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As has already been pointed out by Birkhoff and von Neumann, quantum logic can
be formulated in terms of projective geometry. In three-dimensional Hilbert space,
elementary logical propositions are associated with one-dimensional subspaces,
corresponding to points of the projective plane. It is shown that, starting with three
such propositions corresponding to some basis$u,v,w%, successive application of
the binary logical operation (x,y)°(x ~ y)' generates a set of elementary propo-
sitions which is countable infinite and dense in the projective plane if and only if no
vector of the basis$u,v,w% is orthogonal to the other ones. ©1996 American
Institute of Physics.@S0022-2488~96!00309-X#

I. INTRODUCTION

The geometrization of quantum logic was initiated by Birkhoff and von Neumann.1 In their
‘‘top-down’’ approach, the logical entities are identified with Hilbert space entities as follows.
Elementary propositions are identified with one-dimensional subspaces or with the vector span-
ning that subspace. The binary logical operations ‘‘and’’ (` ) and ‘‘or’’ ( ~ ) correspond to the set
theoretic intersection and to the linear span, respectively. The unary logical operation ‘‘not’’
(') corresponds to the orthogonal subspace. The proposition which is always false is identified
with the null vector. The proposition which is always true is identified with the entire Hilbert
space. In that way, the geometry of Hilbert space induces a logical structure which, if Hilbert
space quantum mechanics2 is an appropriate theory of quantum physics, describes correctly the
logical structure of measurements~cf. Refs. 3–7!.

In what follows, we concentrate on the following question. Assume we start with a set
$u,v,w% of three elementary quantum mechanical propositions representable as one-dimensional
subspaces~spanned by the vectors$u, v, w%! of three-dimensional Hilbert space. New propositions
can be formed from the old ones by the logical operations ‘‘and, or, not.’’ In particular, the
operation (x ~ y)' corresponding to ‘‘not (x or y)’’ is just the subspace spanned by the vector
productx3y. Suppose this operation is carried out recursively. That is, at each step we form the
vector product of all~nonparallel! vectors and add the~nonparallel! results to the previous set of
vectors. One may ask, what are the conditions for the resulting set~of intersection points with the
unit ball! to be dense? Evidently, the set of one-dimensional subspaces spanned by the recursive
application of the vector product can at most be countable~cardinality:0). It is less obvious if
there can be any regions or ‘‘holes’’ formed by the recursively obtained set of one-dimensional
subspaces which are unreachable. An answer is given in Theorem 3.

As has been already pointed out by Birkhoff and von Neumann,1 the structure obtained for
three-dimensional Hilbert space is essentially a projective plane. Points of the projective geometry
are identified with elementary propositions, and lines are identified with two-dimensional sub-
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spaces. We emphasize this point of view by reformulating the above problem into the geometric
language of the real projective plane endowed with the elliptic metric.

The original motivation for this question originates from the consideration of Kochen-Specker
type constructions.8,9 It has been conjectured that every set of three nonorthogonal one-
dimensional subspaces generates a Kochen-Specker paradox.10 More generally, one could ask if
any single elementary proposition~corresponding to a one-dimensional subspace of three-
dimensional Hilbert space! can be approximated by a logical construction originating from just
three propositions~corresponding to nonorthogonal one-dimensional subspaces of three-
dimensional Hilbert space!.

It has to be kept in mind, however, that a consistent two-valued measure—serving as a
classical truth function—will in general not be definable on the set of recursively generated
one-dimensional subspaces identifiable with elementary propositions. Indeed, due to complemen-
tarity, even for the generating set of three vectors, such an identification of truth functions will
only have an operational~physical! meaning if these vectors were mutually orthogonal—a condi-
tion which would yield a trivial orthogonal tripod configuration, for which any recursion does not
produce any additional vectors.

II. SUBPLANES OF PROJECTIVE PLANES

A projective planeis formally a geometric structure (P ,L,I ) consisting of a setP of ele-
ments calledpoints, a setL of elements calledlines and a binary relationI,P3L called
incidencesatisfying the following axioms.

~P1! Any two distinct points are incident with exactly one common line.
~P2! Any two distinct lines are incident with a common point.
~P3! There are four points, no three of which are incident with a common line.
Instead of (p,L) P I we also writepIL and use familiar expressions like ‘‘p is onL,’’ ‘‘ L is

running throughp,’’ etc. A set of points is said to becolinear, if all points are on a common line,
a triangle is a set of three non-colinear points, aquadrangleis a set of four points satisfying the
condition of axiom~P3!. If we are given two distinct pointsp1 ,p2 P P thenp1 ~ p2 denotes the
unique line joining these two points. By~P1! and ~P2!, two distinct linesL1 ,L2 P L meet at a
unique point which is written asL1 ` L2. For basic properties of projective planes see@Ref. 11,
Chap. 4#, Ref. 12 or Ref. 13.

