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Abstract

In as much as physical theories are formalizable, set theory pro-
vides a framework for theoretical physics. Four speculations about the
relevance of set theoretical modeling for physics are presented: the
rôle of transcendental set theory (i) in chaos theory, (ii) for para-
doxical decompositions of solid threedimensional objects, (iii) in the
theory of effective computability (Church-Turing thesis) related to the
possible “solution of supertasks”, and (iv) for weak solutions. Sev-
eral approaches to set theory and their advantages and disadvantages
for physical applications are discussed: Cantorian “naive” (i.e., non-
axiomatic) set theory, constructivism and operationalism. In the au-
thor’s opinion, an attitude of “suspended attention” (a term borrowed
from psychoanalysis) seems most promising for progress. Physical and
set theoretical entities must be operationalized wherever possible. At
the same time, physicists should be open to “bizarre” or “mindbog-
gling” new formalisms, which need not be operationalizable or testable
at the time of their creation, but which may successfully lead to novel
fields of phenomenology and technology.
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1 A short history of set theory, with empha-

sis on operationalism

Physicists usually do not pay much attention to the particulars of set the-
ory. They tend to have a pragmatic attitude towards the foundations of
the formal sciences, combined with the suspicion that, as has been stated
by Einstein ([1], translated from German)1 “insofar mathematical theorems
refer to reality, they are not sure, and insofar they are sure, they do not refer
to reality.”

Yet there are instances when foundational issues do play a rôle. It is
due to a lack of expertise and experience, that the empiric researcher is then
particularly vulnerable to misconceptions. Below we shall give examples
where set theoretic specifications are essential to the argument. But we have
to first briefly review set theory in general.

In Cantorian (i.e., non-axiomatic) set theory, the “definition” of the con-
cept of a set reads ([2], translated from German [6]),2 “A set is a collection
into a whole of definite distinct objects of our intuition or of our thought.
The objects are called the elements (members) of the set.” As general as it
is conceived, Cantorian set theory would provide a powerful mathematical
framework for theoretical physics. Per definition, hardly any conceivable ob-
ject does not fall within its domain. Indeed, how gratifying and ambitious,
but also how challenging this conception, one can imagine from Hilbert’s
emphatic declaration (cf. [3], p. 170, translated from German),3 “From the
paradise which Cantor created, no one shall be able to expel us.”

Alas, Cantorian set theory, at least its uncritical development, proved
inconsistent. Both Cantor (cf. [6], p. 7 and [4], p. IV) and Hilbert were
fully aware of the set theoretical antinomies such as Russell’s paradox, “The
set of all sets that are not members of themselves.” Cantor himself discov-
ered one of the first antinomies around 1895, even before the Burali-Forti
antinomy. In 1899, Cantor wrote in a letter to Dedekind ([4], p. 443, trans-

1“Insofern sich die Sätze der Mathematik auf die Wirklichkeit beziehen, sind sie nicht
sicher, und insofern sie sicher sind, beziehen sie sich nicht auf die Wirklichkeit.”

2“Unter einer “Menge” verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unsrer Anschauung oder unseres Denkens (welche die
“Elemente” von M genannt werden) zu einem Ganzen.”

3“Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben können.”
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lated from German [5]),4 For a multiplicity can be so constituted that the
assumption of a “being together” of all its elements leads to a contradic-
tion, so that it is impossible to consider the multiplicity a a unit[y], thus “a
complete thing.” I call such multiplicities absolutely infinite or inconsistent
multiplicities. [paragraph] As one readily convinces oneself, the “aggregate of
everything thinkable” is, for example, such a multiplicity; . . .”

In Hilbert’s formalist view of the infinite, all proofs using non-terminating
sequences of operations should be substituted by finite processes and proof
methods (cf. [3], p. 162).5 For Hilbert, a typical example for this program
was Weierstraß’s approach to analysis.

Others, among them Zermelo and Fraenkel [6], were less secure in the
“Cantorian heaven of set theory” and attempted to block the paradoxes by
axiomatically restricting the rules of set generation. The necessary price was
a restriction of the mathematical Universe.

Rather unexpected for Hilbert, but obvious for Brouwer (cf. [7], p. 88),
Gödel [8] showed that in any reasonably strong axiomatic theory (rich enough
to allow for arithmetic), consistency cannot be proven. (One may quite
justifiable ask whether a “proof” of consistency would really be of any value;
after all, if a theory were inconsistent, then consistency could also be “proved”
therein!)

Further restrictions to set generation were imposed by constructive math-
ematics, anticipated by the radical “Verbotsdiktator” Kronecker. The va-
rieties of constructive mathematics [9] comprises the intuitionistic school
around Brouwer and Heyting, the Russian school, and Bishop’s constructive
mathematics. For more recent developments, see Bridges [10, 9]. Essentially,
the existence of mathematical objects is accepted only if the objects can be
constructed by an algorithm. An algorithm is a finite procedure. That is,
its algorithmic information (minimal description length), as well as its exe-

4“Eine Vielheit kann nämlich so beschaffen sein, daß die Annahme eines “Zusammen-
seins” aller ihrer Elemente auf einen Widerspruch führt, so daß es unmöglich ist, die
Vielheit als eine Einheit, als “ein fertiges Ding” aufzufassen. Solche Vielheiten nenne ich
absolut unendliche oder inkonsistente Vielheiten. [Absatz] Wie man sich leicht überzeugt,
ist z. B. der “Inbegriff alles Denkbaren” eine solche Vielheit; . . .”

