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0 Introduction and nota t ion  

0.1 The problem. A concept is effective in the sense of SIERPII~SKI if it does not 
require the axiom of choice AC. Here we show by means of examples that fundamental 
notions of quantum theory are not effective. For instance (see Section 1.2) there is an 
irreflexive Hilbert space L, constructed from Russell's socks in the second Fraenkel 
model M z .  Hence the very notion of a self-adjoint operator as an observable of 
quantum theory may become meaningless without the axiom of choice. Nevertheless 
we identify a nontrivial class of observables, the intrinsically effective Hamiltonians, 
which is compatible with L in the following sense. 

D e f i n i t i o n 1. A self-adjoint operator T on the Hilbert space K is intr insical ly  
effective if its eigenvectors span a dense submanifold of K. 
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at Miinster, in March 1993 at a meeting of the contact group in mathematical logic at Louvaine 
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A plain TeX file of an extended preliminary version of the paper may be retrieved by sending an 
e-mail message with the subject "get 9501018" to the data base "quant-phQxxx.lanl.gov". The 
authors gratefully remember helpful comments by professors RUPPERT (University of Bodenkultur) 
and SCHACHERMAYER (University of Vienna). 
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Then given an intrinsically effective T on a separable Hilbert space, there exists 
a symmetric and everywhere defined linear mapping A E M z  on L such that T is 
unitarily equivalent with the unique self-adjoint extension of A to the completion of L 
in the real world. If all eigenspaces of T are finite dimensional, then the expected time 
evolution of T at any state D may be reconstructed by means of A in the Fraenkel 
model. In another paper we shall show that there is, moreover, an effective definition 
of the observables for a fragment of quantum theory which applies to A. 

The concept of intrinsic effectivity is not new. As follows from standard results in 
spectral theory, in ZFC a bounded self adjoint operator with a countable spectrum is 
intrinsically effective. Another example are the density operators of quantum theory. 
In in the context of speculations about quantum chaos, A. PERES [17] has determined 
as non-chaotic those Hamiltonians, whose Schrodinger equations may be solved by 
means of eigenfunction series expansions. 

0.2 Notation. .This paper continues [4] whose results are applied and refined in the 
context of quantum theory. We refer to this paper for the explanations of the notions 
which are not defined here. 

In operator theory we follow the notation of [9]. We shall also need some facts 
about differential operators (extension of symmetric maps to self-adjoint operators); 
our reference is [lo]. 

A Hilbert space is a sequentially complete inner product space. In the absence of 
AC it might be locally sequentially compact (the unit sphere is sequentially compact) 
and infinite dimensional. In set theory without the axiom of choice the following 
standard construction defines a Hilbert space. 

C o n s t r u c t i o n  1. Given a se t  S, we set 

42(S) = {z E cs : 11z112 < m}, 

where 112112 = SUPEfinitc &,~Elz(S)l'. 
A metric space is Cuntor  complete if the intersection of a nested sequence of closed 

sets Cn whose diameters diamCn converge to zero is nonempty. 
The notation A : H - K for linear mappings means that domA = H. A 

mapping A on an inner product space is symmetric if with respect to the inner product 
it satisfies (Az,y)  = (z ,Ay).  The udjoint mapping A' operates on the dual spaces 
K' - H' and in terms of the notation for the application of functionals it satisfies 
(Az,  p) = (2, A'p). The mapping A is self-adjoint if H = H' represents all continuous 
linear functionals by means of RIESZ' theorem and A = A'. 

If K is a closed subspace of the Hilbert space H I  then the orthogonal project ion 
onto K is defined as the following linear operator P on H: For z E H we let Pz 
be the unique y E K such that 112 - yll = inf{IIz - zll : z E K}. Pz exists if K 
is Cantor complete. [In view of the proof in [9, p. 248 - 2491, lirrL-0 diam Kc = 0, 
where Kc = {y E A' : 11. - yll 5 6 + 6,) and 6, = inf{llz - zll : L E K}. Hence 
{Pz} = n,,,Kc.] In general, however, the existence of orthogonal projections on 
Hilbert spaces depends on the axiom of choice if no further completeness assumptions 
are made (see Example 5). 

For the terminology of quantum theory we refer to [12]. 
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A lattice is modular if it satisfies the shearing identity 

z A (y V z )  = z A ((y A (z V z ) )  V z ) .  

BIRKHOFF and VON NEUMANN [2] have considered modularity as a requirement for 
quantum logic (the lattice which is generated by the projection operators). In ZFC 
it is satisfied only for systems with a finite degree of freedom. 

A mapping a on the projection operators is a transfinitely addi t ive  s ta t e  if for 
each transfinite sequence (PA : X E K )  of pairwise orthogonal projections (PA . P, = 0 
for # P )  we have a(VAEI( PA) = CAEK  PA) = sup{CAEK  PA) : K E [ I C ] < ~ }  
converges. Here [q<“ denotes the family of the finite subsets of S. 

If o is just countably additive, then a is a (mixed) state. By GLEASON’S theorem, 
a state on a separable Hilbert space is represented by a density operator D; this is 
a bounded self-adjoint positive operator such that tr(D) = 1 and Dz 5 D. Then 
e ( P )  = t r (PD) ,  where P is an orthogonal projection. The trace may be defined 
without using a base, whence it is applicable to the weird Hilbert spaces which may 
exist in the absence of AC; 

tr(D) = l imEEzYC,EE(w, 4 
in the sense of nets, where 

V = { E  : E is a finite orthonormal system in domD} 

is directed by the inclusion relation. 
A pure state corresponds to a projection operator of rank one and it is usually 

represented by a unit vector u E K .  
If the operator T is a Hamiltonian of a physical system (a  self-adjoint operator 

on a Hilbert space K) and u(0) is a pure state, then in ZFC the time evolution of 
the conservative (i. e. T does not depend on the time) quantum system which at time 
t = 0 is in the pure state u(0) is described as follows (cf. [12], p. 153). The state of 
the system at time t is u(t)  and it satisfies the Schrodinger equation 

Tu(t)  = i . au(t)/l%. 

Since the self-adjoint observable T is a generator of the unitary group in K ,  
U ( t )  = e x p ( - i . T . t ) ,  

its solution is u(t) = U(t)(u(O)) .  The expectation value of this system at a mixed 
state D is tr(U(t)D). 

The notation in set theory follows [13]. 
ZFA is a variant of ZF set theory without AC which admits a set A of atoms 

(i. e. nonempty objects without elements). The premis “in ZFA the following holds” 
is an abbreviation of the statement that a result does not depend on AC (the existence 
of atoms is not used). 

Our ZF independence proofs are straightforward applications of the Jech-Sochor 
transfer theorem to the following permutation models of ZFA (cf. [8]). V is the real 
world which satisfies ZFC. For X E V we let V ( X )  be a ZFA + AC model (with a 
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new E relation which we shall not distinguish from the old) whose set of atoms is a 
copy of X (cf. [12] for the details). 

The construction of permutation models depends on a group (C, .), an injective 
homomorphism d : C - S ( X )  into the symmetric group over X (it is recursively 
extended to  d^ on all of V ( X ) )  and a T2 group toplogy which is generated by a 
neighbourhood base at  1 which consists of open subgroups. An object z E V ( X )  is 
symrnefric if the stabilizer of 2 (i.e. s t abz  = {g E G : &(z) = z}) is open. The 
permutation model which is generated by G consists of the hereditarily symmetric 
objects; 

M = {z E V ( X )  : all elements in the transitive closure of {z} are symmetric}. 

The basic Fraenkel model M1 is generated by the symmetric group on a countable 
set with the topology of pointwise convergence. The second Fraenkel model M1 is 
generated by the group G = ZT with the product topology. 

1 Counterexamples in Hilbert space theory 

1.1 Russell’s socks. A standard example for the failure of AC are Russell’s socks. 
In this paper we shall need a stronger definition as usual. 

Russell’s socks form a sequence of pairwise disjoint two element sets Pn = {a,  , b,} 
( n  E w ) ,  which is a counterexample to  the principle of partial dependent choices 
( P D C ) :  there exists a sequence Fk : cnh - Pnh of functions, where Cn, is the set 
of choice functions on (Pi : i E n k )  and nk < nk+1 for k E w .  

