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We use Greechie diagrams to construct finite orthomodular lattices “realizable” in
the orthomodular lattice of subspaces in a three-dimensional Hilbert space such that
the set of two-valued states is not “largéi’e., full, separating, unital, nonempty,
resp). We discuss the number of elements of such orthomodular lattices, of their
sets of(orthggenerators and of their subsets that do not admit a “large” set of
two-valued states. We show connections with other results of this typel 9%
American Institute of Physic§S0022-24886)00409-4

I. INTRODUCTION

Quantum logic, as it has been pioneered by Birkhoff and von Neurh@nsually derived
from Hilbert space. There, the logical primitives, such as propositions and the logical operators
“and,” “or,” and “not” are defined by Hilbert space entities. For instance, consider the three-
dimensional, real Hilbert spade® with the usual scalar product (w): =32 jv,w;, v,weR>.

There, any proposition is identified with a subspaceRdf For instance, the zero vector corre-
sponds to a false statement. Any line spanned by a nonzero vector corresponds to the statement
that the physical system is in the pure state associated with the vector. Any plane formed by the
linear combination of tw@noncolineay vectorsv ,w corresponds to the statement that the physical
system is either in the pure stateor in the pure state. The whole Hilbert spacR® corresponds

to the tautology(true propositions The logical “and” operation is identified with the set theo-
retical intersection of two propositions; e.g., with the intersection of two lines. The logical “not”
operation, or the “complement,” is identified with taking the orthogonal subspace; e.g., the
complement of a line is the plane orthogonal to that line.

In this top-down approach, one arrives at a propositional calculus that resembles the classical
one, but differs from it in several important aspects. It has a non-Boolean, i.e., nondistributive,
algebraic structure. Furthermore, as has first been pointed out by Kochen and Specker in the
context of partial algebr&s? there exist certairfinite sets of lines, such that the associated
propositional structure cannot be classically embedded. That is, there does not exist any classical,
i.e., two-valued, measure that could be interpreted as the fact that propositions are either “true”
(=measure value)lor “false” (=measure value)0 The Kochen and Specker original construc-
tion used 117 lines. The number of lines has been subsequently retifid@tkse constructions
are examples of propositional structures without any two-valued measures.

In this paper we shall deal with the following questions: which orthomodular structure—finite
or infinite—underlies the Kochen—Specker construction. The question can be approached from
two different viewpoints{i) Which minimalset of propositions generates some Kochen—Specker-
type configurations? By “generate” we mean the construction of the propositional structure con-
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taining it. (i) What is theminimal propositional structurecontaining some sort of Kochen—
Specker-type configuration? In particular, is it finite or infinite?

II. BASIC NOTIONS

The following definition gives two main concepts of a propositional structure.

Definition 2.1: An orthomodular poseis a structure P,<,’,0,1) fulfilling the following
conditions.

(1) (P,=<) is a partial ordered set such thatc@<1 for everyae P.

(2) ":P—P is an orthocomplementation, i.e., for evexyb e P: (a) a"=a; (b) a<b implies

b'=sa’; (c) aya'=1.

(3) If a<b’ then the supremura\/b exists inP.

(4) If a<b then there is an elemeste L such thatc<a’ andb=a\/c (the orthomodular

law).

An orthomodular latticeis an orthomodular poset that is a lattice.

Elementsa, b of an orthomodular poset are calledhogonal(denoted byal b) if a<b’. A
subsetO of an orthomodular poset is calledthogonalif every pair of its elements is orthogonal.

Definition 2.2:Let P,, P, be orthomodular poset®,; is orthorepresentablin P, if there is
a mapping(called orthoembeddingh: P;— P, such that for evena, be P, (1) h(0)=0, (2)
h(a’)=h(a)’, (3) a<b if and only if h(a)<h(b), and (4) h(a\/b)=h(a)\/h(b) whenever
alb.

P, is representablen P, if there is a mappingcalledembeddingh: P;— P, such thath is
orthoembedding, and for even; be P,, (4') h(a\/b)=h(a)\/h(b).

The seth(P,) is then called arfortho)representatiorof P, in P,.

A suborthoposetsubortholattice resp) is a subset such that the identity mapping is orthoe-
mbedding(embedding, resp.

Boolean subalgebraf an orthomodular poset is a suborthoposet that is a Boolean algebra.
Blockis a maximal Boolean subalgebra.

As we will see later, there are latticés, L, such thatL, is a suborthoposet but not a
subortholattice of_,. On the other hand, a suborthoposet of an orthomodular lattice need not be
a lattice.

Definition 2.3:Let L be an orthomodular lattic&, LC P and let us denote bly(G) [P(G),
resp] the least subortholattiogsuborthoposet, regpof L containingG. We say thats generates
(orthogeneratesresp) L if LCL(G) [LCP(G), resp].

P(G) and L(G) can be explicitly defined by the following proces3(G)=U;_,P,(G),
L(G)=Up_oL,(G), wherePy(G)=Ly(G)=G and, for every natural numben;

Lar1(G)={\/0O; O is a finite subset ofL,(G)UL,(G)'},
P,+1(G)={vO; O is a finite orthogonal subset d?,(G)UP,(G)'}

(M’ denotes the sdia’;ae M}). Hence, every countable sét generates a countable subortho-
lattice and orthogenerates a countable suborthoposet.

A very useful tool for constructing and representing some orthomodular posets is the so-called
Greechie diagram.

Definition 2.4:A diagramis a pair (V,E), whereV+#0 is a set ofvertices(usually drawn as
pointg and ECexpV\{0} is a set ofedges(usually drawn as line segments connecting corre-
sponding points

Let n=2 be a natural number. Aoop of order n in a diagram V¥,E) is a sequence
(e4,...,.6,) €E" of mutually different edges such that there are mutually different vertices
Ug,...0p Withv;egnNeq (i=1,...0, e, 1=€y).

A Greechie diagranis a diagram fulfilling the following conditions.
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FIG. 1. Examples of diagrams that are not Greechie diagrams.

(1) Every vertex belongs to at least one edge.

(2) If there are at least two vertices then every edge is at least a two-element.

(3) Every edge that intersects with another edge is at least a three-element.

(4) Every pair of different edges intersects in at most one vertex.

(5) There is no loop of order 3.

Some examples of diagrams that are not Greechie diagrams are given in Fig. 1—these ex-
amples violate exactly one of conditiori2)—(5) in the above definition(We usually do not
denote one-element edge$he condition(4) states that in Greechie diagrams there is no loop of
order 2.

Before we present the representation theorem let us recall thatoamin an orthomodular
posetP is a minimal element oP\{0}.

Theorem 2.5:For every Greechie diagram with only finite edges there is exactly one (up to
an isomorphism) orthomodular poset, such that there are one-to-one correspondences between
vertices and atoms and between edges and blocks that preserve incidence relations. A Greechie
diagram does not contain any loop of order 4 if and only if the corresponding orthomodular poset
is a lattice

The proof can be found, e.g., in Ref. 9. Let us reserve the ndBmechie logicfor an
orthomodular poset that can be represented by a Greechie diagram with only finite edges. It is easy
to see that such an orthomodular poset does not contain any infinite chain, hence every element is
a supremum of a finite orthogonal set of atoms.

Let us remark that there are finite orthomodular posets not representable by Greechie
diagrams—intersections of blocks might be greater than a four-element Boolean subalgebra, and
hence the conditiofd) of Definition 2.4 cannot be fulfilled. On the other hand, every orthomodu-
lar poset with only finite and at most three atomic blolkee case we are interested abaata
Greechie logic.

We will have a special interest about the following example.

Definition 2.6: The three-dimensiondflilbert logic Hs is the orthomodular lattice of linear
subspaces oR®. The ordering is given by inclusion and the orthocomplementation is given by
a’={veR? vla} for everyacHs.

The least element oH; is 0={(0,0,0}, the greatest element ¢4, is 1=R® Moreover,
a/\b=anb anda\/b=Sp(auUb) for everya,be H;, where SpG) is thespanof G in R®. [We
will usually omit unnecessary parentheses, e.g(1 90 denotes S¢{(1,0,0}).]

