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We use Greechie diagrams to construct finite orthomodular lattices ‘‘realizable’’ in
the orthomodular lattice of subspaces in a three-dimensional Hilbert space such that
the set of two-valued states is not ‘‘large’’~i.e., full, separating, unital, nonempty,
resp.!. We discuss the number of elements of such orthomodular lattices, of their
sets of~ortho!generators and of their subsets that do not admit a ‘‘large’’ set of
two-valued states. We show connections with other results of this type. ©1996
American Institute of Physics.@S0022-2488~96!00409-4#

I. INTRODUCTION

Quantum logic, as it has been pioneered by Birkhoff and von Neumann,1 is usually derived
from Hilbert space. There, the logical primitives, such as propositions and the logical operators
‘‘and,’’ ‘‘or,’’ and ‘‘not’’ are defined by Hilbert space entities. For instance, consider the three-
dimensional, real Hilbert spaceR3 with the usual scalar product (v,w):5( i51

3 v iwi , v,wPR3.
There, any proposition is identified with a subspace ofR3. For instance, the zero vector corre-
sponds to a false statement. Any line spanned by a nonzero vector corresponds to the statement
that the physical system is in the pure state associated with the vector. Any plane formed by the
linear combination of two~noncolinear! vectorsv,w corresponds to the statement that the physical
system is either in the pure statev or in the pure statew. The whole Hilbert spaceR3 corresponds
to the tautology~true propositions!. The logical ‘‘and’’ operation is identified with the set theo-
retical intersection of two propositions; e.g., with the intersection of two lines. The logical ‘‘not’’
operation, or the ‘‘complement,’’ is identified with taking the orthogonal subspace; e.g., the
complement of a line is the plane orthogonal to that line.

In this top-down approach, one arrives at a propositional calculus that resembles the classical
one, but differs from it in several important aspects. It has a non-Boolean, i.e., nondistributive,
algebraic structure. Furthermore, as has first been pointed out by Kochen and Specker in the
context of partial algebras,2–4 there exist certainfinite sets of lines, such that the associated
propositional structure cannot be classically embedded. That is, there does not exist any classical,
i.e., two-valued, measure that could be interpreted as the fact that propositions are either ‘‘true’’
~[measure value 1! or ‘‘false’’ ~[measure value 0!. The Kochen and Specker original construc-
tion used 117 lines. The number of lines has been subsequently reduced.5–8 These constructions
are examples of propositional structures without any two-valued measures.

In this paper we shall deal with the following questions: which orthomodular structure—finite
or infinite—underlies the Kochen–Specker construction. The question can be approached from
two different viewpoints:~i! Whichminimalset of propositions generates some Kochen–Specker-
type configurations? By ‘‘generate’’ we mean the construction of the propositional structure con-
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taining it. ~ii ! What is theminimal propositional structurecontaining some sort of Kochen–
Specker-type configuration? In particular, is it finite or infinite?

II. BASIC NOTIONS

The following definition gives two main concepts of a propositional structure.
Definition 2.1: An orthomodular posetis a structure (P,<,8,0,1) fulfilling the following

conditions.
~1! (P,<) is a partial ordered set such that 0<a<1 for everyaPP.
~2! 8:P→P is an orthocomplementation, i.e., for everya, bPP: ~a! a95a; ~b! a<b implies

b8<a8; ~c! a~a851.
~3! If a<b8 then the supremuma~b exists inP.
~4! If a<b then there is an elementcPL such thatc<a8 andb5a~c ~the orthomodular

law!.
An orthomodular latticeis an orthomodular poset that is a lattice.
Elementsa, b of an orthomodular poset are calledorthogonal~denoted bya'b! if a<b8. A

subsetO of an orthomodular poset is calledorthogonalif every pair of its elements is orthogonal.
Definition 2.2:Let P1 , P2 be orthomodular posets.P1 is orthorepresentablein P2 if there is

a mapping~calledorthoembedding! h: P1→P2 such that for everya, bPP1 , ~1! h(0)50, ~2!
h(a8)5h(a)8, ~3! a<b if and only if h(a)<h(b), and ~4! h(a~b)5h(a)~h(b) whenever
a'b.

P1 is representablein P2 if there is a mapping~calledembedding! h: P1→P2 such thath is
orthoembedding, and for everya, bPP1 , ~48! h(a~b)5h(a)~h(b).

The seth(P1) is then called an(ortho)representationof P1 in P2 .
A suborthoposet~subortholattice, resp.! is a subset such that the identity mapping is orthoe-

mbedding~embedding, resp.!.
Boolean subalgebraof an orthomodular poset is a suborthoposet that is a Boolean algebra.

Block is a maximal Boolean subalgebra.
As we will see later, there are latticesL1 , L2 such thatL1 is a suborthoposet but not a

subortholattice ofL2 . On the other hand, a suborthoposet of an orthomodular lattice need not be
a lattice.

Definition 2.3:Let L be an orthomodular lattice,G, L̄#P and let us denote byL(G) @P(G),
resp.# the least subortholattice~suborthoposet, resp.! of L containingG. We say thatG generates
~orthogenerates, resp.! L̄ if L̄#L(G) @L̄#P(G), resp.#.

P(G) and L(G) can be explicitly defined by the following process:P(G)5øn50
` Pn(G),

L(G)5øn50
` Ln(G), whereP0(G)5L0(G)5G and, for every natural number,n:

Ln11~G!5$~O; O is a finite subset ofLn~G!øLn~G!8%,

Pn11~G!5$~O; O is a finite orthogonal subset ofPn~G!øPn~G!8%

~M 8 denotes the set$a8;aPM %!. Hence, every countable setG generates a countable subortho-
lattice and orthogenerates a countable suborthoposet.

A very useful tool for constructing and representing some orthomodular posets is the so-called
Greechie diagram.

Definition 2.4:A diagram is a pair (V,E), whereVÞ0” is a set ofvertices~usually drawn as
points! andE#expV\{0” % is a set ofedges~usually drawn as line segments connecting corre-
sponding points!.

Let n>2 be a natural number. Aloop of order n in a diagram (V,E) is a sequence
(e1 ,...,en)PEn of mutually different edges such that there are mutually different vertices
v1 ,...,vn with v iPeiùei11 ~i51,...,n, en115e1!.

A Greechie diagramis a diagram fulfilling the following conditions.
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~1! Every vertex belongs to at least one edge.
~2! If there are at least two vertices then every edge is at least a two-element.
~3! Every edge that intersects with another edge is at least a three-element.
~4! Every pair of different edges intersects in at most one vertex.
~5! There is no loop of order 3.
Some examples of diagrams that are not Greechie diagrams are given in Fig. 1—these ex-

amples violate exactly one of conditions~2!–~5! in the above definition.~We usually do not
denote one-element edges.! The condition~4! states that in Greechie diagrams there is no loop of
order 2.

Before we present the representation theorem let us recall that anatom in an orthomodular
posetP is a minimal element ofP\{0” %.

Theorem 2.5:For every Greechie diagram with only finite edges there is exactly one (up to
an isomorphism) orthomodular poset, such that there are one-to-one correspondences between
vertices and atoms and between edges and blocks that preserve incidence relations. A Greechie
diagram does not contain any loop of order 4 if and only if the corresponding orthomodular poset
is a lattice.

The proof can be found, e.g., in Ref. 9. Let us reserve the notionGreechie logicfor an
orthomodular poset that can be represented by a Greechie diagram with only finite edges. It is easy
to see that such an orthomodular poset does not contain any infinite chain, hence every element is
a supremum of a finite orthogonal set of atoms.

Let us remark that there are finite orthomodular posets not representable by Greechie
diagrams—intersections of blocks might be greater than a four-element Boolean subalgebra, and
hence the condition~4! of Definition 2.4 cannot be fulfilled. On the other hand, every orthomodu-
lar poset with only finite and at most three atomic blocks~the case we are interested about! is a
Greechie logic.

We will have a special interest about the following example.
Definition 2.6:The three-dimensionalHilbert logic H3 is the orthomodular lattice of linear

subspaces ofR3. The ordering is given by inclusion and the orthocomplementation is given by
a85$vPR3; v'a% for everyaPH3 .

