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Abstract

The experimental logic of Moore and Mealy type automata is investi-
gated.
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1 Introduction

1.1 Motivation

Already in 1956, Moore [20] presented an explicit example of a four-state automa-
ton featuring an “automaton uncertainty principle” at a very elementary level. The
formalism introduced by Moore has been extended by Conway [6] and Chaitin [5],
among others. See [14, 4] for a recent review on Moore and Mealy automata.

In an article entitled “computational complementarity”, D. Finkelstein and
S. R. Finkelstein [8] were the first to study te&perimental logiof very gen-
eral automata; i.e., the ordered structure of propositions arising from experiments
on automata, and the relationship to quantum physics. Based on this research,
Grib and Zapatrin [11, 12] investigated an automaton type, whose correspond-
ing “macrostatements” (propositions about automaton ensembles), model arbi-
trary orthomodular lattices [13]. In another interesting development, Crutchfield
[7] described the measurement process by introducing a hierarchy of automata.



This article goes back to Moore’s original approach and deals with an alge-
braic characterization of the experimental logic of Moore and Mealy type au-
tomata.

1.2 Classical logic versus quantum logic versus automaton logic

In the followinf, we shall describe, in a somewhat simplified style, the construc-
tion of the logic calculus of classical physical systems, quantum systems and au-
tomata.

Let & be a classical system. We denote the set of all observables of the system
by (A)ici. Itis characteristic for classical systems that(&ll)ic; are simultane-
ously measurable. We denote the outcome of such a measurementdy The
set of all possible outcomes forms the observation sgacdhe most general
form of a prediction concernin is that the pointx;)ic; determined by actually
measuring A ici, Will lie in a subsetS of O. We may call the subsets &f the
“experimental propositions” concernir®. These subsets form a Boolean algebra
(which is equal to the power set 6f). Associated with the systef is the phase
spacd . According to the concept of a phase space, the stateisefrepresented
by a pointp € I', which determines the outcome of the measurem@iig| in
a deterministic way. We may assume a mapping — O, which describes this
correspondence. Each experimental proposi@ocorresponds to a subdeg of
[ by 's= f~1(S). These subsefss form the propositional calculus of the sys-
tem &, which is also a Boolean algebra [usifig(SUT) = f~1(S)u f~L(T),
f3SNT)= 149N fXT)andf1(S) = (f1(9)].

The situation in quantum mechanics is as follows. Gdie a quantum system
and let(Bj)jcy be a set of compatible measurements. The experimental proposi-
tions concerning the measuremen{Bf);c; are again subsets of the observation
spaceO; of all possible outcome§;j)jcs (now, Oy depends on the séBj)jc,).
According to the quantum mechanical formalism, the subBetef the phase
spacd” have to be replaced by closed subspaces of an appropriate Hilbert space
H (or equivalently, by projections operatqus of H). The setL(H) of all closed
subspaces is called the propositional calculus (quantum logic) of the sy@tem
L(H) forms a complete atomistic orthomodular lattice (cf. [17, 23, 24]). The story
of quantum logic goes back to the seminal paper of Birkhoff and von Neumann
[1]. The interest in quantum logic was revived through the investigations of Jauch
[16] and Piron [22]. The historical development and the different approaches to
guantum logic can be found in [15].



At last we turn to automata logic. An automaton (Mealy or Moore automaton)
is a finite deterministic system with input and output capabilities. At any time the
automaton is in a statgof a finite set of state®. The state determines the future
input—output behavior of the automaton. If an input is applied, the automaton as-
sumes a new state, depending both on the old state and on the input. An output is
emitted which depends on the old state and the input (Mealy automaton) or only
on the new state (Moore automaton). Automaton experiments are conducted by
applying an input sequence and observing the output sequence. The automaton is
thereby treated as a black box with known description but unknown initial state.
Let E be an automaton experiment and @t be the observation space, i.0g
is the set of all possible outcomes Bf Because of the deterministic nature of
the automaton, for every experimdhatthere exists a mappinge : Q — Og, de-
termining the outcome d&, and depending on the initial state of the automaton.
As in the classical and quantum case, experimental propositions concerning the
experimentE are subsetSc of Og. For every experimert, the inverse images
of the setsS= underAg forms a Boolean algebra (more exactly, a field of sets).
The elements of this Boolean algebra are subsets of the stafe ¥é¢ obtain a
propositional calculus, termed the automaton logic, if we “paste” all Boolean al-
gebras corresponding to all experiments together. This calculus forms a partition
logic [27, 25]. Intuitively, as has already been observed by Moore [20], it may
occur that the automaton undergoes an irreversible state change, i.e., information
about the automaton’s initial state is lost. A second, later experiment may there-
fore be affected by the first experiment, and vice versa. Hence, both experiments
are incompatible. In this setup, the observer has a qualifying influence on the mea-
surement result insofar as a particular observable has to be chosen among a class
of non-co-measurable observables. But the observer has no quantifying influence
on the measurement result insofar as the outcome of a particular measurement is
concerned.

2 Orthomodular Posets

The appropriate algebraic structures to describe the logic of automata are found
in the theory of orthomodular posets. Orthomodular structures arose from lattice
theory [2, 10, 28] and quantum logic [1, 9]. The basic notion of orthomodular
posets will be defined first. Then, a new type of logic, termed partition logic, will
be introduced. We shall prove a representation theorem, which identifies certain



orthomodular posets with partition logics. Some examples of the new concepts
will be given. More detailed introductions into the theory of orthomodular struc-
tures can be found in the book of G. Kalmbach [17] and in the book ofaR. dtd

S. Pulmanno#& [24]. The books by J. Jauch [16] and C .Piron [22], among others,
deal with physical applications, mainly in the context of quantum mechanics.

2.1 Basic Definitions

Definition 2.1.1 An orthomodular poset (OMP) is a set L endowed with a par-
tial order < and a unary operation, called the orthocomplement, such that the
following conditions for all ab € L are satisfied:

(i) L possesses a least and a greatest eleremtd 1, and0 # 1;

(i) a < bimplies b < &;

(i) (@) =a;

(iv) if a < b/, then the supremum\ab exists;

(v) ifa< b, then b=aV (& Ab) (orthomodular law).

The symbolsv, A denote the lattice-theoretic operations inducedbyf an
OMP is an lattice, we call it anrthomodular lattice(OML). An OMP L does
neither have to be distributive nor a lattice. On the other hand, de Morgan’s law
is valid inL: If aV b exists inL, thena Ab' exists also and’ Ab' = (aV b)’ [use
condition (ii)]. In particular, 1=0 and 0 = 1. Moreover, condition (v) yields
ava =1 foranyac L (and, dually, we also haveena = 0 for anyac L). The
orthogonality relationL for elementsa, b of an OMPL is defined by

a_l b(ais orthogonalto b) i < b/
holds. A paira,b € L is calledcompatible denoted bya < b, if there exist three
mutually orthogonal elementg, by, c such thaa=a; vcandb=b;Vvc.