Every element oH3\{0,1} is either an atom or a coatom, every blockHq is finite and at
most a three-element, every suborthopdsef H; is a Greechie logic and is uniquely determined
by the setA,(P) of its one-dimensional atom&nes):

P={0,TUA{(P)UA(P)".

(There might be also two-dimensional atomsRne.g., if P is a four-element. Moreover, for
every setG of lines inH; the set of lines of the orthomodular lattit€¢G) [orthomodular poset
P(G), resp] generated (orthogenerated, regp.by G can be expressed as follows:
AL(P(G))=Uj_oPn, AL(L(G))=U,—_oL,, WwherePy=Ly=G and, for every natural numbe,
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(INES LnU{(a\/b),;a,bE Ln},
P..1=P,U{(ayb)’;a,beP,, such thatal b}.

Ill. TWO-VALUED STATES AND GREECHIE DIAGRAMS

Let us present the main definition.

Definition 3.1:Let P be an orthomodular poset and (&C P. A state son G is a mappings:
P—[0,1], such that

(1) s(0)=0,

(2) s(a)=s(b) whenevera,be G with a<b;

(3) =,c08(a)=<1 for every orthogonal séDCG; and

(4) 2,.0S(a)=1 for every orthogonal séDC G with \/O=1.

A two-valued statés a state with values if0,1}.

If G=P then conditiong1)—(2) follow from conditions(3)—(4) and from the orthomodular
law and, moreovers(a’)=1—s(a) for everyae P.

The Kochen—Specker construction gives an example of a propositional structure without any
two-valued state. We will use a more general attempt and will ask whether there is a propositional
structure without “enough” two-valued states. Originally, “enough” meant “at least one.” We
will also use the following properties of state space, which are important in quantum logic theo-
ries.

Definition 3.2:Let P be an orthomodular poset and &t P. A setS of states orG is called
unital if for every ae G\{0} there is a statse S such thats(a) =1;

separatingif for every a,be G with a#b there is a statse S such thats(a) # s(b);

full if for every a,be G with a#£b there is a statse S such thats(a) >s(b).

Existence of a unital set of states means that every proposition that is not a tautology is
sometimes false. Existence of a separating set of states means that a different propositions are
distinguishable. Existence of a full set of two-valued states means that if some proposition does
not imply another, then there is such a state that the first is true while the second is not. These
properties are largely studied. An orthomodular poset with a full set of two-valued states is called
a concrete logic(see, e.g., Ref. 20an orthomodular poset with a separating set of two-valued
states is called gartition logic—this notion is within orthomodular posets equivalent to the
notion of automaton logigsee, e.g., Refs. 11-14

It is easy to see that a full set of states is separating and that a separating set of two-valued
states is unital. Before we give examples demonstrating differences in the above-defined notions
let us give some criteria, how we can verify whether an orthomodular poset given by a Greechie
diagram has “enough” two-valued states.

Definition 3.3:Let P be an orthomodular poset and ketbe the set of atoms iR. A weight
w on A is a mappingw: A—[0,1], such thatz,_ow(a)=1 for every maximal orthogonal set
OCP. A two-valuedweight is a weight with values if0,1}.

Lemma 3.4: Let P be a Greechie logic and let A be the set of atoms in P. Then there is a
one-to-one correspondence between two-valued states s on P and two-valued weights w on A
given by w=sA.

Proof. Obvious.

Due to this correspondence we mi@nd will) identify states and weights and study only the
values of states on the set of atoms. Since every maximal orthogonal set of atoms corresponds
uniquely to a block, we need only to check that the sum of values of a state on every edge in a
Greechie diagram is equal to 1.

Proposition 3.5: Let P be a Greechie logic and let A be the set of atoms in P. Then P has a
full set of two-valued states (i.e., P is a concrete logic) if and only if for every paiags P of
different nonorthogonal atoms there is a two-valued weight w on A such flagt=vw(a,)=1.
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Proof=: Leta,, a,e A, such thag, ! a,. Thena,; < a; and there is a two-valued staten
P such that 1= s(a;) > s(aj;) = 0. Hences(a,)=1 and, according to Lemma 3.4, it suffices to
takew=s|A.

«<: Let by, b,e P such thatb,;%b,, i.e., b, ¥ b;. There are orthogonal sefs,, A,#0 of
atoms inP such thab,=\/A;, b; = \/A,. According to Lemma 3.4, it suffices to prove that there
are atoms, € A1, a, € A and a weightv on A such thatv(a;) =w(a,) =1. Let us suppose first
thatA;NA,=0. Then there are atonss, € A; anda, e A, such thata,+#a, anda,! a, and, due
to our assumption, a weight on A such thatw(a;)=w(a,)=1. Let us suppose now that
A1NA,#0. Then there is an atora;<b,, b, and either there is an atomy,#a, such that
a,la,, ora;l a for every atoma#a;. In both cases there is a two-valued weighbn A such
thatw(a,)=1; in the first case due to our assumption and in the second case we cafapsatl
iff a=a,.

The situation for a separating set of states is much more complicated and we will state a
criterion in a special cas@vhich is in our interest heje

Proposition 3.6: Let P be a Greechie logic with, at most three atomic blocks and let A be the
set of atoms in P. Then the set of two-valued states on P is separating (i.e., P is a partition logic)
if and only if the following conditions hold

(1) For every atom &P there is a two-valued weight w on A such thdays=1.

(2) For every pair a, a,<P of different nonorthogonal atoms there are two-valued weights
w, , w_ on A such that w(a;)=w, (a,) and w_(a;)#w_(ay).

Proof =: Let ae A. Thena#0 and there is a two-valued stateon P such that =s(a)
>s(0)=0. Leta,, a,e A such thata; #a, anda,! a,. Then alsoa; # a; and there are two-
valued states_, s, on P such that &s_(a;)>s_(a,)=0,1 = s, (a;) > s,(a;) = 0, i.e,,
s.(a))=s.(ay). The rest follows from Lemma 3.4.

<: Let by, b, e P such thath, #b,. Since every element ¢"\{0,1} is either an atom or a
coatom, there are atonas , a, € P such thab; € {0,a;,a;,1} andb, € {0,a,,a5,1}. If a;=a,
then there are two-valued weights , w_ on A such thatw, (a;)=1 andw_(a;)=0. If a; #a,
then there are two-valued weight&/,, w_ on A such thatw,(a;)=w,(a,) and
w_(a;)#w_(a,). In both cases there are, according to Lemma 3.4, two-valued stafes on
P such that eithes, (b;)#s,(b,) ors_(b;)#s_(b,).

Let us present a lemma, which might simplify to verify criteria in Proposition 3.6.

Lemma 3.7: Let P be a Greechie logic and let A be the set of atoms in P. If W is an at least
three-element set of two-valued weights on A such {inat(1);:weW;} is a partition of A, then

(1) for every atoma e A there is a weightve W such thatw(a) =1;

(2) for every paira,;, a, e A there is a weightve W such thatw(a;)=w(a,).

Proof: Obvious.

Let us remark that in Greechie diagrams it suffices to use the above conditions for every
connected subdiagram separateleights behave independently on nonconnected subgraphs
terms of orthomodular posets we can use the following important notion.

Definition 3.8 Let #” be a set of orthomodular posets such thaf P,={0,1} for everyP,,
P,e7 with P;#P,. The horizontal sum X25_,P is defined as (Up.,»P,Upcy<p,

U PE.’/), Pioal) .

More generally, we speak about the horizontal surR,ofi e |. It is an abbreviation for saying
that we take disjoint representatioRsof P; (e.g.,{i} X P;), identify all 0, (iel) and all 1 (i 1),
and takeX; _,P;. It is easy to see that a horizontal sum of orthomodular pasetesomodular
lattices, resp.is an orthomodular posdbrthomodular lattice, respand that a set of states is
nonempty(unital, separating, full, respon a horizontal sum if and only if it is nonemptynital,
separating, full, resp.on every horizontal summand.