5“Und so wie das Operieren mit dem Unendlichkleinen durch Prozesse im Endlichen
ersetzt wurde, welche ganz dasselbe leisten und zu ganz denselben eleganten Beziehun-
gen führen, so müssen überhaupt die Schlußweisen mit dem Unendlichen durch endliche
Prozesse ersetzt werden, die gerade dasselbe leisten, d.h. dieselben Beweisgänge und diesel-
ben Methoden der Gewinnung von Formeln und Sätzen ermöglichen.”
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cution time is finite. It can be perceived as the step-by-step execution of a
deterministic computer program. Constructive mathematics is not particu-
larly concerned with the actual size of algorithmic information and dynamic
complexity (time and space), as long as they are finite (although it is acknowl-
edged that such considerations are important for practical applications). In
Russian constructive mathematics, the term “algorithm” is a synonym for a
finite sequence of symbols in a fixed programming language.

Enter physics. Not long after Hilbert’s bold statement concerning the
Cantorian paradise (which was directed against the uncritical use of the “ac-
tual infinity” in mathematics and the natural sciences) appeared a critical
essay on the methods of set theory by Bridgman [11]. (Landauer has re-
ferred to Bridgman’s article at several occasions [12, 13, 14].) Bridgman’s
operationalism was directed against the uncritical use of theoretical concepts
[15, 16]. In particular, he demanded that the meaning of theoretical concepts
should ultimately be based on concrete physical operations. That is, (cf. [17],
p. V), “the meaning of one’s terms are to be found by an analysis of the op-
erations which one performs in applying the term in concrete situations or
in verifying the truth of statements or in finding the answers to questions.”
In his later writings, Bridgman clarified (and somewhat weakened) opera-
tionalism by differentiating between “instrumental” and “paper-and-pencil”
operations (cf. [18], p. 8-10), “It is often supposed that the operational
criterion of meaning demands that the operations which give meaning to a
physical concept must be instrumental operations. This is, I believe, palpa-
bly a mistaken point of view, for simple observation shows that physicists do
profitably employ concepts the meaning of which is not to be found in the in-
strumental operations of the laboratory, and which cannot be reduced to such
operations without residue. Nearly all the concepts of theoretical and mathe-
matical physics are of this character, such for example as the stress inside an
elastic body subject to surface forces, or the ψ function of wave mechanics.
. . . we may single out . . . the sort of operations performed by the theoret-
ical physicist in his mathematical manipulations and characterize these as
‘paper-and-pencil’ operations. Among paper-and-pencil operations are to be
included all manipulations with symbols, whether or not the symbols are the
conventional symbols of mathematics. . . . a great latitude is allowed to the
verbal and the paper-and-pencil operation. I think, however, that physicists
are agreed in imposing one restriction on the freedom of such operations,
namely that such operations must be capable of eventually, although perhaps
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indirectly, making connection with instrumental operations.”
Bridgman pointed out that in Cantorian set theory there is one partic-

ularly vicious method of specifying operations. In his own words (cf. [11],
p. 106), “It is possible to set up rules which determine a non-terminating
sequence of operations, as for instance, the rules by which the sequence of the
natural number is engendered. But it is obviously not legitimate to specify in
this way a non-terminating operation, and then to treat this non-terminating
complex as itself a simpler operation which may be used as an intuitive ul-
timate in the specification of another operation. Such a non-terminating
complex can be treated in this way only when it can be proved equivalent to
some other procedure specifiable in finite terms, and which can, therefore, be
actually executed. Otherwise, the non-terminating complex must be treated
as the end, and no other operations be demanded after it; our ordinary ex-
perience of the order of operations as performed in time evidently requires
this.” In present-day, recursion theoretic, terminology, a “complex opera-
tion” would be called a “sub-program” or “(sub-)algorithm,” and the term
“non-terminating” would be translated as “diverging” in the sense of “non-
recursively bound.” In terms of recursion theory, Bridgman’s claim can be
re-interpreted such that no diverging algorithm should be allowed as legal
input of any other (terminating) algorithm.

One may go even further than Bridgman and assume that, since infinite
entities are not operational, infinities have to be abandoned altogether. The
elimination of even potential infinities leaves us with merely finite objects.
Finitistic arguments and physical limits have been put forward by Gandi
[19, 20], Mundici [21], Landauer [22] and Casti [23].

2 The “Go-Go” principle

The Cantorian “permissive” approach to the foundations of mathematics
stimulated the invention, creation and investigation of the weirdest “mon-
sters” of thought. Per definition, no construction or speculation could be
crazy enough to be excluded from the formal sciences. While inconsistent,
this attitude brought forth an undeniable advancement in the formal sciences
insofar as objects were discovered which had novel, sometimes bizarre and
even “mindboggling” features.

Take, for instance, Cantor’s map of the unit line onto the unit square
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which is one-to-one, or Peano’s continuous map from a line onto the unit
square. Another example is the Cantor set (nowadays called a “fractal”)
C = {∑∞

n=1 cn3−n | cn ∈ {0, 2} for each n}, which has vanishing measure
µ(C) = limn→0(2/3)n = 0 but which can be brought into a one-to-one corre-
spondence to the unit interval of the binary reals. Another “mindboggling”
result concerning measure-theoretic non-preservation is the Banach-Tarski
paradox discussed below.

