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Abstract

We discuss the question of if and how undecidability might be translat-
able into physics, in particular with respect to prediction and description,
as well as to complementarity games.

1



1 Physics after the incompleteness theorems

There is incompleteness in mathematics [22, 63, 65, 13, 9, 12, 51]. That means
that there does not exist any reasonable (consistent) finite formal system from
which all mathematical truth is derivable. And there exists a “huge” number [11]
of mathematical assertions (e.g., the continuum hypothesis, the axiom of choice)
which are independent of any particular formal system. That is, they as well as
their negations are compatible with the formal system.

Can such formal incompleteness be translated into physics or the natural sci-
ences in general? Is there some question about the nature of things which is prov-
able unknowable for rational thought? Is it conceivable that the natural phenom-
ena, even if they occur deterministically, do not allow their complete description?

Of course it is! Suppose there exists free will. Suppose further that an observer
could predict the future. Then this observer could freely decide to counteract in
such a way as to invalidate that prediction. Hence, in order to avoid paradoxes, one
has either to abandon free will or accept that complete prediction is impossible.

The above argument may appear suspiciously informal. Yet, it makes use of
the diagonalization technique, which is one of the royal roads to a constructive,
rational understanding of undecidability in the formal sciences. What Gödel and
others did was to encode the argument in a language acceptable to their area of
research. To translate and bring similar issues into mainstream natural science is,
at least in the author’s opinion, the agenda of the present concern on rational limits
to science.

Before discussing these questions further, we should first clarify the terms
we use. Under aphysical phenomenonwe shall understand an event, which is
(irreversibly) observed. A typical physical phenomenon consists of a click in a
particle detector: there can be a click or there can be no click. This yes-no scheme
is experimental physics in-a-nutshell (at least according to a theoretician). From
this type of elementary observation, all of our physical evidence is accumulated.

Then there arephysical theories.Physical theories purport to relate to the
physical phenomena. At face value, they consist of phenomena themselves: as
observers, we would not be able to know about theories if we would not observe
their representation or code. A typical code of, say, the theory of electrodynam-
ics, consists of letters and symbols printed in a book on electrodynamics. Their
reading corresponds to an act of observation.

Why should anyone bother about the intrinsic representation of physical enti-
ties such as observations and theories? Because this issue is crucial for an under-
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standing of undecidability. G̈odel, for instance, proved his incompleteness theo-
rems as he succeeded to properly code a (generic) theory about arithmeticwithin
arithmetic. (To put things in the right historical perspective: the Viennese Circle of
positivists, most notably Carnap, provided the basis for such coding techniques.)

At one point of the argument, we have to confront ourselves with the question,
“is there a physical correspondent to the notion of inconsistency; that is, to a
logical contradiction [27]?” Can a particle, for example, be here and somewhere
else (≡ not here) [1]? On the phenomenological level, the answer is no. To put
it pointedly: there is no such thing as an inconsistent phenomenon. In a yes-no
experiment which can have two possible outcomes, only one of these outcomes
will actually be measured. In contradistinction, atheoretical descriptionmight
allow the consistent “existence” of mutually exclusive states if it is indeterministic
(probabilistic). We shall come back to these issues later.

Undecidability occurs in indeterministic as well as in mechanistic systems.
The termindeterminismhere stands for any process which cannot be described
finitely and causally. As a metaphor, we may say that in indeterministic physical
systems, “God plays dice.” By definition, indeterminism implies undecidability.
If there is no cause, there cannot be any predictable effect. That is the whole story.
Period.

Let us be more specific and consider two examples: Firstly, in quantum me-
chanics, the prevalent probabilistic interpretation of the wave function pretends
that it is a complete description. Single outcomes cannot be deterministically ac-
counted for. This is the quantum dice. Secondly, in the scenario of “deterministic
chaos,” the (Martin-L̈of/Solovay/Chaitin) randomness of “almost all” initial val-
ues represented by elements of the classical mechanical continuum is successively
recovered during the time evolution—bit after bit. Therefore, if one believes in
the quantum dice and in the physical relevance of the classical continuum, then,
by definition, there is undecidability in physics.

