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Abstract —We propose a scenario in which chaotic motion is based on the paradoxical decomposition
of attractors by a distance preserving evolution. Copyright © 1996 Elsevier Science Ltd.

1. HISTORICAL OVERVIEW

Distance-preserving operations such as translations and rotations can be used to rearrange
arbitrary three- (or higher-) dimensional solid objects, which have been ‘paradoxically’
decomposed into any other desirable solid object [1, 2]. The term ‘paradoxical’ refers to
the facts that

(i) isometries, i.e., distance-preserving maps, are used,
(i1) the original object is decomposed into a finite number of parts, and
(iii) the operation does not preserve the standard (Lebesgue) measures such as volume.

At first sight, the physical applicability of paradoxical decompositions may appear rather
remote. Indeed, to our knowledge, only three physical models making use of them have
been proposed so far. In one model, Augenstein [3, 4] attempts a description of the strong
interaction in terms of the Banach-Tarski paradox. In the second model, Pitowski [5, 6]
proposes an explanation for the ‘stronger-than-classical’ (‘nonlocal’) correlation functions of
entangled quantized systems in terms of ‘paradoxical’ measure non-preservation. Very
recently, El Naschie has applied the Banach-Tarski theorem in the context of Cantorian
micro space—time [7]. Here, we are going to apply these paradoxical set decompositions to
dynamical systems, in particular to attractors.

The development of paradoxical decompositions began with the formalization of measure
theory at the beginning of the twentieth century. It was inspired by Cantorian (naive) set
theory. Cantor’s approach [8] encouraged the invention of new types of sets with
sometimes bizarre and ‘mindboggling’ features.

We shortly review the classical example due to Vitali in 1905. It is a non-Lebesgue
measurable set of real numbers. Consider the equivalence relation (for a definition of
equivalence relation see below) on real numbers in the interval [0, 1): x~y if x —y isa
rational number.

If we collect all numbers of [0, 1) which are equivalent in the above sense to separate,
disjoint sets or equivalence classes, we gain a decomposition of the interval [0, 1). The
equivalence classes cover the interval. The axiom of choice tells us that we can pick one
number from each of these classes and collect them into a set M. This set M C[0,1)
cannot be measurable. For each rational number r, let M,={x+r : xe M}. By
construction of M, two sets M,, M, with r # r’ are mutually disjoint. To prove this, one
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could just assume the opposite, arriving at a contradiction. Note that every real number s
in [0, 1) belongs to some unique M,. Let s € [0, 1) be an arbitrary real. Then s must
belong to a unique equivalence class under the relation. Now assume that s’ is the
representant of this class, which was picked out of the class and put into the set M. Now
q = s — s’ is rational, because s, s’ belong to the same equivalence class. If we now write
s’ + g = s we see clearly that s € M,.

Notice further that if M were measurable, each M, would have the same measure as M,
because each element of M is just shifted by a constant. Just like [0, 1) has the same
measure as [1, 2). Let us consider two cases: (i) M is a null set (having measure 0), and
(ii) M has a nonvanishing, positive measure. If M were a null set, then the interval [0, 1)
would be the countable union of null sets, and so — by the definition of Lebesgue measure
— should have measure 0, which is incorrect. On the other hand, if M would have some
nonvanishing, positive measure — no matter how small (but finite) — then all the M,
would have such a measure too. And the interval [0, 1) = U{M,: r is rational and
0 < r =< 1} must have infinite measure. This again is incorrect.

This whole construction was inspired by the apparent weakness of the Lebesgue
measure. Not every set is Lebesgue measurable—and accordingly there are functions which
cannot be integrated over certain domains.

Researchers in the field were considering various concepts, attempting to provide a
universal measure, which would make every set measurable. But instead of resolving this
issue, they discovered even more ‘mindboggling’ objects. Ten years after Vitali’s original
example, Vitali and Hausdorff constructed a truly surprising paradox on the surface of a
sphere (we will come to this later on). Again, this was done to show the nonexistence of a
certain measure.

This inspired 20 years of fruitful work. One of the famous results encountered during
these investigations was the Banach—Tarski paradox. In order to properly discuss the
Banach-Tarski paradox and to be able to state it precisely, a few terms will be introduced.

2. EQUIDECOMPOSABILITY AND PARADOXICAL DECOMPOSITIONS

In the following, we shortly introduce the terminology and some necessary techniques.
One central idea is the decomposition of sets by equivalence relations.

Recall that an equivalence relation on a set S is defined to be: (i) symmetric
x~y—y~xVx, yeS, (ii) reflexive x ~xVxeS; and (iii) transitive x ~y and
y~z—>x~zVx,y, z€S. Byx~y we mean: the relation ~ holds between x and y.