The least element ofH3 is 05$~0,0,0!%, the greatest element ofH3 is 15R3. Moreover,
a`b5aùb anda~b5Sp(aøb) for everya,bPH3 , where Sp(G) is thespanof G in R3. @We
will usually omit unnecessary parentheses, e.g., Sp~1,0,0! denotes Sp„$~1,0,0!%….#

Every element ofH3\$0,1% is either an atom or a coatom, every block inH3 is finite and at
most a three-element, every suborthoposetP of H3 is a Greechie logic and is uniquely determined
by the setA1(P) of its one-dimensional atoms~lines!:

P5$0,1%øA1~P!øA1~P!8.

~There might be also two-dimensional atoms inP, e.g., if P is a four-element.! Moreover, for
every setG of lines inH3 the set of lines of the orthomodular latticeL(G) @orthomodular poset
P(G), resp.# generated ~orthogenerated, resp.! by G can be expressed as follows:
A1„P(G)…5øn50

` Pn , A1„L(G)…5øn50
` Ln , whereP05L05G and, for every natural numbern,

FIG. 1. Examples of diagrams that are not Greechie diagrams.
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Ln115Lnø$~a~b!8;a,bPLn%,

Pn115Pnø$~a~b!8;a,bPPn , such thata'b%.

III. TWO-VALUED STATES AND GREECHIE DIAGRAMS

Let us present the main definition.
Definition 3.1:Let P be an orthomodular poset and letG,P. A state sonG is a mappings:

P→[0,1], such that
~1! s(0)50,
~2! s(a)<s(b) whenevera,bPG with a<b;
~3! (aPOs(a)<1 for every orthogonal setO,G; and
~4! (aPOs(a)51 for every orthogonal setO,G with ~O51.
A two-valued stateis a state with values in$0,1%.
If G5P then conditions~1!–~2! follow from conditions~3!–~4! and from the orthomodular

law and, moreover,s(a8)512s(a) for everyaPP.
The Kochen–Specker construction gives an example of a propositional structure without any

two-valued state. We will use a more general attempt and will ask whether there is a propositional
structure without ‘‘enough’’ two-valued states. Originally, ‘‘enough’’ meant ‘‘at least one.’’ We
will also use the following properties of state space, which are important in quantum logic theo-
ries.

Definition 3.2:Let P be an orthomodular poset and letG#P. A setS of states onG is called
unital if for every aPG\$0% there is a statesPS such thats(a)51;

separatingif for every a,bPG with aÞb there is a statesPS such thats(a)Þs(b);
full if for every a,bPG with a<” b there is a statesPS such thats(a).s(b).
Existence of a unital set of states means that every proposition that is not a tautology is

sometimes false. Existence of a separating set of states means that a different propositions are
distinguishable. Existence of a full set of two-valued states means that if some proposition does
not imply another, then there is such a state that the first is true while the second is not. These
properties are largely studied. An orthomodular poset with a full set of two-valued states is called
a concrete logic~see, e.g., Ref. 10!, an orthomodular poset with a separating set of two-valued
states is called apartition logic—this notion is within orthomodular posets equivalent to the
notion ofautomaton logic~see, e.g., Refs. 11–14!.

It is easy to see that a full set of states is separating and that a separating set of two-valued
states is unital. Before we give examples demonstrating differences in the above-defined notions
let us give some criteria, how we can verify whether an orthomodular poset given by a Greechie
diagram has ‘‘enough’’ two-valued states.

Definition 3.3:Let P be an orthomodular poset and letA be the set of atoms inP. A weight
w on A is a mappingw: A→[0,1], such that(aPOw(a)51 for every maximal orthogonal set
O#P. A two-valuedweight is a weight with values in$0,1%.

Lemma 3.4: Let P be a Greechie logic and let A be the set of atoms in P. Then there is a
one-to-one correspondence between two-valued states s on P and two-valued weights w on A
given by w5suA.

Proof: Obvious.
Due to this correspondence we may~and will! identify states and weights and study only the

values of states on the set of atoms. Since every maximal orthogonal set of atoms corresponds
uniquely to a block, we need only to check that the sum of values of a state on every edge in a
Greechie diagram is equal to 1.

Proposition 3.5: Let P be a Greechie logic and let A be the set of atoms in P. Then P has a
full set of two-valued states (i.e., P is a concrete logic) if and only if for every pair a1, a2PP of
different nonorthogonal atoms there is a two-valued weight w on A such that w~a1!5w~a2!51.

5383K. Svozil and J. Tkadlec: Measures and the Kochen–Specker theorem

J. Math. Phys., Vol. 37, No. 11, November 1996

Downloaded 02 Feb 2012 to 128.131.224.17. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Proof⇒: Let a1 , a2PA, such thata1'” a2 . Thena1 < a28 and there is a two-valued states on
P such that 15 s(a1) . s(a28) 5 0. Hence,s(a2)51 and, according to Lemma 3.4, it suffices to
takew5suA.

⇐: Let b1 , b2PP such thatb1<” b2 , i.e., b1'” b28 . There are orthogonal setsA1 , A2Þ0” of
atoms inP such thatb15~A1 , b28 5 ~A2 . According to Lemma 3.4, it suffices to prove that there
are atomsa1PA1 , a2 P A28 and a weightw onA such thatw(a1)5w(a2)51. Let us suppose first
thatA1ùA250” . Then there are atomsa1PA1 anda2PA2 such thata1Þa2 anda1'” a2 and, due
to our assumption, a weightw on A such thatw(a1)5w(a2)51. Let us suppose now that
A1ùA2Þ0” . Then there is an atoma1<b1 , b28 and either there is an atoma2Þa1 such that
a1'” a2 , or a1'a for every atomaÞa1 . In both cases there is a two-valued weightw on A such
thatw(a1)51; in the first case due to our assumption and in the second case we can putw(a)51
iff a5a1 .

The situation for a separating set of states is much more complicated and we will state a
criterion in a special case~which is in our interest here!.

Proposition 3.6: Let P be a Greechie logic with, at most three atomic blocks and let A be the
set of atoms in P. Then the set of two-valued states on P is separating (i.e., P is a partition logic)
if and only if the following conditions hold.

~1! For every atom aPP there is a two-valued weight w on A such that w~a!51.
~2! For every pair a1, a2PP of different nonorthogonal atoms there are two-valued weights

w1 , w2 on A such that w1~a1!5w1~a2! and w2~a1!Þw2~a2!.
Proof ⇒: Let aPA. ThenaÞ0 and there is a two-valued states on P such that 15s(a)

.s(0)50. Let a1 , a2PA such thata1Þa2 anda1'” a2 . Then alsoa1 Þ a28 and there are two-
valued statess2 , s1 on P such that 15s2(a1).s2(a2)50, 1 5 s1(a1) . s1(a28) 5 0, i.e.,
s1(a1)5s1(a2). The rest follows from Lemma 3.4.

⇐: Let b1 , b2PP such thatb1Þb2 . Since every element ofP\$0,1% is either an atom or a
coatom, there are atomsa1 , a2PP such thatb1 P $0,a1 ,a18,1% andb2 P $0,a2 ,a28,1%. If a15a2
then there are two-valued weightsw1 , w2 onA such thatw1(a1)51 andw2(a1)50. If a1Þa2
then there are two-valued weightsw1 , w2 on A such that w1(a1)5w1(a2) and
w2(a1)Þw2(a2). In both cases there are, according to Lemma 3.4, two-valued statess1 , s2 on
P such that eithers1(b1)Þs1(b2) or s2(b1)Þs2(b2).

Let us present a lemma, which might simplify to verify criteria in Proposition 3.6.
Lemma 3.7: Let P be a Greechie logic and let A be the set of atoms in P. If W is an at least

three-element set of two-valued weights on A such that$w21~1!;wPW% is a partition of A, then
~1! for every atomaPA there is a weightwPW such thatw(a)51;
~2! for every paira1 , a2PA there is a weightwPW such thatw(a1)5w(a2).
Proof: Obvious.
Let us remark that in Greechie diagrams it suffices to use the above conditions for every

connected subdiagram separately~weights behave independently on nonconnected subgraphs!. In
terms of orthomodular posets we can use the following important notion.