Why cannot we stop here, sit back and relax? We have just encountered
the fact that present-day physical theories contain indeterministic features which
evade any complete prediction. Why is this not the end of the story? The trouble
is that we shall never be sure that the probabilistic interpretation of the wave func-
tion is complete, nor do we know whether the classical continuum is appropriate
[21]. There might be a “secret arena” hidden to us momentarily, in which ev-
erything can be deterministically accounted for. If we relax now and uncritically
accept indeterminism as a matter of unquestionable fact, we may be heading for
trouble. Indeterminism, as it is conceived by the physics community at thefin de
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siécle (milĺenaire), might be a degenerative research program.
Therefore, it seems not inappropriate to try to re-interpret physical indeter-

minism constructively. In doing so, it is necessary to study undecidability and
incompleteness in systems which are mechanistic in more detail. Bymechanistic
we mean that they are finitely describable and causal in all of their aspects. (In
what follows, the termsmechanistic, computableand recursiveare synonyms.)
In mechanistic systems, every effect has a cause. But, one may doubt, if every-
thing has a cause, everything can be deterministically accounted for, computed
and predicted. In such a scenario, how does one recover incompleteness?

The answer to this question derives from a most important epistemological is-
sue: Although in principle every effect may have a cause, such causes might not be
knowable by intrinsic observers. We are introducing an inside-outside distinction
here.Intrinsic observersare embedded in the system they observe—their “Carte-
sian prison” [6, 64, 56, 57, 58, 49, 50, 59]. They cannot step outside. Intrinsic
observers are bound to observations which are intrinsically operational [8]. They
can only refer to intrinsic entities [45] (cf. the “virtual backflow” [60]). Their
theories must be intrinsically codable (cf. above).

Rather then attempting a formalization of intrinsic perception (cf. [59]), let us
consider a metaphor, or rather a nightmarish virtual reality game or a Zenkoan:
Suppose that we are thrown into a prison (or a lunatic asylum, who knows?) with-
out any explanation. In this prison we see persons vigorously talking to each other.
Yet we do neither understand their language nor the reasons, rules and laws of that
establishment.—In a methaphorical sense, the world might be perceived as such a
prison, and science might been one attempt amongst others to make sense out of
the situation.

But let us continue with determinism. The way it was defined, a mechanistic
physical (dynamical) system corresponds one-to-one to a process of computation.
This computation can, for instance be implemented on a universal Cellular Au-
tomaton, a universal Turing machine or any other universal computer. It, in turn,
corresponds one-to-one to a formal system of logic. With these two identifica-
tions, namelymechanistic dynamical system≡ computation≡ formal system, we
bridge the gap to formal undecidability. In principle, the termsystemcould stand
for any of these three entities [59, 47].

We should be quite clearly aware of the fact that there is no other possible
formalization of undecidability besides recursive function theory and formal logic.
If one resents the idea of logical or of computer science terminology creeping into
physics, then there is no room for this issues. Undecidability in physics marks the
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integration of yet another abstract science—recursion theory—into physics.
We have set the stage now. Let us recapitulate: we would like to consider

mechanistic physical systems. Intrinsic observers are embedded therein. These
intrinsic observers register physical phenomena which are operational. Moreover,
they develop theories which are intrinsically codable. Our aim is to figure out
whether or not, under these constraints, certain physical phenomena and theoreti-
cal propositions become undecidable. In doing so, we have to translate the pande-
monium of recursion theoretical undecidability into physics. Our translation guide
will be the equivalence between mechanistic physical systems, computations and
formal systems.

2 Prediction and description

Gödel himself did not believe in any physical relevance of the incompleteness the-
orems, in particular not for quantum mechanics [4]. One might speculate that he
had been brainwashed by Einstein, who was bitterly opposed to the Copenhagen
interpretation of quantum mechanics. Einstein thought that quantum mechanics
and the Copenhagen interpretation thereof was a degenerative research program
[68, 28]. Einstein’sdictum“God does not play dice” has become a legend.

