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The experimental logic of Moore and Mealy type automata is investi-
gated.

key words: automaton logic; partition logic; comparison to quantum logic;
intrinsic measurements

1 Introduction

1.1 Motivation

Already in 1956, Moore [20] presented an explicit example of a four-state automa-
ton featuring an “automaton uncertainty principle” at a very elementary level. The
formalism introduced by Moore has been extended by Conway [6] and Chaitin [5],
among others. See [14, 4] for a recent review on Moore and Mealy automata.

In an article entitled “computational complementarity”, D. Finkelstein and
S. R. Finkelstein [8] were the first to study theexperimental logicof very gen-
eral automata; i.e., the ordered structure of propositions arising from experiments
on automata, and the relationship to quantum physics. Based on this research,
Grib and Zapatrin [11, 12] investigated an automaton type, whose correspond-
ing “macrostatements” (propositions about automaton ensembles), model arbi-
trary orthomodular lattices [13]. In another interesting development, Crutchfield
[7] described the measurement process by introducing a hierarchy of automata.
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This article goes back to Moore’s original approach and deals with an alge-
braic characterization of the experimental logic of Moore and Mealy type au-
tomata.

1.2 Classical logic versus quantum logic versus automaton logic

In the followinf, we shall describe, in a somewhat simplified style, the construc-
tion of the logic calculus of classical physical systems, quantum systems and au-
tomata.

Let S be a classical system. We denote the set of all observables of the system
by (Ai)i∈I . It is characteristic for classical systems that all(Ai)i∈I are simultane-
ously measurable. We denote the outcome of such a measurement by(xi)i∈I . The
set of all possible outcomes forms the observation spaceO. The most general
form of a prediction concerningS is that the point(xi)i∈I determined by actually
measuring(Ai)i∈I , will lie in a subsetS of O. We may call the subsets ofO the
“experimental propositions” concerningS. These subsets form a Boolean algebra
(which is equal to the power set ofO). Associated with the systemS is the phase
spaceΓ. According to the concept of a phase space, the state ofS is represented
by a pointp∈ Γ, which determines the outcome of the measurements(Ai)i∈I in
a deterministic way. We may assume a mappingf : Γ → O, which describes this
correspondence. Each experimental propositionS corresponds to a subsetΓS of
Γ by ΓS = f−1(S). These subsetsΓS form the propositional calculus of the sys-
tem S, which is also a Boolean algebra [usingf−1(S∪T) = f−1(S)∪ f−1(T),
f−1(S∩T) = f−1(S)∩ f−1(T) and f−1(S′) = ( f−1(S))′].

The situation in quantum mechanics is as follows. LetS be a quantum system
and let(B j) j∈J be a set of compatible measurements. The experimental proposi-
tions concerning the measurement of(B j) j∈J are again subsets of the observation
spaceOJ of all possible outcomes(x j) j∈J (now, OJ depends on the set(B j) j∈J).
According to the quantum mechanical formalism, the subsetsΓS of the phase
spaceΓ have to be replaced by closed subspaces of an appropriate Hilbert space
H (or equivalently, by projections operatorspS of H). The setL(H) of all closed
subspaces is called the propositional calculus (quantum logic) of the systemS.
L(H) forms a complete atomistic orthomodular lattice (cf. [17, 23, 24]). The story
of quantum logic goes back to the seminal paper of Birkhoff and von Neumann
[1]. The interest in quantum logic was revived through the investigations of Jauch
[16] and Piron [22]. The historical development and the different approaches to
quantum logic can be found in [15].
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At last we turn to automata logic. An automaton (Mealy or Moore automaton)
is a finite deterministic system with input and output capabilities. At any time the
automaton is in a stateq of a finite set of statesQ. The state determines the future
input–output behavior of the automaton. If an input is applied, the automaton as-
sumes a new state, depending both on the old state and on the input. An output is
emitted which depends on the old state and the input (Mealy automaton) or only
on the new state (Moore automaton). Automaton experiments are conducted by
applying an input sequence and observing the output sequence. The automaton is
thereby treated as a black box with known description but unknown initial state.
Let E be an automaton experiment and letOE be the observation space, i.e.,OE

is the set of all possible outcomes ofE. Because of the deterministic nature of
the automaton, for every experimentE there exists a mappingλE : Q→ OE, de-
termining the outcome ofE, and depending on the initial state of the automaton.
As in the classical and quantum case, experimental propositions concerning the
experimentE are subsetsSE of OE. For every experimentE, the inverse images
of the setsSE underλE forms a Boolean algebra (more exactly, a field of sets).
The elements of this Boolean algebra are subsets of the state setQ. We obtain a
propositional calculus, termed the automaton logic, if we “paste” all Boolean al-
gebras corresponding to all experiments together. This calculus forms a partition
logic [27, 25]. Intuitively, as has already been observed by Moore [20], it may
occur that the automaton undergoes an irreversible state change, i.e., information
about the automaton’s initial state is lost. A second, later experiment may there-
fore be affected by the first experiment, and vice versa. Hence, both experiments
are incompatible. In this setup, the observer has a qualifying influence on the mea-
surement result insofar as a particular observable has to be chosen among a class
of non-co-measurable observables. But the observer has no quantifying influence
on the measurement result insofar as the outcome of a particular measurement is
concerned.

2 Orthomodular Posets

The appropriate algebraic structures to describe the logic of automata are found
in the theory of orthomodular posets. Orthomodular structures arose from lattice
theory [2, 10, 28] and quantum logic [1, 9]. The basic notion of orthomodular
posets will be defined first. Then, a new type of logic, termed partition logic, will
be introduced. We shall prove a representation theorem, which identifies certain
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orthomodular posets with partition logics. Some examples of the new concepts
will be given. More detailed introductions into the theory of orthomodular struc-
tures can be found in the book of G. Kalmbach [17] and in the book of P. Pták and
S. Pulmannov́a [24]. The books by J. Jauch [16] and C .Piron [22], among others,
deal with physical applications, mainly in the context of quantum mechanics.

2.1 Basic Definitions

Definition 2.1.1 An orthomodular poset (OMP) is a set L endowed with a par-
tial order ≤ and a unary operation′, called the orthocomplement, such that the
following conditions for all a,b∈ L are satisfied:

(i) L possesses a least and a greatest element0 and1, and0 6= 1;
(ii) a ≤ b implies b′ ≤ a′;
(iii) (a′)′ = a;
(iv) if a≤ b′, then the supremum a∨b exists;
(v) if a≤ b, then b= a∨ (a′∧b) (orthomodular law).

The symbols∨,∧ denote the lattice-theoretic operations induced by≤. If an
OMP is an lattice, we call it anorthomodular lattice(OML). An OMP L does
neither have to be distributive nor a lattice. On the other hand, de Morgan’s law
is valid in L: If a∨b exists inL, thena′∧b′ exists also anda′∧b′ = (a∨b)′ [use
condition (ii)]. In particular, 1′ = 0 and 0′ = 1. Moreover, condition (v) yields
a∨a′ = 1 for anya∈ L (and, dually, we also havea∧a′ = 0 for anya∈ L). The
orthogonality relation⊥ for elementsa,b of an OMPL is defined by

a⊥ b (a is orthogonal to b) ifa≤ b′

holds. A paira,b∈ L is calledcompatible, denoted bya↔ b, if there exist three
mutually orthogonal elementsa1,b1,c such thata = a1∨c andb = b1∨c.