Definition 3.8: Let P be a set of orthomodular posets such thatP1ùP25$0,1% for everyP1 ,
P2PP with P1ÞP2 . The horizontal sum (PPP P is defined as (øPPP P,øPPP<P ,
øPPP8P,0,1).

More generally, we speak about the horizontal sum ofPi , iPI . It is an abbreviation for saying
that we take disjoint representationsP̄i of Pi ~e.g.,$ i %3Pi!, identify all 0̄i ( iPI ) and all 1̄i ( iPI ),
and take( iPIPi . It is easy to see that a horizontal sum of orthomodular posets~orthomodular
lattices, resp.! is an orthomodular poset~orthomodular lattice, resp.! and that a set of states is
nonempty~unital, separating, full, resp.! on a horizontal sum if and only if it is nonempty~unital,
separating, full, resp.! on every horizontal summand.

In a Greechie diagram every connected subdiagram corresponds to a horizontal summand.~In
particular, every finite two-atomic block is a horizontal summand.! On the other hand, the hori-
zontal sum of Greechie logics is a Greechie logic with the Greechie diagram, which is a~disjoint!

5384 K. Svozil and J. Tkadlec: Measures and the Kochen–Specker theorem

J. Math. Phys., Vol. 37, No. 11, November 1996

Downloaded 02 Feb 2012 to 128.131.224.17. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



union of summands with only one exception—we lose isolated vertices~these correspond to the
trivial orthomodular poset$0,1%!.

The notion of a horizontal sum is a special kind of the notion ofpasting. We are not interested
here in a general setting~see, e.g., Ref. 9!, thus we describe only special cases showing how we
can obtain a new Greechie logic using this process. Greechie diagram of thepasting of Greechie
logics Pi ( iPI ) for atoms aiPPi ( iPI ) we obtain as follows: we take the disjoint union of
Greechie diagrams ofPi( iPI ), identify vertices corresponding toai ( iPI ) and, if someai ( iPI )
belong to a two-atomic block, we delete necessary vertices corresponding to suchai8 such that the
condition~3! of Definition 2.4 is fulfilled. Greechie diagram of thepasting of Greechie logics Pi
( iPI ) for blocks Bi#Pi ( iPI ) with the same number of atoms we obtain as follows: we take the
disjoint union of Greechie diagrams ofPi ( iPI ) and identify edges corresponding toBi ( iPI )
~i.e., we identify also atoms in these blocks.! It is easy to see that such pastings of~lattice!
Greechie logics are~lattice! Greechie logics.

The notion of a horizontal sum is also related to the following notion.
Definition 3.9: Let P be an orthomodular poset. Thedistance don P is a mappingd:

P3P→Nø$`%, defined by
d(a,b)5infˆnPN; there are blocksB1 ,...,Bn in P such thatBiùBi11Þ$0,1% for i50,...,n,

B05$a%, Bn115$b%‰.
The distance function defines the largest decomposition ofP into horizontal summands—the

least summands are maximal subsets ofP\$0,1% of elements with finite distances joined with$0,1%.
The following result we will use in the sequel.
Proposition 3.10: Every Greechie logic without any loop has a full set of two-valued states.
Proof: The distance function onP decomposeP into the horizontal sum( iPIPi , such that the

distance of every pair of elements in every summand is finite. It suffices to prove fullness for every
summand. According to Proposition 3.5, it suffices, for everyiPI and for every paira1 , a2 of
different nonorthogonal atoms inPi , to find a weightw on the setA of atoms inPi , such that
w(a1)5w(a2)51. Let us putAn5$aPA;d(a,a1)5n% for every natural numbern and let us
definew by induction.

I. w(a1)51.
II. Let us suppose that there is a natural numbern>0 such thatw is defined onA0ø•••øAn .

Every element ofAn11 belongs to some blockB in Pi such thatBùAnÞ0” . For every such block
B we haveBùAn5$aB%. If w(aB)51, we putwuBùA\An50. If w(aB)50, we can choose~B
has at least three atoms! properly abBPBùA\An and putw(bB)51,wuBùA\bB%50. Properly
means that ifn5d(a2 ,a1)22 thenbB is chosen such that it does not belong to the same block as
a2 and if n5d(a2 ,a1)21 thenbB5a2 .

Let us present examples demonstrating differences in properties of state space.
Proposition 3.11:Let us consider the following conditions.
~1! The set of two-valued states is full.
~2! The set of two-valued states is separating but not full.
~3! The set of two-valued states is unital but not separating.
~4! The set of two-valued states is nonempty but not unital.
~5! The set of two-valued states is empty.
For each of the above conditions there is an orthomodular lattice with only finite three-atomic

blocks, which fulfills it.
Proof: ~1! See Fig. 2.1. It is a Boolean algebra, which obviously has a full set of two-valued

states.
~2! See Fig. 2.2. For every two-valued states we have s(a)1s(b) <„12s(ca)

112s(da)112s(cb)112s(db)…/25„22s(c)2s(d)…/2<3/2. Hences(a)1s(b) <1 and, ac-
cording to Proposition 3.5, this orthomodular lattice has not a full set of two-valued states. The set
S15$s1 ,s2 ,s3% of states given in Fig. 3 fulfills conditions of Lemma 3.7. It can be checked that
the set of all two-valued states ‘‘symmetric’’ to some state fromS distinguish different nonor-
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thogonal atoms. Hence, the set of two-valued states fulfills conditions of Proposition 3.6. A
smaller example of a separating set of states is given in Fig. 3. We can express this orthomodular
lattice as a partition logic on a six-element set of these states—see Fig. 4.1.~Compare with the
representation on the 14-element set of states in Ref. 14!.

~3! See Fig. 2.3. Let us use the previous result. For every two-valued states with s(a1)51
we obtains(a2)5s(b)50, hences(a4)51. Using the symmetry we obtains(a1)5s(a4) for
every two-valued state, hence the set of two-valued states is not separating. The unitality can be
verified routinely.

~4! See Fig. 2.4. For every two-valued states there is aniP$1,2,3% such thats(ai)51 and
therefores(b)50. Hence, the set of two-valued states is not unital. Existence of a two-valued
state can be verified routinely.~Let us note that if we paste ‘‘sides of the triangle’’ not only forb
but for the whole block we obtain a smaller example with 25 atoms.!

~5! See Fig. 2.5. According to part~3! of this proof,s(a1)5s(a2)5s(a3)5s(a4) for every
two-valued states. Hence all these values are equal to 0 ands(b)51. The desired example we
obtain by pasting this orthomodular lattice with the orthomodular lattice from Fig. 2.4 forb’s or,
more effectively, by pasting for blocks containingb’s anda2’s.

IV. SUBORTHOLATTICES OF H3

There are only several types of finite subortholattices ofH3 . The following characterization of
finite subortholattices ofH3 seems to be in a common knowledge~see, e.g., Ref. 15, Example
1.5.3!, but we do not know a proper reference for its proof.

Lemma 4.1: Let L be a subortholattice of H3 and let lines a1, a2, a3, bPL be such that a1, a2,
a3 are mutually orthogonal and b'”a1, a2, a3. Then there is a line cPL such that c'”a3 and the
angle/~c,a3! is greater than/~b,a3!.

Proof: Let us choose the system of coordinates such thata15Sp~1,0,0!, a25Sp~0,1,0!,
a35Sp~0,0,1!, b5Sp(x,y,z), such thatx,y,z.0. SinceL is a subortholattice ofH3 , the following
elements belong toL:

FIG. 3. Separating set of two-valued states on an orthomodular lattice from Fig. 2.2.~only atoms in which the correspond-
ing state is equal to 1 are marked!.
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b̄5~a1~a2!`b85Sp~y,2x,0!,

c5~a1~a3!`~b~b̄!5Sp~x1y2/x,0,z!.

Hence,

0,cos/~c,a3!5
z

A~x1y2/x!21z2
,

z

Ax21y21z2
5cos/~b,a3!.

Theorem 4.2:Let L,H3 be a finite orthomodular lattice. Then L is a subortholattice of H3 if
and only if exactly one of the following possibilities is fulfilled.