Thus it is not possible to single out a sock of the n-th pair in an uniform way, 
even if one could distinguish the previous socks. The usual argument that  the axiom 
of choice for pairs, AC2, fails in M2 proves the existence of Russell’s socks in this 
model. 

C o n s  t r u c t i o n 2 . If (P, : n E w )  is a sequence of Russell’s socks, then we set 

L = {Z E 42(A) : (Vn E w )  z(an) + Z(bn) = O}, 

where A = UnEw Pn is the set of all socks. 
C o n v e n t i o n :  If L E M2, then A is the set of atoms of M2.  
As has been shown in [3], the space L is an irreflexive Hilbert space, whence no 

operator on L can be equal to its adjoint and the usual Hilbert space formalism of 
quantum theory becomes inapplicable. Nevertheless, as is shown by the following 
thought experiment, in quantum theory without AC such spaces need to be taken 
into consideration. L is a simplification of the following irreflexive Fock space F. 

T h o u g h t  e x p  e r  i m e  n t . We view {a,, bn} as an assembly of identical noninter- 
acting spin f particles which obey the Fermi-Dirac statistics (cf. [12], pp. 249 - 287). 
Its Hilbert space H, = span { e l ( a , )  8 ~ ( b , )  - e2(an) 8 e l ( b , ) }  is isomorphic with 
Ln = {Z E 12{an, b , }  : Z(Un) + z ( b n )  = 0). [The following mapping.f, : Hn + L, 
is an isomorphism: f,(z)(u) = r if r is the component of a tensor which has el( .)  as 
a factor.] 
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The family of all socks is viewed as the compound system of the distinguishable 
assemblies. Their Fock space is 

= @NEW @nEN H n .  

Here we may replace H, by Ln ,  since the isomorphism fn does not depend on the 
ordering of P,. 

We may identify the finite tensor product QnEN Ln with the space T N ,  where 

TN = {X E ~ z ( C N )  : X(’p) = (-l)mX($) if I{i E N : cp(i) # q!~(i)}l = m} 
and CN is the set of choice functions ‘p : N - UnEN Pnr ‘p(n) E Pn for n E N .  

TN : nnEN Ln - TN,  where 
This follows from the existence of the following surjective multilinear mapping 

T N ( Z )  = X for 2 = (Zn : n E N )  

and X(p) = nnEN zn(’p(n)) is the product in @. 
The function TN satisfies the characteristic property of the tensor product: 

( T N ( 2 ) ,  ‘ N ( Y ) ) T N  = C 9 e C N  n , E N Z n ( ’ p ( n > ) y n ( c p ( n ) ) -  

= 2N * n,ENZn(an)yn(an>- 

= n n E N ( Z n ,  Yn)L,. 

While TN is isomorphic to C, the direct sum of the finite tensor products is not 
&(w) ,  since the isomorphism depends on the ordering. A better definition of the Fock 
space is 

T = {X E t , (C)  : X(’p) = (-l)”’X($), whenever dom‘p = dom$ = N and 
I{; E N : ‘p(i) # $( i ) } l  = m for some N and m in w } ,  

where C = ~ { C N  : N E w } .  This space T is the direct sum of the above representa- 
tives of the finite tensor products. 0 

MC” is the countable multiple choice axiom: for each sequence of nonempty sets S n  
( n  E w )  one may choose a sequence of nonempty finite subsets En C S n  ( n  E w ) .  In 
ZFA the axiom MC” implies that Cantor completeness is equivalent with completeness 
(see [6, Lemma 3.41). 

E x a m p 1 e 1 . In ZFA + “there are Russell’s socks”, T ( a n d  thus F )  i s  a locally 
sequentially compact  Hilberi space (norm of 1 2 ) .  In  ZFA + MC” + “there are Russell’s 
socks0 each s y s t e m  of linearly independent vectors in  T i s  f in i t e .  

P r o o f .  This follows as in [3, Proof of Example 4.41 (which is essentially L). For 
X E T we define a support s(X) = {’p E C : X(p) # 0). We let 4 be a lexicographic 
ordering on C such that a 4 0 implies 0 4 -a. If Xn (n E w )  is a sequence in T, 
then S = u{s(Xn) : n E w }  is finite. [For otherwise we define a PDC function F as 
follows. N = { n  _> 1 : S r l  Cn # 0) would be infinite. If n E N ,  let m be the least 
index such that  s(Xm) n Cn # 0. Then X,(’p) # 0 for all p E C n .  For $ E Cn-1 we 
set Fn($) = v(Pn) E {an ,  b , }  if $ C ‘p E Cn and Xm(9) + 0.1 I t  follows, that  Xn is a 
sequence in the finite dimensional space l , (S).  This proves completeness and locally 
sequentially compact new. 
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If D C T is a system of linearly independent vectors, then in view of the locally 
sequential compactness of T the set [D]<" is Dedekind finite (see [4, Lemma 2.11). 
MC" implies that D is finite. [As in Example 4 below, S = [[D]<"]<" is Dedekind 
finite with an infinite partition X, = [D]" of [D]<". If 0 # En E Xn is finite, then 
since En nE, = 0 for n # rn the set S contains the infinite sequence (En : n E w).] 0 

The space F and also the simpler space L = $, Ln are counterexamples to several 
assertions of Hilbert space theory in ZFC. 

(i) Both spaces admit no infinite orthonormal system. Thus it is not possible to 
choose a mode of observation (in the sense of BOHR'S complementarity interpretation) 
by choosing an orthonormal base. Moreover, there is no Hamel base, either. Therefore 
the multiple choice axiom MC in ZFA does not imply the existence of bases, although 
it is known to be a consequence thereof (see [19], p. 119). 

(ii) The Riesz representation theorem for continuous linear functionals is invalid, 
since the duals of F and L differ from F and L, whence the notion of a selfadjoint 
operator does not make sense. As the Hahn-Banach theorem is a consequence of 
MC (see PINCUS [IS]), in ZFA Riesz' theorem does not follow from the Hahn-Banach 
theorem. 
(iii) KAPLANSKY'S theorem [14] is the assertion that in ZFC a bounded operator on 

a Hilbert space H is algebraic if and only if its finite dimensional invariant subspaces 
cover H. In view of [4], since L and F are locally sequentially compact, the latter 
property is valid for each linear mapping on L or F. These spaces, however, admit 
nonalgebraic mappings with infinite spectra. [If D is a diagonal operator on &(w),  
then A t ( a )  = dna, BX(cp) = d n X ( 9 )  if a E Pn, cp E C n ,  and Den = &en for 
the n-th unit vector en of .!z(w) define mappings on L and F with the same point 
spectrum as D.] This motivates the following definition. 

D ef i n i t  io n 2. A linear mapping on a topological vector space is weakly algebraic 
if its finite dimensional invariant subspaces cover the space (in particular, the mapping 
is everywhere defined). 

1.2 Amorphous sets. The basic Fraenkel model M1 admits amorphous s e t s  (infi- 
nite sets whose infinite subsets are cofinite). For example, the set A of the atoms is 
amorphous. Moreover it satisfies the partial  f inite choice a z i o m  PACfl,: each infinite 
family of finite sets admits an infinite subfamily with a choice function. Conversely, 
as follows from [2l], if M is a permutation model of ZFA + PACfin and A E M 
is amorphous, then the structure M ( A )  (the construction of V ( A )  with M instead 
of V )  is elementarily equivalent with M I .  Hence the theory of amorphous sets in 
ZFA + PACfl,, reduces essentially to an investigation of the set of the atoms of M I .  
We show that in M1 the Hilbert space .&(A) is a counterexample to the GLEASON 
and MAEDA [15] theorem about the representation of the transfinitely additive states 
on the orthomodular projection lattice of a Hilbert space by density matrices. 

E x a m p l e  2. I n  M1 the Hilberi space &(A),  where A is the amorphous set  of 
the atoms,  i s  a locally sequentially compact space with the following properties.  

(i) T h e  fami ly  of the closed subspaces of &(A)  which admit  orthogonal projections 
i s  a modular latt ice.  
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(ii) The following mapping Q is a transfinitely additive state: if P is a projection, 
then we set 

0 i f  the range of P is finite dimensional, 
= { 1 otherwise.. 

There is, however, no bounded operator D on .!z(A) (and hence no density matr i z )  
such that for  all orthogonal projections P the expected value is  a ( P )  = t r (PD).  

