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Inasmuch as physical theories are formalizable, set theory provides a framework 
for theoretical physics. Four speculations about the relevance o f  set theoretical 
modeling for physics are presented: the role of  transcendental set theory (i) hr 
chaos theory, (ii) for paradoxical decompositions o f  solid three-dimensional 
objects, (iii) in the theory o f  effective computability (Church-Turhrg thesis) 
related to the possible "sohttion of  supertasks," and (iv) for weak solutions. 
Several approaches to set theory and their advantages and disadvatages for" 
physical applications are discussed: Cantorian "naive" (i.e., nonaxiomatic) set 
theory, contructivism, and operationalism, hr the arrthor's ophrion, an attitude of  
"suspended attention" (a term borrowed from psychoanalysis) seems most 
promising for progress. Physical and set theoretical entities must be opera- 
tionalized wherever possible. At the same thne, physicists shouM be open to 
"bizarre" or "mindboggling" new formalisms, which treed not be operationalizable 
or testable at the thne of  their" creation, but which may successfully lead to novel 
fields o f  phenomenology and technology. 

1. A SHORT HISTORY OF SET THEORY, WITH EMPHASIS 
ON OPERATIONALISM 

Physicists usually do not pay much attention to the particulars of set 
theory. They tend to have a pragmatic attitude toward the foundations of 
the formal sciences, combined with the suspicion that, as has been stated 
by Einstein (Ref. 1, translated form German) 2 "insofar as mathematical 
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2 "lnsofern sich die Siitze der Mathematik auf  die Wirklichkeit beziehen, sind sie nicht sicher, 
und hrsofern sie sicher sind. beziehen sie sieh nicht auf die Wirklichkeit." 
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theorems refer to reality, they are not certain, and insofar as they are certain, 
the), do not refer to reality. 

Yet there are instances when foundational issues do play a role. It is 
due to a lack of expertise and experience that the empiric researcher is then 
particularly vulnerable to misconceptions. Below we shall give examples 
where set theoretic specifications are essential to the argument. But we have 
to first briefly review set theory in general. 

In Cantorian (i.e., nonaxiomatic) set theory, the "definition" of the 
concept of a set reads (Ref. 2, translated from Germanl6~), 3 "A set is a 
collection into a whole o f  definite distinct objects o f  out" intuition or o f  out" 
thought. The objects are called the elements (members) o f  the set." As 
general as it is conceived, Cantorian set theory would provide a powerful 
mathematical framework for theoretical physics. Per definition, hardly any 
conceivable object does not fall within its domain. Indeed, how gratifying 
and ambitious, but also how challenging this conception, one can imagine 
from Hilbert's emphatic declaration (cf. Ref. 3, p. 170, translated from 
German), 4 "From the paradise which Cantor created, no one shall be able to 
expel us." 

Alas, Cantorian set theory, at least its uncritical development, proved 
inconsistent. Both Cantor (cf. Ref. 6, p. 7 and Ref. 4, p. IV) and Hilbert 
were fully aware of the set theoretical antinomies such as Russell's paradox, 
"The set o f  all sets that are not members of  themselves." Cantor himself dis- 
covered one of the first antinomies around 1895, even before the Burali- 
Forti antinomy. In 1899, Cantor wrote in a letter to Dedekind Ref. 4, 
p. 443, translated from GermanlS~), 5 For a multiplicity can be so constituted 
that the assumption o f  a "being together" o f  all its elements leads to a con- 
tradiction, so that it is impossible to consider the multiplicity a unit[y], thus 
"a complete thing." I call such multiplicities absolutely infinite or inconsistent 
multiplicities. [paragraph] As one readily convinces oneself, the "aggregate 
o f  everything thinkable" is, for example, such a multiplicity;..." 

In Hilbert's formalist view of the infinite, all proofs using nontermi- 
nating sequences of operations should be substituted by finite processes 

3 "Unter e#ler "Menge" verstehen wir jede Zusammenfassung M yon best#nmten wohlun- 
terschiedenen Objekten m unsrer Anschauung oder unseres Denkens ( welche die "Elemente" 
yon M genannt werden) zu ehwm Ganzen." 

4 "Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand vertreiben k6nnen." 
s "'Eine Vielheit kann niimlich so beschaffen se#t, daft die Annahme e#ws "Zusammense#ts" aller 

ihrer Elemente a t (  e#ten Widerspruch fiihrt, so daft es unm6glich ist, die Vielheit als e#w 
Einheit, als "ein fertiges Dhlg" aufzufassen. So#he Vielheiten nenne ich absolut unendliche 
oder inkonsistente Vielheiten. [Absatz]  Wie man sich leicht iiberzeugt, ist z. B. der "htbegriff  
alles Denkbaren" eine solche Vielheit; ... " 
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and proof methods (cf. Ref. 3, p. 162). 6 For Hilbert, a typical example for 
this program was Weierstraf$'s approach to analysis. 

Others, among them Zermelo and Fraenkel, t6~ were less secure in the 
"Cantorian heaven of set theory" and attempted to block the paradoxes by 
axiomatically restricting the rules of set generation. The necessary price was 
a restriction of the mathematical Universe. 

Rather unexpected for Hilbert, but obvious for Brouwer (cf. Ref. 7, 
p. 88), G6de118~ showed that in any reasonably strong axiomatic theory 
(rich enough to allow for arithmetic), consistency cannot be proven. (One 
may quite justifiable ask whether a "proof" of consistency would really be 
of any value; after all, if a theory were inconsistent, then consistency could 
also be "proved" therein!) 

