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Abstract. Two aspects of the physical side of the Church-Turing thesis 
are discussed. The first issue is a variant of the Eleatic argument against 
motion, dealing with Zeno squeezed time cycles of computers. The sec
ond argument reviews the issue of one-to-one computation, that is, the 
bijective (unique and reversible) evolution of computations and its rela
tion to the measurement process. 

1 Introduction 

It is reasonable to require from a "useful" theory of computation that any 
capacity and feature of physical systems (interpretable as "computing ma
chines") should be reflected therein and vice versa. 

The recognition of the physical aspect of the Church-Turing thesis
the postulated equivalence between the informal notion of "mechanical 
computation" (algorithm) and recursive function theory as its formalized 
counterpart-is not new [18, 7, 8, 38, 45, 43]. In particular Landauer points out 
that computers are physical systems, that computations are physical pro
cesses and therefore are subject to the laws of physics [29-31, 28, 32-34, 36, 
35]. As Deutsch puts it [15, p. 101], 

"The reason why we find it possible to construct, say, electronic calcu
lators, and indeed why we can perform mental arithmetic, cannot be 
found in mathematics or logic. The reason is that the laws of physics 
'happen to' permit the existence of physical models for the operations 
of arithmetic such as addition, subtraction and multiplication. If they 
did not, these familiar operations would be noncomputable functions. 
We might still know of them and invoke them in mathematical proofs 
(which would presumably be called 'nonconstructive') but we could not 
perform them." 

See also Pitowsky's review [44]. One may indeed perceive a strong interrela
tionship between the way we do mathematics, formal logic, the computer sci
ences and physics. All these sciences have been developed and constructed 
by us in the context of our (everyday) experiences. 

The Computer Sciences are well aware of this connection. See, for in
stance, Odifreddi's review [43], the articles by Rosen [46] and Kreisel [27], or 
Davis' book [14, p. 11], where the following question is asked: 
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" ... how can we ever exclude the possibility of our presented, some day 
(perhaps by some extraterrestrial visitors), with a (perhaps extremely 
complex) device or "oracle" that "computes" a noncomputable func
tion?" 

Thus, it comes as no surprise that the Church-Turing thesis is under per
manent attack from the physical sciences. For just two such attempts in the 
recent literature, we refer to the articles by Siegelmann (52] and Hogarth (24, 
25]. 

Even rnore so, this applies to the weak Church-Turing thesis, often referred 
to as "Cook-Karp thesis," putting into question the robustness of the notion of 
tractability or polynomial ti1ne complexity class with respect to variations of 
"reasonable" models of computation. One particular famous contemporary 
case is quantum computing. There, it has been shown that at least factor
ing may require polynomial time on quantum con1puters within "reasonable 
statistics" [ 51, 17]. 

We shall take out two examples of connections between physics and com
putation. First, we briefly review reformulations of Zeno's argument of Achilles 
and the Tortoise (Hector). This paradox purportedly seems to have been orig
inally directed against motion (37, 26, 21]. In this context it can be applied 
against the uncritical use of continua and dense sets in general. Later on, 
we shall investigate reversible computations, more specifically computations 
corresponding to bijective (one-to-one) n1aps and its possible connections 
with measure1nent operations. 

2 Infinity Machines by Zeno Squeezed Time Cycles 

In what follows, an oracle problem solver will be introduced whose capacity 
exceeds and outperforms any presently realisable, finite machine and also any 
universal cmnputer such as the Turing machine. We follow previous discus
sions (cf. [53, pp. 24-27] and [54, 57, 56, 55]). 

Its design is based upon a universal computer with "squeezed" cycle times 
of computation according to a geometric progression. The only difference be
tween universal computation and this type of oracle computation is the speed 
of execution. But what a difference indeed: Zeno squeezed oracle computa
tion performs computations in the limit of infinite time of computation. In 
order to achieve this limit, two time scales are introduced: the intrinsic time 
scale of the process of computation, which approaches infinity in finite extrin
sic or proper time of sorne outside observer. 