We now exhibit some basic examples of OMPs. Every Boolean algebra is an
OMP. The latticeL(H) of all projection operators on a (real or complex) Hilbert
spaceH (or, equivalently, the lattice of all closed subspace#idfis an OMP,
with the relation< given by the inclusion and with the operatibgiven by the
formation of the orthocomplement .

Definition 2.1.2 A subset M of L is called a sub-OMP of L if the following condi-
tions are satisfied:

(i) 0eM;

(i) ifa € M, then d € M;

(i) ifa,be Mand al b, then a/b € M (the supremum is taken in L).
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The sub-OMH A generated by an arbitrary subgetf L is the smallest sub-
algebra ol containingA; it always exists.

Definition 2.1.3 Let L3,L, be OMPs. A mapping fL; — L, is called a mor-
phism (of OMPs) if the following conditions are satisfied:

(i) f(0) =0,

(i) f () = f(a)’;

(i) ifa L b, then favb) = f(a)Vv f(b)
A morphism f: L1 — L, is called an isomorphism (of OMPs) if f is injective,
maps l; onto Ly and the mapping ! is also a morphism.

Lemma 2.1.4 A bijective mapping fL; — Ly is anisomorphism iff the following
conditions are satisfied:

(i) (@) = f(a)’;

(i)a <biff f(a) < f(b).

Proof. (i) If f is a morphism,f preserves the order. €< b for a,b € Ly,
then the orthomodular law yields= a A c for ac € L1 such thatc 1. a. Then,
f(b) = f(a) A f(c), and, thereforef(a) < f(b). For an isomorphisnf, f and
f~1 are morphism, hence we get condition (ii).

(i) The converse direction is trivial.

We shall prove three lemmas about the compatibility relation. The proposi-
tions and their proofs are taken from [24].

Lemma2.1.5LetL be an OMP and @ € L:
() Ifa L b, then a— b;
(ii) If a < b, then a— b;
(i) Ifa L b,thenb=(avb)rd.

Proof. (i) Sincea L b,b 1 0 and 0L a, we can writea=aV 0 andb=DbVO.

(i) According to the orthomodular law we can write=aV cforc=bAa'.
Thereforec | aand we havea=avO0andb=bVvc.

(i) a_L bimpliesb’ =aV (&’ Ab) according to the orthomodular law. Forming
the orthocomplement and using De Morgan’s law, we olitain(aVv b) A &.

Lemma 2.1.6 Suppose that a> b. Then, every pair in the sdia,a,b,b'} is
compatible.



Proof. It suffices to prove that the assumpt@mr- b impliesa < b. The
other assertions are not difficult to prove. Supposedhatb. Then,a=a; Vc
andb = b; v ¢, whereas, by, c are mutually orthogonal ih. Sincea L by, we
have(aVb;) Abj; = a(Lemma 2.1.5.iii). Thusa’ = (aVvby)’'Vb;. We need to
check that the elementsb; and(aV b;)" are mutually orthogonal. This is the
case, sincé; <aVvb; = ((avby)) andc<avb;=((avhy)).

Lemma2.1.7If a,b€ L and a~ b, then a/b and aA b exist in L. Moreover, if
a=a; Vc and b= by v c for mutually orthogonal elementg @1, c, then avb =
a; Vb1 Ve and aAb = c. Further, we have a—= aAb/,b; = bAa. Hence, the
elements @ b1, ¢ are uniquely determined by a and b.

Proof. Sinceap,bs,c are mutually orthogonal, we find that the supremum

a1 VvV by Vcexists inL. Furthermorea< a;vbyvcandb<a;VvbiVvc. Letebe

an element of. such thata < eandb < e. The inequalitea;vc<eb;vc<e
imply (a1 vc)V(bpvce) <e Hencea VbhVcisthe supremum of, b. The
existence oh A b follows from Lemma 2.1.6 and from the equaliy\b = (&’ v
b')’. We now show thaa A b = c. On the one hand; < aAb. On the other hand,
aAb=(aivc)Ab< (b'vc)Ab=c(Lemma 2.1.5.iii). Finally, we have; < a
anda; < b’. Moreover, by Lemma 2.1.@A b exists inL. Thus,a; < aAb'.
FurthermoreaAb’ = (ag vVc) Ab < (a3 V) Ac = a;. The proof of the equality
by =bAd is similar.

2.2 ldeals and States

The definition of an ideal is similar to the definition of a lattice ideal. Additionally
we require in condition (ii) that the elemergsndb have to be orthogonal.

Definition 2.2.1 Let L be an OMP. A nonvoid subset | of L is called an ideal if it
satisfies the following conditions:

(ael,b<aimply bel;

(ia,bel,al bimplyavbel.

Definition 2.2.2 Anideal P of L, P#£ L is called prime if al. b implies ac P or
beP.

We denote byP(L) the set of all prime ideals df. Let3(P(L)) the power set
of P(L)). We define a mapping: L — B(P(L)) by p(a) ={P € P(L) | a¢ P}.
p is called thep—function



Lemma 2.2.3 Let P, P#£L, be an ideal. The following conditions are equivalent:
(i) P is a prime ideal;
(ilanbePanda— bimplyac PorbeP;
(ia ePiffa gP.

Proof. (i) implies (ii). Sincea < b, there exist three mutually orthogonal
elementsa;, by, ¢ such thata = a; vcandb =b;vec. From Lemma 2.1.7 we
know thatc =aAb. a; L by impliesa; € P orb; € P. Therefore, according to the
definition of an idealac Porb € P.

(i) implies (iii). We remark that 0= anad € P. We know from Lemma
2.1.6 thata <~ a'. Hence,ac P ora € P. If botha anda’ are inP, then also
1=ava €PandP =L, which contradicts our assumptiéh# L.

(iii) implies (i). Leta,b € L anda L b. We have to prove thatc P orb € P.

If a € P the condition is satisfied. Let us assumé P. It follows thata' € P.
Sinceb < &, we obtainb € P according to the definition of an ideal.

Remark: Compared to lattice prime ideals, the compatibility of the elenaents
andb is required additionally.

Lemma 2.2.4 The p—function possesses the following properties:
() p(0) = 0;
(i) p(a) = p(a)";
(i) ifa L b, then gaVv b) = p(a) U p(b);
(iv) if a < b, then pa) C p(b).