Further restrictions to set generation were imposed by constructive 
mathematics, anticipated by the radical "Verbotsdiktator" Kronecker. The 
varieties of constructive mathematics ~9~ comprise the intuitionistic school 
around Brouwer and Heyting, the Russian school, and Bishop's construc- 
tive mathematics. For more recent developments, see BridgesJ 9" ~0~ Essen- 
tially, the existence of mathematical objects is accepted only if the objects 
can be constructed by an algorithm. An algorithm is a finite procedure. 
That is, its algorithmic information (minimal description length), as well as 
its execution time is finite. It can be perceived as the step-by-step execution 
of a deterministic computer program. Constructive mathematics is not 
particulary concerned with the actual size of algorithmic information and 
dynamic complexity (time and space), as long as they are finite (although 
it is acknowledged that such considerations are important for practical 
applications). In Russian constructive mathematics, the term "algorithm" is 
a synonym for a finite sequence of symbols in a fixed programming 
language. 

Enter physics. Not long after Hilbert's bold statement concerning the 
Cantorian paradise (which was directed against the uncritical use of the 
"actual infinity" in mathematics and the natural sciences) appeared a 
critical essay on the methods of set theory by BridgrnanJ 1~ (Landauer 
has referred to Bridgman's article at several occasions. (~z-~41) Bridgman's 
operationalism was directed against the uncritical use of theoretical con- 
cepts.C 15. ~61 In particular, he demanded that the meaning of theoretical con- 
cepts should ultimately be based on concrete physical operations. That is, 

"Und so wie das Operieren mit dem Unendlichklefllen durch Prozesse #n Endlichen ersetzt 
wurde, welche ganz dasselbe leisten und zu ganz denselben eleganten Beziehungen fiihren, so 
miissen ffberhaupt die Schh~weisen mit dem Unendlichen durch endlich Prozesse ersetzt 
werden, die gerade dasselbe leisten, d.h. dieselben Beweisgiinge und dieselben Methoden der 
Gewinmtng yon Formehl und Siitzen erm6glichen." 
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(cf. Ref. 17, p. V), "the meaning of one's terms are to be found by an analysis 
of the operations which one performs in applying the term in concrete situa- 
tions or in verifying the truth of statements or in finding the answers to ques- 
tions." In his later writings, Bridgman clarified (and somewhat weakened) 
operationalism by differentiating between "instrumental" and "paper-and- 
pencil" operations (cf. Ref. 18, p. 8-10), "It is often supposed that the opera- 
tional criterion of meaning demands that the operations which give meaning 
to a physical concept must be instrumental operations. This is, I believe, 
palpably a mistaken po#~t of view, for simple observation shows that 
physicists do profitably employ concepts the meaning of which is not to be 
found in the #Tstrumental operations of the laboratory, and which cannot be 
reduced to such operations without residue. Nearly all the concepts of 
theoretical and mathematical physics are of this character, such for example 
as the stress inside an elastic body subject to surface forces, or the ~k function 
of waves mechanics . . . .  we may single out.., the sort of operations performed 
by the theoretical physicist in his mathematical manipulations and charac- 
terize these as 'paper-and-pencil' operations. Among paper-and-pencil opera- 
tions are to be included all manipulations with symbols, whether or not the 
symbols are the conventional symbols of mathematics . . . .  a great latitude is 
allowed to the verbal and the paper-and-pencil operations. I think, however, 
that physicists are agreed in imposing one restriction on the freedom of such 
operations, namely that such operations must be capable of eventually, 
although perhaps indirectly, making connection with intrumental operations." 

Bridgman pointed out that in Cantorian set theory there is one parti- 
culary vicious method of specifying operations. In his own words (cf. Ref. 11, 
p. 106), "It is possible to set up rules which determine a nonterminating 
sequence of operations, as for instance, the rules by which the sequence of the 
natural number is engendered. But it is obviously not legitimate to specify in 
this way a non-terminating operation, and then to treat this nonterminating 
complex as itself a simpler operation which may be used as an intuitive 
ultimate in the specification of another operation. Such a nonterminating 
complex can be treated in this way only when it can be proved equivalent to 
some other procedure specifiable in finite terms, and which can, therefore, 
be actually executed. Otherwise, the nonterminat#~g complex must be treated 
as the end, and no other operations be demanded after it; our ordinary 
experience of the order of operations as performed in time evidently requires 
this." In present-day, recursion theoretic terminology, a "complex opera- 
tion" would be called a "subprogram" or "(sub)algorithm," and the term 
"nonterminating" would be translated as "diverging" in the sense of "non- 
recursively b~und." In terms of recursion theory, Bridgrnan's claim can be 
re-interpreted such that no diverging algorithm should be allowed as legal 
input of any other (terminating) algorithm. 
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One may go even further than Bridgman and assume that, since 
infinite entities are not operational, infinities have to be abandoned 
altogether. The elimination of even potential infinities leaves us with merely 
finite objects. Finitistic arguments and physical limits have been put 
forward by Gandi, (19' 20) Mundici,(2~) Landauer,(2~_)and Casti. (23) 

2. T H E  " G O - G O "  P R I N C I P L E  

The Cantorian "permissive" approach to the foundations of mathe- 
matics stimulated the invention, creation, and investigation of the weirdest 
"monsters" of thought. Per definition, no construction or speculation could 
be crazy enough to be excluded from the formal sciences. While inconsis- 
tent, this attitude brought forth an undeniable advancement in the formal 
sciences insofar as objects were discovered which had novel, sometimes 
bizarre and even "mindboggling" features. 

