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Abstract

Just as in mathematics, recursion theory and formal logic paradoxa
can be used to derive incompleteness theorems, physical paradoxa can be
applied for a derivation of constraints on the dynamics of physical systems
and of certain types of no-go theorems. For example, time paradoxa can
be used against the outcome controllability of entangled subsystems. As
a consequence, the requirement of consistency of physical phenomenology
induces the “peaceful coexistence” between relativity theory and quantum
mechanics.

Undecidability in mathematics comes in different varieties; so does undecidabil-
ity in physics. In physics we have to make sure that the theory is a suitable
formal representation of the phenomenology. For example, if the outcome of an
experiment cannot be predicted, does that mean that “God plays dice?” Or
does it mean that although the causes are in principle known, we are unable
to compute a prediction? Or does it simply mean that there are causes but
these are unknown to us? These questions may never be fully settled [1], but
since Gödel’s [2] and Turing’s [4] centennial findings, remarkable advances have
been made in the formal perception of undecidability. And today’s computers
not only serve as number crunchers but are becoming a medium to “virtual”
realities. This greatly promotes the interaction between theoretical computer
sciences, formal logic and the physics of “real” reality.

Let us briefly consider the physical correspondents of two forms of math-
ematical undecidability, the first being associated with the assumption of the
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continuum (oracle computation), the second arising in the context of finite com-
putation. If one wishes to order theories with respect to the computational
power necessary to implement them, continuum theories require more resources
than theories based on universal computation (e.g., Cellular Automata [5, 6, 7]),
which in turn are more powerful than finite models.

Continuum theories require the generation, storage and processing of num-
bers which are uncomputable in the sense of Turing. More precisely (and worse),
“almost all” (with probability one) elements of the continuum “urn” must be
represented by random sequences; stated pointedly: any bit in its binary ex-
pansion is as uncorrelated to the previous and the following bits as is any toss
of a fair coin from other tosses [8, 9]. In continuum theories, “God plays dice.”
In such theories, undecidability, as not caused otherwise, is implemented by
absolute randomness. How come then, one may ask, that classical mechanics
has been long considered as the prototype for a “deterministic” model? The
reason for this is twofold: First, one may conjecture that it is possible to keep
all the nice features of continuum mechanics (e.g., calculus) while at the same
time get rid of the nasty aspects (e.g., nonconstructive randomness); and indeed
there are indications that this might be possible [10]. Second, there are “non-
chaotic” dynamical systems, in which arbitrary initial conditions yield solutions
which converge rapidly toward periodic behaviour, or at least converge toward
a computable function (attractor).

Continuum theory (any dense set) allows the construction of “infinity ma-
chines,” which could serve as oracles for the halting problem. Their construction
closely follows Zeno’s paradox of Achilles and the Tortoise (Hector) by squeezing
the time it takes for successive steps of computation τ with geometric progres-
sion: 0 1 2 3 4 · · · I.e., the time necessary for the n’th
step becomes τ(n) = kn, k < 0. The limit of infinite computation is then reached
in finite physical time limN→∞

∑N
n=1 τ(n) = limN→∞

∑N
n=1 kn = 1/(1− k). It

can be shown by a diagonalization argument that the application of such oracle
subroutines would result in a paradox in classical physics (cf. [11], p. 24, 114).
Therefore, at least in this example, too powerful physical models (of computa-
tion) are inconsistent.

A second type of undecidability which occurs in finite systems is computa-
tional complementarity, which is realizable already at a very elementary pre-
diagonalization level [12]; i.e., without the requirement of computational uni-
versality or its arithmetic equivalent. The resulting “static” automaton logic
has great similarities to quantum logic [13, 11].

Our major concern here shall be a third type of undecidability. It will
be demonstrated how diagonalization techniques lead to the exclusion of time
paradoxa, and how quantum physics implements causality.

Classical information theory (e.g., [14]) is based on the bit as fundamental
atom. This classical bit, henceforth called cbit, is physically represented by
one of two classical states. It is customary to use the symbols “0” and “1” as
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Figure 1: Scheme of backward-in-time signalling by EPR-type telegraph. The
postulated controllability of outcomes in 1, mediated via 2, is used to transmit
information. The flow of information is indicated by the arrow. “•” stands
for the active mode; i.e., controllable outcome (preparation). “◦” stands for the
passive mode; i.e., measurement. The two signs are drawn on top and at bottom
to indicate the orientation (relative angle π).

the names of these states. The corresponding classical computational basis is
{0, 1} = Z2.

