

0

= q and by choosing q

i+1

to be that point on the great circle
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C(q

i

) such that the angle between h(q

i+1

) and h(q

i

) is 2�=n . The image in H

of this con�guration is a shell where h(q

n

) is the point furthest away from the

north pole; see Figure 4. First, we claim that any point p on the unit sphere

with p

z

< (q

n

)

z

can be reached from q . Indeed, such a point corresponds to

a point h(p) which is further away from the north pole than h(q

n

) . There is

an index i such that h(p) lies in the half plane bounded by h

�

C(q

i

)

�

and not

containing the north pole, hence such that p lies in the region between C(q

i

)

and the equator.

r

h(q) = h(q

0

)

h(q

16

)

d

0

h(q

2

)

h(q

1

)

h(q

14

)

h(q

15

)

d

14

d

15

d

16

Figure 4. The shell in the plane H for n = 16.

Then, as we have already seen, p can be reached from q

i

and hence also

from q . Secondly, we claim that q

n

approaches q as n tends to in�nity. This

is equivalent to showing that the distance of h(q

n

) from (0; 0; 1) approaches

the distance of h(q) from (0; 0; 1). Let d

i

denote the distance of h(q

i

) from

(0; 0; 1) for i = 0; : : : ; n . Then d

i

=d

i+1

= cos(2�=n) , see Figure 4. Hence

d

n

= d

0

� cos(2�=n)

�n

. That d

n

approaches d

0

as n tends to in�nity follows

immediately from the fact that cos(2�=n)

n

approaches 1 as n tends to in�nity.

For completeness sake

2

we prove it by proving the equivalent statement that

2

Actually, this is an exercise in elementary analysis.
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log(cos(2�=n)

n

) tends to 0 as n tends to in�nity. Namely, for small x we know

the formulae cos(x) = 1�x

2

=2+O(x

4

) and log(1+x) = x+O(x

2

) . Hence, for

large n ,

log(cos(2�=n)

n

) = n � log

�

1� 2

�

2

n

2

+O(n

�4

)

�

= n �

�

� 2

�

2

n

2

+O(n

�4

)

�

= �

2�

2

n

+O(n

�3

) :

This ends the proof of the geometric lemma.
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