Take, for instance, Cantor's map of the unit line onto the unit square 
which is one-to-one, or Peano's continuous map from a line onto the unit 
square. Another example is the Cantor  set (nowadays called a "fractar ')  
if-= {Y'-,,~z c , ,3-"  [c,,e {0,2} for each n}, which has vanishing measure 
l l(~)=lim,,_o(2/3)"=O but which can be brought into a one-to-one 
correspondence to the unit interval of the binary reals. Another "mind- 
boggling" result concerning measure-theoric nonpreservation is the 
Banach-Tarski  paradox discussed below. 

The spirit behind all these findings seems to be that "everthing goes." 
Stated pointedly: 

Every method and object should be permitted as long as it is 
not excluded by the rules. Or: Anything that is not forbidden 
is allowed. 

In the following, this attitude will be called the "Go-Go"  principle. It may 
be applied both to the formal and to the natural sciences. 7 

A few remarks are in order. As has been pointed out before, con- 
sistency cannot be proven from within the rules, at least not if the rules are 
strong enough to allow for arithmetic or universal computation. 

The "Go-Go"  principle collides with the axiomatic method using 
recursive rules of inference. It can be expressed as follows: 

Every method or object is excluded which is not derivable by 
the rules. Or: Anything that is not allowed is forbidden. 

7 The author wants to make it quite clear that the neither rejects nor supports the "Go-Go" 
principle for reasons which are discussed below. 
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One might jokingly call this the "No-Go"  principle, s Despite its rather 
restrictive attitude, the axiomatic method seems good enough to include 
analysis ~lm (and at least good enough to rederive many important results 
first discovered by "Go-Go.")  Formalists like Hilbert have even claimed 
that it should turn out to be all the same, finally. 

One should also be aware that the "Go-Go"  principle allows a 
pragmatic point of view, which most researchers practice anyway: since it 
is difficult to develop progressive and innovative ideas, the real problem in 
the sciences might not be to eliminate ill-conceived concepts and methods 
but to introduce novel features. Otherwise, one might argue, mathe- 
maticians would have just to evoke an automated proof  machine, a "perfect 
publicator," which makes its creators superfluous. 

Therefore, judged from a pragmatic point of view, the "Go-Go"  
principle might prove progressive but unreliable. To put it pointedly: the 
"Go-Go"  principle might be essential for producing novel results, for the 
discovery of undiscovered land (Hilbert's paradise), even if it is known that 
it yields antinomies. 

Despite all positive aspects which have been mentioned so far, as 
liberal as it is conceived, the "Go-Go"  principle is unable to cope with its 
own limitation, in particular with respect to applications to physics. There- 
fore, physicists are occasionally confronted with "effects" or "predictions" 
of physical theory which have their origin in nonconstructive, nonopera- 
tional features of the set theory underlying that physical theory. But even 
if such "effects" from theoretical artifacts might prove elusive seldom 
enough (cf. non-Euclidean geometry) they might lead us to totally 
unexpected classes of phenomena. 

In what follows, some speculative examples inspired by "Go-Go"  are 
discussed. They correspond to paper-and-pencil operations. Whether they 
will eventually be capable of making connection, perhaps indirectly, with 
intrumental operations, remains to be seen. 

2.1. "Chaos" Theory 

The emergence of "chaos theory" has highlighted the use of classical 
continua (see Ref. 31).9 There, the scenario is that the equation of motion 

8 My first denomination of this style was "No-No." The present term "No-Go" is due to a 
Freudian slip by Professor Joseph F. Traub. 

9 I would also like to point the reader's attention to the question of the preservation of com- 
putability in classical analysis, in particular to older attempts by Specker, ~-'4~ Wang, c25~ 
Kreisel, t2m and Stei'~nescu, ~271 as well as to the more recent ones by Pour-E1 and Richards c281 
(cf. objections raised by Penrose 129~ and Bridges t3m) and by Calude, Campbell, Svozil, and 
~tef~nescu.131 
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seems to "reveal" the algorithmic information (32-34) of the initial value (see 
Refs. 35-37). l~ 

Consider, for example, the logistic equation of motion f :  x ,  ~ x,, + 1 = 
f(x,,)=ocv,,(1-x,,) for variable xn at discrete times h e N 0 .  It can, for 
~ = 4  after the variable transformation x,,=sin=(nX,,), be rewritten as 
f:X, ,~X,,+l=2X,,(mod 1), where (mod 1) means that one has to drop 
the integer part of 2)(,,. By assuming a starting value Xo, the formular 
solution after n iterations is f~")(Xo) = X,, = 2"Xo(mod 1 ). Note that, if Xo 
is in binary representation, f~"~ is just n times a left shift of the digits of X0, 
followed by a left truncation before the decimal point. 

Assume now that the measurement precision is the first m bits of X,,, 
in the binary expansion of X,,. In a single time step, the evolution function 
f effectively "reveals" the next digit of Xo, which was unobservable before. 
That  is, in order to be able to measure the intitial value for an arbitrary 
but finite precision m', one has to wait and measure X0 until time 
m a x ( r e ' - m ,  0). 

