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The classical methods used by recursion theory and formal logic to
block paradoxes do not work in quantum information theory. Since
quantum information can exist as a coherent superposition of the clas-
sical “yes” and “no” states, certain tasks which are not conceivable in
the classical setting can be performed in the quantum setting. Classical
logical inconsistencies do not arise, since there exist fixed point states
of the diagonalization operator. In particular, closed timelike curves
need not be eliminated in the quantum setting, since they need not
lead to the classical antinomies. Quantum information theory can also
be subjected to the treatment of inconsistent information in databases
and expert systems. It is suggested that any two pieces of contradict-
ing information are stored and processed as coherent superposition. In
order to be tractable, this strategy requires quantum computation.
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This letter introduces two novel features of quantum information
theory. Physically, it is shown how quantum information allows the
consistent implementation of nonlocal correlations. Technically, a di-
agonalization operator is used to compute consistent fixed point solu-
tions to classical “paradoxical” tasks. The implications for quantum
recursion theory [1] and algorithmic information theory [2] as well as
for database applications will only be shortly sketched.

Classical information theory (e.g., [3]) is based on the bit as fun-
damental atom. This classical bit, henceforth called cbit, is in one of
two classical states. It is customary to use the symbols “0” and “1” as
the names of these states.

In quantum information theory (cf. [4, 5, 6, 7, 8, 9, 10, 11]), the
most elementary unit of information, henceforth called qbit, may be
physically represented by a coherent superposition of the two states
|0〉 and |1〉, which correspond to the symbols 0 and 1, respectively.
The quantum bit states

|a, b〉 = a|0〉+ b|1〉 (1)

form a continuum, with |a|2 + |b|2 = 1, a, b ∈ C.
In what follows we shall consider the hypothetical transmission of

information backward in time. To be more specific, we shall use an
EPR-type telegraph which uses entangled particles in a singlet state
(i.e., the total angular momentum of the two particles is zero) as drawn
in Fig. 1. The apparatus is tuned to convey perfect correlations of
the direction of angular momentum labeled by “+” and “−”; i.e., the
outcomes are either + + or −−. (Perfect correlations can be achieved
by choosing a relative angle of measurement of π.) The (unphysical)
assumption necessary for signalling backwards in time is that on one
side, say for particles in path 1, the outcome can be controlled. This
means that it will be assumed possible to produce a particle with, say,
direction of angular momentum “+” (“−”) in the path 1 at tA, thereby
transmitting a signal “+” (“−”) via its perfectly correlated entangled
partner in path 2 to a second observer back in time at tB; thereby,
tA > tB > tS but otherwise arbitrary.

An alternative setup for backward in time signalling operates with
parameter dependence [12, 13]. There, the (unphysical) assumption is
that the measurement outcomes in one path depend on the setting of
the measurement angle (=the parameter) in the other path. From now



Fig. 1. Scheme of backward-in-time signalling by EPR-type telegraph.
Two entangled particles (e.g., photons) are emitted from source the
S. Assume (without loss of generality) that there is an observer A
far from the source S, and an observer B close to S. The postulated
controllability of outcomes in 1, mediated via 2, is used to transmit
information. The flow of information is indicated by the arrow. “•”
stands for the active mode; i.e., controllable outcome (preparation).
“◦” stands for the passive mode; i.e., measurement. The two signs
are drawn on top and at bottom to indicate the opposite orientation
(relative angle π) of the measurement apparata of the two observers A
and B.

on, we shall use the term outcome control to refer also to parameter
dependence.

We shall make use of the EPR-type telegraph to construct a time
paradox and argue against and outcome controllability in any form.
In a similar manner, the liar paradox [14] was translated by Gödel
into arithmetic [15] to argue against a complete description of a formal
system within that very system [18]. For instance, the gödelian sen-
tence [19] claiming its own unprovability in a particular system appears
undecidable within that very system.

This recursion theoretic terminology has to be translated into physics
[20]. In particular, undecidability must be interpreted on the phe-
nomenological level. Is there, for instance, a physical correspondent to
a logical contradiction [21]? Can a particle, for example, be here and



somewhere else (≡ not here) [22]? On the phenomenological level, the
answer is no. To put it pointedly: there is no such thing as an inconsis-
tent phenomenon. In a yes-no experiment which can have two possible
outcomes, only one of these outcomes will actually be measured. In
contradistinction, a theoretical description might allow the consistent
“existence” of mutually exclusive states only if it is indeterministic
(probabilistic), thereby implementing undecidability. One might even
conceive of a hierarchically organized scenario with an inside/outside
distinction. In such a setup, there might exist a “hidden parameter
(extrinsic [23], exo- [24]) arena,” in which a particular outcome could
be deterministically accounted for. Yet, for an intrinsic observer who
is embedded in the system [25], this level will be permanently inacces-
sible [26]. As will be argued below, quantum mechanics implements
undecidability both by the superposition principle and by the postulate
of randomness of certain outcomes (i.e., the “wave function collapse”).
Related arguments have been put forward in [19, 27, 28, 29, 30, 31, 32].