P r o o f .  As in Example 1 the crucial property in the proof of locally sequentially 
compactness is the existence of finite supports s(z) = { a  E A : .(a) # 0}, which now 
coincides with the least support of the set t in the sense of the general structure of 
the model (see [13]). 

By [4, Corollary 5.21, when applied to a projection P ,  its range S is a direct sum 
of a finite dimensional subspace and some &(F) ,  where F C A is cofinite or empty. 
These subspaces form a lattice. (Below we prove the existence of the span.) 

For a proof of modularity it suffices to note that S1 + Sz is the closed range of a 
projection if the Si are the ranges of the orthogonal projections Pi. We decompose Si 
into a direct sum of a finite dimensional subspace Ei and lZ(Fi), where Fi is cofinite 
or empty. Since we may add &(G,)  to E, for some finite Gi C Fi, we may assume 
that s ( t )  n (F1 U Fz) = 0 whenever z E El + Ez. Then S1+ Sz , as a direct sum of the 
finite dimensional space El + EZ and the closed subspace tz(F1 U Fz),  is closed. It is 
the range of the direct sum of the projections onto El + Ez (which exists since finite 
dimensional spaces are Cantor complete) and onto &(F1 U Fz). This is an orthogonal 
projection PI v Pz. Hence S1+ Sz = S1 v Sz is the range of the orthogonal projection 
PI V Pz. Now for PZ 5 Q the following identity which establishes modularity is proved 
as in [ll, Solution 15 on p. 1771: (PI  V Pz) A Q = (Pi A Q) V &. 

Next we consider a transfinite sequence (PA : X E K )  E M 1  of pairwise orthogonal 
projections. We let e be the least support (in the sense of the general structure of the 
model) of this sequence. In view of the above decomposition (see [4, Corollary 5.2]), 
PA is a direct sum of a projection in Lz(e) and a scalar E {0,1} on t z (A\  e ) .  Hence 
either all ex = 0 and a(VA PA) = Cx .(PA) = 0, or in view of orthogonality exactly 
one Q A  = 1 and o(VA PA) = Ex .(PA) = 1. In both cases all except finitely many 
projections vanish and the sums as well as the spans converge for trivial reasons. 
Hence Q is a transfinitely additive state. 

Now we assume that D is a bounded operator on &(A)  such that for all orthogonal 
projections P the expected value of the state may be computed from the formalism 
of quantum theory, i.e. a ( P )  = tr(PD). We let e be the least support of D in M I .  
Then D is a direct sum of a finite matrix on i z ( e )  and a scalar e on E = l z (A \e ) .  We 
let PE be the orthogonal projection onto El i.e. PEZ = z l (A  \ e ) .  Then a(&) = 1. 

0 

The hidden parameter issue involves only the finite dimensional effective versions 
of GLEASON’S theorem. The Gleason-Maeda theorem for completely additive states 
(additivity for possibly nonwellorderable families of closed and pairwise orthogonal 
subspaces) is effective, too. 

As follows from the above used decomposition property, in 4 ( A )  all bounded 
mappings are algebraic. The following construction reduces the number of the linear 
mappings further. 

On the other hand tr(PED) = 00 if e # 0, and tr(P,yD) = 0 if e = 0. 
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C o n s  t r u c t io  n 3 . If [D]<" is Dedekind finite, then we set 

K D  = {z E &(o) : z d E D z ( d )  = 0). 
K D  is locally sequentially compact and complete. [This follows from [4, Lemmas 

2.1 and 2.21; sequentially compactness holds, if all separable submanifolds are finite 
dimensional. This is true for .&(D) and therefore also for KD.] 

E x  a m p  1 e 3 . In M 1 the space K A  , when A is the amorphous set of the atoms, is 
a locally sequentially compact Hilbert space such that each linear map T : K A  - K A  
with domain K A  is a direct sum of a finite matriz and a scalar (wi th  an infinite 
dimensional eigenspace). 

P r o o f .  We let e,, a E A,  be the canonical unit vectors which form an orthonormal 
base of &(A) .  We first observe, that linear functionals on K A  extend to bounded linear 
functionals on !,(A). In M1 there are least supports (see [13]). Iff : K A  - C is any 
linear functional and e = supp(f) is its least support, then f ( e a  - eb) = f ( e a  - e , )  for 
a E e and b ,  c E A \ e .  We set = f ( e a  - eb) and define a mapping g : &(D) - C 
by g ( z )  = x a E e g a  . ( z , e , ) .  If z E K A ,  then f(z) = g ( z ) :  for if z = eb - e , ,  where 
b ,  c E A\e, then f(z) = f ( e , - e b ) ,  whence by linearity f(z) = 0 = g ( z ) ;  if z = e ,  -eb, 
where a E e and b $? e ,  then by the definition of g we have f (z) = g ( z ) ;  if z = ea  - eb, 
where a E e and b E e ,  then for some c f! e it holds that f(z) = f ( e , - e , ) - f ( e b - e , )  = 
g(ea - e , )  - g(eb - e , )  = g ( z )  by linearity. Since the vectors ea - eb span ICA, we 
conclude that f = g l l < A .  

If T : K A  - K A  is linear and e = supp(T), then fa : K A  - @, f a ( t )  = (Tz,  e a )  
is a linear mapping with supp( fa) C e U {a}. Hence the numbers 

t ( b ,  a) = (T(eb - e , ) ,  e a )  = fa(eb  - e , )  
do not depend on c E A \ ( e  U {a)). If we set 

{ t ( a , a )  for a E A\e ,  
X(a) = 0 otherwise, 

then for 3: E K A  the mapping T satisfies 

(Tz,  ea )  = fa(z) = C b E e t ( b r  4) . (t, eb) + X(a) . (+, ea)i 
as follows from the above representation of the linear functionals. Since the function 
t : e x A - C has support supp(t) 2 e, we have t ( b , a )  = 0 for a $? e .  This 
follows from the facts that t ( b ,  a) = (T(eb - e , ) ,  e , )  for some c $! e ,  c # a, and that 
y = T(eb  - e , )  E .&(A) satisfies y(d) = 0 if d $! supp(y) C supp(T) U {b, c }  2 e U { c } ;  
i.e. y(a) = (y, e.) = 0. Moreover, X(a) = X for some X E C and all a E A \ e ,  and by 
the above definition X(a) = 0 for a E e .  It follows that 

T z  = CaEe &,t(b, a)(+, eb) . ea + z a E A \ e X  . (5, ea) . ea. 
We conclude that the mapping T is the direct sum of the restriction to K A  of a 
finite matrix F on &(e) ,  namely F ( a ,  b )  = t ( a ,  b )  for a, b in e l  and the scalar X on 
K A  n & ( A  \ e ) .  

As an additional requirement on F we note, that all column sums are equal to A; 
for C a E A ( T ( e b  - e , ) ,  ea)  = C a E e ( F e b ,  ea )  - X = 0, since T(eb  - e , )  E K A  whenever 
b E e and c E A \ e .  0 
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There does not exist an orthonormal base B for K A ,  for otherwise K A  is isomorphic 
to &(B) .  Then [B]<" is Dedekind finite and f(z) = CbEBz(b) is an everywhere 
defined unbounded linear functional on &(B)  and thus on K A  . In view of Example 2 
the projection lattice of K A  is modular and there are counterexamples to GLEASON'S 
theorem. Although K A  is sequentially closed as a submanifold of l z (A) ,  we point ou t  
the following fact. 

R e m a r k  1 .  In ZFA, i f [D]<" is Dedekind finite, then K D  is dense in t , ( D ) .  
P r o o f .  For given z E .!2(D), E > 0 and E C D finite such that 

we set y = CaEE z ( a ) ,  choose a set F E D \ E with n > ( 2 .  l y l / ~ ) ~  elements and 
define z E K D  as 

.(a) if a €  E ,  
.(a) = -y/n if a E F, 

0 otherwise. 