The only possible "chaotic" feature in this scenario resides in the initial 
value: the theoretician has to assume that Xoe (0, 1) is uncomputable or 
even Martin-L6f/Solovay/Chaitin random. Then the computable function 
f("~(Xo) yields a measurable bit stream which reconstructs the binary 
expansion of Xo, which is uncomputable or even Martin-L6f/Solovay/ 
Chaitin random. To put it pointedly: if the input is a random real, then the 
output approximates a random real; in more physical terms: if unpredic- 
tability is assumed, then chaotic motion follows. (More ironically: garbage 
in, garbage out.) That  is all there is. 

It is amazing how susceptible the general public as well as many 
physicists are to contemplate this form of "chaotic" motion as a fundamen- 
tal fact about the nature of (physical) reality rather than as a theoretical 
assumption. In the author's opinion, one of the reasons ~ for this willing- 
ness of physicists to accept Martin-L6f/Solovay/Chaitin randomness as a 
matter of natural fact is that physicists have been trained in the domain of 
classical continuum mechanicsJ 39) The term "classical" here refers to both 
nonquantum mechanics, as well as to Cantorian set theory. 

Jo In a very recent book on finite precision computations, Chaitin-Chatelin and Fraysse6 ~3s~ 
point out that, in a certain, well-defined way, exact absolute information is too unstable and 
does not give rise to the full richness of physical solutions. In particular, finite-precision 
arithmetic is more suitable to model physical systems that fluctuate. 

~ There seem to be powerful counterrationalistic forces, not to mention wishful thinking, 
which seduce people into believing systems that physics has "finally rediscovered" ever-to- 
remain obscure phenomena, that we are even on the verge of the "end of the age of the 
natural sciences"; forces which seem to be directed against the scientific research program 
of the Enlightenment put forward by Descartes, Hume, Humboldt,  and others. 
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To be more precise, recall that Cantor's famous diagonalization 
argumenfl z~ asserts that the set of reals in the interval [0, 1] is non- 
denumerable: Assume that there exists an effectively computable enumera- 
tion of all decimal reals in the interval [0, 1 ] of the form 

r 1 =O.r l l r12r13r14. . .  

r 2 = O . r 2 1  r22r23r24... 

r 3 = O . r 3 1  r32r33r34... 

r 4 ~ O . r 4 1  r 4 2 r 4 3 / ' 4 4 . . .  

Consider the real number formed by the diagonal elements O.rllr22r33 .... 
Now change each of these digits, avoiding zero and nine. (This is necessary 
because reals with different digit sequences are identified if one of them 
ends with an infinite sequence of nines and the other with zeros, for 
example 0.0999 . . . .  0.1000 . . . .  ) The result is a real r'=O.r'lr;r'3.., with 
r', ~ r,,,, which thus differs from each of the original numbers in at least one 
(i.e., the "diagonal") position. Therefore, there exists at least one real which 
is not contained in the original enumeration. This contradicts the original 
assumption. 

Indeed, any denumerable set of numbers is of Lebesgue measure zero. 
Let M =  { r i l i ~  N} be an infinite point set which is denumerable and 
which is the subset of a dense set. Then, for instance, every ri ~ M can be 
enclosed in the interval 

I(i, 3) = [ r i -  2 - i -  l(~, ri + 2 - i - l  cS] 

where 6 may be arbitrarily small (we choose 6 to be small enough that all 
intervals are disjoint). Since M is denumerable, the measure ~L of these 
intervals can be summed up, yielding 

y ' i z ( I ( i , a ) )=6  ~ 2 - ' = a  
i i = 1  

From d --* 0 follows p(M)  = 0. Examples of denumerable point sets of reals 
are the rationals Q and the algebraic reals. (Algebraic reals x satisfy some 
equation a o x " + a l x " - ~ +  ... + a n = 0 ,  where a,-~N and not all a,-'s 
vanish). Consequently, their measures vanish. The complement sets of irra- 
tionals ~ -  Q and transcendentals (nonalgebraic reals) are thus of measure 
one. cam 
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It is also easy to algorithmically prove that the computable reals are 
denumerable) 2 The range of the partial recursive function Cpc corresponding 
to an arbitrary computer C can be explicitly enumerated as follows. Begin at 
step zero with an empty enumeration. In the nth step, take all legal programs 
(i.e., programs which are in the domain of C) of code length n and run C 
up to time n; add in quasi-lexicographical order all output numbers which 
have not yet occurred (up to time n -  1) in the enumeration) 3 

This means that if the continuum is treated as an "urn," from which 
the initial values are drawn, then "almost all," i.e., with probability one, 
such initial values are note effectively computable. One can even prove the 
stronger statement that "almost all" elements of the continuum have 
incompressible algorthmic information; i.e., they are Martin-L6f/Sololvay/ 
Chaitin random. 132"341 

But what does it mean to "prove" that "almost all" of them are non- 
recursive; stronger: random reals? It is per definition impossible to give just 
a single constructive example of such a nonrecursive real. 

Furthermore, what does it mean "to pull a real number- - the  initial 
value in spe--  out of the continuum urn?" How could we conceive the pro- 
cess of selecting one real symbolizing the initial value over the other? We 
need the Axiom of Choice for that. The Axiom of Choice asserts that for 
every family f f  of nonempty sets, there exists a function c such that c(S) ~ S 
for each set S in the family f t .  c is called a choice function. The Axiom of 
Choice is nonconstructive, at least for arbitrary nonconstructive subsets of 
E. That  is, there does not exist any effectively computable, i.e., recursive, 
choice function which would "sort out" the initial value Xo. Therefore, 
chaos theory presupposes not only Martin-L6f/Solovay/Chaitin random 
reals, but nonconstructive choice functions. 