We now exhibit some basic examples of OMPs. Every Boolean algebra is an
OMP. The latticeL(H) of all projection operators on a (real or complex) Hilbert
spaceH (or, equivalently, the lattice of all closed subspaces ofH) is an OMP,
with the relation≤ given by the inclusion and with the operation′ given by the
formation of the orthocomplement inH.

Definition 2.1.2 A subset M of L is called a sub-OMP of L if the following condi-
tions are satisfied:

(i) 0∈M;
(ii) if a ∈M, then a′ ∈M;
(iii) if a ,b∈M and a⊥ b, then a∨b∈M (the supremum is taken in L).

4



The sub-OMPΓA generated by an arbitrary subsetA of L is the smallest sub-
algebra ofL containingA; it always exists.

Definition 2.1.3 Let L1,L2 be OMPs. A mapping f: L1 → L2 is called a mor-
phism (of OMPs) if the following conditions are satisfied:

(i) f (0) = 0;
(ii) f (a′) = f (a)′;
(iii) if a ⊥ b, then f(a∨b) = f (a)∨ f (b)

A morphism f: L1 → L2 is called an isomorphism (of OMPs) if f is injective,
maps L1 onto L2 and the mapping f−1 is also a morphism.

Lemma 2.1.4 A bijective mapping f: L1→ L2 is an isomorphism iff the following
conditions are satisfied:

(i) f (a′) = f (a)′;
(ii) a ≤ b iff f (a)≤ f (b).

Proof. (i) If f is a morphism,f preserves the order. Ifa≤ b for a,b ∈ L1,
then the orthomodular law yieldsb = a∧ c for a c ∈ L1 such thatc⊥ a. Then,
f (b) = f (a)∧ f (c), and, therefore,f (a) ≤ f (b). For an isomorphismf , f and
f−1 are morphism, hence we get condition (ii).

(ii) The converse direction is trivial.

We shall prove three lemmas about the compatibility relation. The proposi-
tions and their proofs are taken from [24].

Lemma 2.1.5 Let L be an OMP and a,b∈ L:
(i) If a ⊥ b, then a↔ b;
(ii) If a ≤ b, then a↔ b;
(iii) If a ⊥ b, then b= (a∨b)∧a′.

Proof. (i) Sincea⊥ b,b⊥ 0 and 0⊥ a, we can writea = a∨0 andb = b∨0.
(ii) According to the orthomodular law we can writeb = a∨c for c = b∧a′.

Therefore,c⊥ a and we havea = a∨0 andb = b∨c.
(iii) a⊥ b impliesb′ = a∨(a′∧b) according to the orthomodular law. Forming

the orthocomplement and using De Morgan’s law, we obtainb = (a∨b)∧a′.

Lemma 2.1.6 Suppose that a↔ b. Then, every pair in the set{a,a′,b,b′} is
compatible.
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Proof. It suffices to prove that the assumptiona↔ b implies a′ ↔ b. The
other assertions are not difficult to prove. Suppose thata↔ b. Then,a = a1∨ c
andb = b1∨ c, wherea1,b1,c are mutually orthogonal inL. Sincea⊥ b1, we
have(a∨b1)∧b′1 = a (Lemma 2.1.5.iii). Thus,a′ = (a∨b1)′ ∨b1. We need to
check that the elementsc,b1 and(a∨ b1)′ are mutually orthogonal. This is the
case, sinceb1 ≤ a∨b1 = ((a∨b1)′)′ andc≤ a∨b1 = ((a∨b1)′)′.

Lemma 2.1.7 If a,b∈ L and a↔ b, then a∨b and a∧b exist in L. Moreover, if
a = a1∨c and b= b1∨c for mutually orthogonal elements a1,b1,c, then a∨b =
a1∨b1∨ c and a∧b = c. Further, we have a1 = a∧b′,b1 = b∧a′. Hence, the
elements a1,b1,c are uniquely determined by a and b.

Proof. Sincea1,b1,c are mutually orthogonal, we find that the supremum
a1∨b1∨c exists inL. Furthermore,a≤ a1∨b1∨c andb≤ a1∨b1∨c. Let e be
an element ofL such thata≤ e andb≤ e. The inequalitiesa1∨c≤ e,b1∨c≤ e
imply (a1∨ c)∨ (b1∨ c) ≤ e. Hence,a1∨ b1∨ c is the supremum ofa,b. The
existence ofa∧b follows from Lemma 2.1.6 and from the equalitya∧b = (a′∨
b′)′. We now show thata∧b = c. On the one hand,c≤ a∧b. On the other hand,
a∧b = (a1∨c)∧b≤ (b′∨c)∧b = c (Lemma 2.1.5.iii). Finally, we havea1 ≤ a
anda1 ≤ b′. Moreover, by Lemma 2.1.6,a∧ b′ exists inL. Thus,a1 ≤ a∧ b′.
Furthermore,a∧b′ = (a1∨c)∧b′ ≤ (a1∨c)∧c′ = a1. The proof of the equality
b1 = b∧a′ is similar.

2.2 Ideals and States

The definition of an ideal is similar to the definition of a lattice ideal. Additionally
we require in condition (ii) that the elementsa andb have to be orthogonal.

Definition 2.2.1 Let L be an OMP. A nonvoid subset I of L is called an ideal if it
satisfies the following conditions:

(i) a ∈ I ,b≤ a imply b∈ I;
(ii) a,b∈ I ,a⊥ b imply a∨b∈ I.

Definition 2.2.2 An ideal P of L, P6= L is called prime if a⊥ b implies a∈ P or
b∈ P.

We denote byP(L) the set of all prime ideals ofL. Let P(P(L)) the power set
of P(L)). We define a mappingp : L →P(P(L)) by p(a) = {P∈ P(L) | a 6∈ P}.
p is called thep–function.
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Lemma 2.2.3 Let P, P6= L, be an ideal. The following conditions are equivalent:
(i) P is a prime ideal;
(ii) a∧b∈ P and a↔ b imply a∈ P or b∈ P;
(iii) a ∈ P iff a′ 6∈ P.

Proof. (i) implies (ii). Sincea↔ b, there exist three mutually orthogonal
elementsa1,b1,c such thata = a1∨ c and b = b1∨ c. From Lemma 2.1.7 we
know thatc= a∧b. a1⊥ b1 impliesa1 ∈ P or b1 ∈ P. Therefore, according to the
definition of an ideal,a∈ P or b∈ P.

(ii) implies (iii). We remark that 0= a∧ a′ ∈ P. We know from Lemma
2.1.6 thata↔ a′. Hence,a ∈ P or a′ ∈ P. If both a anda′ are inP, then also
1 = a∨a′ ∈ P andP = L, which contradicts our assumptionP 6= L.