And yet, there is a straightforward extension of formal incompleteness to
physics. It is based on Turing’s proof that certain propositions about universal
computers—basically modeled to mimic elementary mechanical paper-and-pencil
operations on a sheet of paper—are undecidable. In particular, it is impossible to
predict whether or not a particular computation task on universal computers will
eventually terminate (and will output a particular result). Therefore, if we con-
struct a physical device capable of universal computation, there are some propo-
sitions about the future of this system which are provable undecidable.

Let us be more specific and (algorithmically) prove the statement above. It is
often referred to as the “halting theorem” or the “recursive undecidability of the
halting problem.” We are using a technique ofdiagonalization,which was pio-
neered by Cantor in a proof of the undenumerability of the reals. This technique
is the most useful tool in exploring the undecidable.

The strategy of diagonalization (and related techniques) is to assume a statement—
whose existence should be disproved—and, by trivial manipulations, derive a
paradox, a contradiction. The only consistent way to avoid this paradox is to
abandon the original statement. For the purpose of a formal proof, any paradox
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can in principle be exploited, as long as it is codable into formal entities. Gödel
[22] as well as Turing [65] used “the liar” [5] for their incompleteness theorems.
Gödel was well aware of the fact that almost any classical paradox might do as
well. (Readers not interested in the details of the proof may skip the entire next
section.)

We shall prove the recursive unsolvability of the halting problem algorithmi-
cally. That is, we shall use informal terminology which—by the Church-Turing
thesis [48, 37]—is supposed to correpond to formal expressions.

Assume, for the moment, that there is an mechanistic way to foresee a par-
ticular aspect of the future of an arbitrary computation. Namely, whether or not
the computation will terminate. Or, if it outputs a string of symbols and then
terminates. Consider an arbitrary algorithmB(x) whose input is a string of sym-
bols x. Assume that there exists a “predictor”PREDICT which is able to decide
whetherB terminates onx or not. Using the predictorPREDICT(B(x)), we shall
construct another computing agentA, which has as input any effective programB
and which proceeds as follows: Upon reading the programB as input,A makes
a copy of it. This can be readily achieved, since the programB is presented to
A in some encoded form, i.e., as a string of symbols. In the next step, the agent
uses the code ofB as input string forB itself; i.e.,A formsB(B). The agent now
handsB(B) over to the prediction subroutinePREDICT. Then,A proceeds as fol-
lows: if PREDICT(B(B)) decides thatB(B) halts, then agentA does not halt; this
can for instance be realized by an infiniteDO-loop; if PREDICT(B(B)) decides that
B(B) doesnot halt, thenA halts. (This is the diagonalization step.) We shall now
confront the agentA with a paradoxical task by choosingA’s own code as input
for itself. Notice thatB is arbitrary and has not been specified yet. The deter-
ministic agentA is representable by an algorithm with code ofA. Therefore, it
is possible to substituteA for B. Assume that classicallyA is restricted to classi-
cal bits of information. Then, wheneverA(A) halts,PREDICT(A(A)) forcesA(A)
not to halt. Conversely, wheneverA(A) does not halt, thenPREDICT(A(A)) steers
A(A) into the halting mode. In both cases one arrives at a complete contradic-
tion. Classically, this contradiction can only be consistently avoided by assuming
the nonexistence ofA and, since the only nontrivial feature ofA is the use of the
predictor subroutinePREDICT, the impossibility of any such universal predictor.

Notice that the above argument is nothing but a rephasing of the informal argu-
ment against free will or complete predictability given at the beginning! Popper
[42] considered these issues already in the forties. More sophisticated models
have been put forward by Wolfram [69], Moore [34] and da Costa and Doria [17].
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These approaches essentially embed a universal computer (or equivalent systems
of Diophantine equations) into a classical physical structure such as a field. The
system is assumed to be infinite to allow for infinite tape or its equivalent. Then
undecidability follows, for instance, from the recursive unsolvability of the halting
problem.

