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Automaton Partition Logic Versus Quantum Logic 
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The propositional system of a general class of discrete deterministic systems is 
formally characterized. We find that any finite prime orthomodular lattice allowing 
two-valued states can be represented by an automaton logic. 

1. AUTOMATON L O G I C  AS T H E  E X P E R I M E N T A L  
L O G I C  OF VIRTUAL REALITIES.  A C O N N E C T I O N  TO 
QUANTUM L O G I C  

The greater context of automata logic might be characterized by the 
question of how a computer-generated universe, a "virtual reality," is per- 
ceived "from the inside," i.e., by intrinsic observers embedded therein 
(Boskovich, 1755; Toffoli, 1978; R6ssler, 1987, 1992; Svozil, 1986a,b, 1993). 
The intrinsic "virtual physics" of a computer-generated universe is defined 
by experiments and theories which are operational in such an environment. 
At least for finite systems, this approach is equivalent to the investigation 
of finite automata by input-output experiments. It is not unreasonable to 
suspect that the class of finite-state input-output systems is "robust" in the 
way that reasonable types of automata can be translated into one another [cf. 
the equivalence between the classes of Moore and Mealy-type automata 
(Hopcroft and Ullman, 1979)]. 

One of the physical goals of such studies is the investigation of attempts 
to reconstruct quantum physics in a deterministic, i.e., computable (recursive), 
environment. Admittedly, such attempts via deterministic cryptosystems 
appear heretical when viewed from some "folklore" understanding of quantum 
mechanics. Yet, computer-generated universes provide a very natural explana- 
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tion of complementarity and of the non-Boolean structure of experimental 
propositions in general. 

To be more specific, we shall concentrate on the following measurement 
problem for finite automata. One may ask, "given a particular finite (Mealy- 
type) automaton and its description, which propositions about the initial state 
are experimentally decidable, i.e., decidable by input-output analysis?" By 
introducing the concept of a partition logic, which is related to the pasting 
construction of orthomodular posets, we are able to construct a propositional 
calculus of the finite automaton, similar to the lattice approach of Birkhoff 
and von Neumann (1936). We are able to show that a broad class of orthomod- 
ular posets permits a representation as a partition logic and therefore permits 
a macroscopic and deterministic realization. 

Automaton experiments were introduced by Moore (1956) in a pioneer- 
ing paper in which similarities between automata and quantum systems are 
already discussed. Moore gave the first explicit example of a four-state 
automaton featuring computional complementarity, a term introduced by 
Finkelstein and Finkelstein (1983). A further analysis of Moore's theory of 
experiments is found in Conway (1971) and Brauer (1984). There are also 
some other studies which investigate the connection between automata and 
quantum systems, but without using the original form of Moore automata. 
Finkelstein and Finkelstein (1983) studied transaction systems; based on this 
approach, Grip and Zapatrin (1990) described macroscopic automata capable 
of modeling orthomodular lattices; see also Svozil (1993) and Schaller and 
Svozil (1994). 

2. PARTITION LOGIC 

We shall adopt the terminology of Pt~k and Pulmannov~ (199l). Let a 
prime ideal be the kernel P = {x ~ LIs(x) = 0} of a two-valued state s. 

Definition 2.1 (Primeness). An orthomodular poset L is called prime if 
for all a, b in L and a =~ b there exists a prime ideal containing exactly one 
of a and b. 

A partition logic can be defined as follows. 

Definition 2.2 (Partition logic). Let M be a set and .9t be a family of 
partitions of M. Every partition P E ~t. generates a Boolean algebra (B~, 
C, ') in the following way: Bp = {USIS _C P} _ is the inclusion and ' the 
complement in M. We will call the pasting of all these Boolean algebras the 
partition logic of M and ~ and denote it by (M, ,~). 

Lemma 2.3. A partition logic is an orthomodular poset iff the following 
two conditions hold: (i) the induced relation --- is transitive; (ii) if a L b, 
then the supremum a v b exists. 
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Proof  An OMP satisfies conditions (i) and (ii). It is trivial that <- is a 
partial order and ' is a orthocomplement. If a • b, then a <--p b for a partition 
P in ,~'~. The supremum is then given by a vp b = a U b = a v b. The 
orthomodular law holds because for a -< b we have b = a vp (a '  /~p b) = 
a v (a '  A b). For a more general statement, see Navara and Rogalewicz (1991 ). 