In a Greechie diagram every connected subdiagram corresponds to a horizontal sufirmand.
particular, every finite two-atomic block is a horizontal summa@h the other hand, the hori-
zontal sum of Greechie logics is a Greechie logic with the Greechie diagram, whidHigaant)
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union of summands with only one exception—we lose isolated verftbese correspond to the
trivial orthomodular posef0,1}).

The notion of a horizontal sum is a special kind of the notiopasting We are not interested
here in a general settingee, e.g., Ref.)9thus we describe only special cases showing how we
can obtain a new Greechie logic using this process. Greechie diagram digtieg of Greechie
logics P (i el) for atoms ae P; (iel) we obtain as follows: we take the disjoint union of
Greechie diagrams d?;(i 1), identify vertices corresponding & (i 1) and, if somea; (i 1)
belong to a two-atomic block, we delete necessary vertices corresponding ta/ssieth that the
condition (3) of Definition 2.4 is fulfilled. Greechie diagram of tipasting of Greechie logics;P
(iel) for blocks BCP; (i el) with the same number of atoms we obtain as follows: we take the
disjoint union of Greechie diagrams & (i 1) and identify edges corresponding By (i 1)

(i.e., we identify also atoms in these blogk#t is easy to see that such pastings (tttice)
Greechie logics ardattice) Greechie logics.

The notion of a horizontal sum is also related to the following notion.

Definition 3.9: Let P be an orthomodular poset. Thdistance don P is a mappingd:
P X P—NU{e}, defined by

d(a,b)=inf{n eN; there are block8,,...,B, in P such thaB;NB;, ;#{0,1} fori=0,...n,
Bo={a}, By+1={b}}.

The distance function defines the largest decompositidd imito horizontal summands—the
least summands are maximal subsetB'd0,1} of elements with finite distances joined wiih,1}.

The following result we will use in the sequel.

Proposition 3.10: Every Greechie logic without any loop has a full set of two-valued states.

Proof: The distance function oR decomposé into the horizontal surx; _,P; , such that the
distance of every pair of elements in every summand is finite. It suffices to prove fullness for every
summand. According to Proposition 3.5, it suffices, for evieryy and for every pail,, a, of
different nonorthogonal atoms iR;, to find a weightw on the setA of atoms inP;, such that
w(a;)=w(ay)=1. Let us putA,={aeA;d(a,a;)=n} for every natural numben and let us
definew by induction.

I. w(a;)=1.

II. Let us suppose that there is a natural numbei0 such thatv is defined oA U --- UA,,.
Every element oA, ; belongs to some block in P; such thaBNA,# 0. For every such block
B we haveBNA,={ag}. If w(ag) =1, we putw|BNA\A,=0. If w(ag) =0, we can chooséB
has at least three atoingroperly abg e BNA\A,, and putw(bg) =1, w|BNA\bg}=0. Properly
means that ih=d(a,,a;) —2 thenbg is chosen such that it does not belong to the same block as
a, and ifn=d(a,,a;) —1 thenbg=a,.

Let us present examples demonstrating differences in properties of state space.

Proposition 3.11:Let us consider the following conditions.

(1) The set of two-valued states is full.

(2) The set of two-valued states is separating but not full.

(3) The set of two-valued states is unital but not separating.

(4) The set of two-valued states is nonempty but not unital.

(5) The set of two-valued states is empty.

For each of the above conditions there is an orthomodular lattice with only finite three-atomic
blocks, which fulfills it.

Proof: (1) See Fig. 2.1. It is a Boolean algebra, which obviously has a full set of two-valued
states.

(2) See Fig. 2.2. For every two-valued state we have s(a)+s(b) =<(1—-s(cp)
+1-s(d,)+1—s(cy)+1—s(d,))/2=(2—s(c)—s(d))/2<3/2. Hences(a) +s(b) <1 and, ac-
cording to Proposition 3.5, this orthomodular lattice has not a full set of two-valued states. The set
S,={s;,S,,53} of states given in Fig. 3 fulfills conditions of Lemma 3.7. It can be checked that
the set of all two-valued states “symmetric” to some state frmistinguish different nonor-
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dy, d dy ayq as b a¢ a3
ad by ~
a < e »b b g_ﬁ{?f 07,5 QO]
a’C bc o)
Ca C G ag a2 ay a2 a3 ar = ap
1 2 3 4 5

FIG. 2. Greechie diagrams of orthomodular posets with finite three-atomic blocks demonstrating differences of state spaces
(a~e+b denotes diagram 2).

thogonal atoms. Hence, the set of two-valued states fulfills conditions of Proposition 3.6. A
smaller example of a separating set of states is given in Fig. 3. We can express this orthomodular
lattice as a partition logic on a six-element set of these states—see FigCérhpare with the
representation on the 14-element set of states in Ref. 14

(3) See Fig. 2.3. Let us use the previous result. For every two-valuedsstaite s(a;)=1
we obtains(a,) =s(b)=0, hences(a,)=1. Using the symmetry we obtais(a;)=s(a,) for
every two-valued state, hence the set of two-valued states is not separating. The unitality can be
verified routinely.

(4) See Fig. 2.4. For every two-valued stat¢here is an €{1,2,3 such thats(a;)=1 and
therefores(b) =0. Hence, the set of two-valued states is not unital. Existence of a two-valued
state can be verified routinelflet us note that if we paste “sides of the triangle” not only for
but for the whole block we obtain a smaller example with 25 atpms.

(5) See Fig. 2.5. According to paf8) of this proof,s(a;) =s(a,) =s(as) =s(a,) for every
two-valued states. Hence all these values are equal to 0 aflo) =1. The desired example we
obtain by pasting this orthomodular lattice with the orthomodular lattice from Fig. 2.4’ $oor,
more effectively, by pasting for blocks containibgs anda,’s.

IV. SUBORTHOLATTICES OF H,

There are only several types of finite subortholatticeld f The following characterization of
finite subortholattices oH; seems to be in a common knowled@see, e.g., Ref. 15, Example
1.5.3, but we do not know a proper reference for its proof.

Lemma 4.1: Let L be a subortholattice of Bind let lines g, a,, a;, beL be such that g a,,

a; are mutually orthogonal and ba;, a,, a;. Then there is a line €L such that d a; and the
angle Z(c,ag) is greater thanz (b,ay).

Proof: Let us choose the system of coordinates such thatSp(1,0,0, a,=Sp(0,1,0,
a;=5Sp0,0,1), b=Sp(x,y,z), such thak,y,z>0. SincelL is a subortholattice dfl ;, the following
elements belong ta:

DD DD DD

S

FIG. 3. Separating set of two-valued states on an orthomodular lattice from Figo2l2atoms in which the correspond-
ing state is equal to 1 are marked
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{3,6} {2,5} {1,4} (1,v2,1) (1,0,-1) (-1,4/2,-1)
{2,4,5} {3,5,6} (1,v2,-3) (-1,v2,3)
{1} {1,4,6} {2} (v2,-1,0) (0,1,0) (v2,1,0)

(3,5} {3,4,6} (1,v/2,3) (-1,v2,-3)
{2,468} {3} {15} (1,v2,-1) (L0.1) (~1,-v2,1)
1 2

FIG. 4. Various representations of an orthomodular lattice from Fig. 2.2.

b=(a;\/a,)/\b’=Spy,—x,0),

c=(a;\/az)/\(b\/b)=Spx+Yy?x,0,2).
Hence,

4 z

0<cos/(c,a3)=
(c.as) ViX+y2x)°+2%  x2+y°+72

=cos/ (b,a3).

Theorem 4.2:Let LCH5 be a finite orthomodular lattice. Then L is a subortholattice gfiH
and only if exactly one of the following possibilities is fulfilled

(1) L={0,1, i.e., L is a one-atomic Boolean algebra

(2) L={0,a,d,1} for some line &Hs, i.e., L is a two-atomic Boolean algebra

(3) L = {0,a;,a,,a3,a; ,a5,a3,1} for some orthogonal sdg, ,a,,a3} of lines in H;, i.e., L is
a three-atomic Boolean algebra

(4) L={0,a,d,1}JUGUG' U{a\/b;beG}lu{a’'/\b’;b e G} for some line &H; and some at least
two-element set G of mutually nonorthogonal atoms orthogonal to a, i.e., L is a finite pasting of at
least two three-atomic Boolean algebras for a given atom.