We shall frequently speak of a group G acting on a set X. By this we mean that, to each
g € G, there corresponds a bijection on the set X. Suppose a group G acts on X and A,
B C X. Then A and B are G-equidecomposable or piecewise G-congruent, if A and B can
each be partitioned into the same finite number of respectively G-congruent pieces.
Formally, A = UL ,A;,, B=U_B;, ANA;=BNB =Jif i<j<n, and there exist g,

.., g.€ G such that, for each i<n, g(A)= B, We shall sometimes denote the
equidecomposability with respect to G by A_sB. It is straightforward to prove that this is
an equivalence relation.

Let G be a group acting on a set X and suppose E € X. E is G-paradoxical (or
paradoxical with respect to G) if, for some positive integers m, n, there exist pairwise
disjoint subsets A, ..., A, B, ..., B, of E and g, ..., gn Ay, ..., h, € G such that
E =Ug(A,) and E = Uh(B)). So, loosely speaking, a paradoxical set has two disjoint
subsets, which can be taken apart and rearranged using G to cover all of the original set.

Alternatively, let G be a group acting on a set X and suppose EC X. E is



Linear chaos 787

G-paradoxical if for a positive integer n, there exist pairwise disjoint subsets A;, ..., A, of
E and g,, ..., g, € G such that U, A, is a proper subset of E, but U, g(A;)=E.

Using the notion of equidecomposability, one can rephrase the notion of a set being
G-paradoxical. E is G-paradoxical if and only if E contains two disjoint subsets A and B
such that A_GE and B_gGE. So, if G is a group acting on X and E, E’' are
G-equidecomposable subsets of X, then if E is G-paradoxical, so is E’.

Finally we shall define an isometry to be a distance preserving bijection on some metric
space M. A simple example is the R’ and the group of rotations. We shall call a
transformation linear if it can be achieved via distance preserving operations.

2.1. Nonlinear case

Here we will look at transformations which, while being bijections (they must be
bijections in order to be group-actions), are not distance preserving. We shall consider
metric spaces, of which R” is an example.

2.1.1. Affine maps. Assume that G are the affine maps
g :x—1t+ ax,

where ¢, o e R, @ # 1. Of course, this map is not distance preserving, because d(x,y)
=V(x -yl #d(gx), g(y))=V(+ax—1t—ay) for x, ye R" and o # 1. Neverthe-
less, this is a nonchaotic system, because — as we shall see later — the Lyapunov exponent
of a system which evolves under such a transformation is 0.

2.1.2. A more general class of nonlinear transformations. Let us now consider transforma-
tions of the form
gix— > axhir
ieNg

with &;, f; € R, provided that an inverse transformation exists when a special set of f3; has
been selected. These transformations are in general highly nonlinear. Special cases are e.g.
g:x—x% g:x— x°or the logistic equation x,,; = f(x) = ax,(1 — x,).

In this case, the Lyapunov exponent may be greater than one, and thus ‘deterministic
chaos’, i.e. the unfolding of the randomness of the initial value, is possible.

2.2. Linear case: the group of distance-preserving transformations

G will now be assumed to be a subgroup of the group of isometries on X. As has been
pointed out before, an isometry is a bijection from X to X that preserves distance.
Simple examples of isometries are translations and rotations in space.

If G is the whole group of isometries on X, then any subset EC X which is
G-paradoxical will simply be called paradoxical. Using the terminology just introduced, we
can formulate the famous Banach-Tarski paradox as, “‘any ball in R® can be paradoxically
decomposed into five pieces and rearranged via isometries such that two and three pieces
form an identical copy of the original (‘ball-doubling’).” Or even more generally, “if A and
B are two arbitrary bounded subsets of R, each having nonempty interior, then 4 and B
are equidecomposable.”

We shall try to sketch the proof here. As a first step, we shall first discuss Hausdorff’s
Paradox, which is remarkable in itself.

A sphere § can be decomposed into disjoint sets S = A U B U C U Q such that: (i) the
sets A, B, C are congruent to each other, (ii) the B U C is congruent to each one of the
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sets A, B, C, and (iii) Q is countable, where we call two sets congruent, if there exists a
distance preserving bijection between them.