The following theorem is related to the Birkhoff-Stone representation 
theorem for distributive lattices or Boolean algebras (Sz4sz, 1963; Birkhoff, 
1948) and to the representation theorem of Gudder for concrete logics (Pt4k 
and PulmannovA, 1991). 

Theorem 2.4. An orthomodular poset L is isomorphic to a partition logic 
iff L is prime. 

Proof  Let the suborthomodular poset FA generated by an arbitrary 
subset A of L be the smallest subalgebra of L containing A. Let ~(L) = { r {x, 
y} Ix, y ~ L and x -< y}. L is the pasting of the family ~(L). (i) Suppose 
first that L is isomorphic to a partition logic (M, !)~). We may assume that 
L = (M, !)~). Take A, B E L such that A 4= B. Then C = (A - B) U (B - 
A) =P • and we can choose a point p ~ C. We define P = {X ~ Lip  
X }. It is easy to check that P is a prime ideal. Finally, either p ~ A or p 
B, which means that L is prime. 

(ii) Let L be a prime orthomodular poset. Consider the mapping p: L 
--> ~(P(L)) ,p(a)  = {P ~ P(L)la ~ P}. L e t M  = P(L)and F ~ ~(L). Define 
a partition Rr of P(L) by Rr = { p(a) I a is atom of F }. Rr is indeed a partition, 
because p(a v b) : p(a) U p(b) holds for a • b and moreover, p(a') = P(L) 

- p(a) = p(a)'. Put ~)~ = {RrIF E ~(L)} and let R be the partition logic 
(M, ~}~.). We propose that p: L ~ R is an isomorphism, p is injective by the 
primeness of L, p is surjective by the construction of R. For every F ~ ~(L) 
the restriction of p to F, p lI': F --> Rr, is an isomorphism. Since L is the 
pasting of ~(L) and R is the pasting of !)~, L and R are also isomorphic. 

Lemma 2.5. Every concrete logic is a partition logic. 

Proof  We prove that every rich orthomodular poset is prime. Let L be 
a rich orthomodular poset. We set P(x) = {P E P(L)Ix  ~ P} for all x ~ L. 
Let a, b be two arbitrary elements of L. If P(a) = P(b), then a = b by the 
richness of L. Hence, for a 4= b the set (P(a) - P(b)) U (P(b) - P(a)) is 
not empty and therefore L is prime. 

As the nonrich (Ptfik and Pulmannov4, 1991) Greechie logic of Fig. 1 
shows, the inverse does not hold; i.e., not every partition logic is rich. 

3. A U T O M A T O N  P R O P O S I T I O N A L  C A L C U L U S  

Consider a Mealy automaton. Assume its formal description is given 
but the initial state is unknown. Further, we are not allowed to open the 
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{55.8.1o,11 } 

{2,6,7,8 
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w 
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{ 1,3,4,5,9} 

~{2,6.8.11,12.14} 

7,10,13} 

5.8.9.11.14} 

w 

{ 1,2.4,6.12} 
Fig. 1. Prime orthomodular poset, which is not rich. 

automaton and look inside, i.e., we consider the automaton as a black box 
with interfaces for the input and output of symbols. Hence, to gain information 
about the initial state we have to enter some input and observe the output. 
We are interested in which propositions about the initial state are decidable 
by input-output analysis. 

Definition 3.1 [(Mealy) automaton]. A Mealy automaton is a 5-tuple M 
= (Q, Z, A, ~, k), where (i) Q is the set of states; (ii) ~ is the input alphabet; 
(iii) A is the output alphabet; (iv) 8: Q x ~ --~ Q is the transition function; 
(v) h: Q x ~ ~ A is the output function. 

At any time, the automaton is in a state q E Q. If the automaton receives 
an input symbol a ~ ~, M enters the state B(q, a) and emits the output 
X(q, q). An input (resp. output) word is a (possibly empty) formal sequence 
of input (resp. output) symbols. ~* (resp. A*) denotes the set of all input 
(resp. output) words. The empty word is denoted by ~. The output of an 
input word al "'" a,, ~ ~* is therefore the word 

?t(q, al)?t(~(q, aj), a2)k(~(B(q, al), a2), a3) "'" )k(~( . . . .  an_l) , an) E A* 

We represent automata by a directed graph, called the transition diagram. 
The vertices of the graph correspond to the states of the automaton. An arc 
labeled x/y from vertex p to vertex q stands for ~(p, x) = q and )~(p, x) = y. 