(iii) implies (i). Let a,b∈ L anda⊥ b. We have to prove thata∈ P or b∈ P.
If a ∈ P the condition is satisfied. Let us assumea 6∈ P. It follows thata′ ∈ P.
Sinceb≤ a′, we obtainb∈ P according to the definition of an ideal.

Remark: Compared to lattice prime ideals, the compatibility of the elementsa
andb is required additionally.

Lemma 2.2.4 The p–function possesses the following properties:
(i) p(0) = /0;
(ii) p(a′) = p(a)′;
(iii) if a ⊥ b, then p(a∨b) = p(a)∪ p(b);
(iv) if a≤ b, then p(a)⊆ p(b).

Proof. (i) p(0) = {P∈ P(L) | 0 6∈ P}= /0;
(ii) p(a′) = {P∈ P(L) | a′ 6∈ P}=

= {P∈ P(L) | a∈ P} (using Lemma 2.2.3)= P(L)\p(a);
(iii) P∈ p(a∨b)⇔ a∨b 6∈ P⇔ a 6∈ P or b 6∈ P⇔

⇔ P∈ p(a) or P∈ p(b)⇔ P∈ p(a)∪ p(b);
(iv) Let a≤ b andP∈ p(a). Thena 6∈ P, and this impliesb 6∈ P according to

the definition of an ideal.

Definition 2.2.5 A state (i.e.,. a two-valued state) on an OMP L is mapping s:
L→ [0,1] (i.e.,. a mapping s: L→{0,1}) such that

(i) s(1) = 1;
(ii) if a ⊥ b, then s(a∨b) = s(a)+s(b).
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States are probability measures on an OMP. The definition is not exact when
applied to infinite OMPs (cf. [24]), but in this work we only deal with finite
OMPs. Furthermore, in what follows we need the concept of two-valued states,
which is strongly connected to the definition of a prime ideal. We denote byS(L)
the set of all two-valued states onL.

Lemma 2.2.6 Suppose that a,b∈ L and a≤ b. Then, s(a)≤ s(b) for any s∈S(L).

Proof. Using the orthomodular law, we can writeb= a∨(b∧a′), and therefore
s(b) = s(a)+s(b∧a′)≥ s(a).

Lemma 2.2.7 (i) Let P be a prime ideal. Define a mapping s: L→{0,1} by

s(x) =
{

0, if x ∈ P
1, if x 6∈ P

Then, s is a two-valued state.
(ii) Let s be a two-valued state. Set P= {x∈ L | s(x) = 0}. Then, P is a prime

ideal.

Proof. (i) Since 16∈ P, the conditions(1) = 1 is satisfied. Suppose thata⊥ b.
We have to show thats(a∨b) = s(a)+s(b). We first assume thata∨b∈ P. Then
alsoa,b∈ P, and we obtain 0= s(a∨b) = s(a)+ s(b) = 0+ 0 = 0. Let us now
assume thata∨b 6∈ P. According to the definition of a prime ideal, one of both
elementsa,b has to be inP. If both a andb are inP, then alsoa∨b∈ P, which
contradicts our assumption. Thus, we obtain 1= s(a∨b) = s(a)+s(b) = 1+0.

(ii) At first we prove thatP is an ideal. Leta∈ P andb≤ a. Sinceb≤ a, we
know by Lemma 2.2.6 thats(b)≤ s(a). Together, we obtains(b) = 0; henceb∈P.
Let us now assume thata,b ∈ P anda⊥ b. We haves(a∨ b) = s(a) + s(b) =
0+ 0 = 0. Therefore, we obtaina∨ b ∈ P. Finally we have to show thatP is
prime. Leta,b two elements ofL such that the relationa⊥ b holds. We have
s(a∨b) = s(a)+ s(b) ≤ 1. Hence,s(a) = 0 or s(b) = 0 and thereforea ∈ P or
b∈ P.

As we shall see later, the set of all prime idealsP(L) (i.e.,. the state spaceS(L))
can be very poor (in the extreme case it can be empty). It seems therefore useful
to distinguish the cases whenP(L) is relatively big.
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Definition 2.2.8 (i) An OMP L is called rich if the following implication holds:
{P∈ P(L) | a 6∈ P} ⊆ {P∈ P(L) | b 6∈ P} implies a≤ b.
(ii) An OMP L is called prime if for all a,b∈ L,a 6= b there exist a prime ideal

P∈ P(L) containing exactly one of both a and b.

Using thep–function, we can write:
(i) L is rich if p(a)⊆ p(b) impliesa≤ b; and
(ii) L is prime ifa 6= b implies p(a) 6= p(b).

Lemma 2.2.9 Every rich OMP is prime.

Proof. LetL be a rich OMP. For allx∈ L we setp(x) = {P∈ P(L) | x 6∈ P}.
Let a,b be two arbitrary elements ofL. If p(a) = p(b) thena = b by the richness
of L. Therefore, fora 6= b alsop(a) 6= p(b), and a prime ideal containing exactly
one of botha andb exists.

2.3 Concrete Logics and Partition Logics

Definition 2.3.1 A concrete logic is a pair(Ω,∆), whereΩ stands for a set and∆
stands for a collection of subsets ofΩ satisfying:

(i) /0 ∈ ∆;
(ii) if A ∈ ∆ thenΩ\A∈ ∆;
(iii) if A ,B∈ ∆ and A∩B = /0, then A∪B∈ ∆.

A routine check of the axioms (i)-(v) in definition 2.3.1 shows that a concrete
logic becomes an OMP if we take the set inclusion for the relation≤ and the set
complement for the orthocomplement′.

A simple example of a concrete logic is a pair(Ω,∆), whereΩ is a finite set
of even cardinality and∆ is the collection of all subsets ofΩ with an even number
of elements.

Theorem 2.3.2 (Gudder) An OMP L is isomorphic to a concrete logic iff L is
rich.

Proof. (i) Suppose first thatL is isomorphic to a concrete logic(Ω,∆). We
may assume thatL = ∆. TakeA,B ∈ ∆ such thatA 6≤ B. We have to prove that
p(A) 6⊆ p(B). A 6≤B impliesA\B 6= /0 and therefore we can choose a pointq∈A\B.
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PutP = {C ∈ ∆ | q 6∈C}. A routine check verifies thatP is a prime ideal. From
the definition ofP it follows thatP∈ p(A), butP 6∈ p(B).

(ii) Conversely, suppose thatL is rich. PutΩ = P(L) and put∆ = {p(a) |
a ∈ L}, wherep denotes the thep–function. Let us show that(Ω,∆) is a con-
crete logic. From Lemma 2.2.4.i,ii, we know thatp(0) = /0 ∈ ∆ and thatp(a)′ =
P(L)\p(a) ∈ ∆ for any p(a) ∈ ∆. Now, let p(a) andp(b) be orthogonal elements
of ∆. Sincep(a)∩ p(b) = 0, we obtainp(a)⊆P(L)\p(b) = p(b′). By the richness
of L we conclude thata⊥ b. Hence,a∨b exists andp(a)∪ p(b) = p(a∨b) ∈ ∆
(using 2.2.4.iii), proving that(Ω,∆) is indeed a concrete logic. From lemma
2.2.4.iv we know thata ≤ b implies p(a) ⊆ p(b). Conversely, from the rich-
ness ofL we know thatp(a) ⊆ p(b) impliesa≤ b. Hence, by Lemma 2.1.4, the
mappingp : L→ ∆ is an isomorphism.