The spirit behind all these findings seems to be that “everything goes.”
Stated pointedly:

Every method and object should be permitted as long as it is not
excluded by the rules. Or: Anything that is not forbidden is al-
lowed.

In the following, this attitude will be called the “Go-Go” principle. It may
be applied both to the formal and to the natural sciences.6

A few remarks are in order. As has been pointed out before, consistency
cannot be proven from within the rules, at least not if the rules are strong
enough to allow for arithmetic or universal computation.

The “Go-Go” principle collides with the axiomatic method using recursive
rules of inference. It can be expressed as follows:

Every method or object is excluded which is not derivable by the
rules. Or: Anything that is not allowed is forbidden.

One might jokingly call this the “No-Go” principle.7 Despite its rather re-
strictive attitude, the axiomatic method seems good enough to include anal-
ysis [10] (and, at least good enough to re-derive many important results first
discovered by “Go-Go.”) Formalist like Hilbert have even claimed that it
should turn out to be all the same, finally.

One should also be aware that the “Go-Go” principle allows a pragmatic
point of view, which most researchers practice anyway: since it is difficult
to develop progressive and innovative ideas, the real problem in the sciences
might not be to eliminate ill-conceived concepts and methods but to in-
troduce novel features at all. Otherwise, one might argue, mathematicians

6The author wants to make it quite clear that he neither rejects nor supports the
“Go-Go” principle for reasons which are discussed below.

7My first denomination of this style was “No-No.” The present term “No-Go” is due
to a Freudian slip by Professor Joseph F. Traub.

7



would have just to evoke an automated proof machine, a “perfect publicator,”
which makes its creators superfluous.

Therefore, judged from a pragmatic point of view, the “Go-Go” principle
might prove progressive but unreliable. To put it pointedly: the “Go-Go”
principle might be essential for producing novel results, for the discovery
of undiscovered land (Hilbert’s paradise), even if it is known that it yields
antinomies.

Despite all positive aspects which have been mentioned so far, as lib-
eral as it is conceived, the “Go-Go” principle is unable to cope with its own
limitations, in particular with respect to applications to physics. There-
fore, physicists are occasionally confronted with “effects” or “predictions” of
physical theory which have their origin in non-constructive, non-operational
features of the set theory underlying that physical theory. But even if such
“effects” from theoretical artifacts might prove elusive most of the time, sel-
dom enough (cf. non-Euclidean geometry) they might lead us to totally
unexpected classes of phenomena.

In what follows, some speculative examples inspired by “Go-Go” are dis-
cussed. They correspond to paper-and-pencil operations. If they will eventu-
ally be capable of making connection, perhaps indirectly, with instrumental
operations, remains to be seen.

2.1 “Chaos” theory

The emergence of “chaos theory” has highlighted the use of classical continua
[31].8 There, the scenario is that the equation of motion seems to “reveal”
the algorithmic information [32, 33, 34] of the initial value [35, 36, 37].9

Consider, for example, the logistic equation of motion f : xn → xn+1 =
f(xn) = αxn(1 − xn) for variable xn at discrete times n ∈ N0. It can, for
α = 4 and after the variable transformation xn = sin2(πXn), be rewritten

8I would also like to point the reader’s attention to the question of the preservation
of computability in classical analysis; in particular to older attempts by Specker [24],
Wang [25], Kreisel [26] and Stefănescu [27], as well as to the more recent ones by Pour-El
and Richards [28] (cf. objections raised by Penrose [29] and Bridges [30]) and Calude,
Campbell, Svozil and Ştefănescu [31].

9In a very recent book on finite precision computations by Chaitin-Chatelin and
Fraysseé [38] point out that, in a certain, well-defined way, exact absolute information
is too unstable and does not give rise to the full richness of physical solutions. In partic-
ular, finite-precision arithmetic is more suitable to model physical systems that fluctuate.
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as f : Xn → Xn+1 = 2Xn(mod 1), where (mod 1) means that one has to
drop the integer part of 2Xn. By assuming a starting value X0, the formal
solution after n iterations is f (n)(X0) = Xn = 2nX0 (mod 1). Note that, if
X0 is in binary representation, f (n) is just n times a left shift of the digits of
X0, followed by a left truncation before the decimal point.

Assume now that the measurement precision is the first m bits of Xn, in
the binary expansion of Xn. In a single time step, the evolution function f
effectively reveals the next digit of X0, which was unobservable before. That
is, in order to be able to measure the initial value for an arbitrary but finite
precision m′, one has to wait and measure X0 until time max(m′ −m, 0).

The only possible “chaotic” feature in this scenario resides in the initial
value: the theoretician has to assume that X0 ∈ (0, 1) is uncomputable or
even Martin-Löf/Solovay/Chaitin random. Then the computable function
f (n)(X0) yields a measurable bit stream which reconstructs the binary ex-
pansion of X0, which is uncomputable or even Martin-Löf/Solovay/Chaitin
random. To put it pointedly: if the input is a random real, then the output
approximates a random real; in more physical terms: if unpredictability is
assumed, then chaotic motion follows. (More ironically: garbage in, garbage
out.) That is all there is.