Proof. (i) p(0) ={P e P(L) | 0¢ P} =0
(i) p(@) ={PeP(L)|a ¢P} =
={PeP(L) |a€ P} (using Lemma 2.2.33 P(L)\p(a);
(i) Pe plavb) <avb¢gP< agPorbg P&
< Pep(aorPepb) < Pep(a)upb);
(iv) Leta<bandP € p(a). Thena ¢ P, and this implied ¢ P according to
the definition of an ideal.

Definition 2.2.5 A state (i.e.,. a two-valued state) on an OMP L is mapping s
L — [0,1] (i.e.,. a mapping sL — {0,1}) such that

() s(1) =1;

(i ifa L b, then $aVv b) = s(a) + s(b).



States are probability measures on an OMP. The definition is not exact when
applied to infinite OMPs (cf. [24]), but in this work we only deal with finite
OMPs. Furthermore, in what follows we need the concept of two-valued states,
which is strongly connected to the definition of a prime ideal. We deno& by
the set of all two-valued states an

Lemma 2.2.6 Suppose thatd € L and a< b. Then, §a) < s(b) for any s€ S(L).

Proof. Using the orthomodular law, we can wtite- aV (bA &), and therefore
s(b) =s(a) +s(brd) > s(a).

Lemma 2.2.7 (i) Let P be a prime ideal. Define a mappingls— {0,1} by

S(X) = 0, ifxeP
1 1, ifxgP

Then, s is a two-valued state.
(i) Let s be a two-valued state. SetP{x € L | s(x) = 0}. Then, P is a prime
ideal.

Proof. (i) Since 1 P, the conditiors(1) = 1 is satisfied. Suppose thetl b.
We have to show tha{aV b) = s(a) +s(b). We first assume that\V b € P. Then
alsoa,b € P, and we obtain 6= s(aV b) = s(a) +s(b) = 0+ 0= 0. Let us now
assume thaa Vv b ¢ P. According to the definition of a prime ideal, one of both
elementsa, b has to be irP. If both a andb are inP, then alscaVv b € P, which
contradicts our assumption. Thus, we obtaia $(aVv b) = s(a) +s(b) = 1+0.

(ii) At first we prove thatP is an ideal. Letn€ P andb < a. Sinceb < a, we
know by Lemma 2.2.6 tha(b) < s(a). Together, we obtais(b) = 0; henceb € P.
Let us now assume thatb € P anda L b. We haves(aV b) = s(a) + s(b) =
0+ 0= 0. Therefore, we obtaiaVv b € P. Finally we have to show tha is
prime. Leta,b two elements ot such that the relatioa L b holds. We have
s(avb)=s(a)+s(b) <1. Hences(a) = 0 or s(b) = 0 and therefore € P or
beP.

As we shall see later, the set of all prime ideRy(k) (i.e.,. the state spa&éL ))
can be very poor (in the extreme case it can be empty). It seems therefore useful
to distinguish the cases wh&XL ) is relatively big.



Definition 2.2.8 (i) An OMP L is called rich if the following implication holds:
{PeP(L)|a¢gP} C{PeP(L)|b¢P}implies a<b.
(i) An OMP L is called prime if for all ab € L,a # b there exist a prime ideal
P € P(L) containing exactly one of both a and b.

Using thep—function, we can write:
(i) Lisrichif p(a) C p(b) impliesa < b; and
(i) L is prime ifa+# b implies p(a) # p(b).

Lemma 2.2.9 Every rich OMP is prime.

Proof. LetL be a rich OMP. For alk € L we setp(x) ={P € P(L) | x ¢ P}.
Leta, b be two arbitrary elements &f If p(a) = p(b) thena = b by the richness
of L. Therefore, fola # b alsop(a) # p(b), and a prime ideal containing exactly
one of botha andb exists.

2.3 Concrete Logics and Partition Logics

Definition 2.3.1 A concrete logic is a paifQ,A), whereQ stands for a set and
stands for a collection of subsets@fsatisfying:

(i) 0en;

(i) if A € AthenQ\A € A,

(i) if A,Be Aand ANB =0, then AUB € A.

A routine check of the axioms (i)-(v) in definition 2.3.1 shows that a concrete
logic becomes an OMP if we take the set inclusion for the relaticand the set
complement for the orthocomplemént

A simple example of a concrete logic is a péi?,A), whereQ is a finite set
of even cardinality andh is the collection of all subsets 6f with an even number
of elements.

Theorem 2.3.2 (Gudder) An OMP L is isomorphic to a concrete logic iff L is
rich.

Proof. (i) Suppose first thdt is isomorphic to a concrete logi€,A). We
may assume thdt = A. TakeA,B € A such thatA £ B. We have to prove that
p(A) Z p(B). A< BimpliesA\B # 0 and therefore we can choose a pajrtA\B.



PutP={C cA|g¢C}. Aroutine check verifies tha is a prime ideal. From
the definition ofP it follows thatP € p(A), butP ¢ p(B).

(i) Conversely, suppose thatis rich. PutQ = P(L) and putA = {p(a) |
a € L}, wherep denotes the th@—function. Let us show thafQ,A) is a con-
crete logic. From Lemma 2.2.4.i,ii, we know thaf0) = 0 € A and thatp(a)’ =
P(L)\p(a) € Afor any p(a) € A. Now, letp(a) andp(b) be orthogonal elements
of A. Sincep(a) N p(b) =0, we obtainp(a) C P(L)\p(b) = p(b’). By the richness
of L we conclude tha& L b. HenceaV b exists andp(a) U p(b) = p(avb) € A
(using 2.2.4.iii), proving thatQ,A) is indeed a concrete logic. From lemma
2.2.4.iv we know that < b implies p(a) C p(b). Conversely, from the rich-
ness ofL we know thatp(a) C p(b) impliesa < b. Hence, by Lemma 2.1.4, the
mappingp: L — Ais an isomorphism.

Remark: Theorem 2.3.2 and Theorem 2.3.9 are related to the Birkhoff-Stone
representation theorem for distributive lattices and Boolean algebras, respectively.

Definition 2.3.3 A relation~ on a set M is called an equivalence relation if it
satisfies the following conditions for allla,c € M:

() a =~ a (reflexivity);

(i) a = b implies b~ a (symmetry);

(iif) a ~ b and b~ c implies a~ ¢ (transitivity).

Definition 2.3.4 Let M be a set. A collectio® of subsets of M is called a parti-
tion of M if it has the following properties:
() AnB=0orA=Bforall A/Be L,

(i) UA = U A= M.
Ac

Let ~ be an equivalence relation & and leta € M. Theequivalence class
of a modulox is the sefa] = {b e M | a~ b}. The set of all equivalence classes
modulo=, writtenM/ =, is called thequotient set of M bye. It is easy to check
thatM/ ~ forms a partition ofM, called thepartition induced by, or thepar-
tition corresponding tex. Let®2 andB be partitions of a sél. We call2( finer
than®B or say thatl is arefinemenof B if for every A € 2 there exists 8 € B
such thatA C B.