Proof: It is easy to see that each of these conditions excludes the others and gives a subortho-
lattice of H;. Let us suppose that there is a finite subortholattiad# H 5 that fulfills no condition
(1)-(4), and seek a contradiction. There are three mutually nonorthogonaldibese L. Let
d;=(a\/b)’ eL. Sincel is finite, there is a line e L such that” (e,d3) is the greatest among all
lines fromL nonorthogonal tal;. Sinceal b there is ad; € {a,b} such thad,/ e,e’ /\ d. Letus
putd, = d; /A d; e L. Hence, linesl, ,d,,d; are mutually orthogonal are¥ d, ,d,,d5. According
to Lemma 4.1, there is an elemédnt L such thaff Y d; and 2 (f,d3) < Z (e,d3)—this contradicts
the selection ok.

Greechie diagrams of finite subortholatticestbf are given in Fig. 5.

Corollary 4.3: Every finite subortholattice ofhas a full set of two-valued states.

Proof: It follows from Theorem 4.2 and Proposition 3.10.

o A Lo
4.2 4.3

1 2 3 4.n

FIG. 5. Greechie diagrams of finite subortholatticedHaf.
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5388 K. Svozil and J. Tkadlec: Measures and the Kochen—Specker theorem

As concerns infinite subortholatticesld, there is a countable subortholatticetdf without
any two-valued state@.g., generated by finite sets without any two-valued state—see Corollary
7.5. On the other hand, there are infinite subortholattices with a full set of two-valued states, e.g.
infinite pastings of three-atomic Boolean algebras for a given dtmmpare condition4) of
Theorem 4.2 It seems to be an open problem whether there is an infinite subortholattitg of
that is not of this type and that has a two-valued state. Moreover, there might be an interesting
connection between the nonexistence of a two-valued state and denstfy This might give
better insight into the nature of subortholatticesdafand the connection with the famous Gleason
theorem'®%which (among other thingsstates that there is no two-valued staterbn

It should be noted that Greechie diagrams of subortholatticesHpf are relatively
“complex’—the distance of every pair of elements is at mogegery pair of different lines has
a common orthogonal lineHence, it is usually difficult to give a Greechie diagram of an infinite
subortholattice oH .

V. REALIZABILITY IN H;

The study of finite suborthoposetsidf is more complicated. We would like to know whether
a Greechie logic is orthorepresentableHg. The first problem erases with the intrinsic geometri-
cal structure oH;.

Definition 5.1:Let P be an orthomodular poset. We say tirats weakly realizablén Hg if
there is a mappin@: P—H;, such that, for everg,be P,

(1) h(0)=0;

(2) h(a')=h(a)’,

(3) h(a)<h(b) whenevera<b; and

(4) h(a)#0 wheneverl+0.

If, moreover, the mapping fulfills for every a,b e P the following occurs:

(4') h(a)#h(b) whenevera#b,

we say thatP is realizable The seth(P) is called a(weak realizationof P in Hj.

Weak realizability means that all orthogonality relations remain true in the images, and, since
every nonzero element has a nonzero image, if the set of two-valued std®ss Bris empty(not
unital, resp). then the set of two-valued states b(G) is empty(not unital., resp, too. Realiz-
ability means that, moreover, the mapping is one to one. Hence, if the set of two-valued states on
GCP is not separatingfull, resp), then the set of two-valued states b(G) is not separating
(full, resp), too. A realization need not be a suborthoposet because a new orthogonal pairs might
appear in the images.

Let us give a characterization of orthomodular posets weakly realizalbig .in

Lemma 5.2: Let P be the pasting of a se¥ of orthomodular posets and let there is a
mapping h: B.—H; such that h(P) is a weak realization of P for everg P. Then h(B) is a
weak realization of B in Hj. In particular, every horizontal sum of orthomodular posets weakly
realizable in H; is weakly realizable in Kl

Proof: Obvious.

Proposition 5.3: An orthomodular poset is weakly realizable iniHand only if every its
block is finite and at most three-atomic.

Proof =: Every orthogonal set of nonzero elements in an orthomodular posetresponds
to an orthogonal set of nonzero element$lifn Since such a set iH5 is at most a three-element,
every block ofP is finite with at most three atoms.

<: Let P be an orthomodular poset with only finite, at most three-atomic blocks. Let us
decomposé® into the horizontal sunk;_,P; of minimal horizontal summands. Let us choose a
linel e H; and let us define a mappirig for everyi el as follows:h(0)=0, h(1)=1;if P; is a
four element, then let us take an atage P; and puth(a;)=1, h(a/) = I’; if P; has more than
four elements then every block has three atoms, and wéa@)t=1, h(a’)=I" for every atom
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a4 as b
*-—o—o—o - ﬁ
ay a9 ap a4y a3
1 2 3

FIG. 6. Greechie diagrams of some orthomodular posets nonrealizable in H; (a-e+b is an abbreviation of the Greechie
diagram in Fig. 2.2).

ae P;. Itis easy to see thét (P;) is a weak realization d?; in H; and thatU; ., h;(P;) is a weak
realization ofP in Hj.

The situation with realizability is more difficult and we do not know a characterization of it.
Some results we will present in the next section. Let us now present another necessary condition.

Proposition 5.4: Every orthomodular poset realizable ig 6 a lattice.

Proof: Let us suppose th& is an orthomodular poset with a loop of order 4 realizablel in
and seek a contradiction. There are nonzero mutually different elemgnts, | azl a,la; in P
(see Fig. 6.2 Since for every pair of different nonzero elements there is only one nonzero element
in H; orthogonal to thema, =a;—a contradiction.

Examples of orthomodular posets nonrealizableéHin are given in Fig. 6. The first has a
four-atomic block, the second is not a lattice. The third example is much more subtle and depends
on the following intrinsic property oHj.

Lemma 5.5; Let L be a realization of an orthomodular lattice givenFig. 2.2. Then
/(a,b)e{arccos 1/37/2). On the other hand, for everye{arccos 1/37/2) there is a realization
of L such that/(a,b)=«c.

Proof [See also Ref. 17]Let us choose a coordinate system such thatSp1,0,0,
d=Sp(0,1,0. Hencee=Sp(0,0,)). Sincec L c andd, L d, there arex,y e R{0} such that

Ca=Sp0y,1), dp=Sp(x,0,D.

Sincec,l ¢, c, andd,Ld, d,, alLc,, d,, andbLlcy,, d,, we obtain
c,=Sp0,—1y), d,=Sp—1,0x),
a=Spxy,—1y), b=Sp—1xy,Xx).

Thus, using an elementary calculus,

co (a,b)= Xy e(O 1>
’ V(14 X2+ Xx%y?) (1+y?+x%y?) 3/

For an arbitrarya e (arccos 1/35/2) we can solve this equation and obtain, e.g.,

l/icosa—1 l/cosa?
X=y= 5 5 -1

For a=arccos 1/3 we have exactly one realizatitmo different solutions given by the sym-
metry of the Greechie diagramin Fig. 4.2 there is an example such that symmetries of the
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5390 K. Svozil and J. Tkadlec: Measures and the Kochen—Specker theorem

realization are easily sedwith respect to the axie of a andb and to planes Jpa,b}, Sgo,a
X b}). For ae(arccos 1/35/2) we have two different realizatiorfgach symmetric with respect to
the axis ofa andb).

The orthomodular lattice given in Fig. 6.3 is not realizable, because for every &ipla,,
az e Hy of mutually orthogonal nonzero elements and for evegyH 5 there is an € {1,2,3 such
that 2 (b,a;) <arccos 3.

Let us note that in Ref. 17 the above lemma is also stated-fat/2. This is not true, because
then eitherx=0 ory=0 and we obtain only a weak realization.