Consider two backward-in-time signalling EPR-type telegraphs of
the above type arranged as drawn in Fig. 2. Physically, the flow of
information is mediated via the two entangled pairs in paths 1–2 and
3–4. An information in 2 is perfectly mirrored by M in 3. By this
instrument, some agent A (e.g., computer, observer), which is given
the power of outcome control, can exchange information with itself
on closed timelike lines [33, 34, 35, 36]. It is thereby tacitly assumed
that, stated pointedly, by “free will,” agent A can choose the outcome.
In the following, A shall be confronted with the following paradoxical
task. Whenever A registers the information “+” (“−”) at time tA′ , A
feels compelled to stimulate the opposite outcome “−” (“+”) at the
later time tA.

Before discussing the paradox, let us consider the two states |0〉 ≡
“−” and |1〉 ≡ “+” which are accessible to A. These states can be the
basis of a cbit with the identification of the symbols “0” and “1” for
|0〉 and |1〉, respectively. Quantum mechanically any coherent super-
position of them is allowed. A’s paradoxical task can be formalized by
a unitary evolution operator D̂ as follows

D̂|0〉 = |1〉, D̂|1〉 = |0〉. (2)

In the state basis {|0〉, |1〉}, D̂ is just equivalent to the unary logical
not-operation and is therefore identical with the not-gate (or the Pauli



Fig. 2. Time paradox. Two backward-in-time signalling devices are
used here, but only one would be necessary, the other could be sub-
luminal quantum information channel. The important point is the
outcome controllability at tA with regards to the measurement at tA′ .

spin operator τ1),

D̂ = τ1 =

(
0 1
1 0

)
= |1〉〈0|+ |0〉〈1|. (3)

The syntactic structure of the paradox closely resembles Cantor’s di-
agonalization method which has been applied by Gödel, Turing and
others for undecidability proofs in a recursion theoretic setup [17, 37,
38, 39]. Therefore, D̂ will be called diagonalization operator, despite
the fact that its only nonvanishing components are off-diagonal. (No-
tice that A’s task would be perfectly consistent if there were no “bit
switch” and if thus D̂ = diag(1, 1).)



The paradoxical feature of the construction [40, 41] reveals itself in
the following question: what happens to A? In particular: what does
A register and send?

Let us first consider these questions from a classical perspective.
Classically, the particles with which A operates can only be in one
of two possible states, namely in |0〉 or in |1〉, corresponding to the
classical bit states. By measuring the particle in beam 4, A gets either
the outcome “+” or “−”. In both cases, the agent A is lead to a
complete contradiction.

For, if A receives “+”, corresponding to cbit state 1, A is obliged
to send out “−”, corresponding to cbit state 0 (A has been assumed to
be able to control the outcomes in beam 1). Due to the perfect EPR-
correlations, the partner particle in beam 2 is registered as “−” at the
mirror at time tB. By controlling the outcome in beam 3, this mirrored
cbit can again be sent backwards in time, where “−” is received by A
via a measurement of the particle in beam 4. This, however, contradicts
the initial assumption that the outcome in beam 4 is “+”.

On the other hand, if A receives “−”, corresponding to cbit state
0, A is obliged to send out “+”, corresponding to cbit state 1; yet,
since at tB the cbit is just reflected as described above, A should have
received “+”. Thus classically, agent A is in an inescapable dilemma.

The defense strategy in formal logic and classical recursion theory
against such inconsistencies is to avoid the appearance of a paradox
by claiming (stronger: requiring) overall consistency, resulting in no-
go theorems; i.e., in the postulate of the impossibility of any opera-
tional method, procedure or device which would have the potential-
ity to cause a paradox. (Among the many impossible objects giving
rise to paradoxes are such seemingly innocent devices as a “halting
algorithm” computing whether or not another arbitrary computable
algorithm produces a particular output; or an algorithm identifying
another arbitrary algorithm by input-output experiments.)