A branch experiment can be described by a mapping E: A* -~ 2s U 
{e}. The branch experiment E is carried out in the following way: (i) E(~) 
denotes the initial input symbol. (ii) Let us assume the input w ~ ~* was 
applied and the output W ~ A* was observed. Then we enter the input E(W) 
into the automaton. The experiment terminates if E(W) = E. hE(q) denotes 
the observed output if the automaton was in the initial state q. A subset of 
the branch experiments is the preset experiments. An input word w E ~* is 
applied to the automaton and the output is observed. 
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We identify propositions about the initial state with subsets of Q. To 
every state q ~ Q we assign the proposition that the initial state of the 
automaton is q and write for this proposition again q. In the same way, we 
identify a subset P of Q with the proposition that the initial state is in P. We 
call a proposition experimentally decidable if there is an experiment which 
determines the true value of the proposition. 

Definition 3.2 (Automaton logic). To every experiment, E defines an 
equivalence relation =e in Q by p =e q if hE(p) = hE(q). The partition 
corresponding to A is denoted by Q/E and the Boolean algebra induced by 
Q/E by Be. The propositions decidable by the experiment E are the elements 
of BE. The automaton propositional calculus (automaton logic) is defined as 
the partition logic (Q, ~) ,  where ~ denotes the set of all Boolean algebras Be. 

The orthocomplement P' of a proposition P, i.e., the set complement 
Q - P, denotes the logical negation of P. Every experiment which decides 
P also decides P'. The relation Pl -- P2 holds iff (i) PI _C P2, i.e., if P, 
implies P2, and (ii) there is an experiment which decides both propositions 
Pi and P2. 

Note that <- is not an idealistic relation, but a measurable one. 
We illustrate the construction of the automaton propositional calculus 

by an example. The Mealy-type automaton of Fig. 2a is modeled after Moore's 
uncertainty automaton. The simple experiment 0, i.e., the input of 0, yields 
the partition Q/O = {{1, 3}, {2}, {4}}. The simple experiment 1, i.e., the 
input of 1, yields the partition Q/1 = {{1, 2}, {3}, {4}}. Obviously there 
are no finer partitions accessible by experiments. (The trivial partition Q/e 
= { { 1, 2, 3, 4} } corresponds to no input/output experiment.) Note that the 
proposition 1 is not experimentally decidable. The propositional calculus is 
given in Fig. 3a. It is isomorphic to a finite sublattice of the quantum logic 
of the three-dimensional Hilbert space. The automaton defined by Fig. 2b 

3/I 

W 
�9 a) �9 3 

4~~if0 e ~  r~ I/0 �9 

�9 �9 l l t ~ / l  2/0 ~ @ 2 f I  
3 1/0 2 

Fig. 2. (a) Moore's uncertainty automaton, modeled as a Mealy automaton; (b) quantumlike 
Mealy automaton. 
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1234 

�9 ~ 13 

a) ~ b) 
Fig. 3. (a) Hasse diagram of the automaton logic of Moore's uncertainty automaton; 

(b) Hasse diagram of the automaton logic of the quantumlike Mealy automaton. 

123 

23 

yields the propositional calculus drawn in Fig. 3b), which is also found in 
the quantum logic of a two-dimensional Hilbert space. 

A straightforward construction (Svozil, 1993) shows that to every parti- 
tion logic there exists an automaton which possesses that partition logic as 
propositional calculus and vice versa. 

Lemma 3.3 (Automaton logic = partition logic). Every automaton propo- 
sition calculus is a partition logic and vice versa. 

We have already remarked that not every partition logic is an orthomodu- 
lar poset. An automaton example for this case is given in Fig. 4. The finest 
partitions accessible by experiments are Q/O0 = {{1}, {2}, {3, 4}} and 
Q/IO = {{ 1, 2}, {3}, {4} }. If we consider the partition logic of these two 
partitions, { 1 } <-- { 1, 2 } and { 1,2 } --- { 1, 2, 3 } holds, but not { 1 } -< { 1, 2, 3 }. 