The following definition of the pasting technique is due to Navara and Ro-
galewicz [21].
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Definition 2.3.5 Let £ be a family of OMPs satisfying the following condition:
ForallP,Qe £, PNQ is a sub-OMP of both P and Q, and the partial orderings
and the orthocomplementations coincide an ®.

Define onthe setk | J£ = |J P arelation< and a unary operatiohas follows:
Peg
(i) a < biff there exists a = £ such that ab € P and a<p b;

(i) a’ = b iff there exists a R £ suchthatabc Pand & = b
(the indices indicate that the operations belong to the respective OMP). The set L
together with< and’ is called thepastingof the family£.

Let P be a partition of a sé¥l. TheBoolean algebra generated byi$the set
Br = {US= U A| SC P}, together with the inclusion and the complement.
AcS

Definition 2.3.6 (Partition logic) LetfR be a family of partitions of a set M. The
pasting of the Boolean algebragBR € ‘R, is called a partition logic, denoted by
(M,R).

It follows from the definition that the orthocompleme&itof a partition logic
(M,R) is identical with the set complemelt\A. FurtherA < B impliesA C B.
The converse is in the general not true.

Lemma 2.3.7 A partition logic P= (M, fR) is an OMP iff the following conditions
are satisfied:

(i) the relation< is transitive;

(i) if A L B (A< B'), then the supremum\AB exists.

Proof. (i) If P is an OMP, the two conditions are satisfied.

(i) Let P = (M,R) be a partition logic satisfying the two conditions. Let
A € P. Then there exists R € R such thatA € Bg. In Bgr we haveA <g; A
and therefore alsé < A, hence, the relatior is reflexive. LetA,B € P and as-
sumeA < B,B < A. We obtainA C B andB C A, obtainingA = B. Hence,<
is also symmetric. Taking also condition (i) into account, we showed <thist
an order relation. The axioms (i)-(iii) of definition 2.1.1 follow trivially. Axiom
(iv) is identical with condition (ii). LetA,B € P andA < B'. Then, there exist a
R € 1R, such thatA, B € Bg, and therefore alsBUB € Bgr andA,B < AUB. By
condition (ii) the supremumV B exists. We obtai®\,B C AV B C AUB, which
impliesAV B = AUB. In the same way, i’ < B holds, we obtai A B = ANB.
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LetA<B. Then,AVv (A'AB) = AU(A'NB) = B, satisfying the orthomodular law.

A blockof an OMPL is a maximal Boolean subalgebralafEvery elemenxk
of L is contained in at least one block, since the Boolean subalgebra generated by
x (and consisting ok, x’,0,1) can be embedded into a maximal one. We denote
the set of all blocks of an OMP by B(L).

Theorem 2.3.8 Let L be an OMP. Then, L is the pasting of its blogkd.).

For a proof see Navara and Rogalewicz [21].

LetL be an OMP and let,y € L with x <y. The sub-OMH {x,y} generated
by the set{x,y} is equivalent to the s€t0,1,x,X,y,y, X Ay, xVy'} (some of the
elements may coincide, for instancexit= 0 or x =y). Moreover,I'{x,y} is a
Boolean algebra. We pdt(L) = {I'{x,y} | x,y € L andx < y}. L is the pasting of
the family €(L).

Theorem 2.3.9 An OMP L is isomorphic to a partition logic iff L is prime.

Proof. (i) The proof is analogous to the proof of theorem 2.3.2.i. First, suppose
thatL is isomorphic to a partition logiR = (M,R). We may assume that= R.
TakeA,B € Rsuch thatA # B. A# Bimplies(A\B) U (B\A) # 0 and therefore we
can choose a poimte (A\B) U (B\A). PutP = {C € R| g ¢ C}. A routine check
verifies thatP is a prime ideal. From the definition &fit follows that exactly one
of both A, B is element oP. Thereforel is prime.

(if) Conversely, suppose thhtis prime. PutM = P(L). Letl € &(L). Define
a partitionRr of P(L) by R- = {p(a) | ais atom ofl"} (p is the p—function). It
follows from Lemma 2.2.4 thaRr- is indeed a partition oM = P(L). PutR =
{Rr | € €(L)} and letR be the partition logi¢M, R). We propose thagt: L — R
is an isomorphism.p is injective by the primeness &f, p is surjective by the
construction oR. For everyl” € (L), the restriction ofpto ', p| I : [ — R,
is an isomorphism. Since by Lemma 2.1L4is the pasting of’(L) andR is the
pasting ofR, L andR are also isomorphic.

Remark: If every element df can be written as a supremum of a finite set of
atoms, we may also use the fam#(L) instead of the family(L).

Corollary 2.3.10 Every concrete logic is a partition logic.
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Proof. The proposition follows from Lemma 2.2.9, Theorem 2.3.2 and Theo-
rem 2.3.9.

We shall see later that there exist OMPs which are prime but notrich. The class
of concrete logics is therefore a proper subclass of the class of partition logics.

2.4 Greechie logics

In this part we introduce a technigue to design OMPs with special properties.

Definition 2.4.1 Let*B be a system of Boolean algebras. We say %at almost
disjoint if for any pair AB € %8 at least one of the following conditions is satisfied:
() A=B;
(i) AnB=1{0,1};
(i) ANB=1{0,1,x,xX},
where x is an atom in both A and B. Moreovér=xx, = xg.

Definition 2.4.2 Let*B be an almost disjoint system of Boolean algebras. A finite
sequencéBy,Bs,...,By_1) of elements ofB is called a loop of order n if the
following conditions are satisfied (the computation of thek is modulo n):

() BinBi11={0,1,x,x} for0<i<n-—1;

(i) BinBj ={0,1} for j #i—1,i,i+1;

(iif) BinBjN By = {0, 1} for distinct indices jij, k.

Observe that every looBo, By, . .., Bn—1) uniquely determines a sequence of
atoms(ey, ..., en—1) such thag is the common atom dd; andB;. 1.

Lemma 2.4.3 Let B be an almost disjoint system of Boolean algebras and let L
be the pasting of3. Then,< is a partial order and the operatiohis an ortho-
complementation.

For a proof see [17, 24].
Theorem 2.4.4 (Greechie) LetB be an almost disjoint system of Boolean alge-
bras and let L be the pasting @. Then,

() L is an OMP iffB does not contain a loop of order 3.
(ii) L is an OML iff 8 does not contain a loop of order 3 or 4.
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Figure 1:
a b C c d e
r——— 0 r————— 0
Figure 2:

For a proof see [17, 24].