Moreover, what type of computation is necessary to implement 
the innocent-looking evolution function f of the logistic equation? Recall 

12 For the remainder of this paper we fix a finite alphabet A and denote by A* the set of all 
strings over A; Ixl is the length of the string x. A (Chaitin) computer C is a partial recursive 
function carrying strings (on A) into strings such that domain of C is prefix-free, i.e., no 
admissible program can be a prefix of another admissible program. If C is a computer, then 
C(x) =y denotes that C terminates on program x and outputs y. ~ denotes empty input 
or output. Tc denotes the time complexity, i.e., Tc(x) is the running time of C on the entry 
x, if x is in the domain of C. 

~ Notice that this scenario remains true for any (infinite) dense set such as the rationals or 
the computable numbers (cf. recursive unsolvability of the rule inference problemt4n). The 
time necessary to exactly specify an arbitrary initial value can only be finitely bounded for 
discrete, finite models such as the ones involving a fundamenal cut-off parameter which 
would essentially truncate the reals at some final decimal place M after the comma (or, 
equivalently, an equivalence relation identifying all reals in the interval [Y')~t rl, 
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that, since the initial value Xo is Martin-L6f/Solovay/Chaitin random with 
probability one, its description is algorithmically incompressible and 
infinite. Therefore, any "computation" rigourously implementing f should 
be capable of handling infinite input. In Bridgman's terms, this requirement 
is nonoperational (cf. Landauer (22) and the author(S7j). 

The above-mentioned problems of handling Martin-L6f/Solovay/ 
Chaitin random objects become even more pressing if one realizes that, 
from the point of view of coding theory, an algorithm and its input are 
interchangeable, the difference between them being a matter of convention: 
consider a particular algorithm p implemented on a computer C(p, s) with 
a particular input s; and a second algorithm p' with the empty input ~ .  
Assume that the only difference between p and p' is that the latter algo- 
rithm encodes the input s as a constant, whereas the former reads in (the 
code of) the object s. Hence, C(p, s) = C(p', ~ ) .  Notice that, for Martin- 
L6f/Solovay/Chaitin random objects s, the algorithmic information content 
H(p) remains finite, whereas H(p')= oo. In this sense, recursive functions 
of nonrecursively enumerable variables are equivalent to nonrecursive 
functions. 

2.2. Isometric Miracles 

In what follows I shall briefly review nonmeasure-preserving isometric 
functions often referred to as the "Banach-Tarski paradox." The "mind- 
boggling" feature here is that an arbitrary solid object of ~,,~>s can be 
partitioned into a finite number of pieces, which are then rearranged by 
isometries, i.e., distance-preserv&g maps such as rotations and translations, 
to yield other arbitrary solid objects. This procedure could be the ideal 
basis of a perfect production belt: produce a single prototype and 
"Banach-Tarski clone" an arbitrary number thereof. Or, produce an 
elephant from a mosquito! 14 

Let us briefly review another application in chaos theory. Consider all 
bijections of a set A. The most systematic way of doing this is to work in 
the context of group actions. Recall that a group G is said to act on A if 
to each g ~ G  there corresponds a bijective function from A to A, also 
denoted by g, such that for any g, h e  G and x~A,  g(h(x))= (gh)(x) and 
l(x) =x .  

An isomeoT of a metric space is a distance-preserving bijection of the 
metric space onto itself. A bijection a :R"-- ,  R" is called affine if for all 
x, y e ~" and reals ~, fl with ct +/3 = 1, a(oLx + fly) = o~a(x) + fla(y). (Note 
that every isometry is affine, with a = 1.) 

14 In German, "aus einer Miicke einen Elefanten machen." 
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Let G be a group action on A c X. A is G-paradoxical (or, paradoxical 
with respect to G) if there are ( n + m )  pairwise disjoint subsets 
E~ ..... E,,, F] ..... F,,, of A, and (17 + m) group actions g~ ..... g,,, hl ..... h,,, E G 
such that A = U'~'= ~ g~(Ei) = Uj'= ~ hj(Fj). In other words, A is G-paradoxi- 
cal if it has two disjoint subsets U~ Ei and Uj Fj, each of which can be 
taken apart and rearranged via G to cover all of A. 

Suppose G acts on X and E, F c  X. Then E and F are G-equidecom- 
posible if E and F can each be partitioned into the same number of G-con- 
gruent pieces. Formally, E=U'i '= l E i and F = U / . = I F i ,  with E i c ~ E j =  
F g n F j = f g  if i < j  and there are gl ..... g , , e G  such that for each i, 
g~(E~) = F~. There is a remarkable result, usually called the Banach-Tarski 
paradox: I f  A and B are two bounded subsets o f  ~", n >1 3, each having 
nonempty interior, then A and B are equidecomposible with respect to the 
group o f  isometrics. 

It can, for instance, be proven that only five pieces are needed to per- 
form ball doubling in g~3. One is confronted with the "mindboggling" result 
that an arbitrary solid body of ~", n/> 3, can be "cut" into finitely many 
parts, which then may be reassembled via distance-preserving procedures 
to give another arbitrarily shaped solid body. Pointedly stated, one could 
"produce" the sun out of a marble; or an arbitrary numer of perfect copies 
from a single original (the perfect production belt!). 