0 Then IIz - zI(2 < E .  

1.3 Dedekind finite sets. We now complement the previous sections by examples 
of self-adjoint weakly algebraic operators which are not algebraic. To this end we 
consider 4 ( D ) ,  where D is a Dedekind set (an infinite, Dedekind finite sets of reals). 
The clause ( A z ) ( d )  = d .  z ( d )  defines such an operator. [Since [D]<w is Dedekind 
finite, by [4] the space &(D) is sequentially compact, and therefore A is weakly 
algebraic with one dimensional eigenspaces. However, its point spectrum up(A) = D 
is infinite. Since A is symmetric and everywhere defined, it is self-adjoint, because 
&(D)  is reflexive (cf. [4, Proof of Theorem 5.1]).] The following construction provides 
similar spaces in permutation models. 

E x a m p l e  4 .  In ZFA, if D is an infinite set such that [D]<" is Dedekind finite, 
then there ezis ts  a self adjoint weakly algebraic bounded operator on Lz([D]<") whose 
point spectrum is infinite. 

P r o o f .  The  space &([D]") is locally sequentially compact (see [4, 2.3]), since 
[[D]<"]<" is Dedekind finite. [If En E [[D]<"]<" is a sequence, we consider U E ,  
in [D]<", and in view Dedekind finiteness U{U En : n E w )  = E E [D]'", whence 
En E P P ( E )  is a finite sequence.] Therefore each operator is weakly algebraic. 
However, P( [D]<"') is not Dedekind finite, whence there exist real diagonal operators 

{ 

with infinite point spectra. 0 

For the next example we remember the Construction 3. 
E x  a m p  1 e 5 .  In ZFA, if D i s  a set such that [D]<" is Dedekind finite but infinite, 

then H = KD $12(D) is a locally sequentially compact Hilbert space which contains 
a closed subspace S which does not admit an orthogonal projection. Therefore H i s  
not Cantor complete. 

P r o o f .  The linear subspace S = {(z, z) : z E K D }  is closed, since it is the graph 
of a continuous embedding of KO into t , ( D ) ,  but it does not admit an orthogonal 
projection P of H onto S. For if k = (z, y) E H and P k  = ( 2 ,  z) E S, where t, z E KD 
and y E l 2 (D) ,  then for all s = ( u , u )  E S, where u E KD, it holds that k - P k l s .  
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Hence in &(D), (z + y - 2 - z , u )  = 0 for all u E K D .  Therefore z + y - 2 z = 0, 
which is impossible for y @ KD. For if w # 0, say w(b) # 0, where w = x + y - 2 .  t ,  

then (w,  u)  = w(b) # 0 for the following element u E KD: 
1 i f a = b ,  

0 otherwise; 

here c is choosen to satisfy w(c) = 0. 0 

2 Weakly algebraic symmetric operators 

2.1 Elementary facts. In Section 3 we shall relate the intrinsically effective Hamil- 
tonians of ZFC to weakly algebraic mappings (Definition 2) which live in models of 
ZFA. Here we first collect some useful facts about weakly algebraic maps. In par- 
ticular we observe that in ZFA this class of operators admits a nontrivial functional 
calculus. 

F a c  t 1. In ZFA a linear mapping A between topological vector spaces is weakly 
algebraic if and only if for all  x E domA also Az E domA and {A"+ : n E w }  is 
finite dimensional. 

P r o o f .  If x E domA is an element of the finite dimensional invariant subspace K ,  
then Ax E K C domA whence all powers exist and their span is finite dimensional. 
Conversely, the span of the powers A"%, where n E w ,  forms a finite dimensional 

0 

F a c t  2. In ZFA, if A : HI - H2 is a weakly algebraic mapping between the 
topological vector spaces Hi  and K is a invariant linear manifold in HI, then the 
restriction B = AlK is weakly algebraic. 

P r o o f .  This follows from Fact 1 whose conditions are inherited by AIK; note 
that  I< needs not be closed. 0 

F a c t  3. In ZFA, if H is an inner product space and A : H - H is symmetric, 
then A is closed. 

P r o o f .  This is a standard result. Since the closed graph theorem depends on 
AC, in ZFA it does not follow that a symmetric mapping A : H - H is bounded, 

0 

F a c t  4. In ZFA, if H is an inner product space and A : H - H is symmetric, 
then A is weakly algebraic if and only if H is the linear span (not necessarily closed) 
of the eigenvectors of A; in symbols: 

H = span(EV(A)), 

invariant subspace K ,  3 x of A. 

although it is defined on all of H. 

where EV(A) = {x E H : (3X E W) A+ = X . z}. 
P r o o f .  This is again a consequence of Fact 1. If x = riEk xi and A t i  = &xil 

then A"z = xiEk &"xi and dim{A"z : n E w }  5 k .  Conversely assume that S = 
span{A"x : n E w }  is afinite dimensional invariant subspace. Then by diagonalization 

0 

R e m a r k  2. If T is an intrinsically effective self adjoint operator on the Hilbert 
space K ,  then i t s  restriction to  the dense subspace H = span(EV(T)) is a weakly 
algebraic symmetric mapping To = TIH : H - H on the inner product space H. 0 

x = Aox E S = span(EV(A1S)) C span(EV(A)). 
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C o r o l l a r y  1. In ZFC a bounded self-adjoint operator T on a Hilberi space H 
is intrinsically effective if and only if it is unitarily equivalent to a muliiplication 
operator on a functional Hilberi space. 

P r o o f . In view of Fact 4, when applied to To , this is a reformulation of HALMOS 
0 

F a c t  5. In ZFA, if A : H - H is a symmetric weakly algebraic mapping on the 
inner product space H and K is a closed and invariant subspace of A which is the 
range of an orihogonal projection P ,  then K n EV(A)  = EV(A1K) = P ” E V ( A ) .  

P r o o f .  We denote by K L  = {z E H : z l K }  the qrthogonal complement. Then 
A ” ( K L )  E K’. For pick z E K and y E K’. Then ( z , A y )  = ( A z , y )  = 0 ,  since 
y l A z  E K .  We conclude that if Az = Az, then Px E EV(A) ;  this follows from the 

0 

L e m m a  1. In ZFA, if Ai : H - H, 1 5 i 5 n, are commuting symmetric 

characterization of the latter property in [ll, Problem 851. 

identity A ( P z )  - X(Pz) = A ( P z  - z) - A(Pz - z) E K r l  KL. 

weakly algebraic maps on the inner product space H ,  then 

H = span( nl - -  <( cn EV( A) ) .  
P r o o f .  For notational simplicity let us consider just two mappings A and B such 

that A.B = B . A .  If p is an eigenvalue of B and K ,  = ker(B-p) is its eigenspace [since 
by Fact 3 the mapping B is closed, it is a closed subspace of HI, then AB = B A  implies 
A”K,  s K,. We set C, = AIK,. Then C, is weakly algebraic by Fact 2. Hence 
K ,  = span(EV(C,)). By its definition, EV(C,)  C EV(A)  n K, E V ( A )  f l  E V ( B ) .  
Since H is a direct sum of the spaces K ,  we get that span(EV(A) n E V ( B ) )  = H .  0 

Lemma 1 justifies the definition of an functional calculus. 
F a c t  6. In ZFA, if Ai : H - H I  1 5 i 5 n, is a commuting family of weakly 

algebraic symmetric mappings on the inner product space H and F : W” I W is a 
function, then the following mapping B has a unique linear eztension C : H - H :  
B : nlliln EV(Ai)  - H ,  where Bz = F(A1,. . . , A f l )  . z whenever Aiz = X i + .  

P r o o f .  We consider the product E = nIlilfl up(Ai)  of the point spectra and for 
E = ( X i  : 1 5 i 5 n) E & we set SE = f l l < i l n  ker(Ai - A i ) .  Since the eigenspaces of 
the symmetric mappings A, are pairwise irthogonal, Lemma 1 implies that  H is the 
direct sum in the algebraic sense of the pairwise orthogonal - and therefore linearly 
independent - spaces SE. Since B is welldefined on each summand SE , i t  has a unique 
extension C t o  H. 0 

D e f i n i t i o n  3. We let Ai : H - H ,  1 5 i 5 n, be a commuting family 
of weakly algebraic symmetric mappings on the inner product space H. Given a 
function F : W“ - W we set F(A1, .  . . , A,) = C, where C is defined in Fact 6. 

If F is a polynomial, then Definition 3 of F(A1, . . . , A,,) coincides with the corre- 
sponding polynomial in Ai. [It suffices to observe that these mappings are equal on 
the direct summands SE of H I  where both are the scalar operator F(X1 , . . . , A,).] 