Remark: Theorem 2.3.2 and Theorem 2.3.9 are related to the Birkhoff-Stone
representation theorem for distributive lattices and Boolean algebras, respectively.

Definition 2.3.3 A relation≈ on a set M is called an equivalence relation if it
satisfies the following conditions for all a,b,c∈M:

(i) a≈ a (reflexivity);
(ii) a ≈ b implies b≈ a (symmetry);
(iii) a ≈ b and b≈ c implies a≈ c (transitivity).

Definition 2.3.4 Let M be a set. A collectionA of subsets of M is called a parti-
tion of M if it has the following properties:

(i) A∩B = /0 or A = B for all A,B∈ A;
(ii)

⋃
A =

⋃
A∈A

A = M.

Let≈ be an equivalence relation onM and leta∈ M. Theequivalence class
of a modulo≈ is the set[a] = {b∈M | a≈ b}. The set of all equivalence classes
modulo≈, writtenM/≈, is called thequotient set of M by≈. It is easy to check
thatM/ ≈ forms a partition ofM, called thepartition induced by≈, or thepar-
tition corresponding to≈. Let A andB be partitions of a setM. We callA finer
thanB or say thatA is arefinementof B if for every A∈ A there exists aB∈B

such thatA⊆ B.

The following definition of the pasting technique is due to Navara and Ro-
galewicz [21].
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Definition 2.3.5 LetL be a family of OMPs satisfying the following condition:
For all P,Q∈L, P∩Q is a sub-OMP of both P and Q, and the partial orderings

and the orthocomplementations coincide on P∩Q.
Define on the set L=

⋃
L =

⋃
P∈L

P a relation≤ and a unary operation′ as follows:

(i) a≤ b iff there exists a P∈ L such that a,b∈ P and a≤P b;
(ii) a′ = b iff there exists a P∈ L such that a,b∈ P and a′P = b

(the indices indicate that the operations belong to the respective OMP). The set L
together with≤ and ′ is called thepastingof the familyL.

Let P be a partition of a setM. TheBoolean algebra generated by Pis the set
BP = {

⋃
S=

⋃
A∈S

A | S⊆ P}, together with the inclusion and the complement.

Definition 2.3.6 (Partition logic) LetR be a family of partitions of a set M. The
pasting of the Boolean algebras BR,R∈R, is called a partition logic, denoted by
(M,R).

It follows from the definition that the orthocomplementA′ of a partition logic
(M,R) is identical with the set complementM\A. FurtherA≤ B impliesA⊆ B.
The converse is in the general not true.

Lemma 2.3.7 A partition logic P= (M,R) is an OMP iff the following conditions
are satisfied:

(i) the relation≤ is transitive;
(ii) if A ⊥ B (A≤ B′), then the supremum A∨B exists.

Proof. (i) If P is an OMP, the two conditions are satisfied.
(ii) Let P = (M,R) be a partition logic satisfying the two conditions. Let

A ∈ P. Then there exists aR∈ R such thatA ∈ BR. In BR we haveA≤BR A
and therefore alsoA≤ A, hence, the relation≤ is reflexive. LetA,B∈ P and as-
sumeA≤ B,B≤ A. We obtainA⊆ B andB⊆ A, obtainingA = B. Hence,≤
is also symmetric. Taking also condition (i) into account, we showed that≤ is
an order relation. The axioms (i)-(iii) of definition 2.1.1 follow trivially. Axiom
(iv) is identical with condition (ii). LetA,B∈ P andA≤ B′. Then, there exist a
R∈R, such thatA,B∈ BR, and therefore alsoA∪B∈ BR andA,B≤ A∪B. By
condition (ii) the supremumA∨B exists. We obtainA,B⊆ A∨B⊆ A∪B, which
impliesA∨B = A∪B. In the same way, ifA′ ≤ B holds, we obtainA∧B = A∩B.
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Let A≤B. Then,A∨(A′∧B) = A∪(A′∩B) = B, satisfying the orthomodular law.

A blockof an OMPL is a maximal Boolean subalgebra ofL. Every elementx
of L is contained in at least one block, since the Boolean subalgebra generated by
x (and consisting ofx,x′,0,1) can be embedded into a maximal one. We denote
the set of all blocks of an OMPL by B(L).

Theorem 2.3.8 Let L be an OMP. Then, L is the pasting of its blocksB(L).

For a proof see Navara and Rogalewicz [21].

Let L be an OMP and letx,y∈ L with x≤ y. The sub-OMPΓ{x,y} generated
by the set{x,y} is equivalent to the set{0,1,x,x′,y,y′,x′∧ y,x∨ y′} (some of the
elements may coincide, for instance, ifx = 0 or x = y). Moreover,Γ{x,y} is a
Boolean algebra. We putC(L) = {Γ{x,y} | x,y∈ L andx≤ y}. L is the pasting of
the familyC(L).

Theorem 2.3.9 An OMP L is isomorphic to a partition logic iff L is prime.

Proof. (i) The proof is analogous to the proof of theorem 2.3.2.i. First, suppose
thatL is isomorphic to a partition logicR= (M,R). We may assume thatL = R.
TakeA,B∈Rsuch thatA 6= B. A 6= B implies(A\B)∪(B\A) 6= /0 and therefore we
can choose a pointq∈ (A\B)∪ (B\A). PutP = {C∈ R | q 6∈C}. A routine check
verifies thatP is a prime ideal. From the definition ofP it follows that exactly one
of bothA,B is element ofP. ThereforeL is prime.

(ii) Conversely, suppose thatL is prime. PutM = P(L). Let Γ ∈ C(L). Define
a partitionRΓ of P(L) by RΓ = {p(a) | a is atom ofΓ} (p is the p–function). It
follows from Lemma 2.2.4 thatRΓ is indeed a partition ofM = P(L). PutR =
{RΓ | Γ∈ C(L)} and letRbe the partition logic(M,R). We propose thatp : L→R
is an isomorphism.p is injective by the primeness ofL, p is surjective by the
construction ofR. For everyΓ ∈ C(L), the restriction ofp to Γ, p | Γ : Γ → RΓ,
is an isomorphism. Since by Lemma 2.1.4,L is the pasting ofC(L) andR is the
pasting ofR, L andRare also isomorphic.

Remark: If every element ofL can be written as a supremum of a finite set of
atoms, we may also use the familyB(L) instead of the familyC(L).

Corollary 2.3.10 Every concrete logic is a partition logic.
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Proof. The proposition follows from Lemma 2.2.9, Theorem 2.3.2 and Theo-
rem 2.3.9.