VI. SUBORTHOPOSETS OF H,

We would like to present examples of orthomodular lattices orthorepresentablg.iio
ensure that an orthomodular lattice is orthorepresentality; it suffices to find its realization in
H5 such that there are not order@atthogonal, resp.pairs other than it was intended, e.g., it can
be easily verified that an orthomodular lattice given in Fig. 2.2 is orthorepresentaHig (see
Fig. 4.2. We present partial results that orthomodular lattices are orthorepresefrdiieable,
resp) in H;. The idea of their proofs is that we can find uncountable m@opntinuum weak
realizations while only for a countable many of them some images coincide or, in case of
orthorepresentability, give a new order@ithogonal, resp.pair.

We show that there is a large class of infinite suborthoposets$;ofvith a full set of two-
valued states.

Proposition 6.1: Every horizontal sum of countable many countable orthomodular lattices
orthorepresentable (realizable, resp.) iy i$ orthorepresentable (reliazable, resp.) in H

Proof: It suffices to prove this proposition for two summarid& can proceed by inducti@n
LetL,, L, be their orthorepresentatiofr®alizations, respin Hj. It suffices to prove that we can
rotateL, to L, such thaa, £ za, anda,Z a, for everya, e L;\{0,1} and for everya, e L,\{0,1},
i.e. such that& U (L,\{1}) for every linel eL,. If L,={0,1} then the proof is complete. Let us
suppose thal ,#{0,1}. Then there is a lindyeL,. Since U(L\1}) #R® there is a line

1o U(L,\{1}) and we can rotatk, such that, goes td,. Rotating now the image df, around
I, we obtain an uncountable many possibilities, while for only a countable many of them there is
alinel eL, such that CU(L,\{1}). Indeed, for every e L, all possible positions df in a unit
sphereS(0,1) in R® form a circleC with the center or,, while, for everyae L;\{1}, anS(0,1)
is either a two-element séa is a line or a circle not identical t&C; hencean S(0,1)NC is at
most a two-element.

Proposition 6.2: Every pasting for an atom of a pair of countable orthomodular lattices
orthorepresentable (realizable, resp.) in; i$ orthorepresentable (realizable, resp.) inp.H

Proof: If we paste for an atom in a two-atomic block then we obtain a horizontal sum and the
proof follows from Proposition 6.1. Let us suppose that we paste for atoms in three-atomic blocks.
LetL,, L, be orthorepresentatiorieealizations, respin H; of given orthomodular lattices such
thatL,NL,> 1y, wherel, represents the atom in both, L, for which we paste. It suffices to
prove that there is a rotatidn, of L, around the lind, such thata;Za, anda,Za, for every
a; € L;\M{0,1)p,lg} and for everya, € L,\{0,1]q,l5}, i.e., such that& U (L\{1]¢}) for every
line | eL,. This gives only countable many restrictions to uncountable possible positidns, of
hence the proof is complete.

Corollary 6.3: Every countable Greechie logic with at most three atomic blocks and without
any loop is orthorepresentable ingH

Proof: Every countable Greechie logic with only finite at most three atomic blocks is a
horizontal sum of subsequent countable pastings of finite three-atomic Boolean algebras for an
atom. The rest follows from Theorem 4.2, Proposition @&ng the inductionand Proposition
6.1.

According to Proposition 3.10, Greechie logics from the above Corollary have a full set of
two-valued states.
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a)
Ca ¢ Cb by as
T ‘
a bl o _
1 2 3 1 °

FIG. 7. Greechie diagrams of orthomodular lattices weakly realizablé;in

Lemma 6.4: Let L be a countable orthomodular lattice orthorepresentable (realizable, resp.)
in H; and L, be an orthomodular lattice given in Fig. 7.1 such thatlL,={0,a,b,d,b’,1} and
a#b are nonorthogonal atoms in,L(in its realization, resp.). Then the pasting of &nd L, is
orthorepresentable (realizable, resp.) ipbH

Proof: Let us suppose thdt, is an orthorepresentatidmealization, resp.in H5 of a given
orthomodular lattice. I (b, resp) is a two-dimensional subspaceldf thena (b, resp) is a part
of a four-element horizontal summand, and this summand might be considered as alpart of
The proof then follows from Proposition 6.2. Let us supposedhatare lines. Let us consider all
atomsc,<a’. We have uncountable many possibilities that fill in the unit spl$fe1) a circle
C,.Of coursec,<a’ anda, = a’ /\ ¢, < a’ but all other ordering of, anda, with elements of
L,\{0,1} can be excluded if we exclude a countable many possibilities. Similarly, if positior)s of
fill a circle C, then positions oftc,Lc,, b fill a circle C,Cb’ (alb). Again, there is only a
countable many positions @f, for which eitherc, orb, = b’ /\ ¢ is ordered with some element
of L,\{0,1b’}. Finally, it can be shown that positions offill a smooth curve or§(0,1), which
is not a circle. Hence, there is a possibility to choogesuch that we obtain the desired orthorep-
resentatior(realization, resp.

Proposition 6.5: Let B=5 be a natural number and let,B..,B, be finite three-atomic Boolean
algebras such th&;,NB;,, = {0,a;,a',1} for every ie{1,...,}, where B,,=B; and a,...,3, are
mutually different atoms. Then the pasting{Bf,...,B,} (so-called n-cycle) is orthorepresentable
in Hj.

Proof: It follows from Proposition 6.2 and from Lemma 6.4.

VIl. KOCHEN-SPECKER-TYPE CONFIGURATIONS

We will give several examples of Kochen—Specker-type configurations that arise from
Greechie diagrams. Some of these examples has been already used in the literature in the attempt
to find a subset ol ; without a two-valued state. We present the connection to Greechie diagrams
(this gives a better geometric insighshow a nonexistence of a “large” set of two-valued states
for various concepts, and, moreover, we do not stop in proving weak realizability but we discuss
the real number of elements.

Proposition 7.1: There is a finite suborthoposet afddch that the set of two-valued states on
it is not full.

Proof: Let us consider a suborthopodebf H; given in Fig. 4.2. It is an orthorepresentation
of an orthomodular lattice given in Fig. 2.2, it is 28 elem&® atomig, and the set of two-valued
states orL is not full [see the proof of Proposition 3.11)]. In fact, in the proof of Proposition
3.11(1) it was shown that there is no two-valued state on the eight-element set
{a,c,,d,,c,d,cy,d,,b}, such thats(a)=s(b)=1 (a reformulation of fullness—see Proposition
3.5. This orthomodular lattice can be orthogenerated, e.g., by the six-element set
{a,c,,cy,b,d,,d,} and generated, e.g., by the three-elemen{agt, ,d,}.
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Proposition 7.2: There is a finite suborthoposet gfddch that the set of two-valued states on
it is not separating.

Proof: Let us consider an orthomodular lattice given in Fig. 2.3. It is an orthomodular lattice
without a separating set of two-valued states [see the proof of Proposition 3.11.(2)]. It has 56
elements (27 atoms) and a 17-element subset without a separating set of states (five marked and
six “‘hidden’’ in every circle). It can be checked that it has the following realization (which forms
a suborthoposet of H given in Fig. 7.2—points in the circles denote the middle elements of the
diagram from Fig. 2.2): f=Sp(0,0,1), ape-b; given by Fig. 4.2; ayeb, we obtain from the
representation on Fig. 4.2 rotating by 7/2 around f. There is a ten-element set of orthogener-
ators (e.g., {@;,b1,C41-Cp1s841-dp1-f+C2+Ch2.dpy}) and a four-element set of generators (e.g.,
{ay.cp1,dp1,Ch2})- o ] ] o

Let us note that we can take a realization of an orthomodular lattice given in Fig. 2.2, such
that we obtain an orthorepresentation of the orthomodular lattice given in Fig. 2.3, but the set of
(orthggenerators is larger in this case.

Proposition 7.3: There is a finite suborthoposet agfddch that the set of two-valued states on
it is not unital.