Let us consider two axes of rotation of the sphere a,, a, and consider the group of all
rotations generated by rotations ¢ by 180 degrees about a4, and by rotations y by 120
degrees about a,. All possible rotations under this group consist of repeated applications of
the elementary rotations around a, or a,. Combined rotations can be described by formal
products of such rotations. These products or ‘words’ consist of ¢, w, y* with the
specification that ¢* = 1 and y” = 1, where the symbol ‘1’ denotes the identity. The axes
a,, a, can be chosen in such a way that distinct ‘words’ describe distinct rotations. For this
it suffices to choose the angle 6 between the axes such that no nontrivial word describes
the identity rotation. If it happens to be the identity rotation, then 6 is the solution of a
certain equation. This equation has only finitely many solutions. It follows that there are
only countably many angles 6 such that some nontrivial rotation amounts to the identity
rotation. Any angle outside this set will do.

We decompose the group G of all words into three disjoint sets A, B, C such that

Ap=BUC, Ay = BAy, = C

Now we use the axiom of choice. Each rotation o € G leaves two points of the sphere
fixed. It follows that the set Q of all points on the sphere which are fixed by some rotation
a € G is countable.

Next we consider the set § ~ Q. This set consists of the points of the sphere which are
not fixed by any rotation. We introduce an equivalence relation on this set.

x ~yif y = xa for some o € G.

So, two points are in the same class if they can be transformed into each other by some
rotation. These classes are often called orbits.
By the Axiom of Choice, there exists a set M which contains exactly one element in
each orbit. If we let
A=M, B=Mg C= Mg,

then the sets A, B, C and Q satisfy Hausdorff’s theorem. In the above statement M,
denotes the set of points which we obtain by applying all the rotations of A to all the
points in M. In order to obtain the Banach—Tarski paradox, we first consider the following
equivalence relation between sets in the three-dimensional Euclidean space: X ~ Y if X
and Y are equidecomposable. It is easy to verify that this is an equivalence relation and
that if X is disjoint from X', Y is disjoint from Y’ and X ~Y, X'~Y' then
X U X'=Y UY' Using Hausdorff’s paradox for the sphere one can use this equivalence
relation in a similar way as above to prove Banach-Tarski’s paradox.

For reasons which we will not discuss here (cf. Wagon’s book [2]), this argument does
not hold in one or two dimensions.

This remarkable result amounts to no less than stating that any reasonable object in
space can be decomposed into two finite collection of parts, which can then be rearranged
via distance-preserving (there is no distortion, no stretching involved) operations to form
two objects, which are equal to the first in any aspect. Stated pointedly: One could, for
instance, double and redouble the same cube of gold over and over again. Also, if A is a
mosquito and B is an elephant, then one could produce an elephant out of a mosquito.
This can be achieved by ‘appropriately cutting’ the mosquito, no matter how small it is,
into finitely many pieces and by rearranging those pieces via translations and rotations to
become an elephant, no matter how big.

Alas, there is a serious drawback as far as applications are concerned. There is no
picture, no intuition of how such isometric miracles could actually be performed. The proof
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of the theorem is essentially nonconstructive, it gives not the slightest hint as to how such a
decomposition must be performed. This is because it appeals to the Axiom of Choice.

One form of the Axiom of Choice is as follows. For every family F of nonempty sets,
there exists a function f, often referred to as the choice function, such that f(S) e S for
each set S in the family F. This implies that one can form a set which has exactly one
member in common with each of the sets in the family. One needs the Axiom of Choice
(AC) in every proof of the existence of a nonmeasurable set. And, of course, the sets to
which the Banach-Tarski paradox refers to must be nonmeasurable, otherwise there would
be a flat contradiction to the additivity of the measure.

How could one, for instance, ‘choose’ an element of a set of random reals? Surely, in
order to be random, any such element must be uncomputable; stronger: algorithmically
incompressible [9]. This nonconstructive feature was often raised as an objection against
the use of the Axiom of Choice, especially with respect to ‘physically meaningful’
mathematics. Operationalists like Bridgeman won’t allow the use of other than finite,
physically possible operations. Also in mathematics this axiom has caused much distress
and ongoing discussions. It can be proven that without it there are no nonmeasurable sets.
Godel has proven that the Axiom of Choice is consistent with the rest of set theory.
Nethertheless, many models of set theory with weaker axioms have been proposed.

3. DYNAMICAL SYSTEMS

3.1 Review of basic notions

Let us now turn to dynamical systems. A differentiable dynamical system is a time
evolution defined by an evolution equation dx/dt= F(x); in the discrete case,
x(n+ 1) = f(x(n)) where f and F are differentiable functions, acting on elements x of a
manifold M. Here, M will usually be R".

In what follows, we shall briefly review the terms attractor, strange attractor and
Lyapunov exponent. Then, we shall discuss the nonlinear and the linear case.