In short: reasonable (consistent) theories predicting the future behavior of ar-
bitrary mechanistic physical systems are impossible. So, if one beliefs in the phys-
ical relevance of the model of universal computers, then no physical theory can
predict all the physical phenomenology. In particular, there are certain physical
prediction tasks which are undecidable.

But what if one insists that any computation should remain finite? Then, in
principle, it would be possible to construct a predictor, which would just have to
simulate the system long and fast enough to complete the prediction. Could such a
prediction take a sufficiently short time in order to be useful? And what if a finite
predictor tries to predict itself? These questions get us into quantitative issues,
which are more involved. We shall attack them next.

The busy beaver function [46, 14] addresses the following question: given a
system whose size of description is finite; more precisely; less than or equal ton
bits long. What is the biggest numberΣ(n) which can in principle be produced
by such a system before halting (or, alternatively, before recurring to the system’s
original state)?

A related question is: what is the upper bound of running time (or, alterna-
tively, recurrence time) of a program of lengthn bits before terminating? An an-
swer to that question gives us a feeling of how long we have to wait for the most
time-consuming program of lengthn bits to hold. That, of course, is a worst-case
scenario. Many programs of lengthn bits will have halted before the maximal
halting time. Let us denote it byTMAX. We could figure out that knowledge of
TMAX “solves” the halting problem quantitatively. Because if we knew that max-
imal halting time, then for an arbitrary program ofn bits, we would have to wait
just a little bit longer thanTMAX(n). If it would still run, then we could be sure that
it would run forever. Otherwise it would have halted. In this sense, knowledge of
TMAX is equivalent to possessing a perfect predictorPREDICT. Since the latter one
does not exist, we may expect thatTMAX cannot be constructive function easy to
work with.

Indeed, Chaitin has proven [46, 14, 15, 19, 7] thatTMAX(n) = Σ(n+O(1)) is
the minimum time at which all programs of size smaller than or equal ton bits
which halt have done so. For large values ofn, Σ(n) grows faster than any com-
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putable function ofn; more precisely, letf be an arbitrary computable function,
then there exists a positive integerk such thatΣ(n) > f (n) for all n > k.

You can virtually see that any system trying to evaluate the busy beaver func-
tion “blows itself up.” Originally, T. Rado [46] asked how many 1’s a Turing
machine withn possible states and an empty input tape could print on that tape
before halting. The first values of the Turing busy beaverΣT(x) are finite and are
known [19, 7]: ΣT(1) = 1, ΣT(2) = 4, ΣT(3) = 6, ΣT(4) = 13, ΣT(5) ≥ 1915,
ΣT(7)≥ 22961,ΣT(8)≥ 3· (7·392−1)/2.

What does all this mean for physics? One consequence is that, for mecha-
nistic (but unbounded) systems describable byn bits, the recurrence time grows
faster than any computable number ofn. It is therefore uncomputable and thus
impossible to predict.

Any causal prediction requires a theory of the system which one wants to
predict. In the intrinsic observer scenario described above, there is no way to
cut out or separare the observer from the system. We have to deal with self-
description.

Can observers embedded in a system ever hope for a complete theory or self-
description? Let us rephrase the question. Is it possible for a system to contain a
“blueprint,” a complete representation, of itself? This issue has been raised by von
Neumann in his investigation of self-reproducing automata. Indeed, von Neumann
showed that—provided such a “blueprint” exists—a (universal) automaton can
reconstruct a perfect replica of itself [66, 48, 37].

To avoid confusion, it should be noted that it is never possible to have a finite
description with itself as proper part. The trick is to employrepresentationsor
namesof objects, whose code can be smaller than the objects themselves and can
indeed be contained in that object (cf. [37], p. 165). Gödel’s first incompleteness
theorem is such an example. Any book of electromagnetism is another.

A completely different issue is how such a theoretical self-description is ob-
tained. Here we have to make a distinction. As in the above case, a complete the-
ory or self-description might be obtainedpassivelyfrom some “intuition,” “God”
or “oracle.” (Of course, one could never be sure that it is the right one.) But it is
generally impossible for an intrinsic observer toactivelyexamine the own system
and thereby to construct a complete theory. One reason for this is self-interference
and complementarity, as described below.