Let F be a skewfield~division ring!. ThenF3 ~regarded as left vector space overF) gives rise
to a projective plane as follows: DefineP as set of all one-dimensional subspaces ofF3, viz.

P :5$FauoÞaPF3%, ~1!

andL as the set of all two-dimensional subspaces ofF3. Incidence is defined by

I :5$~Fa,L…PP3LuFa,L%. ~2!

We set (P ,L,I )5: PG(2,F). See, e.g., Ref. 14, p. 29, Ref. 15, p. 222 or the textbooks mentioned
above for more details.

We remark that there are also projective planes that are not isomorphic to any plane of the
form PG(2,F). Such projective planes are calledNon-Desarguesianand will not be of interest in
this paper.

Suppose that (P ,L,I ) is a projective plane and thatP̃ is any subset ofP . Put

L̃ :5$p1~p2up1 ,p2P P̃ ,p1Þp2% and Ĩ :5Iù~ P̃ 3 L̃ !. ~3!

The substructure (P̃ , L̃ , Ĩ ) is satisfying axiom~P1!, but not necessarily~P2! or ~P3!. If
( P̃ , L̃ , Ĩ ) is a projective plane, then it is called aprojective subplaneof (P ,L,I ). A degenerate
subplane( P̃ , L̃ , Ĩ ) is satisfying~P2!, but not~P3!.
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All degenerate subplanes are easily described: If #L̃ <1, then P̃ is a set of colinear points.
If # L̃ >2, then P̃ is formed by a set of two or more points on a line, sayL, plus one more
point, sayu, off the lineL. This L is the only line in L̃ not running throughu.

In PG(2,F) we may obtain a projective subplane as follows: Let$b1,b2,b3 %,F3 be a basis
and letF̃,F be a sub-skewfield ofF. Then set

P̃ 5H FaUa5(
i51

3

j ibi ,~0,0,0!Þ~j1 ,j2 ,j3!PF̃3J , ~4!

and defineL̃ , Ĩ according to~3!. The verification of~P2! amounts to solving a homogeneous
system of linear equations within the sub-skewfieldF̃. A quadrangle in P̃ is given by
$Rb1 ,Rb2 ,Rb3 ,R(b11b21b3)%.

The backbone of this article is the following innocently looking result~Ref. 13, p. 266!: Any
projective subplane of PG(2,F) is of the form~4!. ~See also Ref. 16, p. 1008.! This allows us to
recover an algebraic structure, namely a sub-skewfield ofF, from a projective subplane of
PG(2,F). Let us add, for the sake of completeness, the following remark: If in~4! the basis
$b1,b2,b3% is replaced by$ab1,ab2,ab3 % for some nonzeroa P F and if F̃ is modified to the
sub-skewfield aF̃a21, then P̃ remains unchanged. Actually, a projective subplane of
PG(2,F) determines ‘‘its’’ sub-skewfield ofF only to within transformation under inner auto-
morphisms ofF. Clearly, for a~commutative! field F this means uniqueness.

We confine our attention to thereal projective planePG(2,R). The elliptic metric on P is
given by

d:P3P→R,~Ra,Rb!°arccos
ua•bu

iaiibi PF0,p2 G , ~5!

where• denotes the standard dot product andi i stands for the Euclidean norm ofR3. Theelliptic
distance d(Ra,Rb) of two points of PG(2,R) is just the Euclidean angle of the corresponding
one-dimensional subspaces through the origin ofR3. It is invariant under transformations~e.g.,
rotations! which preserve normality. Besides, a connection can be made between the elliptic
distance and the more physically motivatedstatistical distance.17

For each pointRa of PG(2,R) there are exactly two unit vectors inRa. This gives the
well-known alternative description of the real projective plane: The ‘‘points’’ may be viewed as
unordered pairs of opposite points of the unit sphere, the ‘‘lines’’ are the great circles and inci-
dence is defined via inclusion. In this interpretation the elliptic distance is equal to thespherical
distance~Ref. 18, Chap. VI!.