We first give an operational definition of an attractor. An attractor is a set on which
experimental points f‘x accumulate for large ¢. Informally speaking, regardless of its initial
condition, a system will find itself in a special set of states after some (probably large) time
t. This set is called the attractor. Formally, an attractor A can be defined [11] as a point
set embedded in a manifold M with the following properties:

(i) all points x € A are cumulation points of f.

(ii) If x, y € A and diam (A) = € > 0, then there exist chains of elements x = xg, x{, .. .,
x,=y and y=y, ¥i, ..., ¥m=2x, such that d(x;, f@¢P(x,_))<e and d(y,
FED(y._)) < e with g(i), g'(i))=1and 1 <i<n,

Here, d is the distance on the manifold M and diam provides a kind of measure for the
‘size’ of the attractor A. The last condition just ensures that the attractor cannot be
decomposed in smaller attractors which are subsets of A.

An attractor is called strange if, to every & < diam (A) and & < 9, there exists a N(g, 9)
such that for arbitrary x, y € A with d(x, y)<e, d(fV(x), fN(y))= 8. So, informally
speaking, in the regime of a strange attractor, two initially arbitrarily close points become
arbitrarily separated with increasing time.

The Lyapunov exponent A can be introduced as a measure of the separation of two
distinct initial values. If we have an uncertainty interval (x4, xo + £) at the beginning, after
n iterations it becomes (f"(x,), f"(x, + €)). The Lyapunov exponent A is defined by
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n—1
Mxg) = lim - log (f/(x,))ses
n =0

A system with a positive Lyapunov exponent is sensitive to the initial conditions. Sensitivity
to the initial conditions is expressed by calling the system chaotic. Since there is chaotic,
unpredictable behaviour but nethertheless each step in the time evolution is well deter-
mined by the evolution function one speaks of deterministic chaos.

3.2. Link to decompositions

In what follows, we shall apply the theory of (paradoxical) set decomposition to
dynamical systems. We introduce the time evolution operators f’, where ¢ is a real or an
integer. Sometimes one requires ¢ > 0. The evolution operators have the following
properties:

fO = identity,  fff = fH.

Notice the resemblance to the definition of a generator of a group. Indeed, it is proposed
here to identify the time evolution operator with the group action on the manifold M.
Remember that a group G is said to act on a set X if, to each g € G, there corresponds a
function (necessarily a bijection) from X to X, which is denoted by g as well, such that for
g heGand x € X, g(h(x)) = (gh)(x) and 1(x) = x, where 1 is the identity of G.

If we now take, for example, R" as the n-dimensional phase space M of a system, the
group elements f' propagate the system, whose state is represented by x, through time.

But of course the states of the system which are just points in the phase space can also
be viewed as members of a set, namely R”. A subset of the phase space R” is just a set of
states of the system.

An attractor too is just a subset to the phase space, and so is a strange attractor. The
latter is associated with chaotic behaviour which was characterized above as (eventually)
the arbitrarily wide separation of initially arbitrarily close states of the system. We will now
look at attractors of nonlinear and linear systems.

3.3. Nonlinear case

A system is called Hamiltonian if its equation of motion can be derived from Hamilton’s
principle. An example is the damped harmonic oscillator. In a Hamiltonian system, the
time evolution of the observable is given by dQ/dt = 3Q/3¢ + {Q, H}. The curly brackets
{...} stand for the Poisson brackets.

For a conservative system, that is 3 H/3r = 0, Liouville’s theorem states that the volume
in phase space M is conserved by the time evolution. For dissipative systems, this is not
the case. The volume in phase space is usually (but not necessarily), contracted. An
example is the damped harmonic oscillator: ¥ = —y, y =x — y. The phase curve tends
towards the origin of x — y plane. The origin is the simplest form of an attractor: a fixed
point. If we look upon the evolution of a small volume element in phase space, it is clearly
not preserved in the evolution of time. Ultimately the dimension of the solutions (of the
equations of motion) is reduced from two to zero. Conservation of energy can also be
expressed by saying that the dimensionality of the solutions stays fixed.

Now we consider another nonlinear system. The Henon attractor arises in a system
defined by f,(x, y) =1+ y — ax*f,(x, y) = bx. If we take a = 1.4, b = 0.3 we find that

ox(1) =~ dx(0)expAt, A =0.42,
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i.e. the separation in x grows exponentionally; that is the Lyapunov exponent is positive,
the system is chaotic, and the Henon attractor is strange.

If one plots the phase space of this system, one observes that the attractor tends to fill
the hole phase space. A set of initial states which is bounded in a narrow region of phase
space is expanded by the time evolution function into a growing region.