We shall see later that there exist OMPs which are prime but not rich. The class
of concrete logics is therefore a proper subclass of the class of partition logics.

2.4 Greechie logics

In this part we introduce a technique to design OMPs with special properties.

Definition 2.4.1 LetB be a system of Boolean algebras. We say thatB is almost
disjoint if for any pair A,B∈B at least one of the following conditions is satisfied:

(i) A = B;
(ii) A∩B = {0,1};
(iii) A ∩B = {0,1,x,x′},

where x is an atom in both A and B. Moreover, x′ = x′A = x′B.

Definition 2.4.2 LetB be an almost disjoint system of Boolean algebras. A finite
sequence(B0,B1, . . . ,Bn−1) of elements ofB is called a loop of order n if the
following conditions are satisfied (the computation of the i, j,k is modulo n):

(i) Bi ∩Bi+1 = {0,1,xi ,x′i} for 0≤ i ≤ n−1;
(ii) B i ∩B j = {0,1} for j 6= i−1, i, i +1;
(iii) B i ∩B j ∩Bk = {0,1} for distinct indices i, j,k.

Observe that every loop(B0,B1, . . . ,Bn−1) uniquely determines a sequence of
atoms(e0, . . . ,en−1) such thatei is the common atom ofBi andBi+1.

Lemma 2.4.3 Let B be an almost disjoint system of Boolean algebras and let L
be the pasting ofB. Then,≤ is a partial order and the operation′ is an ortho-
complementation.

For a proof see [17, 24].

Theorem 2.4.4 (Greechie) LetB be an almost disjoint system of Boolean alge-
bras and let L be the pasting ofB. Then,

(i) L is an OMP iffB does not contain a loop of order 3.
(ii) L is an OML iff B does not contain a loop of order 3 or 4.

13
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Figure 2:

For a proof see [17, 24].

Definition 2.4.5 An OMP is called a Greechie logic if the following conditions
are satisfied:

(i) every element of L can be written as supremum of at most countably many
mutually orthogonal atoms in L;

(ii) the collection of all blocks in L forms an almost disjoint system.

A useful way of exhibiting the Greechie logics is the drawing of Greechie
diagrams. LetL be a logic andB be a system of blocks of it. Then,L =

⋃
B. The

Greechie diagram associated withL consist of a set of points and a set of lines.
The points are in one-to-one correspondence with the atoms ofL; the lines are in
one-to-one correspondence with the blocks ofL.

For instance, the drawing in Fig. 1 represents the Boolean algebra23 with
the atomsa,b andc. If L is not a Boolean algebra, then it contains several blocks
which may or may not have atoms in common. If two distinct blocks drawn in Fig.
2 of L have exactly one atomc in common, then the corresponding edges have a
corner atc. For instance, the Greechie diagram drawn in Fig. 3 corresponds to the
Hasse diagram drawn in Fig. 4.

Note that the Greechie diagrams allow us to detect the presence of the loops of
order 3 or 4 and, therefore, indicate whether the structure in question is or is not
an OMP (OML). A loop of order 3 shows up as a “triangle” and a loop of order

14
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4 as a “square”. For instance, the Greechie diagram drawn in Fig. 5a) does not
define an OMP, the Greechie diagram drawn in Fig. 5b) defines an OMP, which is
not a lattice.

Definition 2.4.6 Let L be a Greechie logic. Let X be the set of all atoms of L and
let B the system of all blocks of L. A subset W⊆ X is called a weight (on the
Greechie diagram) if|W∩B| = 1 for any block B∈B (|A| denotes the cardinal
number of the set A).

W(X) will denote the set of all weights onL.

Lemma 2.4.7 Let L be a Greechie logic and let X be the set of its atoms. Let
ϕ : P(L)→W(X) be the mapping defined by the formulaϕ(P) = {x∈ X | x 6∈ P}.
Then,ϕ is an isomorphism of sets.

Proof.ϕ(P) is a weight onX for anyP∈P(L). The mappingϕ : P(L)→W(X)
is injective. To show thatϕ is also surjective, take a weightW ∈ W(X). Put
P = {a∈ L | there exists ax∈W such thata≤ x′}. A routine check yields thatP
is a prime ideal ofL. Sinceϕ(P) = W, the proof is completed.

We may use the one-to-one correspondence between prime ideals and weights
to construct OMPs with special properties.

Consider the Greechie diagram of Fig. 6. According to Theorem 2.4.4 the
associated Greechie logic is an OMP, termedW3,4 by Greechie. We propose that it
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Figure 7: Two disjoint coverings ofW3,4

possesses no prime ideals. Consider Fig. 7. In these figures the bold lines indicate
a disjoint covering ofW3,4 by its blocks. In Fig. 7.a, the covering consists of 3
blocksB1,B2 andB3. Therefore,
|W|= |W∩X|= |W∩(B1∪B2∪B3)|= |W∩B1|+ |W∩B2|+ |W∩B3|= 3 for any
W∈W(X). In Fig. 7.b, there is a disjoint covering consisting of 4 blocksBa,Bb,Bc

andBd, and, therefore|W|= 4 for anyW ∈W(X). This is a contradiction. Hence,
there is no weight and no prime ideal onW3,4.

The latter fact is also seen by the following simple reasoning. Assume that
the OMPW3,4 is isomorphic to a partition logic(M,R). Let x∈ M. x has to be
element in one of the atoms ofBa. Without loss of generality we may assume
thatx∈ a1. x has to be element in one of the atoms ofBb. Sincex∈ a1, x∈ a2

is not possible, becausea1,a2 are atoms of the same blockB1. Without loss of
generality we may assume thatx∈ a6. x has to be element in one of the atoms of
Bc. The only choice left isx∈ a11. x has to be element in one of the atoms ofBd.
But every choicex∈ a4,x∈ a8 or x∈ a12 is in contradiction tox∈ a1,x∈ a6 and
x ∈ a11, respectively. Therefore, the OMPW3,4 is not isomorphic to a partition
logic. Furthermore, there exist OMLs such thatP(L) = /0. An example is the
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“spider” lattice of Fig. 8 (cf. [24], p.37).
If a Greechie logic is prime (rich), we may also use the one-to-one corre-

spondence between prime ideals and weights to construct the isomorphic par-
tition logic (the isomorphic concrete logic). We give two examples. Consider
the Greechie diagram of the OMPL, drawn in Fig. 9. LetX be the set of its
atoms{a1, . . . ,a9}. L possesses 6 weights,W(X) = {W1, . . . ,W6}; see Fig. 10.
According to Lemma 2.4.7, instead the mappingp : L → P(P(L)) the mapping
q : X → P(W(X)) is used.q is defined byq(a) = {W ∈W(X) | a ∈W} for all
a∈ X. For instance,q(a1) = {W1,W2}. We obtain the partition logic of Fig. 11.
(The numbers denote the corresponding weights.) A check of the axioms in Defi-
nition 2.3.1 shows thatL is a concrete logic.