As a consequence, certain tasks which lie beyond the doniain of recur
sive function theory become computable and even tractable. For example, 
the halting problem and any proble1n codable into a halting problem would 
become solvable. It would also be possible to produce an otherwise uncom
putable and randon1 output-equivalent to the tossing of a fair coin-such as 
Chaitin's D [12, 9] in finite proper time. We shall come back to these issues, in 
particular consistency, shortly. 
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A very similar setup has been introduced by Hermann Weyl [59], which was 
discussed byGriinbaum [22, p. 630]. AlreadyWeyl raised the question whether 
it is kinematically feasible for a machine to carry out an infinite sequence of 
operations in finite tin1e. Weyl writes [59, p. 42], 

Yet, if the segment of length 1 really consists of infinitely many sub
segments oflength 1/2, 1/4, 1/8, ... , as of 'chopped-off' wholes, then 
it is incompatible with the character of the infinite as the 'incom
pletable' that Achilles should have been able to traverse them all. If one 
admits this possibility, then there is no reason why a machine should 
not be capable of completing an infinite sequence of distinct acts of 
decision within a finite amount of time; say, by supplying the first re- • 
sult after l /2 minute, the second after another l / 4 n1inute, the third 
1/8 minute later than the second, etc. In this way it would be possible, 
provided the receptive power of the brain would function similarly, to 
achieve a traversal of all natural numbers and thereby a sure yes-or-no 
decision regarding any existential question about natural nun1bers! 

See also the articles by Thomson [58], Benacerraf [l], Rucker [47], Pitowsky 
[44], Earman and Norton [16] and Hogarth [24, 25], as well as E. W Beth, [5, p. 
492] and K. Lopez-Escobar [39]. 

Let us come back to the original goal: the construction of a "Zeno squeezed 
oracle," or, in Griinbaum's terminology, of an "infinity machine." As sketched 
before, it can be conceived by considering two time scales T and t which are 
related as follows. 

• The proper timer measures the physical system time by clocks in a way 
similar to the usual operationalisations; whereas 

• A discrete cycle time t = O, 1, 2, 3, ... characterizes a sort of "intrinsic" time 
scale for a process running on an otherwise universal machine. 

• For some unspecified reason we assume that this machine would allow us 
to "squeeze" its intrinsic tin1e t with respect to the proper timer by a geo
metric progression. Hence, fork < 1, let any time cycle oft, if measured in 
terms of r, be squeezed by a factor of k with respect to the foregoing time 
cycle i.e., 

To = 0, 71 = k, Tt+l - Tt = k( 'Tt - Tt-1), (1) 

- L:t kn - 1 - k(kt - 1) 
Tt - - k-l 

(2) 
n=O 

Thus, in the limit of infinite cycle time t --+ oo, the proper timer oo = k / (l -
k) remains finite. 

We just mention that for the model introduced here only dense space-time 
would be required. 

There is no commonly accepted principle which would forbid such an or
acle a priori. In particular, classical mechanics postulates space and time con
tinua as a foundational principle. One might argue that such an oracle would 
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require a geometric energy increase resulting in an infinite consumption of 
energy. Yet, no currently accepted physical principle excludes us from assum
ing that every geometric decrease in cycle time could be associated with age
ometric progression in energy consumption, at least up to some limiting (e.g., 
Planck) scale. 

Nevertheless, it can be shown by a diagonalization argument that the ap
plication of such oracle subroutines would result in a paradox. The paradox 
is constructed in the context of the halting problem. It is formed in a sim
ilar manner as Cantor's diagonalization argument. Consider an arbitrary al
gorithm B(x) whose input is a string of symbols x. Assume that there exists 
(wrong) an "effective halting algorithm" HALT, implementable on the oracle 
described above, which is able to decide whether B terminates on x or not. 

Using HALT(B(x)) we shall construct another deterministic computing 
agent A, which has as input any effective program B and which proceeds as 
follows: Upon reading the program B as input, A makes a copy of it. This can 
be readily achieved, since the program B is presented to A in some encoded 
form #(B), i.e., as a string of symbols. In the next step, the agent uses the 
code #(B) as input string for B itself; i.e., A forms B(#(B)), henceforth de
noted by B(B). The agent now hands B(B) over to its subroutine HALT. Then, 
A proceeds as follows: if HALT(B(B)) decides that B(B) halts, then the agent 
A does not halt; this can for instance be realized by an infinite DO-loop; if 
HALT(B(B)) decides that B(B) does not halt, then A halts. 