It is amazing how susceptible the general public as well as many physicists
are to contemplate this form of “chaotic” motion as a fundamental fact about
the nature of (physical) reality rather than as a theoretical assumption. In
the author’s opinion, one of the reasons10 for this willingness of physicists
to accept Martin-Löf/Solovay/Chaitin randomness as a matter of natural
fact is that physicists have been trained in the domain of classical contin-
uum mechanics [39]. The term “classical” here refers to both non-quantum
mechanics, as well as to Cantorian set theory.

To be more precise, recall that Cantor’s famous diagonalization argument
[2] asserts that the set of reals in the interval [0, 1] are nondenumerable: As-
sume that there exists an effectively computable enumeration of the decimal

10There seem to be powerful counter-rationalistic forces, not to mention wishful thinking,
which seduce people into believe systems that physics has “finally re-discovered” ever-to-
remain obscure phenomena, that we are even on the verge of the “end of the age of the
natural sciences;” forces which seem to be directed against the scientific research program
of the Enlightenment put forward by Descartes, Hume, Humboldt and others.
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reals in the interval [0, 1] of the form

r1 = 0.r11r12r13r14 · · ·
r2 = 0.r21r22r23r24 · · ·
r3 = 0.r31r32r33r34 · · ·
r4 = 0.r41r42r43r44 · · ·

...

.

Consider the real number formed by the diagonal elements 0.r11r22r33 · · ·.
Now change each of these digits, avoiding zero and nine. (This is necessary
because reals with different digit sequences are identified if one of them ends
with an infinite sequence of nines and the other with zeros, for example
0.0999 . . . = 0.1000 . . ..) The result is a real r′ = 0.r′1r

′
2r
′
3 · · · with r′n 6= rnn

which thus differs from each of the original numbers in at least one (i.e., the
“diagonal”) position. Therefore there exists at least one real which is not
contained in the original enumeration.

Indeed, any denumerable set of numbers is of Lebesgue measure zero.
Let M = {ri} be an infinite point set (i.e., M is a set of points ri) which
is denumerable and which is the subset of a dense set. Then, for instance,
every ri ∈ M can be enclosed in the interval

I(i, δ) = [ri − 2−i−1δ, ri + 2−i−1δ] ,

where δ may be arbitrary small (we choose δ to be small enough that all
intervals are disjoint). Since M is denumerable, the measure µ of these
intervals can be summed up, yielding

∑

i

µ(I(i, δ)) = δ
∞∑

i=1

2−i = δ .

From δ → 0 follows µ(M) = 0. Example for denumerable point sets of reals
are the rationals Q and the algebraic reals. (Algebraic reals x satisfy some
equation a0x

n + a1x
n−1 + · · ·+ an = 0, where ai ∈ N and not all ai’s vanish.)

Consequently, their measures vanish. The complement sets of irrationals
R − Q and transcendentals (non-algebraic reals) are thus of measure one
[40].
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It is easy to algorithmically prove that the computable reals are denumerable.11

The range of the partial recursive function ϕC corresponding to an arbitrary
computer C can be explicitly enumerated as follows. Begin at step zero with
an empty enumeration. In the n’th step, take all legal programs (i.e., pro-
grams which are in the domain of C) of code length n and run C up to time
n; add in quasi-lexicographical order all output numbers which have not yet
occurred (up to time n− 1) in the enumeration.12

That means that if the continuum is treated as an “urn,” from which
the initial values are drawn, then “almost all,” i.e., with probability one,
such initial values are not effectively computable. One can even prove that
the stronger statement “almost all” elements of the continuum have incom-
pressible algorithmic information; i.e., they are Martin-Löf/Solovay/Chaitin
random [32, 33, 34].

But what does it mean to “prove” that “almost all” of them are non-
recursive; stronger: random reals? It is obviously impossible to give just a
single constructive example of such a non-recursive real.

What does it mean “to pull a real number — the initial value in spe —
out of the continuum urn?” How could we conceive the process of selecting
one real symbolizing the initial value over the other? We need the Axiom
of Choice for that. The Axiom of Choice asserts that for any set x, there
is a choice function c of x, such that c(y) ∈ y for all y ∈ dom(c) = x − ∅
in the domain of c. The Axiom of Choice is non-constructive, at least for
arbitrary non-constructive subsets of R. That is, there does not exist any

11For the remainder of this paper we fix a finite alphabet A and denote by A∗ the set
of all strings over A; |x| is the length of the string x. A (Chaitin) computer C is a partial
recursive function carrying strings (on A) into strings such that the domain of C is prefix-
free, i.e. no admissible program can be a prefix of another admissible program. If C is
a computer, then C(x) = y denotes that C terminates on program x and outputs y. ∅
denotes empty input or output. TC denotes the time complexity, i.e. TC(x) is the running
time of C on the entry x, if x is in the domain of C; TC(x) is undefined in the opposite
case.

12Notice that this scenario remains true for any (infinite) dense set such as the rationals
or the computable numbers (cf. recursive unsolvability of the rule inference problem [41]).
The time necessary to exactly specify an arbitrary initial value can only be finitely bounded
for discrete, finite models such as ones involving a fundamental cut-off parameter which
would essentially truncate the reals at some final decimal place M after the comma (or,
equivalently, an equivalence relation identifying all reals in the interval [

∑M
i=1 ri,

∑M
i=1 ri +

10−M ).
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effectively computable, i.e., recursive, choice function which would “sort out”
the initial value X0. Therefore, chaos theory presupposes not only Martin-
Löf/Solovay/Chaitin random reals, but nonconstructive choice functions.