Obviously, the pieces needed for such types of paradoxical construc- 
tions are not measurable. They are also not recursively enumerable and 
nonconstructive and thus nonoperational in Bridgman's terminology. But 
does this imply that "paradoxical" equidecompositions are physically 
forbidden? 

Augenstein 143~ and Pitowsky ~44) have given two possible applications 
of "paradoxical" equidecomposibility in physics. In what follows, another, 
speculative, application is proposed. It is assumed that the reader has a 
heuristic comprehension of the concept of "attractors" (see also Refs. 
35, 45). An attempt toward a formal definition of an attractor can be found 
in Ref. 46. For the time being, it suffices to keep in mind that an attractor 
A is a point set embedded in a manifold X (e.g., ~"), with the following 
essentials. 

(R1) all point x~  A are cumulation points o f ~  

(R2) topological undecomposibility: for arbitrary x, y ~ A and 
arbitrary diam(A)~>e>0 there must be chains X=Xo,  X~ ..... x , , = y  and 
Y =Y0, Y t ..... y,,, = x such that d is t (xi , f  Ig(m(xi_ l )) < e and dist(yi, flg'(il~(y~_ i )) 
< e with g(i), g'(i) >/I for all i = 1, 2 ..... n. This formal condition boils down 
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to the requirement that, with respect to the function f, A cannot be decom- 
posed into more "elementary" attractors which are subsets of A. 

The following condition of strangeness will be imposed upon 
attractors. 

(S) As is strange if to every O~<diam(As) and e<O there exists 
an N(e, ~) such that for arbitrary two points x, yeA.,., dist(x,y)<e,  
dist( f~N~( x ), ftN~( y ) ) >~ 6. 

The above condition guarantees that, heuristically speaking, 
arbitrarily close points become arbitrarily separated in time. I shall restrict 
further considerations to dynamical systems (f, X) for which the basin of 
attraction {i.e., the set of initial points from which the flow is attracted) is 
the entire embedding space X. 

There are strong relationships between the property of strangeness and 
Tarski's theorem, which will be presented next. Consider the group of 
automorphisms S of A(X,f); i.e., the bijections under which A(X,f)  is 
invariant. Automorphisms can be interpreted as symmetries of (X,.f). For 
attractors, the flow is a symmetry, i.e., f "~e  S. Any subset A t of a strange 
attractor As with nonzero diameter diam(A~)> 0 can be completed to As 
by application of some f~;~e S such that f"~(Aj)= As. In this sense, A l is 
physically equivalent to A s. Conversely, if A is not strange, this property 
does not hold. In terms of paradoxical decompositions, the property of 
strangeness can them be alternatively defined via paradoxical equidecom- 
positions. 

(S') As is strange if it is paradoxical with respect to the time 
f lowf  

It then follows from Tarksi's theorem ~4v~ that there is no finitely 
additive measure on strange attractors which is invariant with respect to 
the symmetries (invariants) of motion. For regular attractors such a 
measure exists. 

The apparent question is which type of attractors are equidecom- 
posable with respect to which kind of group actions? To put it in more 
physical terms: Suppose there exist two dynamical systems, represented by 
(X,f~) and (X,f,_), with associated attractors A(f~) and A(fz), respectively 
(the embedding space X is unchanged, therefore we drop it as argument). 
Do there exist physical (parameter or other) changes corresponding to 
group actions G:A(f,)w-,A(fz)? Indeed, this is the case for period- 
doubling solutions. There, f l  and f2 are nonlinear functions, which are 
in general not distance preserving. Along these lines, the notion of 
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equidecompoability of attractors could become a powerful tool for a 
systematic investigation of parameter and symmetry changes. 

According to the Banach-Tarski paradox, this would allow the 
occurence of strange attractors ("chaotic motion") even for distance- 
preserving, linear time flows. This kind of paradoxical decomposition 
requires the application of the Axiom of Choice (cf. the brief discussion 
above). 

Thus, it is not completely speculative to suggest testing the Axiom of 
Choice via the reconstruction of strange (chaotic) attractors by physical 
time series from distance-preserving flows in W', n/> 3. 

2.3. Oracle Computing 

Zeno's paradoxes, ~481 formulated around the fifth century B.C., will 
probably remain with us forever; very much like an eternal Zen koan 
presented to us by this (these) great Greek mathematical master(s) at the 
beginning of scientific thought. It is the author's believe that neither 
WeierstraB's "Epsilontik" nor modern approaches such as nonstandard 
analysis ~49~ have contributed substantialy to the "mindboggling" feature 
that (in Simplicius' interpretation of Zeno's paradox of Achilles and the 
Tortoise, quoted from Ref. 48, p. 45) if space is infinitely divisible, and if 
"... there is motion, it is possible in a finite time to traverse an infinite number 
o f  positions, making an infinite number o f  contacts one by one." 

I shall review here a recursion theoretic version of Zeno's paradox, 
which has been discussed by Weyl, ~5~ Grfinbaum Ref. 51, p. 630), 
Thomson, ~5-'1 Benacerraf, 1531 and more recently by Pitowsky ~54) 
Hogarth, ~55~ Earman and Norton, ~56~ and the author. ~57"58~ 

Continuum theory, in fact any dense set, in principle allows the 
construction of "infinity machines," which could serve as oracles for the 
halting problem. Their construction closely follows Zeno's paradox of 
Achilles and the Tortoise by squeezing the time it takes for successive steps 
of computation r with geometric progression: 

0 1 2 3 4 . . .  