Proof: Let us consider an orthomodular latticegiven in Fig. 7.3. It is an orthomodular lattice
without a unital set of two-valued states. Indeed, for every two-valued statd with s(a;)=1
we haves(f)=s(a,)=s(as) =0, s(a,) =s(as) =1, s(az) =s(a,) =0, s(az) = s(a,) = 1-a contra-
diction. It has 132 element§5 atom$ and a 40-element subset without a unital set of staies
hidden in every circle and all markexg's anda;’s). Let us find a weak realization &f. It can be
done as follows: Puf=Sp0,0,1, a;=Sp(1,0,0, a,=Sp0,1,0, and leta,,a(k=2,...,5) be
images ofa, ,a, in rotations around aboutk-72°. Find a realization of the orthomodular lattice
given in Fig. 2.2 such that the angle of imagesagh is 72° (see the proof of Lemma 5.%nd
rotate this realization to the following pairs of linest;(a,), (a,,a3), (a3,a4), (a4,as), (a5,a;)

(i.e., a goes to the first andb to the second line for every pairlt can be checked that an
orthomodular poset orthogenerated by this weak realization is filhitéact, it is a weak realiza-
tion of an orthomodular lattice given in Fig. 7.4 by the same yay.

It can be shown that if we take the realization of the orthomodular lattice given in Fig. 2.2
such that the angle betwearandb is equal to 72° by the expression given in the proof of Lemma
5.5 as the first copy and if the second and the third copy arise by rotations around the axis of the
plane given bya and b such thatb coincides witha of the next copy, then some elements
coincide:

(Caicycb 1bC vbabd 1db)l:(d1db 1da1ad 1a1a01ca)21
(c,dy,d,d,,e);=(c,,d,c,e,cp)s3-

(The index denotes the number of the copyience, the weak realization of the orthomodular
lattice from the above proof gives a 29-element subsed pivithout a unital set of two-valued
states and the suborthoposet orthogenerated by it has 104 eldBkri®ms, is orthogenerated
by a 16-element set and generated by a four-elemelté get elementa, c,, d,, of somea???b
and some element from the inner “pentaggdnThe “almost” Greechie diagrani20 points that
belong to exactly one edge are for simplicity omijted this suborthoposet dfi; (realization of
the orthomodular lattice given in Fig. 3.% given in Fig. 8, with

a,;=Spl, 0, O,
a,=Sp\V3—45, V5+5, 0),
a;=Sp—V3+5, V5-45, 0),
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dpy =cCa2 =d3 =cCs

Cp2 = da3 = €5

d) = ¢3 = dps = Cas ey = dpz = Cas = d

er = cp3 = dag €2 = Cpa = dgs

c1 =dp2 = Co3 = ds cor =dgy = €4 Cor = d2 =cCq = dps

FIG. 8. “Almost” Greechie diagram of a suborthoposettdf without a unital set of two-valued states.

a,=Sp—V3+5, —V5-5, 0),
a;=Spy3—\5, —\5+y5, 0),
Car=SP0,~V-1+5, 1),
da=Sp0, 2,J-2+5),
¢ =SpVVB,  V2+45, 3+45),
di=Sp—V\5,~ -2+ 5, 2),
Co1=SP—V5+5, V3—5.2/-2+5),
dpy=SpV\B,—V-2+5, 2),
e;=SpV\B, —\2+5, V3—B),
¢,=Sp—V\5, \2+\5, V3+B),
Coo=SH—V\5, —2+\5, V3-5),
&,=SpV5+5, V3—\5.2V-2+5),

f=Sp0, 0, 1.
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Elements of the 29-element subset without a unital set of two-valued states are all marked points
that are not crossed, a set of orthogenerators is e.g., the set of vertices of both pentagayis with
and with the middle point, a set of generators is marked by circles.

It should be noted that in Refs. 8 and 18 there is an example of an 11-element set of lines
orthogenerating a 25-element set of lines and a 76-elerf8hatomig suborthoposet oH,
without a unital set of two-valued states. This suborthoposet is generated by a three-element set.
The Greechie diagram of this example does not seem to provide an easy survey, hence we omit it.
A more detailed description of this example is given in Sec. VIII.

Proposition 7.4: There is a finite suborthoposet gfddch that the set of two-valued states on
it is empty.

Proof: Let us consider an orthomodular lattice which is the pasting of the orthomodular
lattice given in Fig. 7.3 for; and of the orthomodular lattice given in Fig. 7.4 for its middle point.

It is an orthomodular lattice without any two-valued state. Indeeslisfa two-valued state oh
thens(a;)=0 (see above Analogously from the other diagrars(a;)=1—a contradiction. It
has 374 elementdl86 atom$ and a 110-element subset without any two-valued s&ie"hid-
den” in every circle and all marked except two of therar-anda,). According to Proposition
6.2, this orthomodular poset is weakly realizableHg.

It can be shown that we can paste for the whole block and obtain a weak realization, which is
a union of weak realizations of two copies of an orthomodular lattice given in Fig. 7.4. Hence, this
suborthoposet has 200 eleme(@8 atom$ and a 58-element subset without any two-valued state.

It should be noted that in Ref. 6 there is an example of a 33-element set of lines without any
two-valued state. Direction vectors of these lines arise by all permutations of coordinates from
(0,0,, (0,1,1) (0,=1v2), and(=1,+1,v2). This set of lines orthogenerates a suborthoposet of
H 5 with 116 element$57 atoms. Direction vectors of remaining lines arise by all permutations of
coordinates from{(+1,+3v2). This suborthoposet dfi; has a 17-element set of orthogenerators
(e.g., lines with direction vector®,0,1), (0,1,0 and all coordinate permutations fro(@,1y2),
(1,£1,v2)) and a three-element set of generaferg., lines with direction vectord,0,0, (1,1,0,
(v2,1,1)]. The “almost” Greechie diagrani24 points that belong to exactly one edge are, for
simplicity, omitted of this example is given in Fig. %one edge is denoted by a cirgleThe
above-mentioned three-element set of generators is marked by circles.

Corollary 7.5: There is a three-element set of lines inddich that no subortholattice ofH
containing it has a two-valued state

It seems to be an open question whether every three-element set of mutually nonorthogonal
lines in H; generates a subortholattice without any two-valued state. The least numbers in con-
structions are given in Table I.

Let us note that the examples in Proposition 7.1 and in Proposition 7.2 appeared in Ref. 17,
the example in Fig. 7.4 appearéubt explicitly) in Refs. 17 and 5 as a part of their construction.

In Ref. 19 the author usdrot explicitly) the orthomodular lattice given in Fig. 7.3 and paste three
copies to distinct atoms of a block obtaining thus an orthomodular lattice without any two-valued
state(however, his estimation of lines does not seem to be correct

In Ref. 7 the author uses weak realizability of an orthomodular lattice in Fig. 7.5 whenever we
represent elements, b by lines inH3, such that their angle is less than 45°. This leads to the
construction of an orthomodular lattice with 392 elemdi$6 atomg weakly realizable irH;
and(at mosj 130-element set of lines without any two-valued state.

VIIl. DISCUSSION OF PHYSICAL RELEVANCE

In this final section we shall give a brief review of the physical relevance of the above
findings. The nonexistence of two-valued measures on certain finite propositional structures in
three-dimensional Hilbert spaces has first been explicitly demonstrated by Kochen and $pecker.
It is strongly recommended that this original account be read. Their result has given rise to a
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FIG. 9. “Almost” Greechie diagram of a suborthoposet bff; without any two-valued stat¢e.g., 1!2 denotes
Sp(1,—-1v2)].

number of interpretations, by Kochen and Specker and others. A detailed overview of the history
of the subject can, for instance, be found in the reviews by Merauinl Brown?°

What does it physically mean thétree nonorthogonal rays in three-dimensional Hilbert
space are sufficient to generate a finite system of rays that have no two-valued state? To state the
associated Kochen—Specker paradox explicitly, let us associate any one-dimensional subspace
Sp(v) spanned by a nonzero vectorwith the proposition that the physical system is in a pure
state associated with that subspace. That is,

Sp1,00=a, Sp1,1,0=b, Spy2,1,)=c,

TABLE |. Numbers of elements of constructed propositional structuréssimithout a “large” set of two-valued states.