Moreover, what type of computation is necessary to implement the innocent-
looking evolution function f of the logistic equation above? Recall that, since
the initial value X0 is Martin-Löf/Solovay/Chaitin random with probability
one, its description is algorithmically incompressible and infinite. Therefore,
any “computation” rigorously implementing f should be capable of handling
infinite input. In Bridgman’s terms, this requirement is non-operational. (Cf.
Landauer [22] and the author [57]).

The above mentioned problems of handling Martin-Löf/Solovay/Chaitin
random objects become even more pressing if one realizes that, from the point
of view of coding theory, an algorithm and its input are interchangeable, the
difference between them being a matter of convention: consider a particular
algorithm p implemented on a computer C(p, s) with a particular input s;
and a second algorithm p′ with the empty input ∅. Assume that the only
difference between p and p′ is that the latter algorithm encodes the input s
as a constant, whereas the former reads in (the code of) the object s. Hence,
C(p, s) = C(p′, ∅). Notice that, for Martin-Löf/Solovay/Chaitin random
objects s, the algorithmic information content H(p) remains finite, whereas
H(p′) = ∞. In this sense, recursive functions of non-recursively enumerable
variables are equivalent to non-recursive functions.

2.2 Isometric miracles

In what follows I shall shortly review non-measure preserving isometric func-
tions; often referred to as the “Banach-Tarski paradox.” The “mindboggling”
feature here is that an arbitrary solid object of Rn≥3 can be partitioned into a
finite number of pieces, which are then rearranged by isometries, i.e., distance
preserving maps such as rotations and translations, to yield other arbitrary
solid objects. This procedure could be the ideal basis of a perfect produc-
tion belt: produce a single prototype and “Banach-Tarski-clone” an arbitrary
number thereof. Or, produce an elephant from a mosquito!13

Let us briefly review another application in chaos theory. Consider all
bijections of a set A. The most systematic way of doing this is to work in

13In German, “aus einer Mücke einen Elefanten machen.”
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the context of group actions. Recall that a group G is said to act on A if to
each g ∈ G there corresponds a bijective function from A to A, also denoted
by g, such that for any g, h ∈ G and x ∈ A, g(h(x)) = (gh)(x) and 1(x) = x.

An isometry of a metric space is a distance-preserving bijection of the
metric space onto itself. A bijection a : Rn → Rn is called affine if for all
x, y ∈ Rn and reals α, β with α + β = 1, a(αx + βy) = αa(x) + βa(y). (Note
that every isometry is affine, with a = 1.)

Let G be a group acting on A ⊂ X. A is G-paradoxical (or, para-
doxical with respect to G) if there are (n + m) pairwise disjoint subsets
E1, . . . , En, F1, . . . , Fm of A, and (n+m) group actions g1, . . . , gn, h1, . . . , hm ∈
G such that A =

⋃n
i=1 gi(Ei) =

⋃m
j=1 hj(Fj). In other words, A is G-

paradoxical if it has two disjoint subsets
⋃

i Ei and
⋃

j Fj, each of which
can be taken apart and rearranged via G to cover all of A.

Suppose G acts on X and E, F ⊂ X. Then E and F are G-equidecomposible
if E and F can each be partitioned into the same number of G-congruent
pieces. Formally, E =

⋃n
i=1 Ei and F =

⋃n
i=1 Fi, with Ei ∩ Ej = Fi ∩ Fj = ∅

if i < j and there are g1, . . . , gn ∈ G such that for each i, gi(Ei) = Fi. There
is a remarkable result, usually called Banach-Tarski paradox:14 If A and B
are two bounded subsets of Rn, n ≥ 3, each having nonempty interior, then
A and B are equidecomposible with respect to the group of isometries.

It can be proven that only five pieces are needed to perform ball doubling
in R3. One is confronted with the “mindboggling” result that an arbitrary
solid body of Rn, n ≥ 3 can be “cut” into finitely many parts, which then
may be reassembled via distance-preserving procedures to give an arbitrarily
shaped other solid body. Pointedly stated, one could “produce” the sun out
of a marble; or a an arbitrary number of perfect copies from a single original
(the perfect production belt!).

Obviously, the pieces needed for such types of paradoxical constructions
are not measurable. They are also not recursively enumerable and non-
constructive and thus non-operational in Bridgman’s terminology. But does
this imply that “paradoxical” equidecompositions are physically forbidden?

Augenstein [43] and Pitowsky [44] have given two possible applications
of “paradoxical” equidecomposibility in physics. In what follows, another,

14Suppose a group G acts on A ⊂ X. Then Tarski’s theorem states that there exists a
finitely-additive, G-invariant measure µ : P(x) → [0,∞) with µ(A) = 1 if and only if A is
not G-paradoxical. For more results and questions see Wagon’s book [42].
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speculative, application is proposed. It is assumed that the reader has a
heuristic comprehension of the concept of “attractors” (see also ref. [35, 45]).
An attempt towards a formal definition of an attractor can be found in [46].
For the time being, it suffices to keep in mind that an attractor A is a point
set embedded in a manifold X (e.g. Rn), with the following essentials.