I [ I I l l l  

That is, the time necessary for the nth step becomes r(n)=k",  0 < k <  1. 
The limit of infinite computation is then reached in finite physical time 
limN_~ N ~. k " =  1 / ( l - k ) .  Z,, = t r(n) = lim N_ z,,N= I 

It can be shown by a diagonalization argument that the application of 
such oracle subroutines would result in a paradox in classical physics (cf. 
Ref. 57, p. 24, 114). The paradox is constructed in the context of the halting 
problem. It is formed in a similar manner as Cantor's diagonalization 
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argument. Consider an arbitrary algorithm B(x) whose input is a string of 
symbols x. Assume that there exists (wrong) a "halting algorithm" HALT 
which is able to decide whether B terminates on x or not. 

Using HALT(B(x)) we shall construct another deterministic com- 
puting agent A, which has as input any effective program B and which 
proceeds as follows: Upon reading the program B as input, A makes a 
copy of it. This can be readily achieved, since the program B is presented 
to A in some encoded form # (B), i.e., as a string of symbols. In the next 
step, the agent uses the code # (B)  as input string for B itself; i.e., A forms 
B(#(B) ,  henceforth denoted by B(B). The agent now hands B(B) over to 
its subroutine HALT. Then, A proceeds as follows: if HALT(B(B)) decides 
that B(B) halts, then the agent A does not halt; this can, for instance, be 
realized by an infinite DO-loop; if HALT(B(B)) decides that B(B) does not 
halt, than A halts. 

We shall now confront the agent A with a paradoxical task by choosing 
A's own code as input for itself. Notice that B is arbitrary and has not yet 
been specified and we are totally justified to do that: The deterministic agent 
A is representable by an algorithm with code # (A). Therefore, we are free 
to substitute A for B. 

Assume that classically A is restricted to classical bits of information. 
Then, whenever A(A) halts, HALT(A(A)) forces A(A) not to halt. Conver- 
sely, whenever A(A) does not halt, then HALT(A(A)) steers A(A) into the 
halting mode. In both cases one arrives at a complete contradiction. 

Therefore, at least in this example, too powerful physical models (of 
computation) are inconsistent. It almost goes without saying that the con- 
cept of infinity machines is neither constructive nor operational in the 
current physical framework. 

2.4. Weak Solutions 

Consider an ordinary differential equation (of one variable t) of the 
form Lx=Y'.~=oC,,(t)d"x/dt"=t(t), where r(t) is an arbitrary known 
distribution [e.g., r ( t )=f i ( t ) ] ,  x is a weak solution if Lx=r(t) is satisfied 
as a distribution, yet x is not sufficiently smooth so that the operations 
in L (i.e., differentiations) cannot be performed. How relevant are weak 
solutions for physical applications? 

In electrodynamics, for instance, point charges are modeled by Dirac 
delta functions ft. The wave equation can give rise to weak, discontinuous 
solutions. Are discontinuities mere theoretical abstractions, which indicate 
"sharp" changes of the physical parameter, or should they be taken more 
seriously? These questions connect to the quantum field theoretic program 
of renormalization and regularization. 
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3. THE ALTERNATIVES 

The above speculations suggest that the theoretical physicist is occa- 
sionally confronted with set theoretical consequences which cannot be 
straightforwardly abandoned as "artificial" of "irrelevant." They bear 
important, even technological, consequences. In what follows, two extreme 
alternatives will be discussed to cope with them. (No claim of completeness 
is made.) 

3.1. Abandon Nonoperational Entities Altogether 

In view of the problems of Cantorian, transfinite set theory, one may 
take the radical step and abolish nonconstructive and nonoperational 
objects altogether. This was Bridgrnan's goal. Related epistemological 
approaches had been anticipated by Boskovich, and have more recently 
been put forward by Zeilinger and Svozil, (59" 62) among others. R6ssler's (6~ 
endo/exophisics approach as well as the author's (61) intrinsic-extrinsic dis- 
tinction differ from this approach insofar as the operational mode of per- 
ception is contrasted with a hierarchical mode of perception of an observer 
outside of the system. 

It should be noted that operationalism is not directed primarily 
toward the elimination of antinomies. The elimination of metaphysical con- 
cepts, such as absolute space and time, and their substitution by physically 
operationalizable concepts, is at the core of operationalism, and more 
specifically, of Einstein's theory of relativity (cf. Ref. 11, p. 103), "... the 
meaning of  length is to be sought in those operations by which the length of 
physical objects is determh~ed, and the meaning of  simultaneity is sought h7 
those physical operations by which it is determined whether two physical 
events are simultaneous or not." More recently, it has been applied for a 
definition of the dimension of space-time, c62'63) for complementarity, 15v'64~ 
and undecidability. (57) 

The elimination of set theoretical antinomies, as discussed by 
Bridgman, is a bonus of, and a clear argument for, the approach. Indeed, 
it is quite justifiable to consider operationalism as the consequential 
persuasion of Descartes '~65) sketch of the scientific method. Its goal is the 
substitution of metaphysical concepts by purely physical correspondents. 

The drawback of operationalism might lie in its too rigid, dogmatic 
interpretation. Whatever is operational depends on the particular period of 
scientific investigation. Therefore, the entities allowed by operationalism 
constantly change with time and are no fixed canon. To canonize them 
means to cripple scientific progress. 

