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1 Introduction

Epistemological, thentrinsic/extrinsicconcept, or, by another naming [1, 2], thiedo-
physics/exophysiaoncept, is related to the question of how a mathematicalagia
cal or an algorithmic universe is perceived from withinffrthe outside. The physical
universe, by definition, can be perceived from within only.

Extrinsic or exophysicaperception can be conceived as a hierarchical process, in
which the system under observation and the experimentar &two-level hierarchy.
The systemis laid out and the experimenter peeps at evemnargifeature of it without
changing it. The restricted entanglement between thersyatel the experimenter can
be represented by a one-way information flow from the systeting experimenter; the
system is not affected by the experimenter’s actions. (&iegs might prefer the term
metaoverexa)

Intrinsic or endophysicaberception can be conceived as a non-hierarchical ef-
fort. The experimenter is part of the universe under obsienva Experiments use
devices and procedures which are realisable by internalress, i.e., from within
the universe. The total integration of the experimentehadbserved system can be
represented by a two-way information flow, where “measurgrapparatus” and “ob-
served entity” are interchangeable and any distinctiowéen them is merely a matter
of intent and convention. Endophysics is limited by the-seférential character of
any measurement. An intrinsic measurement can often beedela the paradoxical
attempt to obtain the “true” value of an observable while +otigh interaction — it
causes “disturbances” of the entity to be measured, tharleéyging its state. Among
other questions one may askyhat kind of experiments are intrinsically operational
and what type of theories will be intrinsically reasonabile?

Imagine, for example, some atrtificial intelligence livimga (hermetic) cyberspace.
This agent might develop a “natural science” by performixgegiments and develop-
ing theories. It is tempting to speculate that also a figura movel, imagined by the
poet and the reader, is such an agent.

Since in cyberspace ongyntacticstructures are relevant, one might wonder if con-
cerns of this agent about its “hardware basis,” e.g., whétfe"'made of” billard balls,



electric circuits, mechanical relays or nerve cells, arestinyor even possible (cf. H.
Putnam’s brain-in-a-tank analysis [4]). | dont think thesniecessarily so, in particular
if the agent could influence some features of this hardwasesb@ne example is a
hardware damage caused by certain computer viruses byirifgegt” computer com-
ponents such as storage or processors. | would like to daltythe of “back-reaction”
of a virtual reality on its computing agettirtual backflow interception”(VBI). In-
trinsic phenomenologically, VBI could manifest itself byrse violation of a “supers-
election rule;” i.e., by some virtual phenomenon which &tek the fundamental laws
of a virtual reality, such as symmetry & conservation pries.

No attempt is made here to (re-)write a comprehensive lyistbrrelated con-
cepts; but a few hallmarks are mentioned without claim of pleteness. Histori-
cally, Archimedes conceivetpoints outside the world, from which one could move
the earth.” Archimedes’ use of “points outside the world” was in a medbalrather
than in a metatheoretical context: he claimed to be able teerany given weight by
any given force, however small. The 18'th century physiBisf. Boscovich realised
that it is not possible to measure motions or transformatibtime whole world, includ-
ing all measurement apparata and observers therein, becmually affected by these
motions or transformations (cf. O. E. Rdssler [2], p. 143ktien writers informally
elaborated consequences of intrinsic perception. E. AoblFlatlanddescribes the
life of two- and onedimensional creatures and their coriédion with higher dimen-
sional phenomena. THeeiherr von Minchhauserescued himself from a swamp by
dragging himself out by his own hair. Among contemporargsce fiction authors,
D. F. Galouye’sSimulacron Threand St. Lem’sNon Servianstudy some aspects of
artificial intelligence in what could be called “cyberspatdvedia artists such as Peter
Weibel create “virtual realities” or “cyberspaces” and peaticulary concerned about
the interface between “reality” and “virtual reality,” both practicallgnd philosoph-
ically. Finally, by outperforming television & computer mas, commercial “virtual
reality” products might become very big business. Fromele&amples it can be seen
that concepts related to intrinsic perception may becomn#t for physics, the com-
puter sciences and art as well.

Already in 1950 (19 years after the publication of Gédel'sampleteness the-
orems), K. Popper has questioned the completeness ofedeiential perception of
“mechanic” computing devices [5]. Popper uses technigimesas to Zeno'’s paradox
(which he calls “paradox of Tristram Shandy”) and “Gddelsmtences” to argue for
a kind of “intrinsic indeterminism.”