We shall now confront the agent A with a paradoxical task by choosing A's 
own code as input for itself. Notice that B is arbitrary and has not yet been 
specified and we are totally justified to do that: The deterministic agent A is 
representable by an algorithm with code #(A). Therefore, we are free to sub
stitute A for B. 

Assume that classically A is restricted to classical bits of information. Then, 
whenever A(A) halts, HALT(A(A)) forces A(A) not to halt. Conversely, when
ever A(A) does not halt, then HALT(A(A)) steers A(A) into the halting mode. 
In both cases one arrives at a complete contradiction. 

Therefore, at least in this example, too powerful physical models (of com
putation) areinconsistent. It almost goes without saying that the concept of 
infinity machines is neither constructive nor operational in the current phys
ical framework. 

Quantum mechanics offers a rescue; yet in a form which is not common 
in "classical" recursion theory. The paradox is resolved when A is allowed a 
nonclassical qubit of information. Classical information theory is based on 
the classical bit as fundamental atom. Any classical bit is in one of two classi
cal states t (often interpreted as "true") and f (often interpreted as "false"). In 
quantum information theory the most elementary unit of information is the 
quantum bit, henceforth called qubit. Qubits can be physically represented 
by a coherent superposition of two orthonormal quantum states t and f. The 
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quantum bit states 

la, b) =a ( ~) +b (n = alO) +bll), 

with jaj 2 + jbj 2 = 1, a, b EC form a continuum. 
Assume now that jO) = jl, 0) and jl) = jO, 1) correspond to the halting and 

to the nonhalting states, respectively. A's task can consistently be performed if 
it inputs a qubit corresponding to the fixed point state of the diagonalization 
(not) operator 

~ (0 1) D =not= 71 = 
1 0 

= jl)(Oj + jO)(lj. 

That is, 
(3) 

The fixed point state I*) is just the eigenstate of the diagonalization operator 
i5 with eigenvalue 1. Notice that the eigenstates of i5 are 

II), III)=~ [ (~) ± (n] =~(lo)± II)) (4) 

with the eigenvalues + 1 and -1, respectively. Thus, the non paradoxical, fixed 
point qubit in the basis of IO) and jl) is given by 

1 1 
I*)= I V2' V2) =II). (5) 

In natural language, this qubit solution corresponds to the statement that it 
is impossible for the agent to control the outcome, since there is a fifty per
cent chance for each of the classical bit states IO) and j 1) to be "stimulated" at 
tA. The impossibility of outcome control is indeed encountered in quantum 
mechanics. Stated differently: at the level of probability amplitudes, quantum 
theory permits a Zeno squeezed oracle. But at the level of observable prob
abilities, this is exactly nullified, as the result of the computation appears to 
occur entirely at random. 

3 One-to-One Computational Paths and Measurement 

The connection between information and physical entropy, in particular the 
entropy increase during computational steps corresponding to an irreversible 
loss of information-deletion or other many-to-one operations-has raised 
considerable attention in the physics community [38]. Figure 1 [36] depicts 
a flow diagram, illustrating the difference between one-to-one, many-to-one 
and one-to-many computation. Classical reversible computation [29, 2, 19, 3, 
36] is characterized by a single-valued invertible (i.e., bijective or one-to-one) 
evolution function. In such cases it is always possible to "reverse the gear" of 
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a) b) c) 

Fig. I. In this flow diagram, the lowest "root" represents the initial state of the com
puter. Forward computation represents upwards motion through a sequence of states 
represented by open circles. Different symbols Pi correspond to different initial com
puter states. a) One-to-one computation. b) Many-to-one junction which is informa
tion discarding. Several computational paths, moving upwards, merge into one. c) 
One-to-many computation is allowed only if no information is created and discarded; 
e.g., in copy-type operations on blank memory. From Landauer [36]. 

the evolution, and compute the input from the output, the initial state from 
the final state. 