We shortly discuss some classical defense strategies against such
time paradoxes. (No claim of completeness is made here.) Let us
first concentrate on the implicit assumption that there is an objec-
tive distinction between cause and effect. This has been addressed by
Peres and Schulman [42, 43], Gatlin [44] and Peres [45], and also by
the BDS/Feinberg/Recami [46, 47, 41] “switching principle.” Peres
and Schulman, based on a model by Wheeler and Feynman [48], and
subsequently Gatlin proposed to eliminate the feature of a perfect



mirror reflection in tB. Thereby, the mirror responses indeterminis-
tically. If the signal is mirrored by a conscious being, then the re-
sponses might originate from “free will.” Gatlin proposes to eliminate
the paradox by assuming that the mirror at time tB (or, equivalently,
some decision-making agent in the backward-in-time signalling chan-
nel), has no causal connection to the source A. This is in essence a
denial that a certain type of information can be transmitted backwards
in time. The analysis of Peres and Schulman yields a consistent solu-
tion for the equation of motion at the price of determinacy, thereby
eliminating the original assumption of indeterminism and the existence
of “free will,” as well as of an objective distinction between cause and
effect. In particular, Peres [45] suggests that, to the observer, certain
processes and decisions appear completely random, but may actually
be completely determined by very complex yet deterministic processes.
The observer’s experience that certain decisions originate in “free will”
might be an illusion. Thus, as a consequence of the subjective evalua-
tion of the observer, cause and effect merely appear objectively distinct.
This has also been Gödel’s resolution of time paradoxes [33]. A related
“switching principle” approach [46, 47, 41] is based on the standard
quantum field theoretic reinterpretation of negative energy particles
moving forward in time as positive energy particles moving backward
in time, which in turn are reinterpreted [49, 50] as positive energy
antiparticles moving forward in time with reversed charges and veloci-
ties. In this process, any emission (cause) is reinterpreted as absorption
(effect) and vice versa.

Another possibility to block time paradoxes is the postulate of the
impossibility of any backward-in-time information flow or, more specif-
ically, the impossibility of closed timelike lines. This view seems to have
been adopted by Hawking, who calls it the “chronology protection con-
jecture” [51, 52].

Notice that one feature of the backward-in-time information flow
has been outcome controllability. Therefore, a third option, the postu-
late of the impossibility of outcome controllability eliminates the time
paradox. Hence, the time paradox — encoded by the diagonalization
argument — can be used against outcome controllability, resulting in
an intrinsic randomness of the individual outcomes. This view resem-
bles the Peres-Schulman and the Gatlin scheme — in some sense it
reconciles both schemes — but emphasizes the hierarchical structure
originating from an inside/outside distinction: Whereas it might be



possible to conceive the whole dynamics deterministically from the
outside, the phenomena might remain principally unpredictable from
within. If the “phenomenologic power” — the things which are physi-
cally operational — would become too strong, the world would become
inconsistent.

Quantum mechanics implements exactly that kind of recursion the-
oretic undecidability argument; yet in a form which is not common in
recursion theory. Observe that the paradox is resolved when A is al-
lowed a nonclassical qbit of information. In particular, A’s task can
consistently be performed if it inputs a qbit corresponding to the fixed
point state of D̂; i.e.,

D̂|∗〉 = |∗〉. (4)

The fixed point state |∗〉 is just the eigenstate of the diagonalization
operator D̂ with eigenvalue 1. Notice that the eigenstates of D̂ are

|I〉, |II〉 =
1√
2

[(
1
0

)
±
(

0
1

)]
=

1√
2
(|0〉 ± |1〉) (5)

with the eigenvalues +1 and −1, respectively. Thus, the nonparadoxi-
cal, fixed point qbit in the basis of |0〉 and |1〉 is given by

|∗〉 = | 1√
2
,

1√
2
〉 = |I〉. (6)

In natural language, this qbit solution corresponds to the statement
that it is impossible for the agent to control the outcome, since there
is a fifty percent chance for the classical bit states |0〉 and |1〉 to be
“stimulated” at tA. The impossibility of outcome control is indeed en-
countered in quantum mechanics [53]. Stated differently: at the level
of probability amplitudes, quantum theory permits a backward-in-time
signalling device. But at the level of observable probabilities, this is
exactly nullified, as, despite amplitude control, the outcomes appear to
occur at random. This corresponds to the probabilistic (indeterminis-
tic) interpretation of the “wave function collapse.” Quantum theory,
together with the probability interpretation, thus consistently saves
itself from a paradox.