The second example describes a partition logic which is not a concrete logic.
The example is taken from [24], p. 39. Consider the Greechie diagram of the
OMP L, drawn in drawn in Fig. 12,. LetX be the set if its atoms{a1, . . . ,a13}.
L possesses 14 weights,W(X) = {W1, . . . ,W14}, drawn in Fig. 13 (the numbers
denote the atoms in a weight). We obtain the partition logic of Fig. 14 (the
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Figure 14: The isomorphic partition logic to example 2

numbers denote the corresponding weights). We propose thatL is not a concrete
logic. The disjoint sets{1,2,3} and{7,10,13} are both inL, but not their union
{1,2,3,7,10,13} (we identify L with its isomorphic partition logic). Therefore,
condition (iii) of Definition 2.3.1 is not satisfied, and,L is not a concrete logic
(cf. [24], p. 39).

3 Automata Theory

More detailed introductions to automata theory can be found in [3, 4, 6, 14].

3.1 Basic Definitions

An alphabetis a finite nonvoid set. The elements of an alphabet are calledsym-
bols. A word (or string) is a finite (possibly empty) sequence of symbols. The
length of a word w, denoted by|w|, is the number of symbols composing the
string. Theempty wordis denoted byε. Σ∗ denotes the set of all words over an
alphabetΣ. Theconcatenationof two words is the word formed by writing the
first, followed by the second, with no intervening space. LetΣ be an alphabet.Σ∗

22



with the concatenation as operation forms a monoid, where the empty wordε is
the identity. A (formal) languageover an alphabetΣ is a subset ofΣ∗.

Definition 3.1.1 A Moore automaton M is a five-tuple M= (Q,Σ,∆,δ,λ), where
(i) Q is a finite set, called the set of states;
(ii) Σ is an alphabet, called the input alphabet;
(iii) ∆ is an alphabet, called the output alphabet;
(iv) δ is a mapping Q×Σ to Q, called the transition function;
(v) λ is a mapping Q to∆, called the output function.

Let us sketch the appropriate picture informally. At any time the automaton
is in a stateq∈ Q, emitting the outputλ(q) ∈ ∆. If an inputa∈ Σ is applied to
the automaton, in the next discrete time step the automaton instantly assumes the
statep = δ(q,a) and emits the outputλ(p).

Definition 3.1.2 A Mealy automaton is a five-tuple M=(Q,Σ,∆,δ,λ) where Q,Σ,∆,δ
are as in the Moore automaton andλ is a mapping from Q×Σ to ∆.

A Mealy automaton emits the output at the instant of the transition from one
state to another. The output depends both on the previous state and on the input.

We use directed graphs, calledtransition diagrams, to describe Moore and
Mealy automata. The vertices of the graph correspond to the states of the automa-
ton. For a Moore automaton, every vertex is labeled by a pair(q/x),q∈Q,x∈ ∆,
whereq is the corresponding state of the automaton andx= λ(q) is the associated
output with this state. If there is a transition from stateq to statep on inputa,
then there is an arc labeleda from stateq to statep in the transition diagram. For
Mealy automata, the vertices are labeled with the corresponding state. If there is
a transition from stateq to statep on inputa, then there is an arc from stateq to
statep labeled(a,λ(p,a)). For example, Fig. 15 represents a Moore automaton
and Fig. 17 represents a Mealy automaton.

To formally describe the behavior of a automaton, it is desirable to extend the
transition functionδ to apply to a state and an inputword, rather than to a state
and to a single symbol. We define a mappingδ̂ from Q×Σ∗ to Q. We shall denote
by δ̂(q,w) the state in which the automaton is after readingw, starting from state
q. Formally, we define

(i) δ̂(q,ε) = q, and
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(ii) δ̂(q,wa) = δ(δ̂(q,w),a) for w∈ Σ∗ anda∈ Σ.
We also extend the output functionλ to a mappinĝλ : Q×Σ∗→∆∗. Leta1, . . . ,an∈
Σ. We define

λ̂(q,a1 · · ·an) = λ(q)λ(δ(q,a1))λ(δ(q,a1a2)) · · ·λ(δ(q,a1 · · ·an))
for Moore automata and

λ̂(q,a1 · · ·an) = λ(q,a1)λ(δ(q,a1),a2) · · ·λ(δ(q,a1 · · ·an−1),an)
for Mealy automata.̂λ(q,w) is the output sequence obtained by applying an in-
put sequencea1 · · ·an. Sinceδ̂(q,a) = δ(q,a) andλ̂(q,a) = λ(q,a) for any input
symbola (i.e.,. λ̂(q) = λ(q)), we may again useδ (i.e.,.λ) in place ofδ̂ (i.e.,. λ̂).
Note that for a wordw with |w|= n, the length of the output sequence isn+1 for
a Moore automaton andn for a Mealy automaton.

Let p,q be any two states belonging to the state setQ. Then,p is equivalentto
(indistinguishablefrom) q, written asp≡ q iff λ(p,w) = λ(q,w) for all possible
wordsw ∈ Σ∗. Otherwise the states are said to bedistinguishable. We call an
automatonminimalif any two states of the automaton are distinguishable. We say
that a wordw ∈ Σ∗ distinguishes the two statesp andq if λ(q,w) 6= λ(p,w). A
somewhat weaker equivalence property is that ofk-equivalence. For each positive

integerk we say thatp is k-equivalent to stateq, written asp
k≡ q, iff λ(p,w) =

λ(q,w) for all input sequencesw ∈ Σ∗ of lengthk. Both, equivalence≡ andk-

equivalence
k≡ are equivalence relations that obey the reflexive, symmetric and

transitive laws. We denote the partition corresponding to≡ by Q/ ≡ and the

partition corresponding to
k≡ by Q/

k≡.

Theorem 3.1.3 (i) (Moore) Let M= (Q,∆,Σ,δ,λ) be a Moore automaton with n
states and m outputs. Further, letλ be onto. Then, two distinguishable states can
be distinguished by some word of length at most n−m.

(ii) (Huffman/Mealy) Two distinguishable states of a Mealy automaton with n
states can be distinguished by some word of length at most n−1.

Proof. (i) We denote byf (k) the number of equivalence classes of
k≡ and by

f (∞) the number of equivalence classes of≡. Then, plainly
m= f (0)≤ f (1)≤ f (2)≤ . . .≤ f (∞)≤ n
and so we can defineN as the leastk with f (k) = f (k+1). We proposef (N) =

f (N+1) = f (N+2) = . . . = f (∞). p
N+1≡ q impliesδ(p,a)

N≡ δ(q,a) for all a∈ Σ
and therefore alsoδ(p,a)

N+1≡ δ(q,a) (using f (N) = f (N + 1)). Together, with
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λ(p) = λ(q) we obtainp
N+2≡ q, proving the equality chain above.

m= f (0) < f (1) < .. . < f (N) = f (∞) ≤ n impliesm+N ≤ n and any two dis-
tinguishable states are distinguishable by a word of length at mostN≤ n−m.

(ii) The proof is analogous to (i).