I n  ZFA, if Ai : H - H, 1 5 i 5 n, is a commuting family of 
weakly algebraic Symmetric mappings on the inner product space H ,  then the.re exist 
a bounded symmetric weakly algebraic mapping A : H - H and Bore1 functions f i  

such that Ai = f i (A) .  

F a c t  7. 
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P r o o f .  We let e : W" - [0,1] and ei : R - W be Bore1 mappings such that 
e is bijective and e - l ( r )  = ( e l ( r ) ,  . . . , e n ( r ) ) .  We define as in Fact 6 the mapping 
B : nIliln EV(Ai) - H by Bz = e ( ( A 1 , .  . . , An)) x whenever Biz = Ajz, and let 
A be the symmetric weakly algebraic extension of this map to H. The mapping A is 
the direct sum of scalars on SE and its norm is bounded by 1. We define fi = e i .  0 

For intrinsically effective operators the following analogies of Fact 2 and Lemma 1 
are true. 

F a c t  8. In  ZFC, if  T i s  an  intrinsically effective operator  on  ihe Hilberi space 
H and the closed subspace K c domT i s  invariani,  then  the restr ic t ion TIK i s  
intrinsically effective on  K .  

P r o o f .  We show that dom(T)K)O is dense in K. If P is the orthogonal projection 
onto K and z E K satisfies zldorn(TIK)O, then ( z lPy)  = 0 for y E EV(T) (Fact 5). 
Hence (2, y) = (2, Py)  + (2, y - P y )  = 0, since (y - P y ) l K .  Therefore zldomTO 
and x = 0. 0 

L e m m a  2. In ZFC, if Ti, 1 5 i 5 n,  are commuting inirinsically effective 
bounded operators on the Hilbert space K ,  then span(n,<il, - EV(T,)) i s  dense in  K. 

P r o o f .  We construct a complete orthonormal base B nlli<, d o m T  of It'. 
For the ease of the notation let us for the moment consider just Two operators S 
and T. For A E up(T) the closed manifold LA = ker(T - A) is a nontrivial invariant 
subspace for S [commutativity] and by Fact 8 the restriction SJLA is intrinsically 
effective. Therefore we may choose a complete orthonormal base BA C EV(S1Lx) for 
LA E EV(T). Since T is intrinsically effective, 

EV(S) n EV(T) E = U{Bx : A E uP(T)} 
is a complete orthonormal base for K. 0 

2.2 Sequentially compactness. In ZFC KAPLANSKY'S theorem (Section 1.1) pre- 
vents examples of nontrivial symmetric weakly algebraic operators on Hilbert spaces. 
It admits the following strengthening for symmetric operators. 

T h e or  e m  1. In ZFC a self-adjoint operator T on the Hilberi space H has a weakly 
algebraic restr ic t ion A : domT - H t o  i ts  domain if and only if i t  i s  bounded and 
algebraic. 

P r o o f .  If A is weakly algebraic, then domA = domT = @AEo,(A) ker(A - A) is 
the linear direct sum of the orthogonal system of the eigenspaces of T. It follows that 
imA E domA. Hence A is a symmetric weakly algebraic mapping domT - domT. 
Since T is self-adjoint, domT with the norm 11z11: = 1 1 ~ 1 1 ~  + IITzII' is a Hilbert space 
D (cf. [ lo,  p. 12251). The map A, now considered as a mapping A : D - D, is a 
symmetric mapping of the new space D. By Fact 3 it is closed and therefore, by the 
closed graph theorem, A is bounded. We now apply KAPLANSKY'S characterisation 
of the bounded algebraic maps to A : D - D (cf. 1.1). It together with Fact 1 
imply that A is algebraic on D, i.e. p(A) = 0 for some nonzero polynomial p. This 
identity holds independently of the underlying topology of the space domA. In H 
we conclude from this identity (as in [ll, pp. 556 - 5581) that the spectrum u(A) of 
A : domT - domT is finite and A = xAEu(A) A .  E(A) ,  where E(A) is a polynomial 
in A such that E(A)z = E(A). Since A and therefore E(A) are symmetric, it follows 
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that  (z - E ( X ) z ) I E ( X ) ” H  and in H the mapping E ( X )  is an orthogonal projection 
onto E ( X ) ” H .  Hence in the norm of H the mappings E(X) and A are bounded. Since 
T is self-adjoint, its domain domT is dense in H. Therefore A extends to an unique 
bounded (in the norm of H )  symmetric - and therefore self-adjoint - operator B on H .  
Since T has no proper self-adjoint extension, T = B is bounded and domT = H .  
Hence T = A satisfies the identity p(T) = 0. 

0 

It  follows that if a symmetric weakly algebraic mapping A has the self-adjoint 
extension T ,  then dom A is a proper subset of domT unless A is algebraic. Theorem 1 
does not exclude the existence of a self-adjoint extension T .  

In  ZFC, if A : domA - domA is a symmetric  weakly algebraic 
mapping on a dense submanifold domA C H of the Hilberi space H ,  then there 
exists a unique self-adjoint ezfension T of A. 

P r o o f .  The deficiency indices dim{z E domA’ : A’z = f i t )  = 0 vanish (cf. [lo, 
p. 1230). Here the adjoint A’ is defined from a complete orthonormal system B 
of eigenvectors of A as the diagonal operator A’b = Ab = ) r b  . b for b E B and 

0 

C o r o l l a r y  2 .  In ZFC, if T,, 1 5 i 5 n, are commuting intrinsically effective 
bounded operalors on the Halbert space H ,  then there exist Borel functions fi and a 
bounded intrinsically effective mapping A such that in terms of the functional calculus 
of the self-adjoini operators 

P r o o f .  By Lemma 2 K = span nisi,,, E V ( Z )  is a dense linear manifold and 
Ai = T,lK are commuting symmetric weally algebraic mappings on K .  In view of 
Fact 7 there exists a bounded weakly algebraic mapping C on K such that Ai = f i (C)  
for some Borel functions f j .  It admits a unique continuous extension A = C’ to H .  
Since A and f,(C)’ are diagonal operators with respect to the base B of Lemma 2, 
the identity fi(A) = f,(C)* follows from its validity on B and the identity fi(C)’ = 

0 

In ZFA there are results similar to Theorem 1 which restrict the topology of the 
domain. 

R e m a r k  3 .  In ZFA a Hilbert space H is locally sequentially compact if and only 
if each bounded symmetric operator A : H - H is  weakly algebraic. 

P r o o f .  If H is locally sequentially compact, then [4,4.3] implies that  A is weakly 
algebraic. If H is not locally sequentially compact, then it contains a copy of &(w)  by 
[4, 2.11. Since Lz(w) is of the second category, KAPLANSKY’S theorem applies, whence 
no symmetric bounded operator A on &(w)  with infinite spectrum is finitary. Its 
extension A o P to H (P the projection onto the Cantor complete subspace Lz(w)) is 
a symmetric bounded operator on H which is not weakly algebraic by Fact 2. 0 

T h e o r e m  2. In ZFA, if  A : H -+ H is a symmetric weakly algebraic map on the 
Cantor  complete Hilbert space H such that each eigenspace o f A  is finite dimensional, 
then H is locally sequentially compact. 

P r o o f .  For X E R we let PA be the orthogonal projection onto ker(A - X) 
and define, for z E H ,  a support as s(z) = {X E R : PAX # 0). For each sequence 
(tn : n E w )  in H the.set S = U{s(z,,) : n E w }  is finite. If not, then there is an infinite 

If conversely A is bounded and algebraic, it is weakly algebraic. 

F a c t  9. 

domA’ = {z E H : CbEB A:. I(z,b)I2 < 00). It follows that T = A’. 

= fi(A). 