We close the discussion on the consistent use of paradoxes in physics
with a few comments. First, it is important to recognize that the above
considerations have no immediate bearing on quantum complementar-
ity. In the author’s opinion, complementarity is a general feature of the



intrinsic perception of computer-generated universes, which is realiz-
able already at a very elementary pre-diagonalization level [54, 55, 39];
i.e., without the requirement of computational universality or its arith-
metic equivalent.

As has been pointed out before, the above argument remains valid
for any conceivable (local or nonlocal [56, 57]) hidden variable theory.
The consistency of the physical phenomenology requires that hidden
variables remain inaccessible to an intrinsic observer. Pointedly stated,
from an intrinsic, operational point of view, when re-interpreted prop-
erly, a paradox marks the appearance of uncertainty and uncontrolla-
bility (cf. a statement by Gödel [18]).

As remote the above considerations may appear from any applica-
tion, they are relevant for the treatment of inconsistencies in general
and inconsistent database management in particular. For instance, a
similar treatment of the halting problem [37] for a quantum computer
leads to the conclusion that the quantum recursion theoretic “solu-
tion” of the halting problem reduces to the tossing of a fair (quantum
[58]) coin [59]. Another, less abstract, application for quantum infor-
mation theory is the handling of inconsistent information in databases
and expert systems. Thereby, two contradicting cbits of information
|a〉 and |b〉 are resolved by the qbit |1/

√
2, 1/

√
2〉 = (1/

√
2)(|a〉+ |b〉).

Throughout the rest of the computation the coherence is maintained
[60]. After the processing, the result is obtained by a measurement.
As an consequence, the contradicting sectors of the knowledge base
need not be totally eliminated while at the same time the undesirable
inconsistencies are avoided. However, the processing of qbits requires
an exponential space overhead on classical computers in cbit base [61].
Thus, in order to remain tractable, the corresponding qbits should be
implemented on truly quantum universal computers.

Acknowledgments: Related topics were vigorously discussed in
seminars and regular Viennese coffee house sessions with Anton Zeilinger
(some time ago), Johann Sumhammer and Günther Krenn. Günther
Krenn took the pain to read, contribute and comment to several ver-
sions of the manuscript. Three anonymous referees suggested many
revisions. Nonetheless, any blame should remain solely with the au-
thor.



References

[1] K. Svozil, “Quantum recursion theory,” submitted.

[2] K. Svozil, “Halting probability amplitude of quantum comput-
ers,” Journal of Universal Computer Science 1, nr. 3, 1-4 (March
1995); “Quantum algorithmic information theory,” e-print quant-
ph/9510005 (URL: http://xxx.lanl.gov/ps/quant-ph/9510005).

[3] R. W. Hamming, Coding and Information Theory, 2nd edn.
(Prentice-Hall, Englewood Cliffs, New Jersey, 1980).

[4] D. Z. Albert, Phys. Lett. 94A, 249 (1983).

[5] D. Deutsch, Proc. R. Soc. Lond. A 400, 97 (1985).

[6] R. P. Feynman, Opt. News 11, 11 (1985).

[7] A. Peres, Phys. Rev. A32, 3266 (1985).

[8] P. Benioff, Ann. N.Y. Akad. Sci. 480, 475 (1986).

[9] N. Margolus, Ann. N.Y. Akad. Sci. 480, 487 (1986).

[10] D. Deutsch, Proc. R. Soc. Lond. A 425, 73 (1989).

[11] D. Deutsch and R. Jozsa, Proc. R. Soc. Lond. A 439, 553 (1992).

[12] A. Shimony, “Controllable and uncontrollable non-locality”, in
Procceedings of the International Symposiun on the Foundations
of Quantum Mechanics, S. Kamefuchi et al., eds. (Physical Society
of Japan, Tokyo, 1984), reprinted in A. Shimony, Search for a
Naturalistic World View, Volume II (Cambridge University Press,
Cambridge, 1993), p. 130.

[13] A. Shimony, “Events and Processes in the Quantum World”, in
Quantum Concepts in Space and Time, R. Penrose and C. I.
Isham, eds. (Clarendon Press, Oxford, 1986), reprinted in A. Shi-
mony, Search for a Naturalistic World View, Volume II (Cam-
bridge University Press, Cambridge, 1993), p. 140.

[14] The Bible contains a passage, which refers to Epimenides, a Crete
living in the capital city of Cnossus: “One of themselves, a
prophet of their own, said, ‘Cretans are always liars, evil beasts,
lazy gluttons.’ ”
— St. Paul, Epistle to Titus I (12-13). For more details, see A. R.
Anderson, St. Paul’s Epistle to Titus, in The Paradox of the Liar,
R. L. Martin, ed. (Yale University Press, New Haven, 1970).
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