Let M1 = (Q1,Σ,∆,δ1,λ1), M2 = (Q2,Σ,∆,δ2,λ2) be two automata of the
same type (both are either Moore or Mealy automata). A stateq1 ∈ Q1 is said
to beequivalentto a stateq2 ∈ Q2 iff λ1(q1,w) = λ2(q2,w) for all w∈ Σ∗. The
two automataM1 andM2 are said to beequivalent, if for each stateq1 ∈Q1 there
exists an equivalent stateq2 ∈ Q2, and, conversely, for each stateq2 ∈ Q2 there
exists an equivalent stateq1 ∈Q1.

Theorem 3.1.4 Let M = (Q,Σ,∆,δ,λ) be a Moore or Mealy automaton. Then,
there exists a minimal automaton equivalent to M.

Proof. PutMm = (Q/ ≡,Σ,∆,δm,λm). Defineδm([q],a) = [δ(q,a)] for all
[q] ∈Q/≡ and alla∈ Σ. If M is a Moore automaton, defineλm([q]) = λ(q). If M
is a Mealy automaton defineλm([q],a) = λ(q,a). According to the construction,
Mm is minimal. Every stateq∈Q is equivalent to the state[q] ∈Q/≡. Therefore,
alsoM andMm are equivalent.

Now, letM1 be a Moore automaton andM2 be a Mealy automaton. There can
never be equivalence in the above sense between these automata because the out-
put of a Moore automaton to the inputw∈ Σ∗ contains one more symbol than the
output of the Mealy automaton. However, we may neglect the first output sym-
bol of a Moore automatonM = (Q,Σ,∆,δ,λ) by using a reduced output function
λ′ : Q×Σ∗→ ∆∗ defined by
λ′(q,a1 · · ·an) = λ(δ(q,a1)) · · ·λ(δ(q,a1 · · ·an)).
Note thatλ(q,w) = λ(q)λ′(q,w). We may prove the following equivalence theo-
rems, equating the Mealy and Moore models.

Theorem 3.1.5 If M1 = (Q,Σ,∆,δ,λ1) is a Moore automaton, then there exists a
Mealy automaton M2 equivalent to M1.

Proof. PutM2 = (Q,Σ,∆,δ,λ2), whereλ2(q,a) = λ(δ(q,a)) for anyq∈Q and
anya∈ Σ. The two automata are equivalent.

25



Theorem 3.1.6 Let M1 = (Q,Σ,∆,δ1,λ1) be a Mealy automaton. Then, there
exists a Moore automaton M2 equivalent to M1.

Proof. PutM2 = (Q×∆,Σ,∆,δ2,λ2). Defineδ2((q,x),a) = (δ1(q,a),λ(q,a))
andλ2((q,x)) = x for any(q,x) ∈Q×∆ anda∈ Σ. Then, the statesq∈Q of M1

and(q,x) ∈ Q×∆, x arbitrary, ofM2 are equivalent. Therefore, alsoM1 andM2

are equivalent.

3.2 Automata experiments

In what follows we assume that we are dealing with a Moore or Mealy automaton,
which is contained in a black box with input-output interface. Thus, we are only
allowed to observe the input and output sequences associated with the box. To
conduct an experiment, the experimenter applies an input sequence and notes the
resulting output sequence. Using this output sequence, the experimenter tries to
interpret the information contained in the sequence to determine the values of the
unknown parameters. If there is enough information in the output sequence, the
experimenter will state conclusions about the unknown parameters. If, however,
the results are inconclusive, the experimenter can decide to extend the experiment
by applying another input sequence to obtain more information. Alternatively the
experimenter may terminate the experiment with the conclusion that the desired
parameter cannot be measured.

Two general types of problems have to be distinguished. The first one deals
with a situation in which very little about the device is known except that it is
a Moore or Mealy automaton with a given input set and that it is one particular
automaton from a general class of automaton. In this case, we are dealing with an
automaton identification problem. To solve this problem we must determine the
model that can be used to describe the automaton’s input-output behavior.

The second general class includes measurement and control problems. In this
case, we conduct experiments on an automaton with a known transition table (i.e
the five-tuple(Q,Σ,∆,δ,λ)). Here, we are interested in measuring and/or control-
ling various parameters of the automaton.

The types of experiments that we can perform are limited by the number of
identical copies of the automaton we have available for investigation, the amount
of flexibility that we allow the experimenter, and the amount of a priori infor-
mation available about the automaton’s internal behavior. Usually, when we are
carrying out an experiment, we assume that only asinglecopy of the automaton is
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available. Such an experiment is called asimple experiment. On occasion, how-
ever, we have several identical copies of the automaton or a single automaton with
a “reset” button. Experiments that take advantage of the availability of effectively
more than one copy of an automaton are calledmultiple experiments.

The amount of flexibility that we allow the experimenter in selecting the input
sequences is an important consideration. If the input sequence is fixed in advance,
we say that the experimenter is required to perform apreset experiment. If the ex-
perimenter can modify the input sequence in response to information gained from
the output sequences, we call this anadaptive (branch) experimentin which the
input consists of a succession of subsequences, each corresponding to a decision
on the experimenter’s part.

We shall describe two important measurement problems. In the first, thetermi-
nal state identification (homing) problem, we are dealing with an automaton with
an unknown initial stateq. The goal is to identify the final state of the automaton.
We apply an appropriate input sequencew∈ Σ∗ and observe the resulting output
λ(q,w). On the basis of this observation we are able to specify the terminal state
p = δ(q,w). The terminal-state identification problem is always solvable.

The initial-state identification (diagnosing) problemdeals with the problem
of trying to determine the unknown initial state of the automaton. To solve this
problem we apply an appropriate input word to the automaton or we carry out an
adaptive experiment. From the observation of the corresponding output, we are
able to make propositions of the initial state. Not all initial-state identification
problems have unique solutions. More exactly, there exist automata such that
the initial state of the automaton is not determinable. The first automaton of this
kind was invented to demonstrate that particular feature by Moore [20]. It is
quite remarkable that Moore’s original motivation for the introduction of Moore
automata was the modeling of the Heisenberg uncertainty principle.

Consider the Moore automaton of Fig. 15. All four states are mutually distin-
guishable: The first free output symbol distinguishesq4, which has output 1, from
all other states, which have output 0.
To distinguish betweenq1 andq2 we apply the input 0 (λ(q1,0) = 01,λ(q2,0) =
00).
To distinguish betweenq1 andq3 we apply the input 1 (λ(q1,1) = 00,λ(q3,1) =
01).
To distinguish betweenq2 andq3 we apply the input 0 (λ(q2,0) = 00,λ(q2,0) =
01).

Nevertheless, the initial state is not determinable. Any experiment which dis-
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Figure 15: Moore’s uncertainty automaton

tinguishes betweenq1 andq2 cannot distinguish betweenq1 andq3. Conversely,
any experiment which distinguishes betweenq1 and q3 cannot distinguish be-
tweenq1 andq3. Note that any experiment which begins with the input 1 does
not permitq1 to be distinguished fromq2 (since in either case the first input is
0 and the second state isq3, so that no future inputs can produce different out-
puts). Similarly, any experiment which begins with the input 0 does not permitq1

to be distinguished fromq3. Moore [20] speaks of an “analogue of the Heisen-
berg uncertainty principle,” which was termed “Moore’s uncertainty Principle” by
Conway [6]. D. Finkelstein and S. R. Finkelstein have called this feature “com-
putational complementarity.”