R1) all points x ∈ A are cumulation points of f ;
R2) topological undecomposibility: for arbitrary x, y ∈ A and arbitrary

diam(A) ≥ ε > 0 there must be chains x = x0, x1, . . . , xn = y and y =
y0, y1, . . . , ym = x such that dist(xi, f

(g(i))(xi−1)) < ε and dist(yi, f
(g′(i))(yi−1)) <

ε with g(i), g′(i) ≥ 1 for all i = 1, 2, . . . , n. This formal condition boils
down to the requirement that with respect to the function f , A cannot be
decomposed into more “elementary” attractors which are subsets of A.

The following condition of strangeness shall be imposed upon attractors.
S) AS is strange if to every δ ≤ diam(AS) and ε < δ there exists

a N(ε, δ) such that for arbitrary two points x, y ∈ AS, dist(x, y) < ε,
dist(f (N)(x), f (N)(y)) ≥ δ.

The above condition guarantees that, heuristically speaking, arbitrarily
close points become arbitrarily separated in time. I shall restrict further
considerations to dynamical systems (f, X) for which the basin of attraction
(i.e., the set of initial points from which the flow is attracted) is the entire
embedding space X.

There are strong relationships between the property of strangeness and
Tarski’s theorem, which shall be presented next. Consider the group of auto-
morphisms S of A(X, f); i.e., the bijections under which A(X, f) is invariant.
Automorphisms can be interpreted as symmetries of (X, f). For attractors,
the flow is a symmetry, i.e., f (i) ∈ S. Any subset A1 of a strange attractor
AS with nonzero diameter diam(A1) > 0 can be completed to AS by applica-
tion of some f (i) ∈ S such that f (i)(A1) = AS. In this sense, A1 is physically
equivalent to AS. Conversely, if A is not strange, this property does not hold.
In terms of paradoxical decompositions, the property of strangeness can then
be alternatively defined via paradoxical equidecompositions.

S’) AS is strange if it is paradoxical with respect to the time flow f .
It then follows from Tarski’s theorem [47] that there is no finitely ad-

ditive measure on strange attractors which is invariant with respect to the
symmetries (invariants) of motion. For regular attractors such a measure
exists.

The apparent question is which type of attractors are equidecomposible
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with respect to which kind of group actions? To put it in more physical
terms: Suppose there exist two dynamical systems, represented by (X, f1)
and (X, f2), with associated attractors A(f1) and A(f2), respectively (the
embedding space X is unchanged, therefore we drop it as argument). Do
there exist physical (parameter or other) changes corresponding to group
actions G : A(f1) 7→ A(f2) ? Indeed, this is the case for period doubling
solutions. There, f1 and f2 are nonlinear functions, which are in general
not distance preserving. Along these lines, the notion of equidecomposibility
of attractors could become a powerful tool for a systematic investigation of
parameter and symmetry changes.

According to the Banach-Tarski paradox, this would allow the occurrence
of strange attractors (“chaotic motion”) even for distance preserving, linear
time flows. This kind of paradoxical decomposition requires the application
of the Axiom of Choice (cf. the brief discussion above).

Thus it is not completely speculative to suggest testing the Axiom of
Choice via the reconstruction of strange (chaotic) attractors by physical time-
series from distance preserving flows in Rn, n ≥ 3.

2.3 Oracle computing

Zeno’s paradoxes [48], formulated around fifth century B.C., will probably
remain with us forever; very much like an eternal Zen koan presented to
us by this great greek mathematical master(s) at the beginning of scientific
thought. It is the author’s believe that neither Weierstraß’s “Epsilontik” nor
modern approaches such as nonstandard analysis [49] have contributed sub-
stantially to the “mindboggling” feature that (in Simplicius’ interpretation
of Zenos’s paradox of Achilles and the Tortoise, quoted from [48], p. 45) if
space is infinitely divisible, and if “· · · there is motion, it is possible in a finite
time to traverse an infinite number of positions, making an infinite number
of contacts one by one.”

I shall review here a recursion theoretic version of Zeno’s paradox, which
has been discussed by Weyl [50], Grünbaum ([51], p. 630), Thomson [52],
Benacerraf [53], and more recently by Pitowsky [54], Hogarth [55], Earman
& Norton [56] and the author [57, 58].

Continuum theory, in fact any dense set, in principle allows the con-
struction of “infinity machines,” which could serve as oracles for the halting
problem. Their construction closely follows Zeno’s paradox of Achilles and
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the Tortoise by squeezing the time it takes for successive steps of computa-
tion τ with geometric progression: 0 1 2 3 4 · · · That
is, the time necessary for the n’th step becomes τ(n) = kn, 0 < k < 1.
The limit of infinite computation is then reached in finite physical time
limN→∞

∑N
n=1 τ(n) = limN→∞

∑N
n=1 kn = 1/(1− k).

It can be shown by a diagonalization argument that the application of
such oracle subroutines would result in a paradox in classical physics (cf. [57],
p. 24, 114). The paradox is constructed in the context of the halting prob-
lem. It is formed in a similar manner as Cantor’s diagonalization argument.
Consider an arbitrary algorithm B(x) whose input is a string of symbols x.
Assume that there exists (wrong) a “halting algorithm” HALT which is able
to decide whether B terminates on x or not.