Definition 2.4.5 An OMP is called a Greechie logic if the following conditions
are satisfied:

(i) every element of L can be written as supremum of at most countably many
mutually orthogonal atoms in L;

(i) the collection of all blocks in L forms an almost disjoint system.

A useful way of exhibiting the Greechie logics is the drawing of Greechie
diagrams. Let be a logic and3 be a system of blocks of it. Thebh,=JB. The
Greechie diagram associated witlconsist of a set of points and a set of lines.
The points are in one-to-one correspondence with the atornstbé lines are in
one-to-one correspondence with the blocks of

For instance, the drawing in Fig. 1 represents the Boolean al@bmdth
the atoms, b andc. If L is not a Boolean algebra, then it contains several blocks
which may or may not have atoms in common. If two distinct blocks drawn in Fig.
2 of L have exactly one atomin common, then the corresponding edges have a
corner at. For instance, the Greechie diagram drawn in Fig. 3 corresponds to the
Hasse diagram drawn in Fig. 4.

Note that the Greechie diagrams allow us to detect the presence of the loops of
order 3 or 4 and, therefore, indicate whether the structure in question is or is not
an OMP (OML). A loop of order 3 shows up as a “triangle” and a loop of order
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Figure 3:

Figure 4:
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Figure 5:

4 as a “square”. For instance, the Greechie diagram drawn in Fig. 5a) does not
define an OMP, the Greechie diagram drawn in Fig. 5b) defines an OMP, which is
not a lattice.

Definition 2.4.6 Let L be a Greechie logic. Let X be the set of all atoms of L and
let 8 the system of all blocks of L. A subset\X is called a weight (on the
Greechie diagram) ifW N B| = 1 for any block B< B (JA| denotes the cardinal
number of the set A).

W (X) will denote the set of all weights dn

Lemma 2.4.7 Let L be a Greechie logic and let X be the set of its atoms. Let
¢ : P(L) — W(X) be the mapping defined by the formglgP) = {x € X | x ¢ P}.
Then,$ is an isomorphism of sets.

Proof. ¢ (P) is a weight orX for anyP € P(L). The mapping : P(L) — W(X)
is injective. To show thad is also surjective, take a weigh¥ € W(X). Put
P ={ae€ L|there exists & € W such that < X'}. A routine check yields the®
is a prime ideal of.. Since$(P) =W, the proof is completed.

We may use the one-to-one correspondence between prime ideals and weights
to construct OMPs with special properties.

Consider the Greechie diagram of Fig. 6. According to Theorem 2.4.4 the
associated Greechie logic is an OMP, ter’éd by Greechie. We propose that it
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Figure 7: Two disjoint coverings afs 4

possesses no prime ideals. Consider Fig. 7. In these figures the bold lines indicate
a disjoint covering of\s 4 by its blocks. In Fig. 7.a, the covering consists of 3
blocksB;, B, andBs. Therefore,

W[ = WnX]|=|WnN(B1UB2UB3)| = [WNBy|+ |WNBy|+|WNB3| =3 for any

W eW(X). InFig. 7.b, there is a disjoint covering consisting of 4 bloBkSBy, B

andBy, and, thereforéV| = 4 for anyW € W(X). This is a contradiction. Hence,
there is no weight and no prime ideal 34 4.

The latter fact is also seen by the following simple reasoning. Assume that
the OMPW4 4 is isomorphic to a partition logi¢M,fR). Letx € M. x has to be
element in one of the atoms &. Without loss of generality we may assume
thatx € a;. x has to be element in one of the atomsBgf Sincex € a;, X € a
is not possible, becausg,a; are atoms of the same blo&¢. Without loss of
generality we may assume that ag. x has to be element in one of the atoms of
Bc. The only choice left ix € a;1. X has to be element in one of the atomdgf
But every choice € a4, X € ag or X € a2 is in contradiction tox € a;, X € ag and
X € ay1, respectively. Therefore, the OMR; 4 is not isomorphic to a partition
logic. Furthermore, there exist OMLs such th¥L) = 0. An example is the
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Figure 8: The spider

“spider” lattice of Fig. 8 (cf. [24], p.37).

If a Greechie logic is prime (rich), we may also use the one-to-one corre-
spondence between prime ideals and weights to construct the isomorphic par-
tition logic (the isomorphic concrete logic). We give two examples. Consider
the Greechie diagram of the OME drawn in Fig. 9. LetX be the set of its
atoms{ay,...,ag}. L possesses 6 weightd/(X) = {Wi,...,Ws}; see Fig. 10.
According to Lemma 2.4.7, instead the mappmgL — B(P(L)) the mapping
g: X — P(W(X)) is used.q is defined byg(a) = {W € W(X) | a € W} for all
ae X. For instanceg(a;) = {W;,\W,}. We obtain the partition logic of Fig. 11.
(The numbers denote the corresponding weights.) A check of the axioms in Defi-
nition 2.3.1 shows thdt is a concrete logic.

The second example describes a partition logic which is not a concrete logic.
The example is taken from [24], p. 39. Consider the Greechie diagram of the
OMP L, drawn in drawn in Fig. 12,. LeX be the set if its atom$ay, ..., a13}.

L possesses 14 weighw/(X) = {Wi,...,Wia}, drawn in Fig. 13 (the numbers
denote the atoms in a weight). We obtain the partition logic of Fig. 14 (the
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ap ap as

az ag dg
*————4 ]
Figure 9: Example 1
Wi = {a1,as, a9} W, = {a1, a6, 88} W; = {ap,as,a9}
H o— o ————— T B
W, = {a3,a5,a7} W = {a3,a4,ag} We = {ap,a6,a7}

Figure 10: The weights of Example 1
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{1,2} {3,4} {5,6}

{3,6} |{1,5} [{2,4}

{4,5} |{2,6} |[{1,3}

Figure 11: The isomorphic partition logic to example 1

4
3 ®
2
1 e13 7
12
11 ®
10

Figure 12: Example 2
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W, ={2,4,7,11} Ws = {2,4,6,8,11} Wo = {2,5,8,10,12}

A
\
A
»
)
)

Wio={3,7,11,13} Wi1 = {3,6,8,11 13} W2 ={3,6,9,12 13}
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v
(Y
P

Wiz = {3,7,10,12} Wi = {3,6,8,10,12}

Figure 13: The weights of Example 2
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{101112131p {2678 {1,3,4,5,9

{4,5,6,7,8,9 {2,6,8,11,12,14
{1,2,3 e {1,4,510,11,1p {7,10,13
{4,6,9,12,13,14 {3,5,8,9,11,1%
°
{5,7,8,10,1} {3,9,13,14 {1,2,4,6,12

Figure 14: The isomorphic partition logic to example 2

numbers denote the corresponding weights). We proposé ikatot a concrete
logic. The disjoint set§1,2, 3} and{7,10,13} are both inL, but not their union

{1,2,3,7,10,13} (we identify L with its isomorphic partition logic). Therefore,
condition (iii) of Definition 2.3.1 is not satisfied, an,is not a concrete logic
(cf. [24], p. 39).