As a comfort to those who conceive the “Cartesian prison” as the source of all
problems, one could cite a nice theorem by Gold [24]. It is sometimes referred to
as the recursive undecidability of the rule inference problem: For any mechanistic
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intelligence/agentA, there exists a total recursive functionf such thatA does not
infer f . In more physical terms, there is no systematic way of finding a determin-
istic law from the (input/)output analysis of a mechanistic physical system.

An informal way to (algorithmically) prove Gold’s theorem uses the halting
theorem. Suppose that it would indeed be possible to derive laws systematically.
Let us call this agent or computable functionRULE. RULE would have to watch
the behavior of the system it analyzes. But any complete analysis would require
the observation ofTMAX(n), wheren is the minimal description size of the system.
SinceTMAX(n) grows faster than any computable function ofn, RULE cannot be
computable.

So, even if we would be in a “God-like” position and would be disentangled
and freed from the observed system, we would have to cope with the fact that
there is no systematic way of deriving causal laws.—Indeed, we may safely state
that, except for the most elementary phenomena, deriving causal laws remains a
rare art!

Of what use is a complete theory? Is it possible for an observer in a finite
amount of time to predict the own state completely?

An intuitive understanding of the impossibility of complete self-comprehension
can be obtained by considering a variant of Zeno’s paradox of Achilles and the
Tortoise/Hector (called “paradox of Tristram Shandy” by Popper Popper [42]):
In order to predict oneself completely, one has to predict oneself predicting one-
self completely, one has to predict oneself predicting oneself predicting oneself
completely, one has to. . .”

3 Complementarity Games

The Hinduistic notion of Maya suggests that the world of senses is illusory, that
observations are distractive. Plato’s cage metaphor emphasizes the distinction
between objects and what we may be able to observe from these objects. Some
day, complementarity might be perceived as a variation of this ancient theme.

There has been hardly any feature of quantum mechanics which has given rise
to as many fruitless speculations ascomplementarity.Intuitively, complementarity
states that it is impossible to (irreversibly) observe certain observables simultane-
ously with arbitrary accuracy. The more precisely one of these observables is
measured, the less precisely can be the measurement of other—complementary—
observables. Typical examples of complementary observables are position/momentum
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(velocity), angular momentum in the x/y/z direction, and particle number/phase
[39, 68].

The intuition (if intuition makes any sense in the quantum domain) behind
this feature is that the act of (irreversible) observation of a physical system causes
a loss of information by (irreversibly) interfering with the system. Thereby, the
possibility to measure other aspects of the system is destroyed.

Well, this is not the whole story. Indeed, there is reason to believe that—at
least up to a certain magnitude of complexity—any measurement can be “undone”
by a proper reconstruction of the wave-function. A necessary condition for this to
happen is thatall information about the original measurement is lost. Schrödinger,
the creator of wave mechanics, liked to think of the wave function as a sort ofpre-
diction catalog[53]. This prediction catalogue contains all potential information.
Yet, it can be opened only at asingleparticular page. The prediction catalog may
be closed before this page is read. Then it could be opened once more at another,
complementary, page. By no way it is possible to open the prediction catalog at
one page, read and (irreversibly) memorize (measure) the page, and close it; then
open it at another, complementary, page. (Two non-complementary pages which
correspond to two co-measurable observables can be read simultaneously.)

This may sound a little bit like voodoo. It is tempting to speculate that comple-
mentarity can never be modeled by classical metaphors. Yet, classical examples
abound. A trivial one is a dark room with a ball moving in it. Suppose that we
want to measure its position and its velocity. We first try to measure the ball’s
position by touching it. This finite contact inevitably causes a finite change of the
ball’s motion. Therefore, we cannot any longer measure the initial velocity of the
ball with arbitrary position.