~1! L5$0,1%, i.e., L is a one-atomic Boolean algebra;
~2! L5$0,a,a8,1% for some line aPH3, i.e., L is a two-atomic Boolean algebra.
~3! L 5 $0,a1 ,a2 ,a3 ,a18 ,a28 ,a38,1% for some orthogonal set$a1,a2,a3% of lines in H3, i.e., L is

a three-atomic Boolean algebra.
~4! L5$0,a,a8,1%øGøG8ø$a~b;bPG%ø$a8`b8;bPG% for some line aPH3 and some at least

two-element set G of mutually nonorthogonal atoms orthogonal to a, i.e., L is a finite pasting of at
least two three-atomic Boolean algebras for a given atom.

Proof: It is easy to see that each of these conditions excludes the others and gives a subortho-
lattice ofH3 . Let us suppose that there is a finite subortholatticeL of H3 that fulfills no condition
~1!–~4!, and seek a contradiction. There are three mutually nonorthogonal linesa,b,cPL. Let
d35(a~b)8PL. SinceL is finite, there is a lineePL such that/(e,d3) is the greatest among all
lines fromL nonorthogonal tod3 . Sincea'” b there is ad1P$a,b% such thatd1'” e,e8 ` d38 . Let us
putd2 5 d18 ` d28 P L. Hence, linesd1 ,d2 ,d3 aremutually orthogonal ande'” d1 ,d2 ,d3 . According
to Lemma 4.1, there is an elementfPL such thatf'” d3 and/( f ,d3),/(e,d3)—this contradicts
the selection ofe.

Greechie diagrams of finite subortholattices ofH3 are given in Fig. 5.
Corollary 4.3: Every finite subortholattice of H3 has a full set of two-valued states.
Proof: It follows from Theorem 4.2 and Proposition 3.10.

FIG. 4. Various representations of an orthomodular lattice from Fig. 2.2.

FIG. 5. Greechie diagrams of finite subortholattices ofH3 .
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As concerns infinite subortholattices ofH3 , there is a countable subortholattice ofH3 without
any two-valued states~e.g., generated by finite sets without any two-valued state—see Corollary
7.5!. On the other hand, there are infinite subortholattices with a full set of two-valued states, e.g.
infinite pastings of three-atomic Boolean algebras for a given atom@compare condition~4! of
Theorem 4.2#. It seems to be an open problem whether there is an infinite subortholattice ofH3
that is not of this type and that has a two-valued state. Moreover, there might be an interesting
connection between the nonexistence of a two-valued state and density inR3. This might give
better insight into the nature of subortholattices ofH3 and the connection with the famous Gleason
theorem,16,10which ~among other things! states that there is no two-valued state onH3 .

It should be noted that Greechie diagrams of subortholattices ofH3 are relatively
‘‘complex’’—the distance of every pair of elements is at most 2~every pair of different lines has
a common orthogonal line!. Hence, it is usually difficult to give a Greechie diagram of an infinite
subortholattice ofH3 .

V. REALIZABILITY IN H3

The study of finite suborthoposets ofH3 is more complicated. We would like to know whether
a Greechie logic is orthorepresentable inH3 . The first problem erases with the intrinsic geometri-
cal structure ofH3 .

Definition 5.1:Let P be an orthomodular poset. We say thatP is weakly realizablein H3 if
there is a mappingh: P→H3 , such that, for everya,bPP,

~1! h(0)50;
~2! h(a8)5h(a)8,
~3! h(a)<h(b) whenevera<b; and
~4! h(a)Þ0 wheneveraÞ0.
If, moreover, the mappingh fulfills for every a,bPP the following occurs:
~48! h(a)Þh(b) wheneveraÞb,
we say thatP is realizable. The seth(P) is called a~weak! realizationof P in H3 .
Weak realizability means that all orthogonality relations remain true in the images, and, since

every nonzero element has a nonzero image, if the set of two-valued states onG#P is empty~not
unital, resp.! then the set of two-valued states onh(G) is empty~not unital., resp.!, too. Realiz-
ability means that, moreover, the mapping is one to one. Hence, if the set of two-valued states on
G#P is not separating~full, resp.!, then the set of two-valued states onh(G) is not separating
~full, resp.!, too. A realization need not be a suborthoposet because a new orthogonal pairs might
appear in the images.

Let us give a characterization of orthomodular posets weakly realizable inH3 .
Lemma 5.2: Let PP be the pasting of a setP of orthomodular posets and let there is a

mapping h: PP→H3 such that h(P) is a weak realization of P for every PPP . Then h(PP ) is a
weak realization of PP in H3. In particular, every horizontal sum of orthomodular posets weakly
realizable in H3 is weakly realizable in H3.

Proof: Obvious.
Proposition 5.3: An orthomodular poset is weakly realizable in H3 if and only if every its

block is finite and at most three-atomic.
Proof⇒: Every orthogonal set of nonzero elements in an orthomodular posetP corresponds

to an orthogonal set of nonzero elements inH3 . Since such a set inH3 is at most a three-element,
every block ofP is finite with at most three atoms.

⇐: Let P be an orthomodular poset with only finite, at most three-atomic blocks. Let us
decomposeP into the horizontal sum( iPIPi of minimal horizontal summands. Let us choose a
line lPH3 and let us define a mappinghi for every iPI as follows:h(0)50, h(1)51; if Pi is a
four element, then let us take an atomaiPPi and puth(ai)5 l , h(ai8) 5 l 8; if Pi has more than
four elements then every block has three atoms, and we puth(a)5 l , h(a8)5 l 8 for every atom
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aPPi . It is easy to see thathi(Pi) is a weak realization ofPi in H3 and thatø iPIhi(Pi) is a weak
realization ofP in H3 .

The situation with realizability is more difficult and we do not know a characterization of it.
Some results we will present in the next section. Let us now present another necessary condition.

Proposition 5.4: Every orthomodular poset realizable in H3 is a lattice.
Proof: Let us suppose thatP is an orthomodular poset with a loop of order 4 realizable inH3

and seek a contradiction. There are nonzero mutually different elementsa1'a2'a3'a4'a1 in P
~see Fig. 6.2!. Since for every pair of different nonzero elements there is only one nonzero element
in H3 orthogonal to them,a15a3—a contradiction.

Examples of orthomodular posets nonrealizable inH3 are given in Fig. 6. The first has a
four-atomic block, the second is not a lattice. The third example is much more subtle and depends
on the following intrinsic property ofH3 .

Lemma 5.5: Let L be a realization of an orthomodular lattice given inFig. 2.2. Then
/~a,b!P^arccos 1/3,p/2!. On the other hand, for everyaP^arccos 1/3,p/2! there is a realization
of L such that/~a,b!5a.

Proof [See also Ref. 17]:Let us choose a coordinate system such thatc5Sp~1,0,0!,
d5Sp~0,1,0!. Hencee5Sp~0,0,1!. Sinceca'c anddb'd, there arex,yPR\$0% such that

ca5Sp~0,y,1!, db5Sp~x,0,1!.

Sincecb'c, ca andda'd, db , a'ca , da , andb'cb , db , we obtain

cb5Sp~0,21,y!, da5Sp~21,0,x!,

a5Sp~xy,21,y!, b5Sp~21,xy,x!.

Thus, using an elementary calculus,

cos/~a,b!5
uxyu

A~11x21x2y2!~11y21x2y2!
PS 0, 13L .

For an arbitraryaP~arccos 1/3,p/2! we can solve this equation and obtain, e.g.,

x5y5A1/cosa21

2
2AS 1/cosa

2 D 221.

For a5arccos 1/3 we have exactly one realization~two different solutions given by the sym-
metry of the Greechie diagram!. In Fig. 4.2 there is an example such that symmetries of the
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realization are easily seen~with respect to the axiso of a andb and to planes Sp$a,b%, Sp$o,a
3b%!. ForaP~arccos 1/3,p/2! we have two different realizations~each symmetric with respect to
the axis ofa andb!.