Conversely, not every orthomodular poset corresponds to a partition 
logic. Consider the Greechie diagram of 14/3.4 drawn in Fig. 5. It is an 
orthomodular poset, since it does not contain any loop of order three. Consider 
Fig. 6. In these figures the bold lines indicate a disjoint covering of L by its 
blocks. In Fig. 6a the covering consists of three blocks Bn, B2, and B 3. In 
Fig. 6b there is a disjoint covering consisting of four blocks B,,, Bh, B<, and 

0/1 
3 1 q  

Ill I 
0/0 1 

0,0 " 

2 
0/0 
I/0 

~ o  I 
1t0 Fig. 4. Mealy automaton, yielding a 

nontransitive propositional calculus. 
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Fig. 5. Orthomodular poset W3,~, which is 
not an automaton logic. 

a l  

a5 

a9 

a2 a3 a4 

a6 a? a8 
I 

(/lO a l l  a l2  
I 

B~ B b Bc Ba 
B1 

B2 

B3 

a) b) 
Fig. 6. Disjoint coverings of an orthomodular poset which is not an automaton logic. 

Bj.  Assume that the or thomodular  poset is isomorphic to a partition logic 
(M, !)~). Let x E M. x has to be an element in one of  the atoms of  B,,. Without 
loss o f  generality one may assume that x E m .  x also has to be element in 
one of  the atoms of  Bh. Since x e aE, x e a 2 is not possible, because al, a2 
are atoms of  the same block B~. Without loss of  generality one may assume 
that x e a 6. x also has to be element in one of  the atoms of  Bb. Since x 
al, x e a2 is not possible, because al, a2 are atoms of  the same block Bi. 
Without loss of  generality one may assume that x ~ a 6. x also has to be 
element in one of  the atoms of  Be. The only choice left is x e all. x also 
has to be element in one of  the atoms of  Bj.  But every choice x E a4, x e 
a 8, or x ~ a~2 is in contradiction to x ~ a~, x e a6, and x ~ a~ ~, respectively. 
Therefore, the or thomodular  poset is not isomorphic to a partition logic. 

Furthermore, there exist or thomodular  lattices which do not correspond 
to any partition logic. A typical example is the "spider" lattice (Ptfik and 
Pulmannovfi, 1991, p. 37). 

4. D I S C U S S I O N  

We have formally characterized the propositional systems of  a general 
class o f  automata called Mealy automata. The class of  Mealy automata is 
equivalent to the class o f  Moore automata (Hopcroft  and Ullman, 1979; 
Brauer, 1984) (upon disregarding the first output symbol).  It is sufficiently 
complex to embody even more general types o f  discrete deterministic input/ 
output systems. In this sense it is robust. 
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4 

12 2 

13 

3 Fig. 7. Identification of atoms with rays in 
three-dimensional real Hilbert space. If v(a) 
is the subspace spanned by v, v(12) ,1, v(3), 
v(2) L v(13), v(12) ,1, v(4), v(2) ,1, v(4), v(3) 
• v(4), v(13) .i_ v(4), v(12) 4: v(2). 

Any prime orthomodular lattice allowing two-valued states can be repre- 
sented by a partition logic derived from this class of Mealy- (Moore-) type 
automata. 

Is it possible to reconstruct quantum logic by the partition logic of  
automata? We find that quantum and automaton logic, as they are defined 
here do not coincide completely, but they "overlap." To demonstrate this, 
consider particular finite orthomodular sublattices of quantum mechanical 
Hilbert lattices. For example, for 2-dimensional Hilbert spaces, automaton 
logics which are of the general form MO,, (e.g., M03 is drawn in Fig. 3b) 
correspond to all finite sublogics of the logic L(H). However, since L(H) is 
undenumerable, automaton logics can never model the complete quantum 
logic even in the two-dimensional case. 

For dimensions higher than or equal to three, it can be inferred from 
Gleason's theorem that the orthomodular poset L(H) for dim H >-- 3 does 
not possess any two-valued state and therefore does not possess any prime 
ideal (Ptfik and Pulmannov~i, 1991, p. 23). Therefore, as for the two-dimen- 
sional case, the entire L(H), dim H ----- 3, is not representable as a partition 
logic. Nevertheless, certain suborthomodular posets of the three-dimensional 
Hilbert lattice are representable by automaton logic. For example, as can be 
verified by considering Fig. 7 (Giuntini, 1991, p. 160), the lattice drawn in 
Fig. 3a is a suborthomodular poset of  L(H), dim H = 3, leaving the question 
open whether all finite suborthomodular posets of  quantum logics are repre- 
sentable by partition logics of automata. 2 
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