Af = Ti is a consequence of the uniqueness assertion of Fact 9. 
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partition { s k  : k E w }  of s (an observation due to PINCUS, cf. [7, Corollary 2.2.51). We 
set K k  = cl ker(A-A) and let Q k  be the orthogonal projection onto K k .  Then 
for each k E w there is a least index n ( k )  such that y k  = g k z n ( k )  # 0, since Q k  2 PA 
for A E & .  We set y = C -. ' - yk  . Then y E HI but y $! span EV(A). For if 

y E eiEn ker(A-Xi) and Skn{Ai : i E n} = 8, then Qk" eiEn ker(A-Ai) = {0}, but 

# 0. [Note that Q k y h  = 0 for k # h,  since distinct eigenspaces of 

A are orthogonal.] However, y 4 span(EV(A)) is impossible if A is weakly algebraic. 
It follows that span({z, : n E w } )  C ker(A - A) is finite dimensional, whence 

O 

R e m a r k  4. In ZFA, if A : H - H is a symmetric weakly algebraic map on the 
Cantor complete Hilbert space H such that each eigenspace of A is finite dimensional, 
then for each infinite D C H the powerset P ( D )  is Dedekind infinite. 

"" k -k 1 I lyk l l  

1 Y k  

k + 1 IIYkII 
Q k y  = - * - 

H is locally sequentially compact ([4, Lemma 2.11). 

P r o o f .  If otherwise, then by the above mentioned result due to PINCUS 

{S(I )  : 2 E D} c [ R ] < W  

is finite. Therefore, for some E E [R]<" the set B = {z E D : s(z) = E} is infinite. 
But B induces an infinite subset C of C*, where m = CAGE dim(ker(A - A)), whose 

D 

C o r o l l a r y  3. In ZFA + MC" each Symmetric weakly algebraic mapping A on 
H = & ( D )  with finite dimensional eigenspaces i s  algebraic. 

P r o o f .  We assume for the converse that A is not algebraic. In view of MC" 
(cf. [6, Lemma 3.41) H is Cantor complete. Hence by Theorem 2 H is locally se- 
quentially compact. Then [4, Lemma 2.11 implies that [D]<" is Dedekind finite. Now 

0 

As has been obseved in Section 1.3, the assumption MC" of Corollary 3 is essential. 

powerset P(C) is Dedekind finite, contradicting PINCUS' result. 

MC" implies as in the proof of Example 1 that D is finite. 

3 Transitions between models and the real world 

3.1 Real world completion. In order to compare the ZFA theory of Hilbert spaces 
in a permutation model M C V(X) with the ZFC theory, we apply an idea due to 
BENIOFF [l] and investigate the model M from the outside, in V(X) where AC holds. 
In M C V(X) consider the Hilbert space H E M. In V(X) this vector space over 
C is,an inner product space, whence its completion is a Hilbert space. Note that 
for permutation models C is not altered in the transition from the model to the real 
world. 

D ef i  n i t  i o n 4. If M C V(X) is a permutation model and 

M /= "H is a Hilbert space", 

then the completion of H in V(X) is the Eeniofl completion B. 
For example, the space L E M2 of Example 1, when applied to the atoms of 

the Raenkel model, in V is isometrically isomorphic with the'space of polynomials 
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h’ = C[z] n L2]0,1[, since in V both spaces are the linear span of a countable ortho- 
normal system. Its completion is therefore isometrically isomorphic with L2]0, l[. 
Although the transition from L to K does not add new points to  L, it adds new linear 
mappings. 

E x a m p l e  6. In V the multiplication (Qf)(z) = z.f(z) on K cannot be unitarily 
equivalent to  any linear mapping A E M on any Hilbert space H E M in the sense 
of any permutation model M .  

P r o o f .  We assume that on the contrary Q. U = U .A for some bijective isometry 
U : H - I i  in V. Then in M for h # 0 in H the set { p ( A ) ( h )  : p E @[.I} is 
dense in H, since by [ la ,  pp. 95 - 961, Q does not admit a nontrivial closed invariant 
subspace. Thus in M the inner product space H is a separable Hausdorff space of 
the first category. It is wellorderable as a set by [5, Lemma 2.21. In M the space H 
cannot be a Hilbert space. [BAIRE’S category theorem for separable spaces does not 

The Benioff completion may be applied in the construction of the maximal com- 
pletion of a Hilbert space in-a permutation model. If K A  is the Hilbert space of 
Example 3, then K = M 1 n K A  is another Hilbert space of M 1 such that K # K A .  
[Recall from Section 1.2 that K A  is dense in K = &(A).] If on the other hand H is 
defined in some model M as H = 12(D), then fi n M = H .  We note that these re- 
sults depend on the particular canonical embedding Z : H - fi which is constructed 
below. Without mentioning Z it might be read as an abbreviation for: “If in M the 
space H is dense in the Hilbert space K ,  then H = K”. 

C o n s t r u c t  i o n  4 .  If H E M is an inner prodjct space in the permutation 
model M V(X), then in V(X) we define Z :  H - H as follows: Z(h) = V h ,  where 
$Oh : S1 - C is the mapping c p h ( s )  = ( h , s ) ,  and S1 = {s E H : llsll = 1) is the unit 
sphere. fi is the closure of Z ” H  as a subspace of .!,(SI) in the sense of V(X). 

Since Icph(s)l 5 llhll, we have IIcphll, < 00 and Z is welldefined. Z is easily seen to 
be a linear isometry of H into t,(S1). [Observe that Icph(s)l = llhll for s = h/llhll 
and h # 0.1 As has been noted in [6, p. 4411 this space is Cantor complete. 

T h e  o r e  m 3 .  In the Permutation model M C V(X) we let H be a Hilbert space. 
Then fi of Construction 4 is its completion in V(X). Moreover, h’ = fi n M E M 
and as a submanifold of fi in M the space K is a Hilbert space. If in M the Hilbert 
space H is Cantor  complete, then K = H .  

P r o o f .  We apply the Construction 4 since in view of S1 E M each function 
cp E t,(S1) E V(X) is a subset of M .  

We first observe, that L = l,(Sl) n M E M .  For if M is generated by the 
topological group G and g E stab(H), then for cp E t,(Si) 

depend on AC.] 0 

$ = (&)(cp) = {((&)(s),cp(s)) : s E s11 E V(X) 

is a complex valued function with domain S1 [since (dg)”S1 = SI] and 11q!~11, = Ilcpll,. 
Hence (zg)”l,(Sl) 5 LQ)(S1) and stab(L) _> stab(H) is open. It follows that L is 
t,(S1) in the sense of M and the vector space operations and norm restrict from 
V(X) to the equally defined functions of M .  Moreover, in M the space L is complete. 
[Completeness of t , ( S l )  is provable in ZFA.] 
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Since 3 is the closure of Z ” H  in the sense of V ( X )  and K = fi n M C &, in 
V(X) we may conclude that 

h’ = {t E & : (V€ > 0)(3h E H) 112 - Z(h)llW < E } .  

In the model M we use this definition to define a similar space K1 E M .  Since all 
parameters in this definition are in M and have the same meaning in M as in V ( X ) ,  
we conclude that K = K1 E M is the closure of 2 ” H  in M .  The norm and the vector 
space operations of h’ are inherited from L,(Sl) and thus from &, whence in M the 
space h’ is a inner product space with these functions. Since in M the space I< is 
closed in &, the space K is complete. 

Now let M satisfy that H is Cantor complete. We pick I E h’ = 3 n M E M 
and note, that since Z”H is dense in K ,  the set Wn = {h E H : IIt - Z(h)llw ,< i} 
is nonempty for n 2 1. Since the isometry Zis continuous, Wn H is closed and its 
diameter is bounded by $. As K E M I  the sequence Wn has been defined within M 
and it is therefore an element of that model. Hence by Cantor completeness there is 

0 

Usually the representative of the isometry class of the completion o f _ H ,  i.e. fi, 
will be wellorderable as a set even in M .  Then the embedding e : H - H cannot be 
traced in M unless H is wellorderable and H = 3. It- is, however, approxim2ted by 
the relations EG E M .  Here x E G ~ ,  if t E H and y E H E V(0) satisfy y = e ( d r t )  for 
some r E G and the open subgroup G 0,f stab H. The relation EG induces a partition 
PG on G, namely PG = {G \ e”H,  {e(d?rt)  : A E G} : t E H}. 

For example, let us consider L E M2 of Example 1. We consider the partition on 
= 42 which is induced by the group G = stab0. In V the embedding e is defined 

on the canonical unit vectors as (ea,, - e a , ) / a  - en. We have Z E G ~  if and only if 
.(a) E {yn,-yn} for a E Pn. Moreover, e”L = {y E 1 2  : {n E w : # 0) E [w]<w}l 
and the PG equivalence class of y E e”L is {(Enyn : n E w )  : E E { + I I  -l}w}. 