The orthomodular lattice given in Fig. 6.3 is not realizable, because for every triplea1 , a2 ,
a3PH3 of mutually orthogonal nonzero elements and for everybPH3 there is aniP$1,2,3% such
that/(b,ai)<arccos 1/).

Let us note that in Ref. 17 the above lemma is also stated fora5p/2. This is not true, because
then eitherx50 or y50 and we obtain only a weak realization.

VI. SUBORTHOPOSETS OF H3

We would like to present examples of orthomodular lattices orthorepresentable inH3 . To
ensure that an orthomodular lattice is orthorepresentable inH3 it suffices to find its realization in
H3 such that there are not ordered~orthogonal, resp.! pairs other than it was intended, e.g., it can
be easily verified that an orthomodular lattice given in Fig. 2.2 is orthorepresentable inH3 ~see
Fig. 4.2!. We present partial results that orthomodular lattices are orthorepresentable~realizable,
resp.! in H3 . The idea of their proofs is that we can find uncountable many~continuum! weak
realizations while only for a countable many of them some images coincide or, in case of
orthorepresentability, give a new ordered~orthogonal, resp.! pair.

We show that there is a large class of infinite suborthoposets ofH3 with a full set of two-
valued states.

Proposition 6.1: Every horizontal sum of countable many countable orthomodular lattices
orthorepresentable (realizable, resp.) in H3 is orthorepresentable (reliazable, resp.) in H3.

Proof: It suffices to prove this proposition for two summands~we can proceed by induction!.
Let L1 , L2 be their orthorepresentations~realizations, resp.! in H3 . It suffices to prove that we can
rotateL2 to L̄2 such thata1£za2 anda2#” a1 for everya1PL1\$0,1% and for everya2PL̄2\$0,1%,
i.e. such thatl#” ø(L1\$1%) for every linelPL̄2 . If L25$0,1% then the proof is complete. Let us
suppose thatL2Þ$0,1%. Then there is a linel 0PL2 . Since ø(L1\$1%)ÞR3 there is a line
l̄ 0#” ø~L1\$1%! and we can rotateL2 such thatl 0 goes tol̄ 0 . Rotating now the image ofL2 around
l̄ 0 we obtain an uncountable many possibilities, while for only a countable many of them there is
a line l̄PL̄2 such thatl̄#ø(L1\$1%). Indeed, for everylPL2 all possible positions ofl̄ in a unit
sphereS(0,1) inR3 form a circleC with the center onl̄ 0 , while, for everyaPL1\$1%, aùS(0,1)
is either a two-element set~a is a line! or a circle not identical toC; henceaùS(0,1)ùC is at
most a two-element.

Proposition 6.2: Every pasting for an atom of a pair of countable orthomodular lattices
orthorepresentable (realizable, resp.) in H3 is orthorepresentable (realizable, resp.) in H3.

Proof: If we paste for an atom in a two-atomic block then we obtain a horizontal sum and the
proof follows from Proposition 6.1. Let us suppose that we paste for atoms in three-atomic blocks.
Let L1 , L2 be orthorepresentations~realizations, resp.! in H3 of given orthomodular lattices such
that L1ùL2{ l 0 , wherel 0 represents the atom in bothL1 , L2 for which we paste. It suffices to
prove that there is a rotationL̄2 of L2 around the linel 0 such thata1#” a2 anda2#” a1 for every
a1 P L1\$0,1,l 0 ,l 08% and for everya2 P L2\$0,1,l 0 ,l 08%, i.e., such thatl#” ø(L1\$1,l 08%) for every
line lPL̄2 . This gives only countable many restrictions to uncountable possible positions ofL̄2 ,
hence the proof is complete.

Corollary 6.3: Every countable Greechie logic with at most three atomic blocks and without
any loop is orthorepresentable in H3.

Proof: Every countable Greechie logic with only finite at most three atomic blocks is a
horizontal sum of subsequent countable pastings of finite three-atomic Boolean algebras for an
atom. The rest follows from Theorem 4.2, Proposition 6.2~using the induction! and Proposition
6.1.

According to Proposition 3.10, Greechie logics from the above Corollary have a full set of
two-valued states.
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Lemma 6.4: Let L1 be a countable orthomodular lattice orthorepresentable (realizable, resp.)
in H3 and L2 be an orthomodular lattice given in Fig. 7.1 such that L1ùL25$0,a,b,a8,b8,1% and
aÞb are nonorthogonal atoms in L1 (in its realization, resp.). Then the pasting of L1 and L2 is
orthorepresentable (realizable, resp.) in H3.

Proof: Let us suppose thatL1 is an orthorepresentation~realization, resp.! in H3 of a given
orthomodular lattice. Ifa ~b, resp.! is a two-dimensional subspace ofH3 thena ~b, resp.! is a part
of a four-element horizontal summand, and this summand might be considered as a part ofL2 .
The proof then follows from Proposition 6.2. Let us suppose thata, b are lines. Let us consider all
atomsca<a8. We have uncountable many possibilities that fill in the unit sphereS(0,1) a circle
Ca . Of course,ca<a8 andac 5 a8 ` ca8 < a8 but all other ordering ofca andac with elements of
L1\$0,1% can be excluded if we exclude a countable many possibilities. Similarly, if positions ofca
fill a circle Ca then positions ofcb'ca , b fill a circle Cb,b8 (a'” b!. Again, there is only a
countable many positions ofca for which eithercb or bc 5 b8 ` cb8 is ordered with some element
of L1\$0,1,b8%. Finally, it can be shown that positions ofc fill a smooth curve onS(0,1), which
is not a circle. Hence, there is a possibility to chooseca such that we obtain the desired orthorep-
resentation~realization, resp.!.

Proposition 6.5: Let n>5 be a natural number and let B1,...,Bn be finite three-atomic Boolean
algebras such thatBiùBi11 5 $0,ai ,ai8,1% for every iP$1,...,n%, where Bn115B1 and a1,...,an are
mutually different atoms. Then the pasting of$B1,...,Bn% (so-called n-cycle) is orthorepresentable
in H3.

Proof: It follows from Proposition 6.2 and from Lemma 6.4.

VII. KOCHEN–SPECKER-TYPE CONFIGURATIONS

We will give several examples of Kochen–Specker-type configurations that arise from
Greechie diagrams. Some of these examples has been already used in the literature in the attempt
to find a subset ofH3 without a two-valued state. We present the connection to Greechie diagrams
~this gives a better geometric insight!, show a nonexistence of a ‘‘large’’ set of two-valued states
for various concepts, and, moreover, we do not stop in proving weak realizability but we discuss
the real number of elements.

Proposition 7.1: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not full.

Proof: Let us consider a suborthoposetL of H3 given in Fig. 4.2. It is an orthorepresentation
of an orthomodular lattice given in Fig. 2.2, it is 28 element~13 atomic!, and the set of two-valued
states onL is not full @see the proof of Proposition 3.11.~1!#. In fact, in the proof of Proposition
3.11~1! it was shown that there is no two-valued state on the eight-element set
$a,ca ,da ,c,d,cb ,db ,b%, such thats(a)5s(b)51 ~a reformulation of fullness—see Proposition
3.5!. This orthomodular lattice can be orthogenerated, e.g., by the six-element set
$a,ca ,cb ,b,db ,da% and generated, e.g., by the three-element set$a,cb ,db%.

FIG. 7. Greechie diagrams of orthomodular lattices weakly realizable inH3 .
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Proposition 7.2: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not separating.

Let us note that we can take a realization of an orthomodular lattice given in Fig. 2.2, such
that we obtain an orthorepresentation of the orthomodular lattice given in Fig. 2.3, but the set of
~ortho!generators is larger in this case.

Proposition 7.3: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is not unital.