3 Automata Theory

More detailed introductions to automata theory can be found in [3, 4, 6, 14].

3.1 Basic Definitions

An alphabetis a finite nonvoid set. The elements of an alphabet are cajled
bols. A word (or string) is a finite (possibly empty) sequence of symbols. The
length of a wordw, denoted byjw|, is the number of symbols composing the
string. Theempty words denoted by. >* denotes the set of all words over an
alphabet. The concatenatiorof two words is the word formed by writing the
first, followed by the second, with no intervening space. L be an alphabet*
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with the concatenation as operation forms a monoid, where the emptyswsrd
the identity. A formal) languageover an alphabeX is a subset oE*.

Definition 3.1.1 A Moore automaton M is a five-tuple M (Q,Z,A,d,)A), where
(i) Q is a finite set, called the set of states;
(i) Z is an alphabet, called the input alphabet;
(i) Ais an alphabet, called the output alphabet;
(iv) dis a mapping Q< Z to Q, called the transition function;
(v) A is a mapping Q td\, called the output function.

Let us sketch the appropriate picture informally. At any time the automaton
is in a stateg € Q, emitting the outpuh(q) € A. If an inputa € X is applied to
the automaton, in the next discrete time step the automaton instantly assumes the
statep = 8(q,a) and emits the outpwt(p).

Definition 3.1.2 A Mealy automaton is a five-tuple M(Q, Z,A,d,\) where QX A, 6
are as in the Moore automaton aids a mapping from & Z to A.

A Mealy automaton emits the output at the instant of the transition from one
state to another. The output depends both on the previous state and on the input.

We use directed graphs, callé@nsition diagramsto describe Moore and
Mealy automata. The vertices of the graph correspond to the states of the automa-
ton. For a Moore automaton, every vertex is labeled by a(ogi),q € Q,x € A,
whereq is the corresponding state of the automatonxaad\(q) is the associated
output with this state. If there is a transition from stgteo statep on inputa,
then there is an arc labeledrom stateq to statep in the transition diagram. For
Mealy automata, the vertices are labeled with the corresponding state. If there is
a transition from state to statep on inputa, then there is an arc from stageo
statep labeled(a,A(p,a)). For example, Fig. 15 represents a Moore automaton
and Fig. 17 represents a Mealy automaton.

To formally describe the behavior of a automaton, it is desirable to extend the
transition functiond to apply to a state and an inpwbrd, rather than to a state
and to a single symbol. We define a mappdrfgom Q x Z* to Q. We shall denote
by &(qg,w) the state in which the automaton is after readingtarting from state
g. Formally, we define

(i) 8(g,€) =g, and
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(i) S(q,wa) = 6(8(q,w),a) forwe X" anda € %.
We also extend the output functiano a mappiné\ QxZ*— A" Letay,...,an€
Z. We define

A1+ @n) = A(@)A(3(q,21))A(3(q, @18)) -~ A(3(q, a1 -+~ an))
for Moore automata and

A(Q,a1---an) = A(d,a1)A(d(q,a1),a2) - A(5(Q, 81+ - -@n—1),@n)
for Mealy automataA(q,w) is the output sequence obtained by applying an in-
put sequencey - --an. Sinced(q,a) = 6(g,a) andA(q,a) = A(q,a) for any input
symbola (i.e.,. A(q) = A(qQ)), we may again usé (i.e.,.A) in place ofd (i.e.,. ).
Note that for a wordv with |w| = n, the length of the output sequencenis 1 for
a Moore automaton andfor a Mealy automaton.

Let p,g be any two states belonging to the state@ethen,p is equivalento
(indistinguishabldrom) g, written asp = q iff A(p,w) = A(qg,w) for all possible
wordsw € 2*. Otherwise the states are said todistinguishable We call an
automatorminimalif any two states of the automaton are distinguishable. We say
that a wordw € 2* distinguishes the two statgsandq if A(q,w) # A(p,w). A
somewhat weaker equivalence property is thd-efuivalenceFor each positive

integerk we say thatp is k-equivalent to statg, written asp X q, iff A(p,w) =
A(g,w) for all input sequencew € ~* of lengthk. Both, equivalence= andk-

. k . . . .
equivalence= are equivalence relations that obey the reflexive, symmetric and
transitive laws. We denote the partition correspondingstby Q/ = and the

partition corresponding té by Q/ é

Theorem 3.1.3 (i) (Moore) Let M= (Q,A,%,8,A) be a Moore automaton with n
states and m outputs. Further, letbe onto. Then, two distinguishable states can
be distinguished by some word of length at mostm.

(i) (Huffman/Mealy) Two distinguishable states of a Mealy automaton with n
states can be distinguished by some word of length at medt n

Proof. (i) We denote by (k) the number of equivalence classeqtl_(ofind by
f(e0) the number of equivalence classesofThen, plainly
m=f(0)< f(1) < f(2)<...< f() <n

and so we can defing as the leask with f(k) = f(k+1). We proposef (N) =
FINS+ 1) =f(N+2) =...= f(o). p =" qimpliesd(p,a) = 5(q,a) forallac =
and therefore alsé(p, a)

= f(
Nt d(q,a) (using f(N) = f(N+1)). Together, with

24



A(p) = A(Q) we obtainp Nt g, proving the equality chain above.
m=f(0) < f(1) <... < f(N) = f(o) <nimpliesm+N < nand any two dis-
tinguishable states are distinguishable by a word of length at fhesh —m.

(ii) The proof is analogous to (i).

Let My = (Q1,2,A,01,A1), M2 = (Q2,Z,A,02,A2) be two automata of the
same type (both are either Moore or Mealy automata). A sjate Q1 is said
to beequivalentto a statey, € Qo iff A1(q1,w) = A2(qgp,w) for all w e 2*. The
two automatavi; andMy are said to bequivalentif for each state); € Q1 there
exists an equivalent statp € Qo, and, conversely, for each staje € Q» there
exists an equivalent statg € Q.

Theorem 3.1.4Let M= (Q,%,A,,\) be a Moore or Mealy automaton. Then,
there exists a minimal automaton equivalent to M.

