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As has already been pointed out by Birkhoff and von Neumann, quantum logic can
be formulated in terms of projective geometry. In three-dimensional Hilbert space,
elementary logical propositions are associated with one-dimensional subspaces,
corresponding to points of the projective plane. It is shown that, starting with three
such propositions corresponding to some bdsjg,w}, successive application of

the binary logical operationx(y)—(x \/ Y)* generates a set of elementary propo-
sitions which is countable infinite and dense in the projective plane if and only if no
vector of the basiqu,v,w} is orthogonal to the other ones. €996 American
Institute of Physics.S0022-24886)00309-X

I. INTRODUCTION

The geometrization of quantum logic was initiated by Birkhoff and von Neundnrtheir
“top-down” approach, the logical entities are identified with Hilbert space entities as follows.
Elementary propositions are identified with one-dimensional subspaces or with the vector span-
ning that subspace. The binary logical operations “and\ § and “or” ( \/ ) correspond to the set
theoretic intersection and to the linear span, respectively. The unary logical operation “not”
(*) corresponds to the orthogonal subspace. The proposition which is always false is identified
with the null vector. The proposition which is always true is identified with the entire Hilbert
space. In that way, the geometry of Hilbert space induces a logical structure which, if Hilbert
space quantum mecharids an appropriate theory of quantum physics, describes correctly the
logical structure of measuremerits. Refs. 3—7.

In what follows, we concentrate on the following question. Assume we start with a set
{u,v,w} of three elementary quantum mechanical propositions representable as one-dimensional
subspacetspanned by the vectofs, v, w}) of three-dimensional Hilbert space. New propositions
can be formed from the old ones by the logical operations “and, or, not.” In particular, the
operation & \/ y)* corresponding to “notX or y)” is just the subspace spanned by the vector
productxXy. Suppose this operation is carried out recursively. That is, at each step we form the
vector product of al(nonparallel vectors and add th@nonparallel results to the previous set of
vectors. One may ask, what are the conditions for the resulting#ttersection points with the
unit ball) to be dense? Evidently, the set of one-dimensional subspaces spanned by the recursive
application of the vector product can at most be countétaedinality Xy). It is less obvious if
there can be any regions or “holes” formed by the recursively obtained set of one-dimensional
subspaces which are unreachable. An answer is given in Theorem 3.

As has been already pointed out by Birkhoff and von Neuntaitie, structure obtained for
three-dimensional Hilbert space is essentially a projective plane. Points of the projective geometry
are identified with elementary propositions, and lines are identified with two-dimensional sub-
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spaces. We emphasize this point of view by reformulating the above problem into the geometric
language of the real projective plane endowed with the elliptic metric.

The original motivation for this question originates from the consideration of Kochen-Specker
type construction&® It has been conjectured that every set of three nonorthogonal one-
dimensional subspaces generates a Kochen-Specker pafddoxre generally, one could ask if
any single elementary propositioftorresponding to a one-dimensional subspace of three-
dimensional Hilbert spagecan be approximated by a logical construction originating from just
three propositions(corresponding to nonorthogonal one-dimensional subspaces of three-
dimensional Hilbert spage

It has to be kept in mind, however, that a consistent two-valued measure—serving as a
classical truth function—will in general not be definable on the set of recursively generated
one-dimensional subspaces identifiable with elementary propositions. Indeed, due to complemen-
tarity, even for the generating set of three vectors, such an identification of truth functions will
only have an operation@physica) meaning if these vectors were mutually orthogonal—a condi-
tion which would yield a trivial orthogonal tripod configuration, for which any recursion does not
produce any additional vectors.

Il. SUBPLANES OF PROJECTIVE PLANES

A projective planes formally a geometric structureA,.#,1) consisting of a set” of ele-
ments calledpoints a set.” of elements calledines and a binary relatiod CX # called
incidencesatisfying the following axioms.

(P1) Any two distinct points are incident with exactly one common line.

(P2 Any two distinct lines are incident with a common point.

(P3) There are four points, no three of which are incident with a common line.