The following technical question is related to these matters; its answer is affirma- 
tive if H = &(D) (see [4, Corollary 2.31). 

C o n  j e c t u r e 1 . In the real world Z’”H E is of the first category if in M the 
space H is locally sequentially compact. 

For Banach spaces, similar investigations reveal the noneffective character of the 
dual space X’ of the continuous functionals on X .  

R e m a r k  5.  The permutation model M V ( S )  safisfies AC if and only if the 
dual X’ in M of each B-space in M is dense in the dual in V(S) of the completion 

P r o o f .  If A E M is an arbitrary set, then X = l l ( A ) ,  formed in M ,  has the 
dual & ( A )  in M I  which from the outside is dense in B(A,P’(A)) ,  where B ( A , C )  
is the space of all bounded C-measurable complex valued functions on A .  Yet X is 
dense in .tl(A) of V(S), whose dual is too A) .  We observe that B(A,P’(A)) is dense 

0 in M .  
A conversation by the first author with Prof. SCHACHERMAYER led to the following 

conjecture which is related to MAHARAM’S theorem. 

an h E nnEw Wn. In K it follows that F(h) = t and so Z ” H  = K .  

2 OfX. 

in this space if and only if P’(A) = Pv I s ) (A) .  Since A E M is arbitrary, AC holds 
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C o n  j e c t u r e  2 .  If X is an No-categorical countable structure over a finite rela- 
tional language and M C V(X) is generated by AutX with the topology of pointwise 
convergence, then the dual in V(X) of the completion of the space .!,(X) of M is 
(isometrically) isomorphic with 

3.2 Self-adjoint extensions. In this section we investigate the extension of map- 
pings to  the Benioff completion. 

L e m m a  3. Let M E V(X) be a permutation model, H E M a Hilbert space in 
the sense of the model and A : H - H a symmeiric and weakly algebraic mapping 

(i) In V(X) there ezists a unique self-adjoint eztension i of A to the Ben io f  com- 
pletion I?: of H. 

(ii) If in M the symmetric  weakly algebraic mappings Ai : H - H ,  1 5 i 5 n, 
commute, then in V(X) the self-adjoint mappings X i  commute and there ezist in M 
a bounded symmetric  weakly algebraic mapping A : H - H and Borel funciions 
fi : W - W such that both Ai = f i (A)  in the sense of Definition 3 and 2 ,  = f i ( 2 , )  
in the sense of ihe functional calculus of self-adjoint operators. 
(iii) I f f  : W" - W is an everywhere defined Borel function and in M the symmetric  

weakly algebraic mappings Ai : H - H ,  1 5 i 5 n, commute, then in V(X) 

if and only if X is w-stable. 

A E M .  

f ( A 1 , .  . . A n ) - =  f(X1,. . .in). 
P r o o f .  As i t  is easily seen from Fact 1, the notion of a symmetric weakly algebraic 

map is absolute: If U : H - K in V is a unitary equivalence between A : H - H 
in M and a mapping B : K - K in V on an inner product space K E V such 
that B . U = U . A ,  then the mapping A satisfies this property if and only if B 
does. Hence in V the map A is symmetric and weakly algebraic with a dense domain 
domA = H C a. Fact 9 implies the existence of a unique self-adjoint extension 2. 

In the case of a commutative family Ai of symmetric weakly algebraic mappings 
on H we apply Lemma 1 which in ZFC implies the existence of an orthonormal base 
B nll,,,, EV(Ai)  of &. As follows from the proof of Fact 9, with respect to  this 
base all mappings i i  are diagonal operators and therefore they commute. Since A of 
Fact 7 and Ai are diagonal operators with respect to  the same orthonormal base B, 
the identity f,(;r> = i i  needs to be verified on B only. 

Using assertion (ii) we may reduce assertion (iii) to  the case of one mapping A 
and the function g(z) = f ( f l ( t ) ,  . . . , fn(+)).  Again g ( X )  and g(A)- coincide on the 

D e f i n i t i o n 5. If A : H - H is a symmetric weakly algebraic mapping A E M 
on the Hilbert space H E M in the permutation model M V(X), then in V(X) 
the unique self-adjoint extension 2 of A to  the Benioff completion & is the Benioff 
extension of A .  

The following characterisation of the intrinsically effective operators is an exten- 
sion of HALMOS' Corollary 1 to unbounded operators. In the sequel L is the Hilbert 
space of Example 1 in the second Fraenkel model M z .  The mapping To is defined in 
Remark 2. 

diagonal B. 0 
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T h e  o r e  m 4. In the real world V of ZFC lei T be an intrinsically effective self- 
adjoint operator on the separable Hilbert space K and F C domTo be finiie. In  M 2  
ihere is a symmetric weakly algebraic mapping A on L such that for some bijective 
isometry fi : z - K in V we have U-l F E L and in V the self-adjoint mapping T 
is unitarily equivalent with 2, i. e. Tfi = fix. 

P r o o f .  Since T is intrinsically effective, To is a symmetric weakly algebraic 
mapping on span(EV(T)) which is dense in K. In V there is a countable orthonormal 
base of K which consists of eigenvectors k,, n E w ,  of T: Tk, = A, . k,. If some 
orthogonal eigenvectors hi, i 5 N, of T span F, then we let the orthonormal base 
contain these hi. Let H be the linear span of { k ,  : n E w } .  In V there is a bijective 
isometry U between L and H. [As in the example following Theorem 3, we let k, 
correspond to (e(a,)-e(b,))/fi.] It extends to an isometry fi between z and = K; 
by the definition of L we have U-l (h i )  E L, whence U"F C L. Note that U depends 
on F. Next we define a linear mapping A E Ma on L with domA = L by the clause 
(Az)(p) = A, . z ( p )  if p E P,. Since TIH = UAU-', we have T = UAU-', i.e. 

0 

If the Hilbert space dimension of K is K ,  then a gmilar construction is possible in 
the model which is generated by Z". The condition U-ldomTO L = domA cannot 
be ensured, unless all eigenspaces of T are finite dimensional. [On 4 ( w )  consider the 
scalar T = 1; then in V the algebraic dimension of the vector space L is countable 
while the dimension of domTo = &(w) is uncountable.] 

C o r o l l a r y  4. In the real world V of ZFC, if  Ti, 1 5 i 5 n, are commuting 
intrinsically effective self-adjoint bounded operators on the separable Hilbert space 
K and F domTo is  finite, then in the Fraenkel model M2 there is a bounded 
symmetric weakly algebraic mapping A on L such that for some Bore1 functions fi 

and some bijective isometry fi : z - K in V the preimage 0-l F L and in V the 
mappings Ti are unitarily equivalent with fi(2); T i f i  = Efi(X) = C. (fi(A))-. 

P r o o f .  It suffices to apply Theorem 4 to the mapping A of Corollary 2. 0 
For the maximal completion there is the following analogy to these results. 
C o r o l l a r y  5 .  In the permutation model M C V(X) let A be a symmetric linear 

map whose domain is dense in the Hilbert space H E M. If in V ( X )  there is a 
unique eztension of A to a self-adjoint operator on the compleeon fi of H,  then 
(with respect to the embedding Z of Construction 4 )  K = domA n M E M and 
2 I K  : K - fi r l  M belongs t o  M. 

P r o o f .  In V(X) the self-adjoint extension is 2 = A', the adjoint of A. If its 
domain domA' carries the norm Ilzllt = 1 1 ~ 1 1 ~  + ll&112, then it is a Hilbert space. 
H is dense in this space, for otherwise the deficiency indices of A could not vanish 
([lo, p. 12271). The restriction of the new norm to H is in M I  since for z E H 
1 1 ~ 1 1 :  = 1 1 ~ 1 1 ~  + IlA~11~. Hence in V(X) the domain d o m z  is the completion of the 
pre-Hilbert space (HI 11.111) of M I  whence by Theorem 3, K = d o m x n  M E M. 

The mappings A : (HI II.111) - (HI 11.11)  and 2 : (domz,  11 .Ill) - (fi, 1 1 . 1 1 )  are 
bounded, whence 2 is the unique continuous extension of A from H to d o m i .  Since 

0 

- -- 
2 and T are unitarily equivalent. 

in M this defines 2 lK : M n dom 2 - M f l  fi, it follows that 2 IK E M .  
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3.3 Abstract intrinsic effectivity. The preceding discussion may be comple- 
mented by the following axiomatic generalization of the notion of intrinsic effectivity 
for bounded self-adjoint operators. 