In quantum information theory (cf. [15, 16, 17, 18, 19, 20, 21, 22]), the
most elementary unit of information, henceforth called qbit, may be physically
represented by a coherent superposition of the two states which correspond to
the symbols 0 and 1. The corresponding quantum computational basis is the
undenumerable set {|a, b〉 | |a, b〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1, a, b ∈ C}.

In what follows we shall consider the hypothetical transmission of informa-
tion backward in time. To be more specific, we shall use an EPR-type telegraph
which uses entangled particles in a singlet state (i.e., the total angular momen-
tum of the two particles is zero) as drawn in Fig. 1. The apparatus is tuned to
convey perfect correlations of the direction of angular momentum labelled by
“+” and “−”; i.e., the outcomes are either + + or −−. Perfect correlations can
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be achieved by choosing a relative angle of measurement of π. The (unphysical)
assumption necessary for signalling backwards in time is that on one side, say
for particles in path 1, the outcome can be controlled. This means that it will be
assumed possible to produce a particle with, say, direction of angular momen-
tum “+” (“−”) in the path 1 at tA, thereby transmitting a signal “+” (“−”) via
its perfectly correlated entangled partner in path 2 to a second observer back
in time at tB ; thereby, tA > tB > tS but otherwise arbitrary.

An alternative setup for information transmission backward in time by an
EPR-type quantum telegraph would use the stronger-than-classical correlations
for relative measurement angles not equal to 0, π/2 and π. In this case, the
(unphysical) assumption necessary for signalling backwards in time is the out-
come dependence on one side, say for particles in path 2, on the angle chosen
for measurements on beam 1 (e.g., by “cloning,” cf. [23, 24, 25, 26, 27]).

Of course, this kind of outcome control or outcome dependence would neither
be allowed in relativistic mechanics nor in quantum mechanics. The stronger-
than-classical quantum expectation functions are often considered manifesta-
tions of “nonlocality” [28] (or, alternatively, of failure of classical probability
theory [29]), but they only effect parameter dependence, not outcome depen-
dence of single events [30, 31].

We shall make use of the EPR-type telegraph to construct a time paradox
and argue against outcome predictability and outcome controllability in any
form. In a similar manner, the liar paradox [32] was translated by Gödel into
arithmetic [2] to argue against a complete description of a formal system within
that very system [36]. For instance, the gödelian sentence [37] claiming its own
unprovability in a particular system appears undecidable within that very sys-
tem. In physical terms, undecidability must be translated onto the level of phe-
nomena and, only in a secondary step, into their theoretic description. On the
phenomenological level there is no such thing as an inconsistent phenomenon.
In a typical yes-no experiment which can have two possible outcomes, only one
of these outcomes will actually be measured. However, this uniqueness of phe-
nomenology does not guarantee that a theory exists which predicts it completely.
There might even be a “meta-physical” (extrinsic [38], exo- [39]) arena in which
this particular outcome could be deterministically accounted for. Yet, for an
intrinsic observer who is embedded in the system [40], this “meta-physical” level
might be permanently inaccessible [41, 11]. As will be shown below, quantum
mechanics implements this phenomenological undecidability both by the pos-
tulate of randomness of certain outcomes and by the superposition principle.
Related arguments have been put forward in [37, 42, 43, 44, 45, 46, 47].

Consider two backward-in-time signalling EPR-type telegraphs of the above
type arranged as drawn in Fig. 2. Physically, the flow of information is me-
diated via the two entangled pairs in paths 1–2 and 3–4. An information in 2
is mirrored by M in 3. By this instrument, some mechanistic agent A (e.g.,
computer, deterministic observer) which is given the power of outcome control
can exchange information with itself on closed timelike lines [34, 35]. Agent A
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shall be confronted with the following paradoxical task. Whenever A registers
the information “+” (“−”) at time tA′ , A must stimulate the opposite outcome
“−” (“+”) at the later time tA.

Before discussing the paradox, let us consider the two states |0〉 ≡ “−” and
|1〉 ≡ “+” which are accessible to A. These states can be the basis of a cbit
with the identification of the symbols “0” and “1” for |0〉 and |1〉, respectively.
Quantum mechanically any coherent superposition of them is allowed. Agent
A’s paradoxical task can be formalized by a unitary evolution operator D̂ as
follows

D̂|0〉 = |1〉, D̂|1〉 = |0〉 . (1)

In the state basis {|0〉, |1〉} (τ1 stands for the Pauli spin operator),

D̂ = τ1 =
(

0 1
1 0

)
= |1〉〈0|+ |0〉〈1| . (2)

The syntactic structure of the paradox closely resembles Cantor’s diagonaliza-
tion method which has been applied by Gödel, Turing and others for undecid-
ability proofs in a recursion theoretic setup [33, 48, 49, 11]. Therefore, D̂ will be
called diagonalization operator, despite the fact that its only nonvanishing com-
ponents are off-diagonal. (Notice that A’s task would be perfectly consistent if
there were no “bit switch” and if thus D̂ = I.)