Proof: Let us consider an orthomodular latticeL given in Fig. 7.3. It is an orthomodular lattice
without a unital set of two-valued states. Indeed, for every two-valued states on L with s(a1)51
we haves( f )5s(a2)5s(a5)50, s(ā2)5s(ā5)51, s(ā3)5s(ā4)50, s(a3)5s(a4)51-a contra-
diction. It has 132 elements~65 atoms! and a 40-element subset without a unital set of states~six
hidden in every circle and all markedai ’s andāi ’s!. Let us find a weak realization ofL. It can be
done as follows: Putf5Sp~0,0,1!, a15Sp~1,0,0!, ā15Sp~0,1,0!, and let ak ,āk(k52,...,5) be
images ofa1 ,ā1 in rotations aroundf aboutk•72°. Find a realization of the orthomodular lattice
given in Fig. 2.2 such that the angle of images ofa,b is 72° ~see the proof of Lemma 5.5! and
rotate this realization to the following pairs of lines: (a1 ,a2), (ā2 ,ā3), (a3 ,a4), (ā4 ,ā5), (a5 ,a1)
~i.e., a goes to the first andb to the second line for every pair!. It can be checked that an
orthomodular poset orthogenerated by this weak realization is finite.~In fact, it is a weak realiza-
tion of an orthomodular lattice given in Fig. 7.4 by the same way.!

It can be shown that if we take the realization of the orthomodular lattice given in Fig. 2.2
such that the angle betweena andb is equal to 72° by the expression given in the proof of Lemma
5.5 as the first copy and if the second and the third copy arise by rotations around the axis of the
plane given bya and b such thatb coincides witha of the next copy, then some elements
coincide:

~ca ,c,cb ,bc ,b,bd ,db!15~d,db ,da ,ad ,a,ac ,ca!2 ,

~c,db ,d,da ,e!15~ca ,d,c,e,cb!3 .

~The index denotes the number of the copy.! Hence, the weak realization of the orthomodular
lattice from the above proof gives a 29-element subset ofH3 without a unital set of two-valued
states and the suborthoposet orthogenerated by it has 104 elements~51 atoms!, is orthogenerated
by a 16-element set and generated by a four-element set~e.g., elementsa, cb , db of somea????b
and some element from the inner ‘‘pentagon’’!. The ‘‘almost’’ Greechie diagram~20 points that
belong to exactly one edge are for simplicity omitted! of this suborthoposet ofH3 ~realization of
the orthomodular lattice given in Fig. 7.4! is given in Fig. 8, with

a15Sp~1, 0, 0!,

a25Sp~A32A5, A51A5, 0!,

a35Sp~2A31A5, A52A5, 0!,
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a45Sp~2A31A5, 2A52A5, 0!,

a55Sp~A32A5, 2A51A5, 0!,

ca15Sp~0,2A211A5, 1!,

da15Sp~0, A2,A221A5!,

c15Sp~AA5, A21A5, A31A5!,

d15Sp~2AA5,2A221A5, A2!,

cb15Sp~2A51A5, A32A5,2A221A5!,

db15Sp~AA5,2A221A5, A2!,

e15Sp~AA5, 2A21A5, A32A5!,

c25Sp~2AA5, A21A5, A31A5!,

cb25Sp~2AA5, 2A21A5, A32A5!,

e25Sp~A51A5, A32A5,2A221A5!,

f5Sp~0, 0, 1!.

FIG. 8. ‘‘Almost’’ Greechie diagram of a suborthoposet ofH3 without a unital set of two-valued states.
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Elements of the 29-element subset without a unital set of two-valued states are all marked points
that are not crossed, a set of orthogenerators is e.g., the set of vertices of both pentagons withai ’s
and with the middle point, a set of generators is marked by circles.

It should be noted that in Refs. 8 and 18 there is an example of an 11-element set of lines
orthogenerating a 25-element set of lines and a 76-element~37-atomic! suborthoposet ofH3
without a unital set of two-valued states. This suborthoposet is generated by a three-element set.
The Greechie diagram of this example does not seem to provide an easy survey, hence we omit it.
A more detailed description of this example is given in Sec. VIII.

Proposition 7.4: There is a finite suborthoposet of H3 such that the set of two-valued states on
it is empty.

Proof: Let us consider an orthomodular latticeL, which is the pasting of the orthomodular
lattice given in Fig. 7.3 fora1 and of the orthomodular lattice given in Fig. 7.4 for its middle point.
It is an orthomodular lattice without any two-valued state. Indeed, ifs is a two-valued state onL
then s(a1)50 ~see above!. Analogously from the other diagram,s(a1)51—a contradiction. It
has 374 elements~186 atoms! and a 110-element subset without any two-valued state~six ‘‘hid-
den’’ in every circle and all marked except two of them—a1 and ā1!. According to Proposition
6.2, this orthomodular poset is weakly realizable inH3 .

It can be shown that we can paste for the whole block and obtain a weak realization, which is
a union of weak realizations of two copies of an orthomodular lattice given in Fig. 7.4. Hence, this
suborthoposet has 200 elements~99 atoms! and a 58-element subset without any two-valued state.

It should be noted that in Ref. 6 there is an example of a 33-element set of lines without any
two-valued state. Direction vectors of these lines arise by all permutations of coordinates from
~0,0,1!, ~0,61,1! ~0,61,&!, and~61,61,&!. This set of lines orthogenerates a suborthoposet of
H3 with 116 elements~57 atoms!. Direction vectors of remaining lines arise by all permutations of
coordinates from~61,63,&!. This suborthoposet ofH3 has a 17-element set of orthogenerators
~e.g., lines with direction vectors~0,0,1!, ~0,1,0! and all coordinate permutations from~0,1,&!,
~1,61,&!! and a three-element set of generators@e.g., lines with direction vectors~1,0,0!, ~1,1,0!,
~&,1,1!#. The ‘‘almost’’ Greechie diagram~24 points that belong to exactly one edge are, for
simplicity, omitted! of this example is given in Fig. 9~one edge is denoted by a circle!. The
above-mentioned three-element set of generators is marked by circles.

Corollary 7.5: There is a three-element set of lines in H3 such that no subortholattice of H3
containing it has a two-valued state.

It seems to be an open question whether every three-element set of mutually nonorthogonal
lines inH3 generates a subortholattice without any two-valued state. The least numbers in con-
structions are given in Table I.

Let us note that the examples in Proposition 7.1 and in Proposition 7.2 appeared in Ref. 17,
the example in Fig. 7.4 appeared~not explicitly! in Refs. 17 and 5 as a part of their construction.
In Ref. 19 the author uses~not explicitly! the orthomodular lattice given in Fig. 7.3 and paste three
copies to distinct atoms of a block obtaining thus an orthomodular lattice without any two-valued
state~however, his estimation of lines does not seem to be correct!.

In Ref. 7 the author uses weak realizability of an orthomodular lattice in Fig. 7.5 whenever we
represent elementsa, b by lines inH3 , such that their angle is less than 45°. This leads to the
construction of an orthomodular lattice with 392 elements~146 atoms! weakly realizable inH3
and ~at most! 130-element set of lines without any two-valued state.

VIII. DISCUSSION OF PHYSICAL RELEVANCE

In this final section we shall give a brief review of the physical relevance of the above
findings. The nonexistence of two-valued measures on certain finite propositional structures in
three-dimensional Hilbert spaces has first been explicitly demonstrated by Kochen and Specker.17

It is strongly recommended that this original account be read. Their result has given rise to a
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number of interpretations, by Kochen and Specker and others. A detailed overview of the history
of the subject can, for instance, be found in the reviews by Mermin7 and Brown.20

What does it physically mean thatthree nonorthogonal rays in three-dimensional Hilbert
space are sufficient to generate a finite system of rays that have no two-valued state? To state the
associated Kochen–Specker paradox explicitly, let us associate any one-dimensional subspace
Sp(v) spanned by a nonzero vectorv with the proposition that the physical system is in a pure
state associated with that subspace. That is,

Sp~1,0,0!5a, Sp~1,1,0!5b, Sp~A2,1,1!5c,

FIG. 9. ‘‘Almost’’ Greechie diagram of a suborthoposet ofH3 without any two-valued state@e.g., 1!2 denotes
Sp~1,21,&!#.

TABLE I. Numbers of elements of constructed propositional structures inH3 without a ‘‘large’’ set of two-valued states.