Note that, as has already been pointed out by Moore, if an arbitrary number of
identical automaton copies in the same initial state were available, the initial-state
problem would be solvable by multiple experiments for any minimal automaton.
In this setup, for every pair{p,q} of states, one could take a “fresh” automaton
copy and apply an input word which distinguishes the two statesp andq. From
the observed outputs one could then determine the initial state.

A preset experiment is completely specified by an input wordw ∈ Σ∗. For-
mally, an adaptive experiment can be defined by a mappingE : ∆∗→ Σ∪{ε}. The
experimentE is carried out in the following way:

(i) If the automaton is a Mealy automaton,E(ε) denotes the first input symbol.
For a Moore automaton,E(x) denotes the first input symbol, wherex is the first
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observed output symbol, which comes free.
(ii) Let us assume the inputw ∈ Σ∗ was applied and the outputW ∈ ∆∗ was

observed. Then, we apply the inputE(W) to the automaton. The experiment
terminates ifE(W) = ε.

The class of preset experiments is a subclass of the class of adaptive experi-
ments. For every experimentE we denote the obtained output of an initial stateq
by λE(q). λE defines a mappingQ to ∆∗.

3.3 Propositional Calculus of Automata

In the following, we shall investigate the logic of the initial-state identification
problem. We call a proposition regarding the initial state of the automatonexper-
imentally decidableif there is an experiment which determines the truth value of
the proposition. The most general form of a prediction concerning the initial state
q of the automaton is that the initial stateq is contained in a subsetP of the state
setQ. Therefore, we may identify propositions concerning the initial state with
subsets ofQ. A subsetP of Q is then identified with the proposition that the initial
state is contained inP. More explicitly, we are dealing with propositions of the
form, “the initial state of the automaton is in P”, whereP is a subset of the set of
automaton statesQ.

We are now dealing with the problem of which subsets of the state set are
experimentally decidable. Note, for instance, that the proposition{q1} (i.e. the
proposition “the initial state of the automaton isq1”) regarding Moore’s uncer-
tainty automaton (cf. Fig. 15) is not decidable.

Definition 3.3.1 (Automaton Propositional Calculus) Let E be an experiment
(a preset or adaptive one). We define an equivalence relation on the state set Q by

q
E≡ p iff λE(q) = λE(p)

for any q, p∈Q. We denote the partition of Q corresponding to
E≡ by Q/

E≡. The
propositions decidable by the experiment E are the elements of the Boolean alge-

bra generated by Q/
E≡, denoted by BE. There is also another way to construct the

experimentally decidable propositions of an experiment E. LetλE(P) =
⋃

q∈P
λE(q)

be the direct image of P underλE for any P⊆Q. We denote the direct image of Q
by OE, OE = λE(Q). It follows that the most general form of a prediction concern-
ing the outcome W of the experiment E is that W lays in a subset of OE. Therefore,
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the experimentally decidable propositions consist of all inverse imagesλ−1
E (S) of

subsets S of OE, a procedure which can be constructively formulated (e.g.; as an
effectively computable algorithm), and which also leads to the Boolean algebra
BE. Let B be the set of all Boolean algebras BE. We call the partition logic
R= (Q,B) an automaton propositional calculus.

This calculus possesses the following properties:
(i) Rcontains two special propositions: the proposition/0, that the automaton is

in no initial state, which is always false, and, the propositionQ , that the automaton
is in an arbitrary state, which is always true.0≡ /0 is the least element and1≡Q
is the greatest element inR.

(ii) Let A∈R. Any experiment which decidesA decides alsoA′ = Q\A. More-
over,A is true iff A′ is false.

(iii) Let A,B∈ R. A≤ B holds iff
(a) there is an experiment which decides both propositionsA andB.
(b) A implies B (wheneverA is true, then alsoB is true), which is also ex-

pressed byA⊆ B.
The use of a nontransitive implication relation is not new (cf. [26, 18, 19]).

We shall give some examples. First, we shall construct the propositional cal-
culus of Moore’s original uncertainty automaton (cf. Fig. 15). There are 3 dif-
ferent partitions accessible by experiments. The preset experimentε corresponds
to observing only the first free output of the Moore automaton without any input.
Therefore it yields the partitionQ/(ε) = {{q1,q2,q3},{q4}}.
The preset experiment 0, i.e., input of 0, yields the partition
Q/(0) = {{q1,q3},{q2},{q4}}.
The preset experiment 1, i.e., the input of 1, yields the partition
Q/(1) = {{q1,q2},{q3},{q4}}.
Q/(0) andQ/(1) are finer partitions thanQ/(ε) and we may neglectQ/(ε) by
forming the propositional calculus. We obtain the partition logic drawn in Fig. 16
(the numbers denote the corresponding states). A Hilbert space representation of
the partition logic is drawn in Fig. 21.

The automaton defined by Fig. 17 yields a propositional calculus drawn in
Fig. 18, which is also found in the quantum logic of two-dimensional Hilbert
space.

Every automaton proposition calculus is by definition a partition logic. Con-
versely, to every partition logic, a Mealy automaton can be effectively constructed
which possesses that partition logic as propositional calculus (cf. [27]). LetR=
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(Q,R) be a partition logic. We rewrite everyP ∈ R as an indexed familyP =
(Pi)i∈In, where the index setIn denotes the set{1, . . . ,n} of natural numbers. We
assume thatPi 6= Pj for i 6= j. N denotes the greatest number of elements in a parti-
tion P∈R. We putM = (Q,R, IN,δ,λ). Next, the transition and output functions
δ andλ have to be properly defined. Letp be an arbitrary element ofQ. For all
q∈Q and allP∈R we define
(i) δ(q,P) = p and
(ii) λ(q,P) = i iff q∈ Pi .
In doing so, we obtain as the automaton propositional calculus the partition logic
(M,R). Instead ofR, we could also use the decompositionC(R), yielding an
automaton with at most three outputs.

We illustrate this construction by an example: Consider the partition logic
of Moore’s original automaton. It is given by(Q,P) = ({1,2,3,4},{R= {R1 =
{1},R2 = {2,3},R3 = {4}},S= {S1 = {1,2},S2 = {3},S3 = {4}}}. We obtain
the Mealy automatonM = {Q,{R,S},{1,2,3},δ,λ} whereδ and λ are repre-
sented by the transition diagram Fig. 19.

We have already remarked that not every partition logic is an orthomodular
poset. An automaton example for this case is given in Fig. 20. The finest par-
tition accessible by experiments areQ/(00) = {{1},{2},{3,4}} andQ/(10) =
{{1,2},{3},{4}} (the numbers denote the corresponding states). Here,{1} ≤
{1,2} and{1,2} ≤ {1,2,3} holds, but{1} ≤ {1,2,3} does not hold.
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