3.4. Linear case

Let us now consider a linear dynamical system. We shall call a system linear if the group
actions on it are distance preserving, i.e. the dynamical evolution is an isometric bijection.
This is a reasonable definition insofar as when one considers two points in phase space
(corresponding to two different states of the system), then after some time they will have
the same separation in phase space.

Take, as an example, the simple harmonic oscillator. If one plots a diagram of the
evolution in phase space, which is just R? for a one-dimensional oscillator, one obtains a
circle. The points on the circle correspond to the values of the position and the momentum
respectively. If one now follows the movements of two points on the circle (these points
resemble two different initial conditions), then one observes that the distance between
them stays the same for all times.

So, the simple application of the time evolution function for two different states of the
system, e.g. two slightly different initial states, can never separate them arbitrarily wide.
The volumes in phase space stay constant. In this view, there seems to be no place for
chaotic behaviour to take place.

But now the Banach—Tarski paradox and paradoxical set decompositions come into play.
They tell us that by isometric transformations — corresponding to the suggested linear time
evolution function — an arbitrary bounded domain in phase space can be doubled and
redoubled. Like in nomiinear chaotic systems, sets of initial values bounded to a narrow
region of phase space can be expanded to cover an increasingly larger part of the phase
space. The attractor of a linear system, which in the case of the harmonic oscillator is just
the one-dimensional solution of the equation of motion, can be paradoxically decomposed
and rearranged. Therefore, the Banach—Tarski paradox in particular, and paradoxical set
decompositions by isometries in general, indicate that there may (nonconstructively) ‘exist’
scenarios for linear chaos.

4. SUMMARY AND DISCUSSION

We shortly summarize linear chaos, as it is proposed here. It is characterized by the
following features:

(i) distance-preserving evolution function f‘ defined on R", n = 3;
(ii) paradoxical decomposition of the attractor A such that two points x, y € A become
arbitrarily separated by f'.

Stated differently, the hypothesis is this: Suppose the Axiom of Choice holds, then there
exists an isometric paradoxical decomposition of any phase space volume in R", n=3.
Therefore, a linear system can show chaotic behaviour.

Note, however, that one may criticize that every constituent of the decomposition gets
transformed differently. Thereby, one may argue, arbitrary separations come as no
surprise, since it is always possible to ‘drag’ regions in phase space arbitrarily far apart by
translations. Nevertheless, the important feature of the scenario discussed here is an
increase of the ‘volume’ of the system in phase space, and not merely separation.
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Of course, it is speculative to suggest that such a scenario can actually be ‘realized’ in
physics. This brings us to the question of mathematical models for physics {12, 13], in
particular the ‘Go-Go’ approach to set theory and physics [14].

One may, for instance, oppose nonconstructive methods or methods which cannot be
operationalized [15]. But by the same argument one would be forced to abandon the
classical continuum as well. ‘Pick’ an arbitrary element from the classical continuum, and
with probability one it is nonconstructive (stronger: algorithmically incompressible; i.e.
Martin—Lo6f/Solovey/Chaitin random [9, 10, 16])! And even the ‘picking’ operation would
be nonconstructive, since it assumes a choice function, which in turn requires the axiom
of choice. So, the notion of classical, deterministic chaos is based on nonconstructive
methods—the classical continuum and a choice function, by which the system ‘picks’ a
Martin-L6f/Solovey/Chaitin random initial value.

Hence, if one abolishes the above scenario because of its nonconstructive features, one
faces the grim consequences of having to re-interpret deterministic chaos as well. This
could, for instance, be done constructively along a re-interpretation of chaotic motion in
physics by undecidability (cf. “weak chaos” [16], chapter 13 and [17]): In such a scenario,
the initial value would not be Martin-Lof/Solovey/Chaitin random, but an unknown
computable number. Because of the recursive unsolvability of the rule inference problem
[18, 19]—a sort of impossibility to guess always correctly the generating law by just
watching a generated number sequence — undecidability emerges out of the inability to
determine the unknown (but in principle knowable) initial state.

Another way to avoid the above discussed scenario of ‘linear’ chaos would be to pretend
that the classical nonconstructive continuum should be kept but paradoxical set decomposi-
tions by isometries do not occur in physics. This approach is not totally convincing, since it
introduces an auxiliary hypothesis—the nonexistence of paradoxical set decompositions by
isometries. This auxiliary hypothesis becomes even stranger in view of the choice function
used in deterministic chaos. For the above reasons, it might be wise not to outrightly
oppose ‘linear’ chaos.
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