In a pioneering study on the theory of (finite) automata, BM&ore has presented
Gedanken-experiments on sequential machj8esThere, E. F. Moore investigated
automata featuring, at least to some extend, similaribeth¢ quantum mechanical
uncertainty principle. In the booRegular Algebra and Finite Maching30], J. H.
Conway has developed these ideas further from a formal pbiniew without relating
them to physical applications. Probably the best reviewkp&ements on Moore-type
automata can be found in W. Brauer’s bodltomatentheorig31] (in German).

D. Finkelstein [32, 33] has considered Moore’s findings flmore physical point
of view, introducing an “experimental logic of automata’tihe ternt'computational
complementarity’An illuminating account on endophysics topics can be foum@i
E. Réssler’s article oEndophysic$l], as well as in his booEndophysicgin German)



[2]; O. E. Rossler is a major driving force in this area. AlsoRimas has considered
endophysical and exophysical descriptions in variousesdsf7].

The terms‘intrinsic” and“extrinsic” appear in the author’s studies on intrinsic
time scales in arbitrary dispersive media [8, 9, 10]. Th#re,intrinsic-extrinsic con-
cept has been re-invented (probably for the 100'th time, arsdlemnly swear) in-
dependently. It is argued that, depending on dispersiatioals, creatures in a “dis-
persive medium” would develop a theory of coordinate tramaftion very similar to
relativity theory. Another proposal by the author was tosidar a new type of “di-
mensional regularisation” by assuming that the space-iapport of (Quantum me-
chanical) fields is a fractal [11]. In this approach one coes a fractal space-time of
Hausdorff dimensio® = 4 — ¢, with € <« 1, which is embedded in a space of higher
dimension, e.g.R">4. Intrinsically, the (fractal) space-time is perceivedmalst” as
the usual fourdimensional space.

Besides such considerations, J. A. Wheeler [12], among®thas emphasised the
role of observer-participancy.ln the context of what is considered by the Einstein-
Podolsky-Rosen argument [13] as “incompleteness” of quartheory, A. Peres and
W. H. Zurek [14, 15] and J. Rothstein [16] have attempted lateequantum comple-
mentarity to Godel-type incompleteness.

In what follows, the intrinsic-extrinsic concept will be a& precise in amlgo-
rithmic context, thereby closely following E. F. Moore [6]. The maeason for the
algorithmic approach is that algorithmic universes (owmiegjently, formal systems)
are the royal road to the study of undecidability. The irgiGrextrinsic concept will
be applied to investigateomputational complementarigndintrinsic indeterminism
both in the algorithmic context.

2 Gedankenexperiments on finite automata

In a groundbreaking study [6], Edward Moore analysed twal&iof Gedankenexper-
imentson finite automata, which will be slightly adapted for thegmet purposes. In
both cases, the automaton is treated as a “black box” in {leing sense:

(i) only the input and output terminals of the automaton aressibke. The experi-
menter is allowed to perform experimentathese interfaces in the form of stimulating
the automaton with input sequences and receiving outputesegs from the automa-
ton. The experimenter is not permitted to “open up” the awatimm, but

(ii) the transition and output table (diagram) of the automaitoity reduced form)
is known to the experimenter (or, if you prefer, is given te #xperimenter by some
“oracle”).

The most important problem, among others, is disinguishing problem:it is
known that an automaton is in one of a particular class ofmatestates: find that state.

In the first kind of experimental situation, onlysingle copy of the automaton
is accessible to the experimenter. The second type of ewpatioperates with an
arbitrary numberof automaton copies. Both cases will be discussed in detilb

If the input is somepredeterminedequence, one may call the experimepteset
experiment If, on the other hand, (part of) the input sequence dependpart of)
the output sequence, i.e., if the inpuiaidaptedto the reaction of the automaton, one



may call the experiment aamdaptive experimentWe shall be mostly concerned with
preset experiments, yet adaptive experiments can be ussalv® certain problems
with automaton propositional calculi.

Research along these lines has been pursued by S. GinsGlyd\[1Gill [18], J.
H. Conway [30] and W. Brauer [31].

2.1 Single-automaton configuration

In the first kind of Gedankenexperiment, omlge singleautomaton copy is presented
to the experimenter. The problem is to determine the ingiate of the automaton,
provided its transition and output functions are known t{dgishing problem). In
a typical experiment, the automaton is “feeded” with a seqaeof input symbols
and responds by a sequence of output symbols. An input-batgalysis then reveals
information about the automaton’s original state.