“Large:” Full Separating Unital Nonempty
Example(figure) 4.2 7.2 cf. Refs. 8,18 8 9
Elements of a suborthoposet 28 56 76 104 116
Atoms of a suborthoposet 13 27 37 51 57
Lines 8 17 25 29 33
Orthogenerators 6 9 11 16 17
Generators 3 4 3 4 3
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wherea, b, andc are propositions. I& (similar for b andc) is measured, then we associate the
logical value “true” or “false” with the two-valued state functios(a) =1 ands(a)=0, respec-
tively. a, b, c generate the propositional structure derived by Peiefs also Ref. 21, pp. 186—
190. That is, ifv andw are two vectors in three-dimensional Hilbert space corresponding to the
propositionsp, andp,,, respectively, then the vector produck w corresponds to the proposition
(p,\/Pw)'- In particular

Sp(1,0,0=a,
Sp(1,1,0=Dh,
Spv2,1,0=c,
Sp(0,0,)=(Sp(1,0,0V/Sp(1,1,0)’ =(a\/b)’.
Sp(0,1,—1)=(SH(1,0,0\/Sp(v2,1,) =(a\/c)’,

SH0,1,0 =(Sp(1,0,0\/Sp(0,0,D)' = (a\/(av/b)")’,
SH0,1,)=(Sp(1,0,0/\Sp(0,1,— 1)) = (a\/(a\/c)'),
SH(1,-1,0=(Sp(1,1,0\/Sp0,0,)' = (b\/(av/b) ),

SH—1,42,0=(Sp(v2,1,9\/SH0,0,)' = (c\/(av/b)")’,
SHV2,-1,-1)=(Sp(v2,1,0/Sp0,1,- 1)) =(cv(avec)'),
SP(—1,0,4/2)=(Sp(v2,1,0V/Sp0,1,0)" = (c\/(a\/(avh) ")),
SH(V2,1,0=(Sp0,0,V/SK — 1,42,0))' = ((a\/b)"\/(c\/(avb) ")),
SP(1.42,0=(Sp0,0,)V/SpV2,—1,—1))' =((avb)"\/(c\/(avc) ")),
SH(1,0,y2)=(Sp0,1,0\/Sp(V2,—1,— 1)) =((av/(avb)) vV(ev(ave)')')',
SP(V2,1,-1)=(Sp0,1,2v/Sp ~ 1.12,0)' = (av(avec)) \/(c\/(avb)'))’)’,
SHV2,0,D=(SH0,1,0V/SK — 1,04/2))' = ((a\/(av/h) ) \/(cv/(av/(avb)))'),
SH(V2,~1,0=(Sp0,0,0\/Sp(1,2,0)" = ((aV/b) "/ ((avb) /(e (ave)'))'),
SHV2,—1,1)=(Sp0,1,D\/Sp —~ 1,0,4/2)) = ((a\/(a\/c)) (v (av(avh)))')',
SP(—1,1,42)=(Sp(1,1,0\/SP(v2,0,0) = (b\/((a\/(av/b) ) vV (c\/(av/(avh))) ")),

Sp0,12,—1)=(Sp1,0,0\/SH — 1,1,y2))’
=(@v(bv((@v(ayvb)) v(cv(@y(ayb)))))'),

SR(v/2,0,— 1)=(Sp0,1,0\/SP(1,0,v/2))’
=((av(avb)) v ((ayv(ayvb))\/(c\v(ayve)))')',
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SH(1,—1,12)=(Sp1,1,0V/SH —1,14/2))’
=(bv/(bv(@y(ayvb)) \v(cy@y(ayvb))))'),

SH0,1,4/2)=(Sp(1,0,0\/Sp0,1/2,— 1))’
=(av(av(bv((@yv(ayvb)) \v(cv(@ay(ayb))))HH"',

SH0,1/2,1)=(Sp(1,0,0\/Sp(1,— 1,1/2))’
=(aVv(bv/(bv((av(ayvb)) v(cyv(ayv(ayb)))HH)H)',

Sp(—1,—1,//2)=(Sp1,—1,0\/SK2,0,2)’
=((b\/(avb))"v/((@av(ayb) ) \v(cv(@yv(ayb)))))',

SH0,—1,42)=(Sp(1,0,0\/Sp(0,4/2,1))’
=(av(av(by/(bv((ayv(ayvb)) \v(cyv@y(ayb)))HHHH)"',

Sp(1,1,4/2)=(Sp1,—1,0\/SH0,v/2,— 1))’
=((bv/(avb) ) \/(av(by(@y(ayb))'v(cy@y(ayb)))H)N')’,

Sp—1,4/2,-1)=(Sp(v2,1,0\/Sp0,1,y2))’
=(((avb)'\/(cv(avb)))' (av(@y(by((@y(ayb)')
Viev@y(ayb)))NHNN",
Sp— 1,32, =(Sp(+/2,1,0\/Sp0,— 1,4/2))’
=(((avb)'\/(cv/(avb))) v(av(ay (b (by(@y(ayb)')’
Vviev@y(ayb)))HHNHHN,
Sp(1,42,—1)=(Sp(v2,—1,0\/Sp0,1,1/2))’
=(((avb)"\/((avb)"\/(c\/(ave)) ) ) v(av(ay(by((@ay(ayb)')’
Viev@y(ayb)))NHNn",
Sp(—1,0,)=(Sp(0,1,0n/Sp(—1,1/2,— 1))’
=(av(avb))'\/(((avb) \/(\(avb)')")’
V(av(@y(bv((ayv(ayvb)")'
Viev@y(ayb)))HNHN'),
SH(1,:2,)=(Sp(v2,—1,0\/Sp0,—1,1/2))’
=(((avb)"\/((avb)"\/(c\/(ave)'))")
V(@av(av(bv/(bv((ayv(ayb))'
Vviev@y(ayb)))HHNnNny,
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SP(1,0,)=(Sp0,1,0\/Sp — 1,42,1)’
=((av(avb))'\/(((avb)'\/(c\/(avb)')')’
V(@v(ay by (bv/(@y(ayb)')
viev@y(avh)'))))))NN" .

Suppose, for the sake of contradiction, that each one of the above 33 propositions corresponds
to an “element of physical reality’?? That is, suppose that its value is either “trué&xclusivé
or “false,” irrespective of whether it has been actually measured or just counterfactually inferred.
Let us further assume with Pefes that—provided these “elements of reality” exist—®g0,1)
=5p1,0,) =Sp0,1,) =Sp1,-1yv2) =Sp1,0¥2) =Spv2,1,) =Sp+v2,0,)) =Sp1,1¥2)
=Sp(0,1y2) =Sp(1v2,1) ="“true.” One can follow Peres’ arguments to show that—provided
these “elements of reality” exist—all other rays belong to triads that are orthogonal to the above
rays. Therefore, these latter rays must correspond to propositions whose value is “false.” In
particular,  Sp1,0,0=Sp(0v2,1)=Sp0,—1v2)="false,” associate with s(Sp(1,0,0)
=s(Sp(0,v2,1))=s(Sp(0,—1,v2))=0. Thus, s(Sp(1,0,0)+s(Sp0v2,1))+s(Sp0,—1v2))=0+0
+0=0. But Sg1,0,0, Sp0v2,1), and S|§0,—1,v2) are mutually orthogonal. This is in contradic-
tion to the assumption that for any orthogonal triad spanning the entire Hilbert space, the sum of
the measures should be dmé. Definition 3.1(4)]. Notice that in order to arrive at this Kochen—
Specker paradox, we had to explicitly assume the existence of the “elements of reality,” irre-
spective of whether they haver could have actually been measured or not.

What physical use can be a paradox? How can one measure a contradiction? Indeed, what can
actually be measured is meredpetriplet of propositions corresponding to some of the triads of
mutually orthogonal rays. Such a measurement can be performed with the operator discussed by
Peres, or with an arrangement of beam splitters discussed by ket

For instance, aftec is found to be “true” [corresponding ts(c) =1], then measurement of
the original values of or b is no longer possible. However, suppose one would be willing to
believe in the existence of “elements of reality?>* which could merely becounterfactually
inferred. Then one could for instance—at least in principle—"measure” all 16 orthogonal triads
by the production of a state with 16 entangled subsystems. On each one of the 16 different
entangled subsystems one could measure one of the 16 different orthogonal triads. This is similar
to a proposal by Greenberger, Horne, and Zeilifgewhich use three particles and eight-
dimensional Hilbert space. Indeed, only in such a way—namelycbynterfactually inferring
noncomeasurable propositions—one would encounter a complete Kochen—Specker contradiction.