The paradoxical feature of the construction reveals itself in the following
question: what happens to agent A? In particular: what does A register and
send?

Let us first consider these questions from a classical perspective. Classically,
the particles with which A operates can only be in one of two possible states,
namely in |0〉 or in |1〉, corresponding to the classical computational basis Z2.
By measuring the particle in beam 4, A gets either the outcome “+” or “−”.
In both cases, agent A is lead to a complete contradiction.

For, if A receives “+”, corresponding to cbit state 1, A is obliged to send out
“−”, corresponding to cbit state 0 (A has been assumed to be able to control
the outcomes in beam 1). Due to the perfect EPR-correlations, the partner
particle in beam 2 is registered as “−” at the mirror at time tB . By controlling
the outcome in beam 3, this mirrored cbit can again be sent backwards in time,
where “−” is received by A via a measurement of the particle in beam 4. This,
however, contradicts the initial assumption that the outcome in beam 4 is “+”.

On the other hand, if A receives “−”, corresponding to cbit state 0, A is
obliged to send out “+”, corresponding to cbit state 1; yet, since at tB the cbit is
just reflected as described above, A should have received “+”. Thus classically,
agent A is in an inescapable dilemma.

The defense strategy in formal logic and classical recursion theory against
such inconsistencies is to avoid the appearance of a paradox by claiming (stronger:
requiring) overall consistency, resulting in no-go theorems; i.e., in the postulate
of the impossibility of any operational method, procedure or device which would
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Figure 2: time paradox.

6



have the potentiality to cause a paradox. (Among the many impossible objects
giving rise to paradoxes are such seemingly innocent devices as a “halting al-
gorithm” computing whether or not another arbitrary computable algorithm
produces a particular output; or an algorithm identifying another arbitrary al-
gorithm by input-output experiments.)

In the above case, the defense strategy would result in the postulate of
the impossibility of any backward-in-time information flow or, more general,
of closed timelike lines. Since the only nontrivial feature of the backward-in-
time information flow has been outcome controllability or outcome dependence,
the diagonalization argument can be used against outcome controllability and
outcome dependence, resulting in an intrinsic randomness of the individual out-
comes.

Quantum mechanics implements exactly that kind of recursion theoretic
argument; yet in a form which is not common in recursion theory. Observe that
the paradox is resolved when A is allowed a nonclassical qbit of information.
In particular, agent A’s task can consistently be performed if it inputs a qbit
corresponding to the fixed point state of D̂; i.e.,

D̂|∗〉 = |∗〉 . (3)

The fixed point state |∗〉 is just the eigenstate of the diagonalization operator
D̂ with eigenvalue 1. Notice that the eigenstates of D̂ are

|I〉, |II〉 =
1√
2

[(
1
0

)
±

(
0
1

)]
=

1√
2
(|0〉 ± |1〉) (4)

with the eigenvalues +1 and −1, respectively. Thus, the nonparadoxical, fixed
point qbit in the basis of |0〉 and |1〉 is given by

|∗〉 = |1
2
,
1
2
〉 = |I〉 . (5)

This qbit solution corresponds to the statement that it is impossible for the agent
to control the outcome; a situation actually encountered in quantum mechanics
[50].

We close the discussion on the consistent use of paradoxa in physics with
a few comments. First, it is important to recognize that the above consid-
erations have no immediate bearing on quantum complementarity. In the au-
thor’s opinion, complementarity is a general feature of the intrinsic perception of
computer-generated universes, which is realizable already at a very elementary
pre-diagonalization level [12, 13, 11]; i.e., without the requirement of computa-
tional universality or its arithmetic equivalent.

Second, the above argument remains valid for any conceivable (local or non-
local [51, 29]) hidden variable theory. The consistency of the physical phe-
nomenology requires that hidden variables remain inaccessible to an intrinsic
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observer. From an intrinsic, operational point of view, a paradox always marks
the appearance of uncertainty and uncontrollability.

Third, an application for quantum information theory is the handling of in-
consistent information in databases. Thereby, two contradicting cbits of infor-
mation |a〉 and |b〉 are resolved by the qbit | 12 , 1

2 〉 = (1/
√

2)(|a〉+ |b〉). Through-
out the rest of the computation the coherence is maintained. After the process-
ing, the result is obtained by a measurement. The processing of qbits requires
an exponential space overhead on classical computers in cbit base [7]. Thus, in
order to remain tractable, the corresponding qbits should be implemented on
truly quantum universal computers.
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