Assume for the moment that such an experiment induces atstatgtion of the
automaton. l.e., after the experiment, the automaton igvibie original initial state.
In this process a loss of potential information about theimatton’s initial state may
occur. In other words: certain measurements, while meagwdme particular fea-
ture of the automaton, may make impossible the measurenfesther features of
the automaton. This irreversible change of the automatate $ one aspect of the
“observer-participancy” in the single-automaton confaion. (This is not the case
for the multi-automaton situation discussed below, sifee availability of an arbi-
trary number of automata ensures the possibility of an ranyinumber of measuring
processes.)

In developing the intrinsic concept further, the automatnd the experimenter are
“placed” into asingle“meta’-automaton. If the experimenter reacts mecharnjictiis
can be readily achieved by simulating both the originaldini¢terministic “black box”
automaton as well as the experimenter and their interplag bgiversal automaton.
One can imagine such a situation as one subprogram checkotgea subprogram,
also including itself. For an illustration, see Fig. 1.

In certain cases it is necessary to iterate this picture enfélowing way. Sup-
pose, for instance, the experimenter attemptempleteintrinsic description. Then,
the experimenter has to give a complete description of his iotvinsic situation. In
order to be able to model the own intrinsic viewpoint, theexipenter has to intro-
duce an or system which israplica of its own universe. This amounts to substituting
the “meta’-automaton for the automaton in Fig. 1. Compase aldrawing by O. E.
Rossler [3], Fig. 2, where” stands for the interface, which is denoted by the symbols
“+" throughout this article. Yet, in order to be able to modétiirsic viewpoint of a
new experimenter in this new universe, this new experinrdras to introduce another
system which is aeplicaof its own universe,. ., resulting in an iteratioad infinitum.
One may conjecture that an observer in a hypothetical usgveorresponding to the
“fixed point” or “invariant set” of this process has complstf-comprehension; see
Fig. 3. Of course, in general this observer cannot be a filigewer: a complete de-
scription would only emerge in the limit of infinite iterafis (cf. K. Popper’s “paradox
of Tristram Shandy”). Finite observers cannot obtain catgself-comprehension.
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Figure 1: Schematic diagram of an experiment on a singlenaatian, both taking place
in a “meta’-automaton.

Figure 2: Author’s notes from a seminar talk by O. E. Rdssler.
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Figure 3: Hierarchy of intrinsic perception.

2.2 Multi-automata configuration

The second kind of experiment operates wittaasitrary numberof automaton copies.
One automaton is a copy of another if both automata are igummand if both are in
the same initial state. With this configuration the experitaeis in the happy condition
to apply as many input sequences to the original automatoee@sssary. In a sense,
the observer is not bound to “observer-participancy,” beedt is always possible to
“discard the used automaton copies,” and take a “fresh”raaton copy for further
experiments. For an illustration, see Fig. 4.

3 Definition

In the foregoing section, important features of the exichiistrinsic concept have been
isolated in the context of finite automata. A generalisatm@arbitrary physical sys-
tems is straightforward. The features will be summarisethieyfollowing definition.
(Anything on which experiments can be performed will beaddlystemIn particular,
finite automata are systems.)

An intrinsic quantity is associated with an experiment
(i) performed on &ingle copyof the system,
(i) with the experimenter being part of the system.

An extrinsicquantity, denoted by a tilde sign™ is associated with an experiment
(i) utilising, if necessary, aarbitrary number of copiesf the system,
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Figure 4: Schematic diagram of an experiment on an arbitnamber of identical
automaton copies.

(ii) with the experimenter not being part of the system.

One may ask whether, intuitively, the extrinsic point ofwienight be more ap-
propriately represented by, stated pointedly, the apjiticaof a “can-opener” for the
“black box” to see “what's really in it.” Yet, while the physal realisation might be
of some engineering importance, the primary concern is tismpmenology (i.e., the
experimental performanaef the system) and not how it is constructed. In this sense,
the technological base of the automaton is irrelevant. lk®@same reason, i.e., because
this is irrelevant to phenomenology, it is not important Wise the automaton is in its
minimal form.

The requirement that in the extrinsic caseaabitrary number of system copies
is available is equivalent to the statement thatinteraction takes place between the
experimenter and the syste(iThe reverse information flow from the observed system
to the experimenter is necessary.) This results in a oneifaymation flow in the
extrinsic case:

system™
Y e

and a two-way information flow in the intrinsic case:

experimenter

)

system<=- experimenter

An information “backflow” makes possible the application di&gonalization tech-
nigues and also results in complementarity, which might densas a “poor man’s
version of diagonalization.”