As has been already proven in the Kochen and Specker original @briRef. 17, pp. 82—-85,
Theorem 4, the notion of tautology is connected to a classi@dolear) imbedding of a partial
Boolean algebra. Indeed, there exist propositions that are tautologies in the cléB3simelan
algebra but that are not tautologies in the partial Boolean algebra if and only if the partial Boolean
algebra does not have a unital set of two-valued states and thus cannot be imbedded into a
classical(Boolean algebra.

This is true for all partial Boolean algebras, in particular for orthomodular posets. Notice that
the above result does not imply that every propositional structure giving rise (ttassical
Boolean tautology that is no quantum tautology also has no two-valued meaguselow).

Until now, the lowest number of rays necessary to produce a classical tautology that is not
always true quantum mechanically is due to Stfi*® The 11 rays used by Schie can also be
generated by the three vectdis0,0, (1,1,0, and(v2,1,1) (corresponding t@, b, andc) used
before. Indeedd=Sp0,1,—1)=(Sp(1,1,0\/Spv2,1,1))'=(a\/c)’ and

a;=Sp1,0,0=a,

a,=5p(0,1,0 =(Sp(1,0,0V/Sp(0,0,1)" = (av/(av/hb)’)’,
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b;=Sp0,1,9=(Sp(1,0,0\/Sp0,1,—1))" =(avd)’,
b,=Sp(1,0,9=(Sp0,1,0V/Sp(—1,1,1)"=((av(avb)’)"\/(b\vd)")’,
b;=Sp(1,1,0=b,
¢1=5p(1,0,2=(Sp(0,1,0/Sp(2,1,—1))" = ((aV(avb)") v ((avd)"\/(bv(avd)))")',
C2=5p(2,0,)=(Sp(0,1,0/Sp(—1,0,2)" = ((av/(avb)")"\/((av(avb)) Vv ((avd)’
V((avd) v (bv(avb)'))))",
d;=Sp(—1,1,9)=(Sp1,1,0\/Sp(0,1,—1))" =(b\/d)’,
d>=Sp(1,—1,1)=(Sp(1,1,0\/Sp(0,1,1))" = (b\/(av/d)")’,
d3=Sp(1,1,—1)=(Sp0,1,9\/Sp(1,—1,0)" = ((avd)"\v/(b\/(avb))")’,
d,=Sp(1,1,)=(Sp0,1,-1)\/Sp(1,—1,0)" = (d\/(b\/(avb)")")’,
where
Sp(2,1,-1)=(Sp0,1,)/Sp(1,-1,1) = ((avd)" V(b (avd)')")’,
Sp(—1,0,2=(Sp0,1,0V/Sp(—2,1,—1)) = ((av/(avb)" )"V ((avd)"\/((ayvd)’
Vv(bv(avb))')"))',
Sp(2,~1,1)=(Sp0,1,)/Sp(1,1,—1)) = ((avd)"\/((avd) "/ (bv(avb)))')".
As we have mentioned above, there is not a unital set of two-valued states on a suborthoposet
orthogenerated by these rafesg., there is no two-valued stasewith s(Sp(1,0,0)=1). On the
other hand, a two-valued can be defined b{Sp0,1,0) =s(Sp0,1,)) =s(Sp1,1,0)
=s(Sp(1,1,)) =s(Sp1,1,2) =s(Sp1,2,9) =s(Sp2,1,)) =s(Sp1,2,-1)) =s(Sp(—1,2,D)
=s(Sp(1,5,2) =s(Sp2,5,)) =s(Sp(—1,5,2) =s(Sp(2,5-1)) =s(Sp(1,5,-2)) =s(Sp(—2,5,D)
=1 ands(Sp(1,0,0) =s(Sp0,0,)) =s(Sp(1,0,)) =s(Sp0,1,-1)) =s(Sp(1,0,-1)) =s(Sp1,
-1,0) =s(Sp(1,1,-1)) =s(Sp(1,—1,1)) =s(Sp(—1,1,)) =s(Sp(—1,—1,2) =s(Sp(—1,2,-1))
=s(Sp2,—-1,-1) =s(Sp1,—-1,2) =s(Sp—1,1,2) =s(Sp2,1-1) =s(Sp2,—-1,1)
=s(Sp(1,0,2)=s(Sp2,0,))=s(Sp(—1,0,2)=s(Sp(2,0,—1))=s(Sp(1,—5,2)) =s(Sp(2,—5,1))=0.
Consider now the following propositioriaotice that any binary operation is either performed
by orthogonal rays or by a ray and an orthocomplement of another ray, such that these rays are
orthogona):
f1:d1—>bé:(d1/\b2)’,
f2:d14>bé:(d1/\b3),,
fa=d,—ay\/by=(dy/\(a\/by)")’,
f4=d2—>bé=(d2/\b3)’,

f5=d3ab§=(d3/\b2)’,
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fe=ds—(a;\va,—bs)=(ds/\((a1\/az) " \/b3)')’,
fo=ds—ax\/b=(ds/\(az\/by)")’,
fg=ds—(ar\va,—bs)=(ds/\((a1\/az) " \/b3)')’,
fo=(az\v/c)\V/(bs\vvdi)=((az\/c1) A(bs\/dy)"),
f10=(a2\/C2)\/(ar\/bi—dy) = ((ax\/¢c2) ' N((ay\v/by) "\/dy)")',
fi1=c;—by\/dy=(c;/\(by\/dy)")’,
f1,=Co—bs\/dy=(c/\(b3\/dy)")’,
f15=(az2v e VI(arvva,—bs)—ds]=((az2ve) ' N((arvaz)\/bg) " \/d3) '),
f14=(a2\/C2)\/(b1\/d3) = ((a2\/C2)'/\(by\/d3)")",
f15=Co—[(ar\v/a,—bz) —ds]=(C2/\(((ar\v/az) "\/bs)'\/dg) "),
f16=C1—(a1\v/bi—dy) =(c1/N(ar\Vvby)"\vdy)')',

fi7=(ay—ay)\/by=(aj\vay)\/b;.

The “implication” relation has been expressedras y=x"\/y=(x/\y')’.
As can be straightforwardly checked, the proposition formed by

F:fl/\fz/\"'/\f16—>f17,

is a classical tautology. Neverthele§sjs not valid in three-dimensionateal Hilbert spaceR®,
sincefy, f,,....f;,=R%, whereasf ;;=(Sp(1,0,0)’=Sp(0,1,0\/Sp0,0,) #R3.

The three vector$1,0,0, (1,1,0, and(v2,1,1) generating the Schie rays are not mutually
orthogonal. Therefore, the corresponding propositianb, andc are not comeasureable. In the
sense of partial algebras, they cannot be combined by logical operations({09¢*‘and” (/\),

“not” (') to form new expressions. Thus, it would be incorrect to state that there exists a classical
tautology in the three variables, b, and ¢, which is no quantum tautology. Indeed, Coray
proved® that all classical tautologies in three variables are tautologies in all partial algebras, in
particular in the one associated with the logic of quantum observables.

However, also Schte’s example is counterfactual in nature. Although every operation or
relation is solely defined on comeasurable propositions, the entire foffualantains 11 non-
comeasurable variablgsonorthogonal rays In order to be able to evaluate this formula, one
would have to know the true value of all these 11 variables in parallel. Since they are not
comeasurable, this is possible only by counterfactual inference; in very much the same way as
discussed before in the case of the original Kochen—Specker paradox. Indeed, Corey’s result
shows thatny classical(Boolear) tautology that is no quantum tautology will have to rely on at
least four variables that cannot be mutually orthogdimaR?), and therefore must be based upon
counterfactual inference.

Finally, let us briefly mention the relevance of these findings to the partition logic of au-
tomata. Corollary 4.3 states that every finite subortholattic®dfias a full(and thus separating
set of two-valued states. Thus, any finite subortholatticRbfan be expressed as an automaton
logic. The subortholattices d® that have no two-valued state are infinite.
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