Using HALT(B(x)) we shall construct another deterministic computing
agent A, which has as input any effective program B and which proceeds as
follows: Upon reading the program B as input, A makes a copy of it. This can
be readily achieved, since the program B is presented to A in some encoded
form #(B), i.e., as a string of symbols. In the next step, the agent uses the
code #(B) as input string for B itself; i.e., A forms B(#(B)), henceforth
denoted by B(B). The agent now hands B(B) over to its subroutine HALT.
Then, A proceeds as follows: if HALT(B(B)) decides that B(B) halts, then
the agent A does not halt; this can for instance be realized by an infinite
DO-loop; if HALT(B(B)) decides that B(B) does not halt, then A halts.

We shall now confront the agent A with a paradoxical task by choosing
A’s own code as input for itself. — Notice that B is arbitrary and has not
yet been specified and we are totally justified to do that: The deterministic
agent A is representable by an algorithm with code #(A). Therefore, we are
free to substitute A for B.

Assume that classically A is restricted to classical bits of information.
Then, whenever A(A) halts, HALT(A(A)) forces A(A) not to halt. Conversely,
whenever A(A) does not halt, then HALT(A(A)) steers A(A) into the halting
mode. In both cases one arrives at a complete contradiction.

Therefore, at least in this example, too powerful physical models (of com-
putation) are inconsistent. It almost goes without saying that the concept
of infinity machines is neither constructive nor operational in the current
physical framework.
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2.4 Weak solutions

Consider an ordinary differential equation (of one variable t) of the form
Lx =

∑∞
n=0 cn(t)dnx/dtn = τ(t), where τ(t) is an arbitrary known distribu-

tion [e.g., τ(t) = δ(t)]. x is a weak solution if Lx = τ(t) is satisfied as a
distribution, yet x is not sufficiently smooth so that the operations in L (i.e.,
differentiations) cannot be performed. How relevant are weak solutions for
physical applications?

In electrodynamics, for instance, point charges are modeled by Dirac delta
functions δ. The wave equation can therefore give rise to weak, discontinuous
solutions. Are discontinuities mere theoretical abstractions, which indicate
“sharp” changes of the physical parameter, or should they be taken more
seriously? These questions connect to the quantum field theoretic program
of renormalization and regularization.

3 The alternatives

The above speculations suggest that the theoretical physicist is occasionally
confronted with set theoretical consequences which cannot be straightfor-
wardly abandoned as “artificial” or “irrelevant.” They bear important, even
technological, consequences. In what follows, two extreme alternatives will
be discussed to cope with them. (No claim of completeness is made.)

3.1 Abandon non-operational entities altogether

In view of the problems of Cantorian, transfinite set theory, one may take the
radical step and abolish non-constructive and non-operational objects alto-
gether. This was Bridgman’s goal. Related epistemological approaches had
been anticipated by Boskovich, and have more recently been put forward by
Zeilinger and Svozil [59, 62], among others. Rössler’s [60] endo-/exophysics
approach and the author’s [61] intrinsic-extrinsic distinction differ only inso-
far, as the operational mode of perception is contrasted with a hierarchical
mode of perception of an observer outside of the system.

It should be noted that operationalism is not directed primarily towards
the elimination of antinomies. The elimination of metaphysical concepts,
such as absolute space and time, and their substitution by physically opera-
tionalizable concepts, is at the core of operationalism, and more specifically,
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of Einstein’s theory of relativity (cf. [11], p. 103), “. . . the meaning of length
is to be sought in those operations by which the length of physical objects is
determined, and the meaning of simultaneity is sought in those physical oper-
ations by which it is determined whether two physical events are simultaneous
or not.” More recently, it has been applied for a definition of the dimension
of space-time [62, 63], for complementarity [57, 64] and undecidability [57].

The elimination of set theoretical antinomies, as discussed by Bridgman,
is a bonus of, and a clear argument for the approach. Indeed, it is quite justifi-
able to consider operationalism as the consequential persuasion of Descartes’
[65] sketch of the scientific method. Its goal is the substitution of metaphys-
ical concepts by purely physical correspondents.

The drawback of operationalism might lie in its too rigid, dogmatic in-
terpretation. Whatever is operational depends on the particular period of
scientific investigation. Therefore, the entities allowed by operationalism con-
stantly change with time and are no fixed kanon. To kanonize them means
to cripple scientific progress.

To give an example: in ancient Greece, supersonic air travel or radio-wave
transmission were not feasible; therefore, any methods employing these oper-
ations to test whether the earth is ball-shaped were not allowed. But that, of
course, does not imply that supersonic air travel or radio-wave transmission
is impossible in principle!15

Nevertheless, one may quite justifiable argue that, if executed carefully,
the necessity to operationalize physics will push science forward.

3.2 “Go-Go” science

Another possibility would be not to care about set theory at all and pursue a
“Go-Go” strategy. The advantage of such a method of progression would be
its open-mindedness. A disadvantage would be the vulnerability to unreliable
conclusions and claims, which are either incorrect or have no counterpart in
physics. 16

15Every time claims that the means at hand are final. Nowadays, for example, faster-
than-light travel or superluminal signalling is not feasible. But does that mean that
faster-than-light travel or superluminal signalling is impossible?

16See Jaffe and Quinn [66] for a discussion of a related aspect.
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3.3 Synthesis

In view of the advantages and drawbacks of the two extreme positions out-
lined above, an attitude of “suspended attention” (a term borrowed from
psychoanalysis) seems most promising.