Proof. PutM™ = (Q/ =,Z,A,8™ A™). Defined™([q],a) = [8(qg,a)] for all
[ € Q/=andallac Z. If M is a Moore automaton, defind([q]) = A(q). If M
is a Mealy automaton defin€"([g],a) = A(qg,a). According to the construction,
M™is minimal. Every state € Q is equivalent to the statg] € Q/ =. Therefore,
alsoM andM™ are equivalent.

Now, letM1 be a Moore automaton amd, be a Mealy automaton. There can
never be equivalence in the above sense between these automata because the out-
put of a Moore automaton to the inpate >* contains one more symbol than the
output of the Mealy automaton. However, we may neglect the first output sym-
bol of a Moore automatoM = (Q,%,A,d,A) by using a reduced output function
N Qx Z* — A* defined by
N'(g,a1---an) =A(3(d,a1))---A(3(G, a1+~ an)).
Note that\(g,w) = A(g)N\' (g, w). We may prove the following equivalence theo-
rems, equating the Mealy and Moore models.

Theorem 3.1.51f M1 = (Q,Z,A,d,A1) is a Moore automaton, then there exists a
Mealy automaton Mequivalent to M.

Proof. PutMz = (Q,Z,A,d,A2), wherehz(g,a) = A(8(q,a)) for anyqg e Qand
anya € 2. The two automata are equivalent.
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Theorem 3.1.6Let M; = (Q,%,A,81,A1) be a Mealy automaton. Then, there
exists a Moore automatonMequivalent to M.

Proof. PutM, = (Q x A, X, A, 8, A2). Defined,((q,X),a) = (81(g,a),A(q,a))
andA2((qg,x)) = x for any(g,x) € Q x A anda € Z. Then, the stateg < Q of M
and(q,x) € Q x A, x arbitrary, ofM; are equivalent. Therefore, alst; andM
are equivalent.

3.2 Automata experiments

In what follows we assume that we are dealing with a Moore or Mealy automaton,
which is contained in a black box with input-output interface. Thus, we are only
allowed to observe the input and output sequences associated with the box. To
conduct an experiment, the experimenter applies an input sequence and notes the
resulting output sequence. Using this output sequence, the experimenter tries to
interpret the information contained in the sequence to determine the values of the
unknown parameters. If there is enough information in the output sequence, the
experimenter will state conclusions about the unknown parameters. If, however,
the results are inconclusive, the experimenter can decide to extend the experiment
by applying another input sequence to obtain more information. Alternatively the
experimenter may terminate the experiment with the conclusion that the desired
parameter cannot be measured.

Two general types of problems have to be distinguished. The first one deals
with a situation in which very little about the device is known except that it is
a Moore or Mealy automaton with a given input set and that it is one particular
automaton from a general class of automaton. In this case, we are dealing with an
automaton identification problenTlo solve this problem we must determine the
model that can be used to describe the automaton’s input-output behavior.

The second general class includes measurement and control problems. In this
case, we conduct experiments on an automaton with a known transition table (i.e
the five-tuple(Q, Z,A,,7)). Here, we are interested in measuring and/or control-
ling various parameters of the automaton.

The types of experiments that we can perform are limited by the number of
identical copies of the automaton we have available for investigation, the amount
of flexibility that we allow the experimenter, and the amount of a priori infor-
mation available about the automaton’s internal behavior. Usually, when we are
carrying out an experiment, we assume that orginglecopy of the automaton is
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available. Such an experiment is calledimple experimentOn occasion, how-
ever, we have several identical copies of the automaton or a single automaton with
a “reset” button. Experiments that take advantage of the availability of effectively
more than one copy of an automaton are cattedtiple experiments

The amount of flexibility that we allow the experimenter in selecting the input
sequences is an important consideration. If the input sequence is fixed in advance,
we say that the experimenter is required to perforpneset experimentf the ex-
perimenter can modify the input sequence in response to information gained from
the output sequences, we call thisadeaptive (branch) experimeit which the
input consists of a succession of subsequences, each corresponding to a decision
on the experimenter’s part.

We shall describe two important measurement problems. In the firsgrthe
nal state identification (homing) problenve are dealing with an automaton with
an unknown initial statg. The goal is to identify the final state of the automaton.
We apply an appropriate input sequence >* and observe the resulting output
A(g,w). On the basis of this observation we are able to specify the terminal state
p = 8(g,w). The terminal-state identification problem is always solvable.

The initial-state identification (diagnosing) probleneals with the problem
of trying to determine the unknown initial state of the automaton. To solve this
problem we apply an appropriate input word to the automaton or we carry out an
adaptive experiment. From the observation of the corresponding output, we are
able to make propositions of the initial state. Not all initial-state identification
problems have unique solutions. More exactly, there exist automata such that
the initial state of the automaton is not determinable. The first automaton of this
kind was invented to demonstrate that particular feature by Moore [20]. It is
quite remarkable that Moore’s original motivation for the introduction of Moore
automata was the modeling of the Heisenberg uncertainty principle.

Consider the Moore automaton of Fig. 15. All four states are mutually distin-
guishable: The first free output symbol distinguisgswvhich has output 1, from
all other states, which have output O.
To distinguish betweeq; andg, we apply the input 0X(g1,0) = 01,A(gp,0) =
00).
To distinguish betweeq; andgs we apply the input 1X(g:,1) = 00,A(gz, 1) =
01).
To distinguish betweeq, andgs we apply the input 0X(g2,0) = 00,A(qp,0) =
01).

Nevertheless, the initial state is not determinable. Any experiment which dis-
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ds/0 1 d2/0
Figure 15: Moore’s uncertainty automaton

tinguishes betweeq, andg, cannot distinguish betweaqn andgs. Conversely,

any experiment which distinguishes betwagnand g3 cannot distinguish be-
tweenq; andqgz. Note that any experiment which begins with the input 1 does
not permitq; to be distinguished frong, (since in either case the first input is

0 and the second stateds, so that no future inputs can produce different out-
puts). Similarly, any experiment which begins with the input 0 does not pegmit

to be distinguished fromz. Moore [20] speaks of an “analogue of the Heisen-
berg uncertainty principle,” which was termed “Moore’s uncertainty Principle” by
Conway [6]. D. Finkelstein and S. R. Finkelstein have called this feature “com-
putational complementarity.”

Note that, as has already been pointed out by Moore, if an arbitrary number of
identical automaton copies in the same initial state were available, the initial-state
problem would be solvable by multiple experiments for any minimal automaton.
In this setup, for every paifp,q} of states, one could take a “fresh” automaton
copy and apply an input word which distinguishes the two stptesdg. From
the observed outputs one could then determine the initial state.

A preset experiment is completely specified by an input werd >*. For-
mally, an adaptive experiment can be defined by a magpinty* — U {e}. The
experimenk is carried out in the following way:

(i) If the automaton is a Mealy automatdf(e) denotes the first input symbol.
For a Moore automatork (x) denotes the first input symbol, whexés the first
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observed output symbol, which comes free.