If T is a subset ofR3 thenT':5$aua–t50 for all t P T% is a subspace. In geometric terms
' is apolarity of the projective plane PG(2,R); cf. ~Ref. 11, Chap. 17, Ref. 18, p. 52, Ref. 14, p.
110, or Ref. 12, p. 45!. Points and lines are interchanged bijectively subject to the ruleRa
3(PP )°a'(PL).The geometric operations of‘‘ join’’ ( ~ ) and‘‘meet’’ ( ` ) therefore allow
a simple algebraic description: Given linearly independentvectorsa,bPR3 then

Ra~Rb5~a3b!', ~6!

a'`b'5R~a3b!. ~7!

The following result is essentially (F̃5Q) due to Möbius:
Lemma 1:If ( P̃ , L̃ , Ĩ ) is a projective subplane of (P ,L,I )5 PG(2,R), then P̃ is dense

in P .
Proof: Let P̃ be given according to~4! with F̃,R. The fieldQ of rational numbers equals

the intersection of all subfields ofR, whenceQ,F̃. Given a pointRa P P we obtain
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a5j1b11j2b21j3b3 with ~j1 ,j2 ,j3!PR3. ~8!

There exist three sequences,

~j j ,i ! iPN , with j j ,iPQ\$0% and lim
i→`

j j ,i5j j ~ jP$1,2,3%!. ~9!

Defining

ai :5j1,ib11j2,ib21j3,ib3Þo ~ iPN! ~10!

yields a sequence of pointsRai P P̃ with (Rai) iPN→Ra, since, by the continuity of dot product
and norm,

lim
i→`

a–ai
iaiiai i

5
a–a

iaiiai 51. ~11!

This completes the proof. h

The projective subplanes of PG(2,R) belonging to the rational number field are calledMöbius
nets. They allow a simple recursive geometric construction~Ref. 19, p. 140!: Starting with a
quadrangle one draws all the lines spanned by these points. Next mark all points of intersection
arising from these lines. With this set of points the procedure is repeated, and so on. The set of all
points that can be reached in a finite number of steps gives then a projective subplane overQ.

III. MAIN THEOREMS

Theorem 1: Let V15$u,v,w% be a basis ofR3. Define subsetsVi ,V of R3 as follows:

Vi11 :5Viø$r3sur ,sPVi ,r3sÞo% ~ iPN!, V:5 ø
i51

`

Vi . ~12!

Then

P̃ :5$RauaPV% ~13!

yields a projective or degenerate subplane (P̃ , L̃ , Ĩ ) of PG(2,R) which is ortho-closed. That is,
RaP P̃ impliesa' P L̃ .

Proof: Let L1 ,L2 P L̃ be distinct. By ~6! and the definition ofL̃ , there are vectors
p1,q1,p2,q2PV with

L15~p13q1!
', L25~p23q2!

'. ~14!

Now ~7! yields

L1`L25R~~p13q1!3~p23q2!!P P̃ . ~15!

This establishes~P2!.
Given a pointRa P P̃ , there exist two vectors inV1, sayu,v, such that$a,u,v% is a basis of

R3. Thenu¹ span$a,v%5(a3v)', butu P (a3u)'. ThusR(a3v) andR(a3v) are distinct points
of P̃ on the linea'. h

Observe that axiom~P2! may be derived alternatively from the well-known formula

~p13q1!3~p23q2!5det~p1 ,q1 ,q2!p22det~p1 ,q1 ,p2!q25det~p1 ,p2 ,q2!q12det~q1 ,p2 ,q2!p1 .
~16!
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since linearly dependent vectors yield colinear points.
Theorem 2:The subplane (P̃ , L̃ , Ĩ ) described in Theorem 1 is degenerate if and only if one

vector of the basis$u,v,w% is orthogonal to the other ones.
Proof: Let ( P̃ , L̃ , Ĩ ) be degenerate.$Ru,Rv,Rw% being a triangle forces #L̃ >3. We read

off from the description of degenerate subplanes in section II thatP̃ has to consist of one point
of this triangle, sayRu, and a subset of points on the line joiningRv andRw. The lineu' belongs
to L̃ by Theorem 1. Nowu¹u' tells us that the pointRu is off that line. SinceRu is on all lines
of L̃ but one, we obtainv,w P u'.

Conversely, assume thatv,w P u'. Then

P̃ 5$Ru,Rv,Rw,R~u3v!,R~u3w!% ~17!

is a set of five points ifv'”w, and it is a set of just three points ifu,v,w are mutually orthogonal.
Thus P̃ yields a degenerate subplane. h

Summing up, gives this final result.
Theorem 3:With the settings of Theorem 1 the following assertions are equivalent.
1. The basis$u,v,w% of R3 does not contain a vector that is orthogonal to the remaining ones.
2. The point setP̃ given by ~13! is dense in PG(2,R).
3. The point setP̃ given by ~13! is infinite.
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