In irreversible computations, logical functions are performed which do not 
have a single-valued inverse, such as and or or; i.e., the input cannot be de
duced from the output. Also deletion of information or other many (states)
to-one (state) operations are irreversible. This logical irreversibility is associ
ated with physical irreversibility and requires a minimal heat generation of 
the computing machine and thus an entropy increase. 

It is possible to embed any irreversible computation in an appropriate en
vironment which makes it reversible. For instance, the computer could keep 
the inputs of previous calculations in successive order. It could save all the 
information it would otherwise throw away. Or, it could leave markers be
hind to identify its trail, the Hansel and Gretel strategy described by Landauer 
[36]. That, of course, might amount to huge overheads in dynamical memory 
space (and time) and would merely postpone the problem of throwing away 
unwanted information. But, as has been pointed out by Bennett [2], for clas
sical computations, in which copying and one-to-many operations are still 
allowed, this overhead could be circumvented by erasing all intermediate re
sults, leaving behind only copies of the output and the original input. Ben
nett's trick is to perform a computation, copy the resulting output and then, 
with one output as input, run the computation backward. In order not to con
sume exceedingly large intermediate storage resources, this strategy could be 
applied after every single step. Notice that copying can be done reversible in 
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classical physics if the memory used for the copy is initially considered to be 
blank. 

Quantum mechanics, in particular quantum computing, teaches us to re
strict ourselves even more and exclude any one-to-many operations, in par
ticular copying, and to accept merely one-to-one computational operations 
corresponding to bijective mappings [cf. Figure la)]. This is due to the fact 
that the unitary evolution of the quantum mechanical state state (between 
two subsequent measurements) is strictly one-to-one. Per definition, the in
verse of a unitary operator U representing a quantum mechanical time evolu
tion always exists. It is again a unitary operator u-1 = ut (where t represents 
the adjoint operator); i.e., uut = 1. As a consequence, the no-cloning theo
rem [23, 61, 40, 41, 20, 11] states that certain one-to-many operations are not 
allowed, in particular the copying of general (nonclassical) quantum bits of 
information. 

In what follows we shall consider a particular example of a one-to-one de
terministic computation. Although tentative in its present form, this example 
may illustrate the conceptual strength of reversible computation. Our start
ing point are finite automata [42, 13, 6, 48, 10], but of a very particular, hith
erto unknown sort. They are characterized by a finite set S of states, a finite 
input and output alphabet I and 0, respectively. Like for Mealy automata, 
their temporal evolution and output functions are given by 5 : S x I --+ S, 
.\ : S x I --+ 0. We additionally require one-to-one reversibility, which we in
terpret in this context as follows. Let I = 0, and let the combined (state and 
output) temporal evolution be associated with a bijective map 

U: (s, i) --+ (5(s, i), .\(s, i)), (6) 

with s E Sandi E I. The state and output symbol could be "fed back" con
secutively; such that N evolution steps correspond to UN = U · · · U . ......____, 

N times 
The elements of the Cartesian product S x I can be arranged as a linear 

list of length n corresponding to a vector. In this sense, U corresponds to a 
n x n-matrix. Let tJti be the i'th element in the vectorial representation of some 
(s, i), and let Uij be the element of U in the i'th row and the j'th column. Due 
to determinism, uniqueness and invertibility, 

• Uij E {O, l}; 
• orthogonality: u- 1 = ut (superscript t means transposition) and (u-1 

)ij = 

Uji; 

• double stochasticity: the sum of each row and column is one; i.e., 
2:~= 1 Uij = l:j=1 Uij = 1. 

Since U is a square matrix whose elements are either one or zero and which 
has exactly one nonzero entry in each row and exactly one in each column, it 
is a permutation matrix. Let Pn denote the set of all n x n permutation matri
ces. Pn forms the permutation group (sometimes referred to as the symmetric 
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group) of degree n. (The product of two permutation matrices is a permuta
tion matrix, the inverse is the transpose and the identity 1 belongs to Pn.) Pn 
has n! elements. Furthermore, the set of all doubly stochastic matrices forms 
a convex polyhedron with the permutation matrices as vertices [4, page 82). 