Instead of p,L) € | we also writeplL and use familiar expressions like'is onL,” “ L is
running throughp,” etc. A set of points is said to beolinear, if all points are on a common line,
atriangle is a set of three non-colinear pointsgaadrangleis a set of four points satisfying the
condition of axiom(P3). If we are given two distinct pointg; ,p, € Z#’thenp; \/ p, denotes the
unique line joining these two points. BY1 and (P2, two distinct linesL,,L, € 4 meet at a
unique point which is written ak; /\ L,. For basic properties of projective planes §Ref. 11,
Chap. 4, Ref. 12 or Ref. 13.

Let F be a skewfielddivision ring. ThenF? (regarded as left vector space oWrgives rise
to a projective plane as follows: Defing as set of all one-dimensional subspace§ &fviz.

7%={Fao#aeF3, (1)
and.# as the set of all two-dimensional subspace$ &f Incidence is defined by
I:={(Fa,L)e’X ¥|FaCL}. 2

We set (#, %,1)=: PG(2F). See, e.g., Ref. 14, p. 29, Ref. 15, p. 222 or the textbooks mentioned
above for more details.

We remark that there are also projective planes that are not isomorphic to any plane of the
form PG(2F). Such projective planes are callbldn-Desarguesiaand will not be of interest in
this paper.

Suppose that#, 1) is a projective plane and that” is any subset of”. Put

~
72
=42

7 ={p1V/PalP1.pae 7 pa#pst and =1N(T7 X 7). 3

The substructure @7, 71) is satisfying axiom(PD, but not necessarilyP2 or (P3. If
(7,7 1) is a projective plane, then it is callecheojective subplanef (7, #,1). A degenerate
subplane( °, £ 1) is satisfying(P2), but not(P3).
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All degenerate subplanes are easily described: ##1, then' 7 is a set of colinear points.
If # 7 =2, then 7 is formed by a set of two or more points on a line, $ayplus one more
point, sayu, off the lineL. ThisL is the only line in"Z not running throughu.

In PG(2F) we may obtain a projective subplane as follows: {i&t,b,,b; 1CF?® be a basis
and letF CF be a sub-skewfield df. Then set

7-{ra

and define & I according to(3). The verification of(P2) amounts to solvmg a homogeneous
system of linear equations within the sub- skewfidld A quadrangle in 7 is given by
{Rb¢,Rb,,Rb3,R(b;+b,+b3)}.

The backbone of this article is the following innocently looking re¢Bkf. 13, p. 268 Any
projective subplane of PG(R) is of the form(4). (See also Ref. 16, p. 1008lhis allows us to
recover an algebraic structure, namely a sub-skewfield,ofrom a projective subplane of
PG(2F). Let us add, for the sake of completeness, the following remark: [#jnthe basis
{b1,b,,bs} is replaced b){abl,abz,ab3 } for some nonzerax € F and if F is modified to the
sub-skewfield aFa_l, then "7 remains unchanged. Actually, a projective subplane of
PG(2F) determines “its” sub-skewfield ofF only to within transformation under inner auto-
morphisms ofF. Clearly, for a(commutative field F this means uniqueness.

We confine our attention to theal projective planePG(2R). The elliptic metricon 7 is
given by

3
a=3, £b,(000# (1,660 F°|, @

d:7’}X2—R,(Ra,Rb)—arcco |;1|”lz)|” e
where- denotes the standard dot product §nffi stands for the Euclidean norm Bf. Theelliptic
distance qRa,Rb) of two points of PG(Z) is just the Euclidean angle of the corresponding
one-dimensional subspaces through the origif&fIt is invariant under transformatior(g.g.,
rotationg which preserve normality. Besides, a connection can be made between the elliptic
distance and the more physically motivatgdtistical distance’

For each pointRa of PG(2R) there are exactly two unit vectors iRa. This gives the
well-known alternative description of the real projective plane: The “points” may be viewed as
unordered pairs of opposite points of the unit sphere, the “lines” are the great circles and inci-
dence is defined via inclusion. In this interpretation the elliptic distance is equal sptiezical
distance(Ref. 18, Chap. V.