The definition applies to physical systems as well as to bogid (finite) automata.
Automaton worlds provide an ideal “playground” for the stuof certain algorith-
mic features related to undecidability, such as “compaiteti complementarity” and
“intrinsic indeterminism.” Theextrinsic-intrinsic problenis the interrelation between
extrinsic and intrinsic entities.



4 Complementarity

The input-output analysis of finite automata yields a fresdight into the quantum
mechanical feature of complementarity on a very elementami. Conversely, the
Copenhagen interpretation of quantum mechanics [19, 20beapplied for the anal-
ysis of automata. To substantiate this claim it is necessaigterrelate two strains
of investigation: (i) the lattice theoretic [21] approadn & representation of quantum
physics, pioneered by G. Birkhoff and J. von Neumann [22] latel extended to the
calculus of propositions [23, 24] and orthomodular logig,[26, 27, 28]; (ii) the theory
of finite automata, in particular of Moore and Mealy autonm#&ta29, 30, 31]. Com-
putational complementarity in the automata context has biest investigated by E. F.
Moore in his articleGedanken-Experiments on Sequential Machleés Informally
stated, measurement of one aspect of an automaton makessitsilpaneasurement of
another aspect andce versa The namecomputational complementarity due to D.
Finkelstein [32, 33], who also made the first attempt to amestiogics from experi-
mentally obtained propositions about automata; see atsmtire recent investigation
by A. A. Grib and R. R. Zapatrin [34]. The following investiian has been carried out
independently. Although the goals are very similar, thehods and techniques used
here differ from the ones used by previous authors.

The investigation is based on the construction of primié¥perimental statements
or propositions. Then thestructure of these propositions will be discussed, thereby
defining algebraic relations and operations between thpositions. Although spe-
cific classes of finite automata will be analysed, these denations apply to universal
computers as well. (Finite automata can be simulated oretsal computers.)

4.1 Finite automata

A finite (i,k,n)-automatotnas a finite number of i internal states, k input and n output
symbols. It is characterised by its transition and outputfionsd ando, which are
often represented by transition and output tables and bagalin. For an example see
below. The output function of Moore-type automatalepends solely on its internal
state, whereas the output functionMgaly-type automataepends on the input and
the internal state.

4.2 Automaton propositional calculi

A finite automaton will be treated as a “black box,” whose $itian and output tables
(i.e., informally speaking, its “intrinsic machinery”) egiven in advance bwhose
initial state is unknownOnly a singlecopy of the automaton will be made available
to the experimenter. The automaton is “feeded” with cerigiut sequences from the
experimenter and responds with certain output sequenoesh®@ll be interested in the
distinguishing problem‘identify an unknown initial state.”

Consider propositions of the form

“the automaton is in statea;”

with (1 < j <i). Propositions can be composed to form expressions of the fo



“the automaton is in stateajor in stateayor in state
-

Any proposition composed by propositions can be repredebyea set. E.g., the
above statement'he automaton is in stateajor in stateamor in
stat e a ---" represents the sdtj,m,1,...}. The element is given by the set odll
states{1,2,...,i}. This corresponds to a proposition which is always satisfied

“the automaton is in sonme internal state”

The elemen@is given by theemptyset® (or {}). This corresponds to a proposition
which is false (by definition the automaton has to beameinternal state):

“the automaton is in no internal state”

The class of all propositions and their relations will bdedbutomaton proposi-
tional calculusand denoted bgl. Each particular outcome which, if defined, has the
valueTRUE or FALSE, shall be called “event.” In this sense, an automaton piitipoal
calculus, just as the quantum propositional calculus, tainbdexperimentally It con-
sists of all potentially measurabédements of the automaton realiayd their logical
structure, with the implication as order relation.

The elementary propositions can be conveniently congtduloy a partitioning of
automaton states generated from the input-output analf/#ie automaton as follows:
Letw=s1S,---5 be a sequence of input symbols,

8w = 805, (8)ds, (s, (@)) -+ O (-~ Oy (@) -+ +) @)
and
z=0(ajw) = 0(8)0(3s, (a))0(3s, (05, (&))) - -~ 0(Bg (- Os, (&) -+)) - (2)

Let
oy ={a |o(aw) =z} (3)

be the set of initial states which, on some fixed input sequengield some fixed
output sequence= totato - - - t. l.e.,a}’ is the equivalence class of propositions identi-
fyable by inputw and outputz. The element§ay’} of the partition

v(w) = (J{az} (4)

define the equivalence classes of propositions identifiayplaputw and outputz.