There are a number of more faithful classical metaphors for quantum comple-
mentarity. Take, for instance, Cohen’s “firefly-in-a-box” model [16], Wright’s urn
model [70], as well as Aerts’ vessel model [2]. In what follows, we are going
to explore a model of complementarity pioneered by Moore [35]. It is based on
extremely simple systems—probably the simplest systems you can think of—on
finite automata. The finite automata we will consider here are objects which have
a finite number of internal states and a finite number of input and output symbols.
Their time evolution is mechanistic and can be written down on tables in matrix
form. There are no build-in infinities anywhere; no infinite tape or memory, no
non-recursive bounds on the runtimeet cetera.

Let us developcomputational complementarity,as it is often called [20], as a
game between you as the reader and me as the author. The rules of the game are
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as follows. I first give you all you need to know about the intrinsic workings of
the automaton. For example, I tell you, “if the automaton is in state 1 and you
input the symbol 2, then the automaton will make a transition into state 2 and
output the symbol 0;” and so on. Then I present you a black box which contains a
realization of the automaton. The black box has a keyboard, with which you input
the input symbols. It has an output display, on which the output symbols appear.
No other interfaces are allowed. Suppose that I can choose in which initial state
the automaton is at the beginning of the game. I do not tell you this state. Your
goal is to find out by experiment which state I have chosen. You can simply guess
or relying on your luck by throwing a dice. But you can also perform clever input-
output experiments and analyze your data in order to find out. You win if you give
the correct answer. I win if you guess incorrectly. (So, I have to be mean and
select worst-case examples).

Suppose that you try very hard. Is cleverness sufficient? Will you always be
able to uniquely determine the initial automaton state?

The answer to that question is “no.” The reason for this is that there may
be situations when the input causes an irreversible transition into a state which
does not allow any further queries about the initial state. This is the meaning
of the term “self-interference” mentioned above. Any such irreversible loss of
information about the initial value of the automaton can be traced back to many-
to-one operations [31]: different states are mapped onto a single state with the
same output. Many-to-one operations such as “deletion of information” are the
only source of entropy increase in mechanistic systems [31, 3].

In the automaton case discussed above, one could, of course, restore reversibil-
ity and recover the automaton’s initial state by Landauer’s “Hänsel und Gretel”-
strategy. That is, one could introduce an additional marker at every many-to-one
node which indicates the previous state before the transition. But then, as the
combined automaton/marker system is reversible, going back to the initial state
erases all previous knowledge. This is analogous to the re-opening of pages of
Schr̈odinger’s prediction catalog.

Well, this might be a good moment for introducing a sufficiently simple ex-
ample. Consider, therefore, an automaton which can be in one of three states,
denoted by 1, 2 and 3. This automaton accepts three input symbols, namely 1, 2
and 3. It outputs only two symbols, namely 0 and 1. The transition function of the
automaton is as follows: on input 1, it makes a transition to (or remains in) state
1; on input 2, it makes a transition to (or remains in) state 2; on input 3, it makes
a transition to (or remains in) state 3. This is a typical irreversible many-to-one
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operation, since a particular input steers the automaton into that state, no matter in
which one of the three possible state it was previously. The output function is also
many-to-one and rather simple: whenever both state and input coincide—that is,
whenever the guess was correct—it outputs 1; else it outputs 0. So, for example,
if it was in state 2 or 3 and receives input 1, it outputs 0 and makes a transition
to state 1. There it awaits another input. These automaton specifications can be
conveniently represented by diagrams such as the one drawn in Fig. 1(a).

Computational complementarity manifests itself in the following way: if one
does not know the automaton’s initial state, one has to make choices between
the input of symbols 1,2, or 3; corresponding to definite answers whether the
automaton was in state 1, 2 or 3, corresponding to output 1; and (2 or 3), (1 or 3) or
(2 or 3), corresponding to output 0, respectively. In the latter case, i.e., whenever
the automaton responds with a 0 (for failure), one has lost information about the
automaton’s initial state, since it surely has made a transition into the state 1,2 or 3.
The following propositions can be stated. On input 1, one obtains information that
the automaton either was in state 1 (exclusive) or not in state 1, that is, in state 2 or
3. This is denoted byv(1) = {{1},{2,3}}. On input 2, we obtain information that
the automaton either was in state 1 (exclusive) or in state 1 or 3, denoted byv(2) =
{{2},{1,3}}. On input 3, we obtain information that the automaton either was in
state 1 (exclusive) or in state 1 or 2, denoted byv(3) = {{3},{1,2}}. In that way,
we naturally arrive at the notion of apartitioning of automaton states according
to the information obtained from input/output experiments. Every element of the
partition stands for the proposition that the automaton is in (one of) the state(s)
contained in that partition.