If Tis a subset oR® thenT*:={ala-t=0 for all t € T} is a subspace. In geometric terms
1 is apolarity of the projective plane PG(R); cf. (Ref. 11, Chap. 17, Ref. 18, p. 52, Ref. 14, p.
110, or Ref. 12, p. 45 Points and lines are interchanged bijectively subject to the Rale
X (e P’)—al (e ¥).The geometric operations 6fjoin” ( \/ ) and" meet ( /\) therefore allow
a simple algebraic descriptiorGiven linearly independentectorsa,b e R* then

05} : 5)

Ra\/Rb=(axb)*, (6)
a-/A\b-=R(axb). (7)

The foIIowmg result is essentlaIIyF(— Q) due to Mdbius:

Lemma L1:If ( 7T I) is a projective subplane ofA,.#,1)= PG(2R), then "7 is dense
in Z.

Proof: Let 77 be given according t¢4) with FCR. The field() of rational numbers equals
the intersection of all subfields &, whence)CF. Given a pointRa € & we obtain
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a= &by + &by + £3bg with (&1,&,,&3) e RE. (8)

There exist three sequences,

(&)ien, with ;e OO0} and lim¢=¢; (je{1,2,3). 9
| —o0
Defining
a1 =§&1by+ &rib+ E3ibz# 0 (ieN) (10
yields a sequence of points; e "7 with (R&); .x— Ra, since, by the continuity of dot product
and norm,
lim—a &8 (11)
im—m—r = =1.
i—llallllall alllal
This completes the proof. O

The projective subplanes of PGR,belonging to the rational number field are calldbius
nets They allow a simple recursive geometric constructi®ef. 19, p. 140 Starting with a
quadrangle one draws all the lines spanned by these points. Next mark all points of intersection
arising from these lines. With this set of points the procedure is repeated, and so on. The set of all
points that can be reached in a finite number of steps gives then a projective subplafje over

lll. MAIN THEOREMS

Theorem 1: Let V,={u,v,w} be a basis oR®. Define subset¥;,V of R® as follows:
Vii1:=V,U{rxgr,seV;,rxs#o} (ieN), Vi=UYV,. (12

Then
"7 :={Ralae V} (13
yields a projective or degenerate subplané (7,1) of PG(2RR) which is ortho-closed. That is,
Rae 7 impliesa- € 7.
Proof: Let L;,L, € £ be distinct. By(6) and the definition of £, there are vectors
P1,d1,P2,02€V with

Li=(p1Xgy)', Lo=(p2Xagn)*. (14
Now (7) yields
L1ALy=R((p1X01) X (p2X0p)) € 7. (15)

This establishe$P2).
Given a pointRa e "7, there exist two vectors iW,, sayu,v, such thafa,u,v} is a basis of
R3. Thenu ¢ spafa,v}=(axv)’, butu e (axu)‘. ThusR(axv) andR(axv) are distinct points
of 7 on the linea'. O
Observe that axioniP2) may be derived alternatively from the well-known formula

(p1><ql)><(pz><qz)=de(p1,q1,qz)pz—de(pl,ql,pz)qfde(pl,pz,q2)q1—de(q1,pz,q2){>llé)
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since linearly dependent vectors yield colinear points.

Theorem 2: The subplane’@f?,l) described in Theorem 1 is degenerate if and only if one
vector of the basigu,v,w} is orthogonal to the other ones.

Proof: Let (7,7 1) be degeneratéRu,Rv,Rw} being a triangle forces # =3. We read
off from the description of degenerate subplanes in section Il tHahas to consist of one point
of this triangle, sayRu, and a subset of points on the line joiniRg andRw. The lineu* belongs
to 7 by Theorem 1. Now ¢ u* tells us that the poinku is off that line. SinceRu is on all lines
of Z but one, we obtain,w e u*.

Conversely, assume thaw € u*. Then

"7 ={Ru,Rv,Rw,R(uxv),R(uxw)} (17)

is a set of five points iZfw, and it is a set of just three pointsufv,w are mutually orthogonal.
Thus 7 yields a degenerate subplane. O
Summing up, gives this final result.
Theorem 3: With the settings of Theorem 1 the following assertions are equivalent.
1. The basidu,v,w} of R® does not contain a vector that is orthogonal to the remaining ones.
2. The point set” given by (13) is dense in PG(R).
3. The point set” given by (13) is infinite.
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