V= Uv(w) ={v(0),v(s1),...,V(x),V(S1%2), ...} (5)

is the set of partitions.
Let p; be propositions of the formt'he aut omaton is in state g.” The
proposition
PLV P2 (6)



(interpretable asp; or py”) defines a proposition of the form ‘he aut onaton i s
in stateajor in state ay” (or the set theoretic uniongy U p2”) if and only
if there exist input sequences. - - sy such thatpy v po is identified by the partition
V(Sj - Sm).

The proposition

Pj A Pm (7)

(interpretable asp; and pm”) defines a proposition of the formgj and py,” (or the
set theoretic intersectiom| N pm”) if and only if there exist input sequencss - - sy
such thatp; A py is identified by the partition(s; - - - Sm).

The complement

—p1 (8)

(or py) of a propositionp; (has the meaning of “nqgt;” and) is defined if and only if
ptA—-p1 = 0
ppivopr = 1

(or, with the propositiong; and —p; = p; expressed as setp; N p; = 0= 0 and
prUp;=1={1,2,...,i}), and there exist input sequengs: - Sy such that-py is a
proposition identified by the partitior(s; - - - sm).

A partial order relation g < pm, or

Pj = Pm C)]

(with the interpretation f3; implies pm,” or with “wheneverp; is true it follows thatpm,

is true, too”) is defined if and only ip; i npl i es pm, and there exist input sequences
Sj - - Sm such thaip; and pm are propositions identified by the partitius; - - - sm). The
partial order relation can be conveniently representedrawithg the Hasse diagram
thereof. This can be done by proceeding in two steps. Finst,Boolean lattices

of propositional structures based on all relevant statétjosus v(w) are constructed.
Then, the union of all these Boolean subalgebras rendexthplete partial order of
the automaton propositional calculus. This can also bengtated graph theoretically
[38, 39]. A Mathematicgpackage by Ch. Strnadl [40] can be obtained from the author.

4.3 Example

For an explicit model of a non distributive and modular auliton propositional cal-
culus consider the transition and output tables 1 of a (B@fomaton. Its diagram is
drawn in Fig. 5.

Input of 1, 2 or 3 steers the automaton into the respectite.sfd the same time,
the output of the automaton is 1 only if the guess is a “hig’,iif the automaton was
in that state. Otherwise the output is 0. After the measungntke automaton is in
a definite state, i.e., the state corresponding to the inguabel. If the guess has not
been a “hit,” the information about the initial automatoatstis lost. Therefore, the
experimenter has to decide before carrying out the measuntewhich one of the fol-
lowing hypotheses should be tested (in short-hand notatiph}” stands for t he
automaton is in state 1" et ceterd: {1} = —{2,3},{2} = ~{1,3},{3} =
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1 2 3
01 1 1
|2 2 2
5|3 3 3
oo|1 0 O
0|0 1 O
o3(/0 0 1

Table 1: Transition and output table of a (3,2,2)-automaticthe Mealy type.

Figure 5: Diagram of a (3,2,2)-automaton of the Mealy typstdeng computational
complementarity.
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—{1,2}. Measurement of either one of these three hypotheses (orctraplement)
makes impossible measurement of the other two hypotheses.

Noinput, i.e., the empty input strirly identifies all three internal automaton states.
This corresponds to the trivial information that the auttonds insomeinternal state.
Input of the symbol 1 (and all sequences of symbols startiit &) distinguishes
between the hypothes{4} (output “1”) and the hypothesi&, 3} (output “0”). Input
of the symbol 2 (and all sequences of symbols starting wittlisjnguishes between
the hypothesiq2} (output “1”) and the hypothesi§l, 3} (output “0”). Input of the
symbol 3 (and all sequences of symbols starting with 1) mijstishes between the
hypothesis{3} (output “1") and the hypothesifl, 2} (output “0”). The propositional
calculus is thus defined by the partitions

v = {{1.23}} , (10)
V(1) = {{1}7{2’ 3}} ) (11)
vi2) = {{2}.{13}} , (12)
v(3) {{3}.{1.2}} . (13)

It can be represented by the lattice structure of Fig. 6. TEtige is of the “Chinese
latern”MQO3 form. It is non distributive, and it is a pasting of three Bz algebras
22,

The obtained intrinsic propositional calculus in many wagsembles the lattice
obtained from photon polarisation experiments or from otheompatible quantum
measurements. Consider an experiment measuring photarigadion. Then, three
propositions of the formt‘he photon has pol ari sation py,,” (i =1,2,3),
cannot be measured simultaneously for the angles @, # @3;(modm). Anirreversible
measurement of one direction of polarisation would resuét state preparation, mak-
ing impossible measurement of the other directions of gd#on, and resulting in a
propositional calculus of the “Chinese latern” foMO3.