From any partition we can construct the Boolean propositional calculus which
is obtained if we identify its atoms with the elements of the partition. We then
“paste” all Boolean propositional calculi (sometimes called subalgebras or blocks)
together. This is a standard construction in the theory of orthomodular posets
[29, 44, 40, 36]. In the above example, we arrive at a form of non-Boolean lattice
whose Hasse diagramMO3 is of the “Chinese latern” type drawn in Fig. 1(b).

Let us go still a little bit further and ask which automaton games of the above
kind can people play. This requires the systematic investigation of all possible
non-isomorphic automaton propositional structures, or, equivalently, partition log-
ics [59, 52, 62]. In Fig. 2, the Hasse diagrams of all nonisomorphic four-state
automaton propositional calculi are drawn.

Recall that the method introduced here is not directly related to diagonaliza-
tion and is a second, independent source of undecidability. It is already realizable

12



(a)

u u

u

-
�

J
J

J
J

J
J

J]J
J

J
J

J
J
Ĵ
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Figure 1: (a) transition diagram of a quantum-like finite automaton featuring
computational complementarity. Input and output symbols are separated by a
comma. Arrows indicate transitions. (b) Hasse diagram of its propositional struc-
ture. Lower elements imply higher ones if they are connected by edge(s).
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Figure 2: Variations of the complementarity game up to four automaton states.
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at an elementary pre-diagonalization level, i.e., without the requirement of com-
putational universality or its arithmetic equivalent. The corresponding machine
model is the class of finite automata.

Since any finite state automaton can be simulated by a universal computer,
complementarity is a feature of sufficiently complex deterministic universes as
well. To put it pointedly: if the physical universe is conceived as the product
of a universal computation, then complementarity is an inevitable and necessary
feature of the perception of intrinsic observers. It cannot be avoided.

Conversely, any computation can be realized by a sufficiently complex finite
automaton. Therefore, the class of all complementary games is a unique one,
encompassing all possible deterministic universes.

What has all this to do with intrinsic observers? Well, during the game one
is not allowed to “screw open” the black box. Equivalently, one is not allowed
to make identical copies of the black box. Both, the “screwing open” operation
as well as copying, would represent actions which should only be accessible to
“God-like,” external observers, but not to intrinsic ones living in their “Cartesian
prison.” This is similar to quantum mechanics. Copying of quantum information
(unless purely classical) or other one-to-many operations are impossible. One
cannot, for instance, produce two identical copies of an electron or of a photon
[26].

The complementarity game described above shows strong similarities to quan-
tum mechanical systems (in two-dimensional Hilbert space). Indeed, if we could
let the black box “shrink” down to point size, we would obtain an analogue of an
electron or photon, at least for spin or polarization measurements in three differ-
ent directions. Suppose we want to measure the spin direction of an electron at
some angleϕ. We can do this by a Stern-Gerlach device oriented in that particular
direction. According to the probabilistic interpretation of the wave function, this
measurement “randomizes” (i.e., makes impossible any measurements of the orig-
inal) spin components in other directions. That is, we loose information about the
electron’s “original” spin (if it is legitimate to state that it ever had one [68, 38])
along the directionsϕ′ 6= ϕ. Indeed, the propositional structure of three spin mea-
surements along three different angles is identical to the one drawn in Fig. 1(b).
Nevertheless, there is a difference between the “true” quantum particle and its
black box-cousin: whereas the former one is supposed to have physical spin or
polarization in acontinuityof directions, the latter one can only be generalized to
an arbitrarycountablenumber of directions. From a practical point of view, such
differences cannot be observed and are therefore operationally irrelevant [8, 61].
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Even to high-ranking specialists, quantum mechanical effects appear mind-
boggling [25]. Amazingly enough, the complementarity game based on automata
beats quantum mechanics by weirder peculiarities. Take, as an example, the com-
plementarity game with the automaton drawn in Fig. 3(a). Input of the sequence
of two symbols 00 decides between the automaton states 1 and 2 and 3 or 4. The
resulting partition isv(00) = {{1},{2},{3,4}}. Input of the sequence of two
symbols 10 decides between the automaton states 1 or 2 and 3 and 4. The result-
ing partition isv(10) = {{1,2},{3},{4}}. By pasting these two blocks together,
we obtain a propositional structure represented in Fig. 3(b).