‘‘Large:’’ Full Separating Unital Nonempty
Example~figure! 4.2 7.2 cf. Refs. 8,18 8 9

Elements of a suborthoposet 28 56 76 104 116
Atoms of a suborthoposet 13 27 37 51 57
Lines 8 17 25 29 33
Orthogenerators 6 9 11 16 17
Generators 3 4 3 4 3
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wherea, b, andc are propositions. Ifa ~similar for b andc! is measured, then we associate the
logical value ‘‘true’’ or ‘‘false’’ with the two-valued state functions(a)51 ands(a)50, respec-
tively. a, b, c generate the propositional structure derived by Peres6 ~cf. also Ref. 21, pp. 186–
190!. That is, ifv andw are two vectors in three-dimensional Hilbert space corresponding to the
propositionspv andpw , respectively, then the vector productv3w corresponds to the proposition
~pv~pw)8. In particular,

Sp~1,0,0!5a,

Sp~1,1,0!5b,

Sp~A2,1,1!5c,

Sp~0,0,1!5„Sp~1,0,0!~Sp~1,1,0!…85~a~b!8.

Sp~0,1,21!5„Sp~1,0,0!~Sp~A2,1,1!…85~a~c!8,

Sp~0,1,0!5„Sp~1,0,0!~Sp~0,0,1!…85„a~~a~b!8…8,

Sp~0,1,1!5„Sp~1,0,0!`Sp~0,1,21!…85„a~~a~c!8…8,

Sp~1,21,0!5„Sp~1,1,0!~Sp~0,0,1!…85„b~~a~b!8…8,

Sp~21,A2,0!5„Sp~A2,1,1!~Sp~0,0,1!…85„c~~a~b!8…8,

Sp~A2,21,21!5„Sp~A2,1,1!~Sp~0,1,21!…85„c~~a~c!8…8,

Sp~21,0,A2!5„Sp~A2,1,1!~Sp~0,1,0!…85„c~~a~~a~b!8!8…8,

Sp~A2,1,0!5„Sp~0,0,1!~Sp~21,A2,0!…85~~a~b!8~„c~~a~b!8…8!8,

Sp~1,A2,0!5„Sp~0,0,1!~Sp~A2,21,21!…85~~a~b!8~„c~~a~c!8!)8)8,

Sp~1,0,A2!5„Sp~0,1,0!~Sp~A2,21,21!…85~~a~~a~b!8…8~„c~~a~c!8…8!8,

Sp~A2,1,21!5„Sp~0,1,1!~Sp~21,A2,0!…85„a~~a~c!8…8~„c~~a~b!8))8)8,

Sp~A2,0,1!5„Sp~0,1,0!~Sp~21,0,A2!…85„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8,

Sp~A2,21,0!5„Sp~0,0,1!~Sp~1,A2,0!…85„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8,

Sp~A2,21,1!5„Sp~0,1,1!~Sp~21,0,A2!…85„„a~~a~c!8…8~~c~„a~~a~b!8…8!8…8,

Sp~21,1,A2!5„Sp~1,1,0!~Sp~A2,0,1!…85~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8,

Sp~0,A2,21!5„Sp~1,0,0!~Sp~21,1,A2!…8

5„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8!8)8…8,

Sp~A2,0,21!5„Sp~0,1,0!~Sp~1,0,A2!…8

5„„a~~a~b!8…8~~„a~~a~b!8…8~„c~~a~c!8…8!8…8,
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Sp~1,21,A2!5„Sp~1,1,0!~Sp~21,1,A2!…8

5„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8!8)8…8,

Sp~0,1,A2!5„Sp~1,0,0!~Sp~0,A2,21!…8

5~a~„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~0,A2,1!5„Sp~1,0,0!~Sp~1,21,A2!…8

5~a~„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~21,21,A2!5„Sp~1,21,0!~Sp~A2,0,1!…8

5~„b~~a~b!8…8~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8,

Sp~0,21,A2!5~Sp~1,0,0!~Sp~0,A2,1!!8

5„a~~a~„b~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~1,1,A2!5„Sp~1,21,0!~Sp~0,A2,21!…8

5~„b~~a~b!8…8~„a~~b~„„a~~a~b!8…8~~c~„a~~a~b!8…8!8…8!8…8!8,

Sp~21,A2,21!5„Sp~A2,1,0!~Sp~0,1,A2!…8

5„~~a~b!8~„c~~a~b!8…8!8~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~21,A2,1!5„Sp~A2,1,0!~Sp~0,21,A2!…8

5~~~a~b!8~„c~~a~b!8…8!8~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8!8)8,

Sp~1,A2,21!5~Sp~A2,21,0!~Sp~0,1,A2!!8

5„„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8~~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8,

Sp~21,0,1!5„Sp~0,1,0!~Sp~21,A2,21!…8

5„„a~~a~b!8…8~„~~a~b!8~„~~a~b!8…8!8

~~a~„a~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8)8,

Sp~1,A2,1!5„Sp~A2,21,0!~Sp~0,21,A2!…8

5~„~a~b!8~~~a~b!8~„c~~a~c!8…8!8…8

~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8!8)8,
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Sp~1,0,1!5„Sp~0,1,0!~Sp~21,A2,1!…8

5„„a~~a~b!8…8~~~~a~b!8~„c~~a~b!8…8!8

~„a~~a~„b~~b~„„a~~a~b!8…8

~~c~„a~~a~b!8…8!8…8!8…8!8…8!8…8.

Suppose, for the sake of contradiction, that each one of the above 33 propositions corresponds
to an ‘‘element of physical reality’’.22 That is, suppose that its value is either ‘‘true’’~exclusive!
or ‘‘false,’’ irrespective of whether it has been actually measured or just counterfactually inferred.
Let us further assume with Peres6,21 that—provided these ‘‘elements of reality’’ exist—Sp~0,0,1!
5Sp~1,0,1! 5Sp~0,1,1! 5Sp~1,21,&! 5Sp~1,0,&! 5Sp~&,1,1! 5Sp~&,0,1! 5Sp~1,1,&!
5Sp~0,1,&! 5Sp~1,&,1! 5‘‘true.’’ One can follow Peres’ arguments to show that—provided
these ‘‘elements of reality’’ exist—all other rays belong to triads that are orthogonal to the above
rays. Therefore, these latter rays must correspond to propositions whose value is ‘‘false.’’ In
particular, Sp~1,0,0!5Sp~0,&,1!5Sp~0,21,&!5‘‘false,’’ associate with s„Sp~1,0,0!…
5s„Sp~0,&,1!…5s„Sp~0,21,&!…50. Thus, s„Sp~1,0,0!…1s„Sp~0,&,1!…1s„Sp~0,21,&!…5010
1050. But Sp~1,0,0!, Sp~0,&,1!, and Sp~0,21,&! are mutually orthogonal. This is in contradic-
tion to the assumption that for any orthogonal triad spanning the entire Hilbert space, the sum of
the measures should be one@cf. Definition 3.1.~4!#. Notice that in order to arrive at this Kochen–
Specker paradox, we had to explicitly assume the existence of the ‘‘elements of reality,’’ irre-
spective of whether they have~or could have! actually been measured or not.

What physical use can be a paradox? How can one measure a contradiction? Indeed, what can
actually be measured is merelyone triplet of propositions corresponding to some of the triads of
mutually orthogonal rays. Such a measurement can be performed with the operator discussed by
Peres, or with an arrangement of beam splitters discussed by Recket al.23

For instance, afterc is found to be ‘‘true’’ @corresponding tos(c)51#, then measurement of
the original values ofa or b is no longer possible. However, suppose one would be willing to
believe in the existence of ‘‘elements of reality,’’22,24 which could merely becounterfactually
inferred. Then one could for instance—at least in principle—‘‘measure’’ all 16 orthogonal triads
by the production of a state with 16 entangled subsystems. On each one of the 16 different
entangled subsystems one could measure one of the 16 different orthogonal triads. This is similar
to a proposal by Greenberger, Horne, and Zeilinger,25 which use three particles and eight-
dimensional Hilbert space. Indeed, only in such a way—namely by~counterfactually! inferring
noncomeasurable propositions—one would encounter a complete Kochen–Specker contradiction.

