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LETTER TO THE EDITOR

Amplification by stochastic interference
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Abstract. A new method is introduced to obtain a strong signal by the interference of weak
signals in noisy channels. The method is based on the interference of 1/f noise from parallel
channels. One realization of stochastic interference is the auditory nervous system. Stochastic
interference may have broad potential applications in information transmission by parallel noisy
channels.

The method of stochastic interference was originally conceived for information processing
in the auditory nervous system [1]. It makes use of the random fractal geometry of the
spike discharge patterns [2–5] which are processed by diverging and converging information
networks of the auditory system. This method is distinct from stochastic resonance [6], but
when both methods are combined, a fascinating new model of transsynaptic information
transfer emerges [7].

Here, we are interested in more general aspects of stochastic interference. The method
can be sketched as follows. Consider an information transmission via multiple channels.
Assume further that the information is coded in statistically self-similar, random [8–14]
fractal patterns [15]. The idea that information is encoded in the dimensional geometry of
random fractals is not entirely new [2–5]. But here,n fractal information signals (with the
same dimensional parameter) are combined by logical ‘and’ operations (equivalent to the set
theoretic intersection) to form a new signal. The new signal also has a fractal geometry. Its
fractal dimension variesn times as strongly as the variations of the dimensional parameter
of the primary signal. Thus, when multiple information channels are combined properly,
arbitrary weak variations of their input signals can be amplified to arbitrary strong variations
of the resulting output channel.

Stochastic interference operates with 1/f β noise [16, 17], characterized by a power
spectral density ofSV (f ) ∝ 1/f β . This noise corresponds to a signalX(t) at time t whose
graph{(t, X(t)) | tmin 6 t 6 tmax} has a random fractal geometry. The fractal (box-counting)
dimension of the graph can be approximated by [18, 19]

D = min

{
2, E + 3 − β

2

}
(1)
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whereE is the (integer) dimension of the noise. For one-dimensional noise,E = 1. White
noise corresponds toβ = 0, brown noise corresponds toβ = 2, whereas systems showing
1/f noise operate at approximatelyβ = 0.8–1.2.

Consider a sequence of zeros and ones which constitutes a fractal pattern. Such a
random fractal of dimensionD can, for instance, be recursively generated starting with a
sequence of ones. First, the sequence is subdivided intok blocks of sequences of lengthδ
symbols. Then, a fraction of 1− exp[(D − 1) log(k)] blocks of lengthδ symbols is filled
with zeros (instead of ones). Next, one takes the remaining pieces of the pattern containing
ones and repeats the same procedure (the length of the blocks decreases by a factor ofk,
until one arrives atδ = 1) [19].

The fractal dimension of a random fractal signal can be understood as follows. Divide
a sequence of zeros and ones again intok blocks of lengthδ. Count how many of these
blocks contain ones at all (or, more realistically for practical applications, up to a densitys).
If r is the number of filled blocks, then the fractal (box-counting) dimension is given by

D = logr

log(1/δ)
(2)

independently of the scale resolutionδ. The fractal dimensional measureD should be robust
with respect to variations in methods of determining it. That is, it should remain the same,
regardless of the method by which it is inferred.

Information can be encoded by the random fractal patterns of 1/f noise, in particular
by variations of the dimension parameter. More precisely, assume, for example, two source
symbolss1 ands2 are encoded by (RFP stands for ‘random fractal pattern’)

#(si) =
{

RFP with 06 D(RFP) < Dc if si = s1

RFP withDc 6 D(RFP) 6 E if si = s2
(3)

whereDc is a ‘critical dimension parameter’.
As has been pointed out by Falconer [19], under certain ‘mild side conditions’, the

intersection of two random fractalsA1 andA2 which can be minimally embedded inRE is
again a random fractal with dimension

D(A1 ∩ A2) = max{0, D(A1) + D(A2) − E}. (4)

By induction, (4) generalizes to the intersection of an arbitrary number of random fractal
sets. Thus, the dimension of the intersection ofn random fractalsA = {A1, . . . , An} is
given by

D(A) = D

( n⋂
i=1

Ai

)
= max

{
0, −E(n − 1) +

n∑
i=1

D(Ai)

}
. (5)

We shall concentrate on the case of one-dimensional signals whereE = 1. Assume that
the signals are represented by sequences of zeros and ones. Assume further that we have
n random fractal signalsA1, . . . , An. Each of these sequences is transmitted in a separate
channel. The sequences are then recombined to form a new, secondary signal sequence. In
particular, we shall be interested in theintersectionof n signals encoded by random fractal
patterns. An intersection of two signalsA1 = a11a12a13 . . . a1m andA2 = a21a22a23 . . . a2m

of lengthm, aij ∈ {0, 1}, is again a signalA1 ∩ A2 = A3 = a31a32a33 . . . a3m of lengthm

which is defined by

a3i =
{

1 if a1ia2i = 1

0 otherwise.
(6)
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We shall denote this arrangement by the termstochastic interference. Taking the product
in (6) amounts to the logical ‘and’ operation, if 0 and 1 are identified with the logical values
‘false’ and ‘true’, respectively.

Let us briefly discuss two features ofstochastic interference. First, the combination of
white noise, denoted byI with D(I) = 1, with a random fractal signalA, results in the
recovery of the original fractal signal with the original dimension; i.e. (5) reduces to

D(A ∩ I) = D(A) + D(I) − 1 = D(A). (7)

Stated pointedly: apart from a reduction in intensity, white noise does not affect the coding.
Second, by assuming that alln random fractals have equal dimensions, i.e.D(Ai) = D

for 1 6 i 6 n, (5) reduces to

D(A) = max{0, n(D − 1) + 1}. (8)

An immediate consequence of (8) is that, for truly fractal signals(D < 1), any variation of
the fractal dimension of the secondary signal is directly proportional to the number,n, of
the primary signals; i.e.

1D(A) = n1D for D 6= 1. (9)

Therefore, the more channels there are, the more the dimension of the secondary source
varies in response to variations of the primary source; there is an ‘amplification’ of any
change in the primary signal. Figure 1 shows the results of a computer experiment.

Figure 1. Theoretical prediction ofD∩(n) versusn for various values of the dimensionD.

This amplification, however, has a price: any increase in the amplification of the
variation of the primary dimension obtained by additional channels results in a reduction of
the overall secondary signal strength.

In figure 2, the number of critical channels, for which the secondary signal vanishes (all
a3i = 0), is drawn against the dimension of the primary signals. One arrives at the number
of critical channelsnc by settingD(A) = 0 in (8) and solving forn; that is:

nc = 1

1 − D
for 0 6 D < 1. (10)

For a channel number in the range 10–20, the fractal dimension of the primary signal has
to lie in the range 0.9–1 in order to balance the attenuation.

We close this short discussion of stochastic interference by pointing out the possibility
of a twofold information transfer in one and the same system of multiple noisy channels:
first, transfer by the standard coding techniques [20], and second, modulated by it, transfer
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Figure 2. Theoretical prediction of the critical number of channels as a function of the dimension
of the primary signal.

by information coding using 1/f noise with stochastic interference. This form of double-
band information transfer may be realized in the auditory pathway of mammals and also
has potential applications in communication technology.
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