Let us be more specific. For n = l, P1 = {l }. 

For n = 2, P2 = { ( ~ ~) , ( ~ ~) } . 

Porn= 3, 

{(
100) (100) (010) (010) (001) (001)} P 3 = 0 1 0 , 0 0 1 , 0 0 1 , 1 0 0 , 1 0 0 , 0 1 0 . 
001 010 100 001 010 100 

The correspondence between permutation matrices and reversible au
tomata is straightforward. Per definition [cf. Equation (6)], every reversible 
automaton is representable by some permutation matrix. That every n x n 
permutation matrix corresponds to an automaton can be demonstrated by 
considering the simplest case of a one state automaton with n input/ output 
symbols. There exist less trivial identifications. For example, let 

U= 

0010 
0100 
0001 
1000 

The transition and output functions of one associated reversible automaton is 
listed in Table 1. The associated flow diagram is drawn in Figure 2. Since Uhas 

8 .A 
S\I 1 2 1 2 

S1 S2 S1 1 2 
s2 S2 S1 2 1 

Table 1. Transition and output table of a reversible automaton with two states S = 
{s1, s2} and two input/output symbols I= {1, 2}. 

a cycle 3; i.e., (U)3 = 1, irrespective of the initial state, the automaton is back 
at its initial state after three evolution steps. For example, ( s1 , 1) -t ( s2 , 1) -+ 
(s2, 2) -t (s1, 1). 

The discrete temporal evolution (6) can, in matrix notation, be represented 
by 

UtJt(N) = tJt(N + 1) = uN+1!P(O), 

where again N = 0, 1, 2, 3, ... is a discrete time parameter. 
- -

(7) 
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(s1,l) (s1,2) (s2,l) (s2,2) 

Fig. 2. Flow diagram of one evolution cycle of the reversible automaton listed in Ta
ble 1. 

Let us artificially divide such a system into an "inside" and an "outside" region. 
This can be suitably represented by introducing a black box which contains 
the "inside" region-the subsystem to be measured, whereas the remaining 
"outside" region is interpreted as the measurement apparatus. An input and 
an output interface mediate all interactions of the "inside" with the "outside," 
of the "observed" and the "observer" by symbolic exchange. Let us assume 
that, despite such symbolic exchanges via the interfaces (for all practical pur
poses), to an outside observer what happens inside the black box is a hidden, 
inaccessible arena. The observed system is like the "black box" drawn in Fig
ure 3. 

Throughout temporal evolution, not only is information transformed one
to-one (bijectively, homomorphically) inside the black box, but this informa
tion is handled one-to-one after it appeared on the black box interfaces. It 
might seem evident at first glance that the symbols appearing on the inter
faces should be treated as classical information. That is, they could in princi
ple be copied. The possibility to copy the experiment (input and output) en
ables the application of Bennett's argument: in such a case, one keeps the ex
perimental finding by copying it, reverts the system evolution and starts with 
a "fresh" black box system in its original initial state. The result is a classical 
Boolean calculus. 

The scenario is drastically changed, however, if we assume a one-to-one 
evolution also for the environment at and outside of the black box. That is, 
one deals with a homogeneous and uniform one-to-one evolution "inside" 
and "outside" of the black box, thereby assuming that the experimenter also 
evolves one-to-one and not classically. In our toy automaton model, this could 
for instance be realized by some automaton corresponding to a permutation 
operator U inside the black box, and another reversible automaton corre
sponding to another U' outside of it. Conventionally, U and U' correspond 
to the measured system and the measurement device, respectively. 

In such a case, as there is no copying due to one-to-one evolution, in or
der to set back the system to its original initial state, the experimenter would 
have to erase all knowledge bits of information acquired so far. The experi
ment would have to evolve back to the initial state of the measurement device 
and the measured system prior to the measurement. As a result, the represen
tation of measurement results in one-to-one reversible systems may cause a 
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output interface 
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box 
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input interface 

Fig. 3. A system in a black box with an input interface and an output interface. 
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sort of complementarity due to the impossibility to measure all variants of the 
representation at once. 