This means that the theorist should be “on the lookout” for innovative,
new formal objects, while not loosing sight of operational tests and practical
implementations of such findings.

4 Epilogue: mathematical versus physical uni-

verse

From the time of ancient civilizations until today, the development of math-
ematics seems to be strongly connected to the advancements in the physical
sciences. Mathematical concepts were introduced on the demand to explain
natural phenomena. Conversely, physical theories were created with what-
ever mathematical formalism was available. This observation might suggest a
rather obvious explanation for “the unreasonable effectiveness of mathemat-
ics in the natural sciences” (cf. Wigner [67] and Einstein [1], among others).
Yet, there remains an amazement that the mathematical belief system can
be implemented at all! There seems no a priori reason for this remarkable
coincidence.

One of the most radical metaphysical speculations concerning the inter-
relation between mathematics and physics is that they are the same, that
they are equivalent. In other words: the only “reasonable” mathematical
universe is the physical universe we are living in! As a consequence, every
mathematical statement would translate into physics and vice versa.

As is suggested by their allegedly esoteric, almost “occult,” practice of
mathematical knowledge, the Pythagoreans might have been the first to be-
lieve in this equivalence (cf. Aristotle’s Metaphysics, Book I, 5; Book XIII,
6; translated into English [68]): “ . . .–since, then, all other things seemed in
their whole nature to be modeled on numbers, and numbers seemed to be the
first things in the whole of nature, they [[the Pythagoreans]] supposed the ele-
ments of numbers to be the elements of all things, and the whole heaven to be
a musical scale and a number.” “And the Pythagoreans, also, believe in one
kind of number–the mathematical; only they say it is not separate but sensible
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substances are formed out of it. For they construct the whole universe out of
numbers . . .”17

It has to be admitted that, from a contemporary point of view, such
an equivalence between mathematics and physics appears implausible and
excessively speculative. Even in the framework of axiomatic set theory, there
seem to be many (possibly an infinite number of) conceivable mathematical
universes but only one physical universe.18 For example, Zermelo-Fraenkel
set theory can be developed with or without the axiom of choice, with or
without the continuum hypothesis. Axioms for Euclidean as well as for non-
Euclidean geometries have been given.

Are there criteria such as “reasonableness” which may single out one
mathematical universe from the others? That turns out to be difficult. Let
us for instance agree that the least requirement one should impose upon a
“reasonable” mathematical formalism is its consistency. As appealing as this
identification sounds, it is of no practical help. As has been pointed out by
Gödel [8], for strong enough mathematical formalisms19 consistency is no
constructive notion. For this reason, mathematicians do not know whether
axiomatic Zermelo-Fraenkel set theory is consistent.20

Let us finally take the opposite standpoint and reject the assumption of
an equivalence between mathematical and physical entities. Even then, there
appears to be a straightforward coincidence between mathematics and “vir-
tual” physics [69]: Any axiomatizable mathematical formalism is constructive
per definition, since any derivation within a formal system is equivalent to
an effective computation. Therefore, any such mathematical model can be
implemented on a universal computer. The resulting universe can then be
investigated by means and methods which are operational from within that
universe. — A metaphysical speculation which brings us back to Bridgman’s
perception of Cantorian set theory, the greatest attempt so far to reach out

17Aristotle proceeds, “. . .–only not numbers consisting of abstract units; they suppose
the units to have spatial magnitude. But how the first 1 was constructed so as to have
magnitude, they seem unable to say.”

18No attempt is made here to review the many-worlds interpretation of quantum me-
chanic, or other exotic speculations such as parallel universes in cosmology.

19Here, only strong enough formalisms, in which arithmetic and universal computa-
tion can be implemented, will be considered. Weaker mathematical universes would be
monotonous.

20As has been noticed before, naive (i.e., non-axiomatic) approaches are unreliable and
plagued by inconsistencies.
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and encompass all of (meta-)physics into the domain of the formal sciences.
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chercher la vérité dans les sciences [English translation: Discourse on
the method of rightly conducting the reason, and seeking truth in the
sciences] (1637).

[66] A. Jaffe and F. Quinn, “Theoretical mathematics”: toward a cultural
synthesis of mathematics and theoretical physics, Bulletin (New Series)
of the American Mathematical Society 29, 1-13 (1993).

[67] E. P. Wigner, “The unreasonable effectiveness of mathematics in the
natural sciences”, Richard Courant Lecture delivered at New York Uni-
versity, May 11, 1959 and published in Communications on Pure and
Applied Mathematics 13, 1 (1960).

[68] Aristotle, Metaphysics, around 350 B.C., translated by W. D. Ross,
e-print
http://the-tech.mit.edu/Classics/Aristotle/metaphysics.txt.

[69] K. Svozil, How real are virtual realities, how virtual is reality? The
constructive re-interpretation of physical undecidability, in Complexity,
in press.

26



Contents

1 A short history of set theory, with emphasis on operational-
ism 3

2 The “Go-Go” principle 6
2.1 “Chaos” theory . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Isometric miracles . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Oracle computing . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Weak solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The alternatives 17
3.1 Abandon non-operational entities altogether . . . . . . . . . . 17
3.2 “Go-Go” science . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Epilogue: mathematical versus physical universe 19

27