As has been already proven in the Kochen and Specker original work~cf. Ref. 17, pp. 82–85,
Theorem 4!, the notion of tautology is connected to a classical~Boolean! imbedding of a partial
Boolean algebra. Indeed, there exist propositions that are tautologies in the classical~Boolean!
algebra but that are not tautologies in the partial Boolean algebra if and only if the partial Boolean
algebra does not have a unital set of two-valued states and thus cannot be imbedded into a
classical~Boolean! algebra.

This is true for all partial Boolean algebras, in particular for orthomodular posets. Notice that
the above result does not imply that every propositional structure giving rise to a~classical!
Boolean tautology that is no quantum tautology also has no two-valued measure~cf. below!.

Until now, the lowest number of rays necessary to produce a classical tautology that is not
always true quantum mechanically is due to Schu¨tte.8,18 The 11 rays used by Schu¨tte can also be
generated by the three vectors~1,0,0!, ~1,1,0!, and ~&,1,1! ~corresponding toa, b, andc! used
before. Indeed,d5Sp~0,1,21!5„Sp~1,1,0!~Sp~&,1,1!…85(a~c)8 and

a15Sp~1,0,0!5a,

a25Sp~0,1,0!5„Sp~1,0,0!~Sp~0,0,1!…85„a~~a~b!8…8,
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b15Sp~0,1,1!5„Sp~1,0,0!~Sp~0,1,21!…85~a~d!8,

b25Sp~1,0,1!5„Sp~0,1,0!~Sp~21,1,1!…85~„a~~a~b!8…8~~b~d!8!8,

b35Sp~1,1,0!5b,

c15Sp~1,0,2!5„Sp~0,1,0!~Sp~2,1,21!…85„„a~~a~b!8…8~~~a~d!8~„b~~a~d!8…8!8…8,

c25Sp~2,0,1!5„Sp~0,1,0!~Sp~21,0,2!…85„„a~~a~b!8…8~~„a~~a~b!8…8~„~a~d!8

~~~a~d!8~„b~~a~b!8…8!8…8)8…8,

d15Sp~21,1,1!5„Sp~1,1,0!~Sp~0,1,21!…85~b~d!8,

d25Sp~1,21,1!5„Sp~1,1,0!~Sp~0,1,1!…85„b~~a~d!8…8,

d35Sp~1,1,21!5„Sp~0,1,1!~Sp~1,21,0!…85~~a~d!8~„b~~a~b!8…8!8,

d45Sp~1,1,1!5„Sp~0,1,21!~Sp~1,21,0!…85~d~„b~~a~b!8…8!8,

where

Sp~2,1,21!5„Sp~0,1,1!~Sp~1,21,1!…85~~a~d!8~„b~~a~d!8…8!8,

Sp~21,0,2!5„Sp~0,1,0!~Sp~22,1,21!…85~„a~~a~b!8…8~„~a~d!8~~~a~d!8

~„b~~a~b!8…8)8…8)8,

Sp~2,21,1!5„Sp~0,1,1!~Sp~1,1,21!…85„~a~d!8~~~a~d!8~„b~~a~b!8…8!8…8.

As we have mentioned above, there is not a unital set of two-valued states on a suborthoposet
orthogenerated by these rays~e.g., there is no two-valued states with s„Sp~1,0,0!…51!. On the
other hand, a two-valued can be defined bys„Sp~0,1,0!… 5s„Sp~0,1,1!… 5s„Sp~1,1,0!…
5s„Sp~1,1,1!… 5s„Sp~1,1,2!… 5s„Sp~1,2,1!… 5s„Sp~2,1,1!… 5s„Sp~1,2,21!… 5s„Sp~21,2,1!…
5s„Sp~1,5,2!… 5s„Sp~2,5,1!… 5s„Sp~21,5,2!… 5s„Sp~2,5,21!… 5s„Sp~1,5,22!… 5s„Sp~22,5,1!…
51 and s„Sp~1,0,0!… 5s„Sp~0,0,1!… 5s„Sp~1,0,1!… 5s„Sp~0,1,21!… 5s„Sp~1,0,21!… 5s„Sp~1,
21,0!… 5s„Sp~1,1,21!… 5s„Sp~1,21,1!… 5s„Sp~21,1,1!… 5s„Sp~21,21,2!… 5s„Sp~21,2,21!…
5s„Sp~2,21,21!… 5s„Sp~1,21,2!… 5s„Sp~21,1,2!… 5s„Sp~2,1,21!… 5s„Sp~2,21,1!…
5s„Sp~1,0,2!…5s„Sp~2,0,1!…5s„Sp~21,0,2!…5s„Sp~2,0,21!…5s„Sp~1,25,2!…5s„Sp~2,25,1!…50.

Consider now the following propositions~notice that any binary operation is either performed
by orthogonal rays or by a ray and an orthocomplement of another ray, such that these rays are
orthogonal!:

f 15d1→b285~d1`b2!8,

f 25d1→b385~d1`b3!8,

f 35d2→a2~b25„d2`~a2~b2!8…8,

f 45d2→b385~d2`b3!8,

f 55d3→b285~d3`b2!8,
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f 65d3→~a1~a2→b3!5~d3`„~a1~a2!8~b3…8!8,

f 75d4→a2~b25„d4`~a2~b2!8…8,

f 85d4→~a1~a2→b3!5~d4`„~a1~a2!8~b3…8!8,

f 95~a2~c1!~~b3~d1!5„~a2~c1!8`~b3~d1!8…8,

f 105~a2~c2!~~a1~b1→d1!5~~a2~c2!8`„~a1~b1!8~d1…8!8,

f 115c1→b1~d25„c1`~b1~d2!8…8,

f 125c2→b3~d25„c2`~b3~d2!8…8,

f 135~a2~c1!~@~a1~a2→b3!→d3#5„~a2~c1!8`~„~a1~a2!8~b3…8~d3!8…8,

f 145~a2~c2!~~b1~d3!5„~a2~c2!8`~b1~d3!8…8,

f 155c2→@~a1~a2→b3!→d4#5„c2`~„~a1~a2!8~b3!8~d4)8…8,

f 165c1→~a1~b1→d4!5~c1`„~a1~b1!8~d4…8!8,

f 175~a1→a2!~b15~a18~a2!~b1 .

The ‘‘implication’’ relation has been expressed asx→y[x8~y[(x`y8)8.
As can be straightforwardly checked, the proposition formed by

F: f 1` f 2`•••` f 16→ f 17,

is a classical tautology. Nevertheless,F is not valid in three-dimensional~real! Hilbert spaceR3,
since f 1 , f 2 ,...,f 165R3, whereasf 175„Sp~1,0,0!…85Sp~0,1,0!~Sp~0,0,1!ÞR3.

The three vectors~1,0,0!, ~1,1,0!, and ~&,1,1! generating the Schu¨tte rays are not mutually
orthogonal. Therefore, the corresponding propositionsa, b, andc are not comeasureable. In the
sense of partial algebras, they cannot be combined by logical operations ‘‘or’’~~!, ‘‘and’’ ~`!,
‘‘not’’ ~8! to form new expressions. Thus, it would be incorrect to state that there exists a classical
tautology in the three variablesa, b, and c, which is no quantum tautology. Indeed, Coray
proved26 that all classical tautologies in three variables are tautologies in all partial algebras, in
particular in the one associated with the logic of quantum observables.

However, also Schu¨tte’s example is counterfactual in nature. Although every operation or
relation is solely defined on comeasurable propositions, the entire formulaF contains 11 non-
comeasurable variables~nonorthogonal rays!. In order to be able to evaluate this formula, one
would have to know the true value of all these 11 variables in parallel. Since they are not
comeasurable, this is possible only by counterfactual inference; in very much the same way as
discussed before in the case of the original Kochen–Specker paradox. Indeed, Corey’s result
shows thatanyclassical~Boolean! tautology that is no quantum tautology will have to rely on at
least four variables that cannot be mutually orthogonal~in R3!, and therefore must be based upon
counterfactual inference.

Finally, let us briefly mention the relevance of these findings to the partition logic of au-
tomata. Corollary 4.3 states that every finite subortholattice ofR3 has a full~and thus separating!
set of two-valued states. Thus, any finite subortholattice ofR3 can be expressed as an automaton
logic. The subortholattices ofR3 that have no two-valued state are infinite.
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