(ii) Let us assume the inpwt € >* was applied and the outpW € A* was
observed. Then, we apply the inpE{W) to the automaton. The experiment
terminates ifE(W) = €.

The class of preset experiments is a subclass of the class of adaptive experi-
ments. For every experimektwe denote the obtained output of an initial stqte
by Ae(q). Ae defines a mappin@ to A*.

3.3 Propositional Calculus of Automata

In the following, we shall investigate the logic of the initial-state identification
problem. We call a proposition regarding the initial state of the autonatpar-
imentally decidablef there is an experiment which determines the truth value of
the proposition. The most general form of a prediction concerning the initial state
g of the automaton is that the initial stajes contained in a subsétof the state
setQ. Therefore, we may identify propositions concerning the initial state with
subsets 0Q. A subseP of Qs then identified with the proposition that the initial
state is contained iR. More explicitly, we are dealing with propositions of the
form, “the initial state of the automaton is in R’whereP is a subset of the set of
automaton states.

We are now dealing with the problem of which subsets of the state set are
experimentally decidable. Note, for instance, that the propositiph (i.e. the
proposition “the initial state of the automatondg’) regarding Moore’s uncer-
tainty automaton (cf. Fig. 15) is not decidable.

Definition 3.3.1 (Automaton Propositional Calculus) Let E be an experiment
(a preset or adaptive one). We define an equivalence relation on the state set Q by

E .

q= piff Ae(q) =Ae(p) . -

for any g p € Q. We denote the partition of Q corresponding2dy Q/ =. The
propositions decidable by the experiment E are the elements of the Boolean alge-

bra generated by Qg, denoted by B. There is also another way to construct the
experimentally decidable propositions of an experiment EAEE®P) = |J Ag(Q)
geP

be the direct image of P undag for any PC Q. We denote the direct image of Q
by O, Oe = Ae(Q). It follows that the most general form of a prediction concern-
ing the outcome W of the experiment E is that W lays in a subset.oflaerefore,
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the experimentally decidable propositions consist of all inverse im}agé@) of
subsets S of § a procedure which can be constructively formulated (e.g.; as an
effectively computable algorithm), and which also leads to the Boolean algebra
Be. Let®B be the set of all Boolean algebrasB We call the partition logic
R=(Q,B) an automaton propositional calculus.

This calculus possesses the following properties:

(i) Rcontains two special propositions: the proposithothat the automaton is
in no initial state, which is always false, and, the proposi@arthat the automaton
is in an arbitrary state, which is always trie= 0 is the least element arid= Q
is the greatest element R

(i) Let A€ R. Any experiment which decidesdecides alsé' = Q\A. More-
over,Ais true iff A’ is false.

(iii) Let A/B € R. A< B holds iff

(a) there is an experiment which decides both proposi#oasdB.

(b) A implies B (wheneverA is true, then alsd is true), which is also ex-
pressed by C B.

The use of a nontransitive implication relation is not new (cf. [26, 18, 19]).

We shall give some examples. First, we shall construct the propositional cal-
culus of Moore’s original uncertainty automaton (cf. Fig. 15). There are 3 dif-
ferent partitions accessible by experiments. The preset experincentesponds
to observing only the first free output of the Moore automaton without any input.

Therefore it yields the partitio®/(€) = {{q1,92,93},{da}}.
The preset experiment 0, i.e., input of 0, yields the partition

Q/(0) = {{a1,as},{a2},{aa}}

The preset experiment 1, i.e., the input of 1, yields the partition

Q/(1) = {{qu, 2}, {as}. {aa}}.

Q/(0) andQ/(1) are finer partitions tha®/(g) and we may negled/(¢) by
forming the propositional calculus. We obtain the partition logic drawn in Fig. 16
(the numbers denote the corresponding states). A Hilbert space representation of
the partition logic is drawn in Fig. 21.

The automaton defined by Fig. 17 yields a propositional calculus drawn in
Fig. 18, which is also found in the quantum logic of two-dimensional Hilbert
space.

Every automaton proposition calculus is by definition a partition logic. Con-
versely, to every partition logic, a Mealy automaton can be effectively constructed
which possesses that partition logic as propositional calculus (cf. [27])REet
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Figure 16: Hasse diagram of Moore’s uncertainty automaton

3/1

®

a3
3/0 3/0
1/0 2/0
7 10
O i1 / 520

2/0
1/1 2/1

Figure 17: Quantumlike Mealy automaton
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{1,2,3

Figure 18: Hasse diagram of the automaton logic of the quantumlike Mealy au-
tomaton

R/1 S/1
R/I2\R/3
S/2 S/2 S/3

Figure 19: Mealy automaton yielding the partition logic of Moore’s uncertainty
automaton
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0/0
1/0
1/1
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0/0

Figure 20: Mealy automaton yielding a nontransitive propositional calculus

12 2

Figure 21: Identification of atoms with rays in three-dimensional real Hilbert
space. Ifv(a) is the subspace spanned by v(12) L v(3), v(2) L v(13),
v(12) L v(4),v(2) L v(4),v(3) Lv(4),v(13) L v(4),v(12) #Vv(2)
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(Q,MR) be a partition logic. We rewrite evely € R as an indexed family =
(R)iel,, where the index séf denotes the sdfl, ..., n} of natural numbers. We
assume tha® # Pj fori # j. N denotes the greatest number of elements in a parti-
tion P € R. We putM = (Q,R,In,d,A). Next, the transition and output functions

0 andA have to be properly defined. Letbe an arbitrary element &. For all

g € Qand allP € R we define

(i) 8(q,P) = pand

(i) A(q,P) =i iff ge R.

In doing so, we obtain as the automaton propositional calculus the partition logic
(M,fR). Instead ofR, we could also use the decompositi6(R), yielding an
automaton with at most three outputs.

We illustrate this construction by an example: Consider the partition logic
of Moore’s original automaton. It is given bR, P) = ({1,2,3,4},{R={Ry =
{1}7R2 = {273}7R3 = {4}}782 {Sl - {172}782 = {3}783 = {4}}} We obtain
the Mealy automatoM = {Q,{R S},{1,2,3},5,A} whered and A are repre-
sented by the transition diagram Fig. 19.

We have already remarked that not every partition logic is an orthomodular
poset. An automaton example for this case is given in Fig. 20. The finest par-
tition accessible by experiments a@g(00) = {{1},{2},{3,4}} andQ/(10) =
{{1,2},{8},{4}} (the numbers denote the corresponding states). Héfe<
{1,2} and{1,2} < {1,2,3} holds, but{1} < {1,2,3} does not hold.
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