A x i o m s .  We let C ( H )  be a definition (in the language of set theory) of a class 
of symmetric and bounded mappings on inner product spaces H .  We assume 

(i) Absoluteness in the following sense: If M c V(X) is a permutation model and 
H a Hilbert space both in M and in V(X) such that M + A E C ( H ) ,  then also 

(ii) Finiteness: In ZFC, if H is a Hilbert space, then C ( H )  = CA(H), the class of 
algebraic operators; 

(iii) Inuariance: In ZFA, if H is a Hilbert space, A E C ( H )  and the closed subspace 
K E H is an invariant subspace for A ,  then AJK E C ( K ) .  

Since each A E C ( H )  is bounded, there is a unique extension of A to the 
completion k of H .  Therefore the following definition is meaningful. 

D e f i n i t i o n  6 .  In ZFC, if H is a Hilbert space, M a permutation model and 
C( . )  satisfies the above assumptions, then we define the class C M ( H )  as follows: If 
T is a self-adjoint operator on H, then T E C'(H) if and only if for some Hilbert 
space K in the sense of M up to a unitary equivalence in the real world V we have 

V(X) I= A E C ( H ) ;  

- 
(i) Ir' = H ,  

(ii) Ir' is an invariant manifold for T such that A = TIK E M ,  
(iii) M + A E C(K) .  

If C ( H )  is the class of all bounded symmetric weakly algebraic mappings on H, 
then assumption (i) follows from Fact 1, assumption (ii) is KAPLANSKY'S theorem 
and assumption (iii) is Fact 2. In view of Theorem 4 a bounded self-adjoint operator 
T satisfies Definition 6 for this class C( . ) and some model M ,  i. e. T E C'(H) if and 
only if T is intrinsically effective. 

T h e o r e m  5 .  In ZFC each operator T E C M ( H )  i s  intrinsically effective. 
P r o o f .  We argue in terms of the notation of Definition 6. We assume that 

H = k and M A : K - K E C(K). Now pick k E K, let G be the stabilizer 
stab(k, K ,  A ,  C(K))  and set KG = {z E K : stab(z) _> G}. Since G fixes the topology 
of K ,  

M + "the linear manifold KG E K is closed". 

Since in M the set KG (without its additional structure) is wellorderable, M contains 
all V(X)-sequences of elements in K G ,  whence also 

V(X) + "KG c H is closed". 

Since G fixes both A and k E K G ,  the powers A"k belongs to Kc (convention 
A' = id). Hence 

orb(k) = claspan({A"k : n E w } )  G K c .  
orb(k) is a Hilbert space both in the real world and in the model. For the real world 
this follows from its definition as a closed subspace of H .  Therefore also in the model 
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it is a closed subspace of the wellorderable space KG. Since in the model KC is a 
closed subspace of a Hilbert space K ,  so is orb(k). By continuity, orb(k) is invariant 
both for A and for 2. In view of axiom (iii) 

M Alorb(k) E C(orb(k)) 

and in view of axiom (i) also V ( X )  ilorb(k) E C(orb(t)). Hence by axiom (ii) 
zlorb(k) is algebraic, whence orb(k) is finite dimensional. Now Fact 1 implies that 
A is weakly algebraic whence z is intrinsically effective. So is T intrinsically effective 

3.4 Quantum theory. We apply the above results to reconstruct the dynamics 
of conservative quantum systems in the second Fraenkel model. We first define an 
analogy of the unitary group U ( t )  which solves the Schrodinger equation. 

In ZFA, if A is a symmetric weakly algebraic mapping 
A : H - H on the inner product space H, then we set for t E R and 2 E EV(A) ,  

by unitary equivalence. 0 

C o n s t r u c t i o n  5 .  

V(2)x = exp(-i. A .  2 ) .  x if Ax = Ax 

and we extend V ( t )  linearly over H (cf. Definition 3 and Fact 6). 
In the sequel, L E M z  is the Hilbert space of Example 1. Its Benioff completion 

is z, a separable Hilbert space. 
C o r o l l a r y  6. In ZFC we assume that T is  an intrinsically effective operator on 

the separable Hilberi space K and u E domTO is  a pure s tate .  Then in the second 
Fraenkel model M z  there exists a symmetric weakly algebraic operator A : L - L 
and in the real world V there is a unitary equivalence 6 : z - K such that 

(i) F'UEL,  
(ii) for  all t E R it holds that t r ( t ) u  = 6 V ( t ) f i - ' u .  

P r o o f .  Let A and fi be constructed as iE Theorem 4 such that the Benioff 
extension 2 is unitarily equivalent by means of U to T. As in the proof of Lemma 3 
it follows from the compatibility of the functional calculus of self-adjoint operators 

0 

The Hamiltonian of the harmonic oscillator (whose kinetic energy in classical me- 
with the Benioff extension that U ( t ) u  may be computed by means of V ( t ) .  

1 f 
2m 2 

chanics is - . p z  and the potential is - * q z )  has the form 

T = - h . p a +  - f . QZ 
2m 2h 

dg on .&(a). Here ( P g ) ( z )  = - i  - - ( x )  and (Qg)(x)  = x . g ( x )  are the displacement 
and position operators and h = 1.05. erg sec is PLANCK'S constant. It is an 
unbounded intrinsically effective observable with one-dimensional eigenspaces ([12, 
pp. 211 - 2191 computes an orthonormal base of eigenvectors). More generally, by a 
theorem due to H. WEYL, if in classical mechanics the potential v ( q )  is continuous 
and limu(q) = 00 as q 4 foo, then the Hamiltonian of the corresponding elementary 
particle is intrinsically effective (cf. [20, pp. 110 - 113, 121 - 122 and 1271) and all 

d x  
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its eigenspaces are finite dimensional ([lo, p. 12851). These particles are compatible 
with L in a rather strong way. 

C o r o 11 a r  y 7. In ZFC, if T is an intrinsically effective operator on the separable 
Hilbert space K and all eigenvalues of T have a finite multiplicity, then the mappings 
A and 8 of Corollary 6 satisfy also the following property: 

(iii) for  each state D on K ihere exists in M2 a bounded, symmetric  and weakly 
algebraic mapping B : L - L such that for  all t E W, tr(U(t)D) = tr(V(t)B). 

P r o o f .  In M2, for A E up(T) we let PA be the orthogonal projection onto the 
Cantor complete subspace ker(A - A) and nx its dimension. We set 

- -  - -I I 

Then tr(PxB) = tr(UPxU-'D). The extension UPxU-' of PA is the projection onto 
ker(T - A).  Therefore, if we set f ( r )  = exp(-i . r .  t ) ,  then 

tr(U(t)D) = C X E U , ( T ) f (  A)tr  FA c-' D) 

= CA,,p(,)f(A)tr(PxB) 
= tr(V(t)B). 0 

The construction of B depends on T. It is therefore context dependent (in the 
sense of physics). 

E x a m p l e  7. In V there is a state D on such that for  no symmetric  mapping 
B : L - L in M2 the following identity i s  irue: 

t r (PB) = t r (FD) for all projections P E M2 on L.  

P r o o f  . If otherwise, then for each state D there is a mapping B such that for any 
projection P onto span({z}), where z E L, we have (Bz, z) = (Dz, z) (here we assume 
for the ease of the notation that the embedding of L into z is the inclusion). Hence 
by the polarisation identity, ( B t ,  y) = (Dt ,  y) for all z, y E L .  As L is dense in z, it 
follows that B is the restriction of D to L. However, if in V we represent z by &(Z) 
and L by the subspace which is the linear span of the canonical unit vectors e k ,  where 
k E Z, then the following mixed state D does not restrict to a linear mapping B E M2 
on L .  For a sequence Wk > 0 of weights, CkEz Wk = 1, we set D = CkEz w k 4 .  Here 
P k  is the orthogonal projection onto span({ek + ek+i}).  If B = DlL E M2, then as 
a consequence of locally sequentially compactness L = span(EV(B)) (cf. Remark 3). 
On the other hand an easy computation reveals that no eigenvector of D is a linear 
span of finitely many ek. 0 
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