The propositional calcuff; of all Mealy-type automata withinternal states can be
constructed by combinatorical arguments [41]. Fig. 7 sh@wshe Hasse diagrams
of generic intrinsic propositional calculi of Mealy autoraaip to 4 states.

4.4 The inverse problem

The previous paragraphs concentrated on the construdtiarswoitable propositional
calculus from the input-output analysis of an automatone iflverse problem is the
construction of suitable automata which correspond td@nodular) lattices, in par-
ticular to subalgebras of Hilbert lattices. Stated diffélg “given an arbitrary ortho-
modular (subalgebra of a Hilbert) lattic€; is it possible to construct an automaton
propositional calculu®l realising £?” If, as will be shown below, (for finite lattices)
the question can be decided positively and constructitien one obtains an explicit
automaton model for every arbitrary quantum system (butivetversa.

Let anorthomodular latticebe a lattice satisfying the orthomodular law, and let a
Hilbert lattice be the lattice of all closed subspaces of a Hilbert spacd thi “in-
fimum” operator defined by the intersection of subspaces;ghpremum” operator

12



Figure 6: LatticeMO3 of intrinsic propositional calculus of a (3,2,2)-autoorabf the
Mealy type.
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Figure 7: The clas§, of non isomorphic Hasse diagrams of the intrinsic propostl
calculi of generic 4-state automata of the Mealy type.
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defined by the closure of the linear span of subspaces andth@complement de-
fined by the orthogonal subspace. Any finite (“finite” mearat the lattice has a finite
number of elements) orthomodular lattice is isomorphid ttanslatable) to some fi-
nite (lattice) automaton propositional calculus. I.e.,

finiteorthomodularlatticej:> finiteautomatonpropositionalcalculus (14)

Threfore, any finite orthomodular subalgebra of a Hilbettida is isomorphic (1-1
translatable) to some finite automaton propositional dascu.e.,

{ finiteorthomodularsubalgebr

= . . "
ofHiIbertIattice(quantumlogit;a} - finiteautomatonpropositionalcalculus (15)

An actual proof of these statements is too technical andheiliven elsewhere
[41]. It makes use of the fact that every orthomodular latiica pasting of its maximal
Boolean subalgebras, also callddcks[25, 42]. These blocks can be elegantly repre-
sented by sets of partitions of automata states, becaufsetatalue,” every automaton
state partitiorv(- - -) with n elements generates a Boolean algelfralf2one identifies
these Boolean algebras with blocks, the set of automatém g#atitionsv represents
a complete family of blocks of the automaton propositiorsdtalus.

4.5 Discussion

Strictly speaking, automaton models for quantum systemrespond to nonlocal hid-
den variable models. The “hidden” physical entities are “thee” initial states of
automata.

It is not entirely unreasonable to speculate about loglgetaaic structures of au-
tomaton universes in general. To put it pointedly, one caski'how would creatures
embedded in a universal computer perceive their universg® lattice-theoretic an-
swer might be as follows. Le§; stand for the family of all intrinsic propositional
calculi of automata with states. From the point of view of logic, the intrinsic propo-
sitional calculi of a universe generated by universal cotapen is the limiting class
liMmp_ 0 §n Of all automata withn — oo states. Sinc§1 C§2 CF3 C - CFi C Fir1 C
.-+, this class “starts with” the propositional calculi repreted by Fig. 7, p. 14.

Itis tempting to speculate that we live in a computer gemeraniverse. But then, if
the “underlying” computing agent were univerdakere is no a priori reason to exclude
propositional calculi even if they do not correspond to athomodular subalgebra of
a Hilbert lattice. |.e., to test the speculation that we live in a universe egthy univer-
sal computation, we would have to look for phenomena whictespond to automaton
propositional calculi not contained in the subalgebrasoofies Hilbert space — such
as, for instance, the one represented by Fig. 8, p. 16, whasloltained from the state

partition{{{1}, {2}, {3,4}},{{1},{2,4},{3}}, {{1.2}, {3}, {4} }, {{1.3},{2}, {4} } }.
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Figure 8: Hasse diagram of an algebraic structur which ithaea lattice nor a partial
order.
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