This complementarity game has several peculiar features. It is no lattice be-
cause the supremum and infimum is not uniquely definable. The “implication” is
not transitive either, because 1→ 1∨ 2 requires input 00 and 1∨ 2→ 1∨ 2∨ 3
requires input 10, whereas 1→ 1∨2∨3 cannot be realized by any experiment.

It would be nice if some day the experimenters would find physical systems
which behave in that way. Then, of course, we would have to abandon quantum
mechanics and learn some theory of the complementarity game.

4 Should physicists really bother with undecidabil-
ity?

The program to study relative limits of knowledge can be attacked from two op-
posite and extreme positions. On the one hand, it may be objected that there are
no principally unknowables, because everything is strictly causal. On the other
hand it may be stated that undecidability in physics is a trivial matter of fact and
must be accepted without any further efforts.

The first, rationalistic, position is based on the Cartesian assumption that the
world is totally and in all of its aspects conceivable and predictable by (human)
rational thought. Laplace’s demon [32] is a metaphor for this attitude. Indeed,
to many physicists, undecidability and unpredictability are everyday phenomena.
They encounter a problem which they cannot solve or ask questions they cannot
answer. Yet, they would hardly conceive this experience as an indication that there
is something out there which is profoundly undecidable. It might not be unfair to
state that—with the remarkable exceptions of chaos and quantum theory—most
physicists perceive undecidable statements not as fundamentally unknowable but
as a challenge and a possibility for future knowledge.
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(b) Hasse diagram of its propositional structure.
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Quite similarly, some mathematicians tend to perceive Gödel’s incompleteness
theorems as artifacts. To them, Gödelian sentences appear curious, even dubious,
and explicitly constructed for their purpose. Despite proofs that “almost all” true
theorems are undecidable [11], they feel that all “real” mathematical problems
they bother witharesolvable.

In this century, the second, irrational approach, has most influentially been
publicized—despite many reluctances from leading quantum pioneers [28, 68]—
by the Copenhagen interpretation of quantum mechanics. Chaos theory, as it is
often called, has given irrationality a further kick. Already in 1889, Poincaré
suggested that certainn-body problems may turn out to be impossible to solve
[41]. Even today, after the development of recursive (computable) function the-
ory, many issues remain unsettled. Certain assumptions and problems yield the
nonpreservation of computability in classical analysis [54, 67, 30, 55, 43, 10]. The
necessity and the physical relevance of the classical continuum is at least debat-
able [61].

We propose here to pursue a third path. This third path is characterized by a
formal investigation of the descriptive limits of theories, as well as of predictabil-
ity in general. It may well be that this is a further, necessary step we have to go in
our rational understanding of nature.

At the end, let me summarize and come back to the question posed before,
“undecidability everywere?” It may well be that yes, there is undecidability ev-
erywhere, and that we are confronted with it very often. We just may not have
identified undecidability correctly, as some emerging feature of (self-) description
(with-) in a mechanistic universe. Depending on our philosophical assumptions,
some of us may like to think that the everday unknowns are either manifestations
of some basic randomness, a sort of “chaos” underlying nature; or, on the contrary,
that they are simply an artifact of our limited knowledge and power to implement
that knowledge. We may also realize that there is yet another possibility, hav-
ing to do with with the fact that, informally stated, self-knowledge is necessarily
incomplete.
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