Let us give a brief example. Consider the 6 x 6 permutation matrix 

U= 

010000 
000001 
001000 
100000 
000010 
000100 

corresponding to a reversible 3-state automaton with two input/ output sym
bols 1, 2 listed in Table 2. The evolution is 

b >. 
S\I 1 2 1 2 
s1 S1 S3 22 
S2 S2 S1 1 1 
S3 S3 S2 1 2 

Table 2. Transition and output table of a reversible automaton with three states S = 
{s1, s2, s3} and two input/output symbols I= {1, 2}. 

( S1, 1) ( S1, 2) (s3, 2) (s2, 2) ( S1, 1) 
(s1,2) (s3, 2) (s2, 2) ( S1, 1) (s1,2) 
( S2, 1) u (s2, 1) u ( Sz, 1) u ( S2, 1) u ( Sz, 1) 
(s2, 2) --+ ( S1, 1) --+ (s1,2) --+ ( S3, 2) --+ (s2, 2) 
( S3, 1) ( S3, 1) (s3, 1) ( S3, 1) (s3,l) 
(s3,2) (s2, 2) ( S1, 1) (s1,2) (s3,2) 

The associated flow diagram is drawn in Figure 4. Thus after the input of just 
one symbol, the automaton states can be grouped into experimental equiva
lence classes [53] 

v(l) = { {1 }, {2, 3} }, v(2) = { {l, 3}, {2} }. 

The associated partition logic corresponds to a non Boolean (nondistributive) 
partition logic isomorphic to M02 • Of course, if one develops the automaton 
further, then, for instance, v(2222) = { {1}, {2}, {3} }, and the classical case is 

recovered [notice that this is not the case for v(l) = v(l)]. Yet, if one assumes 
that the output is channelled away into the interface after only a single evolu
tion step (and that afterwards the evolution is via another U'), the nonclassical 
feature pertains despite the bijective character of the evolution. 
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0 

0 0 0 

0 

" 0 

(s1, 1) (s1, 2) (s2, 1) (s2, 2) (s3, 1) (s3, 2) 

Fig. 4. Flow diagram of four evolution cycles of the reversible automaton listed in Ta
ble 2. 

In this epistemic model, the interface symbolizes the cut between the ob
server and the observed. The cut appears somewhat arbitrary in a computa
tional universe which is assumed to be uniformly reversible. 

What has been discussed above is very similar to the opening, closing 
and reopening of Schrodinger's catalogue of expectation values [49, p. 53]: At 
least up to a certain magnitude of complexity-any measurement can be "un
done" by a proper reconstruction of the wave-function. A necessary condition 
for this to happen is that all information about the original measurement is 
lost. In Schrodinger's terms, the prediction catalog (the wave function) can be 
opened only at one particular page. We may close the prediction catalog be
fore reading this page. Then we can open the prediction catalog at another, 
complementary, page again. By no way we can open the prediction catalog at 
one page, read and (irreversible) memorize the page, close it; then open it at 
another, complementary, page. (Two noncomplementary pages which corre
spond to two co-measurable observables can be read simultaneously.) 

From this point of view, it appears that, strictly speaking, irreversibility 
may turn out to be an inappropriate concept both in computational universes 
generated by one-to-one evolution as well as for quantum measurement the
ory. Indeed, irreversibility may have been imposed upon the measurement 
process rather heuristically and artificially to express the huge practical diffi
culties associated with any backward evolution, with "reversing the gear", or 
with reconstructing a coherent state. To quote Landauer [33, section 2], 

"What is measurement? !fit is simply information transfer, that is done 
all the time inside the computer, and can be done with arbitrary little 
dissipation." 
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Let us conclude with a metaphysical speculation. In a one-to-one invert
ible universe, any evolution, any step of computation, any single measure
ment act reminds us of a permanent permutation, reformulation and reiter
ation of one and the same "message"-a "message" that was there already at 
the beginning of the universe, which gets transformed but is neither destroyed 
nor renewed. This thought might be very close to what Schrodinger had in 
mind when contemplating about Vedic philosophy [50]. 
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