To give an example: in ancient Greece, supersonic air travel or radio- 
wave transmission were not feasible; therefore, any methods employing 
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these operations to test whether the earth is ball-shaped were not allowed. 
But that, of course, does not imply that supersonic air travel or radio-wave 
transmission is impossible in principle! 16 

Nevertheless, one may quite justifiably argue that, if executed care- 
fully, the necessity to operationalize physics will push science forward. 

3.2. " G o - G o "  Science 

Another possibility would be not to care about  set theory at all and 
pursue a "Go-Go"  strategy. The advantage of such a method of progression 
would be its open-mindedness. A disadvantage would be the vulnerablility 
to unreliable conclusions and claims, which are either incorrect or have no 
counterpart  in physics. ~7 

3.3. Synthesis 

In view of the advantages and drawbacks of the two extreme positions 
outlined above, an attitude of "suspended attention" (a term borrowed 
from psychoanalysis) seems most  promising. 

This means that the theorist should be "on the lookout"  for 
innovative, new formal objects, while not losing sight of operational tests 
and practical implementations of such findings. 

4. E P I L O G U E :  M A T H E M A T I C A L  VERSUS P H Y S I C A L  U N I V E R S E  

From the time of ancient civilizations until today, the development of  
mathematics seems to be strongly connected to the advancements  in the 
physical sciences. Mathematical  concepts were introduced on demand to 
explain natural  phenomena.  Conversely, physical theories were created 
with whatever mathematical  formalism was available. This observation 
might suggest a rather obvious explanation for "the unreasonable effective- 
hess of  mathematics in the natural sciences" (cf. Wigner t67~ and Einstein] IJ 
among others). Yet, there remains an amazement  that the mathematical  
belief system can be implemented at all! There seems no a priori reason for 
this remarkable coincidence. 

One of the most  radical metaphysical speculations concerning the 
interrelation between mathematics  and physics is that they are the same, 

J6 Every era claims that the means at hand are final. Nowadays, for example, faster-than-light 
travel or superluminal signaling is not feasible. But does that means that faster-then-light 
travel or superluminal signaling is impossible? 

~7 See Jaffe and Quinn 166~ for a discussion of a related aspect. 
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that they are equivalent. In other words: the only "reasonable" mathemati- 
cal universe is the physical universe we are living in! As a consequence, 
every mathematical statement would translate into physics and vice versa. 

As is suggested by their allegedly esoteric, almost "occult," practice of 
mathematical knowledge, the Pythagoreans might have been the first to 
believe in this equivalence (cf. Aristotle's Metaphysics, Book I, 5; Book 
XIII, 6; translated into English168~: "...--shwe, then, all other things seemed 
in their whole nature to be modeled on numbers, and numbers seemed to be 
the first things in the whole of nature, they [[the Pythagoreans]] supposed 
the elements of numbers to be the elements of all things, and the whole 
heaven to be a musical scale and a number." "And the Pythogoreans, also, 
believe in one kind of number--the mathematical; only they say it is not 
separate but sensible substances are formed out of it. For they construct the 
whole universe out of numbers...'18 

It has to be admitted that, from a contemporary point of view, such 
an equivalence between mathematics and physics appears implausible and 
excessively speculative. Even in the framework of axiomatic set theory, 
there seem to be many (possibly an infinite number of) conceivable mathe- 
matical universes, compared to only one physical universe. ~9 For example, 
Zermelo-Fraenkel set theory can be developed with or without the axiom 
of choice, with or without the continuum hypothesis. Axioms for Euclidean 
as well as for non-Euclidean geometries have been given. 

Are there criteria such as "reasonableness" which may single out one 
mathematical universe from the others? That turns out to be difficult. Let 
us for instance agree that the least requirement one should impose upon a 
"reasonable" mathematical formalism is its consistency. As appealing as this 
identification souds, it is of no practical help. As has been pointed out by 
G6del, 18J for strong enough mathematical formalisms 2~ consistency is no 
constructive notion. For  this reason, mathematicians do not know whether 
axiomatic Zermelo-Fraenkel set theory is consistentfl ~ 

Let us finally take the opposite standpoint and reject the assumption 
of an equivalence between mathematical and physical entities. Even then, 
there appears to be a straightforward coincidence between mathematics 

~s Aristotle proceeds, ". . , --only not numbers consisthlg o f  abstract units; the), suppose the units 
to have spatial magnitude. But how the first  1 was constructed so as to have magnitude, they 
seem unable to say." 

~9 No attempt is made here to review the many-worlds interpretation of quantum mechanics, 
or other exotic speculations such as parallel universes in cosmology. 

20 Here, only strong enough formalisms, in which arithmetic and universal computation can 
be implemented, will be considered. Weaker mathematical universes would be monotonous. 

2~ As has been noticed before, naive (i.e., nonaxiomaic) approaches are unreliable and plagued 
by inconsistencies. 

825/25/11-2 
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and "virtual" physics69: Any finitely axiomatizable mathematical formalism 
is constructive per definition, since any derivation within a formal system is 
equivalent to an effective computation. Therefore, any such mathematical 
model can be implemented on a universal computer. The resulting universe 
can then be investigated by means and methods which are operational 
from within that universe--a metaphysical speculation which brings us 
back to Bridgman's perception of Cantorian set theory, the greatest 
attempt so far to reach out and encompass all of (recta)physics into the 
domain of the (formal) sciences. 
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