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1 Introduction

Epistemological, theintrinsic/extrinsicconcept, or, by another naming [1, 2], theendo-
physics/exophysicsconcept, is related to the question of how a mathematical or alogi-
cal or an algorithmic universe is perceived from within/from the outside. The physical
universe, by definition, can be perceived from within only.

Extrinsicor exophysicalperception can be conceived as a hierarchical process, in
which the system under observation and the experimenter form a two-level hierarchy.
The system is laid out and the experimenter peeps at every relevant feature of it without
changing it. The restricted entanglement between the system and the experimenter can
be represented by a one-way information flow from the system to the experimenter; the
system is not affected by the experimenter’s actions. (Logicians might prefer the term
metaoverexo.)

Intrinsic or endophysicalperception can be conceived as a non-hierarchical ef-
fort. The experimenter is part of the universe under observation. Experiments use
devices and procedures which are realisable by internal resources, i.e., from within
the universe. The total integration of the experimenter in the observed system can be
represented by a two-way information flow, where “measurement apparatus” and “ob-
served entity” are interchangeable and any distinction between them is merely a matter
of intent and convention. Endophysics is limited by the self-referential character of
any measurement. An intrinsic measurement can often be related to the paradoxical
attempt to obtain the “true” value of an observable while — through interaction — it
causes “disturbances” of the entity to be measured, therebychanging its state. Among
other questions one may ask,“what kind of experiments are intrinsically operational
and what type of theories will be intrinsically reasonable?”

Imagine, for example, some artificial intelligence living in a (hermetic) cyberspace.
This agent might develop a “natural science” by performing experiments and develop-
ing theories. It is tempting to speculate that also a figure ina novel, imagined by the
poet and the reader, is such an agent.

Since in cyberspace onlysyntacticstructures are relevant, one might wonder if con-
cerns of this agent about its “hardware basis,” e.g., whether it is “made of” billard balls,
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electric circuits, mechanical relays or nerve cells, are mystic or even possible (cf. H.
Putnam’s brain-in-a-tank analysis [4]). I dont think this is necessarily so, in particular
if the agent could influence some features of this hardware basis. One example is a
hardware damage caused by certain computer viruses by “heating up” computer com-
ponents such as storage or processors. I would like to call this type of “back-reaction”
of a virtual reality on its computing agent“virtual backflow interception”(VBI). In-
trinsic phenomenologically, VBI could manifest itself by some violation of a “supers-
election rule;” i.e., by some virtual phenomenon which violates the fundamental laws
of a virtual reality, such as symmetry & conservation principles.

No attempt is made here to (re-)write a comprehensive history of related con-
cepts; but a few hallmarks are mentioned without claim of completeness. Histori-
cally, Archimedes conceived“points outside the world, from which one could move
the earth.” Archimedes’ use of “points outside the world” was in a mechanical rather
than in a metatheoretical context: he claimed to be able to move any given weight by
any given force, however small. The 18’th century physicistB. J. Boscovich realised
that it is not possible to measure motions or transformations if the whole world, includ-
ing all measurement apparata and observers therein, becomes equally affected by these
motions or transformations (cf. O. E. Rössler [2], p. 143). Fiction writers informally
elaborated consequences of intrinsic perception. E. A. Abbot’s Flatlanddescribes the
life of two- and onedimensional creatures and their confrontation with higher dimen-
sional phenomena. TheFreiherr von Münchhausenrescued himself from a swamp by
dragging himself out by his own hair. Among contemporary science fiction authors,
D. F. Galouye’sSimulacron Threeand St. Lem’sNon Serviamstudy some aspects of
artificial intelligence in what could be called “cyberspaces.” Media artists such as Peter
Weibel create “virtual realities” or “cyberspaces” and areparticulary concerned about
the interfacebetween “reality” and “virtual reality,” both practicallyand philosoph-
ically. Finally, by outperforming television & computer games, commercial “virtual
reality” products might become very big business. From these examples it can be seen
that concepts related to intrinsic perception may become fruitful for physics, the com-
puter sciences and art as well.

Already in 1950 (19 years after the publication of Gödel’s incompleteness the-
orems), K. Popper has questioned the completeness of self-referential perception of
“mechanic” computing devices [5]. Popper uses techniques similar to Zeno’s paradox
(which he calls “paradox of Tristram Shandy”) and “Gödeliansentences” to argue for
a kind of “intrinsic indeterminism.”

In a pioneering study on the theory of (finite) automata, E. F.Moore has presented
Gedanken-experiments on sequential machines[6]. There, E. F. Moore investigated
automata featuring, at least to some extend, similarities to the quantum mechanical
uncertainty principle. In the bookRegular Algebra and Finite Machines[30], J. H.
Conway has developed these ideas further from a formal pointof view without relating
them to physical applications. Probably the best review of experiments on Moore-type
automata can be found in W. Brauer’s bookAutomatentheorie[31] (in German).

D. Finkelstein [32, 33] has considered Moore’s findings froma more physical point
of view, introducing an “experimental logic of automata” and the term“computational
complementarity.”An illuminating account on endophysics topics can be found in O.
E. Rössler’s article onEndophysics[1], as well as in his bookEndophysics(in German)
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[2]; O. E. Rössler is a major driving force in this area. Also H. Primas has considered
endophysical and exophysical descriptions in various contexts [7].

The terms“intrinsic” and “extrinsic” appear in the author’s studies on intrinsic
time scales in arbitrary dispersive media [8, 9, 10]. There,the intrinsic-extrinsic con-
cept has been re-invented (probably for the 100’th time, and, I solemnly swear) in-
dependently. It is argued that, depending on dispersion relations, creatures in a “dis-
persive medium” would develop a theory of coordinate transformation very similar to
relativity theory. Another proposal by the author was to consider a new type of “di-
mensional regularisation” by assuming that the space-timesupport of (quantum me-
chanical) fields is a fractal [11]. In this approach one considers a fractal space-time of
Hausdorff dimensionD = 4− ε, with ε ≪ 1, which is embedded in a space of higher
dimension, e.g.,Rn≥4. Intrinsically, the (fractal) space-time is perceived “almost” as
the usual fourdimensional space.

Besides such considerations, J. A. Wheeler [12], among others, has emphasised the
role of observer-participancy.In the context of what is considered by the Einstein-
Podolsky-Rosen argument [13] as “incompleteness” of quantum theory, A. Peres and
W. H. Zurek [14, 15] and J. Rothstein [16] have attempted to relate quantum comple-
mentarity to Gödel-type incompleteness.

In what follows, the intrinsic-extrinsic concept will be made precise in analgo-
rithmic context, thereby closely following E. F. Moore [6]. The mainreason for the
algorithmic approach is that algorithmic universes (or, equivalently, formal systems)
are the royal road to the study of undecidability. The intrinsic-extrinsic concept will
be applied to investigatecomputational complementarityand intrinsic indeterminism
both in the algorithmic context.

2 Gedankenexperiments on finite automata

In a groundbreaking study [6], Edward Moore analysed two kinds ofGedankenexper-
imentson finite automata, which will be slightly adapted for the present purposes. In
both cases, the automaton is treated as a “black box” in the following sense:

(i) only the input and output terminals of the automaton are accessible. The experi-
menter is allowed to perform experimentsvia these interfaces in the form of stimulating
the automaton with input sequences and receiving output sequences from the automa-
ton. The experimenter is not permitted to “open up” the automaton, but

(ii) the transition and output table (diagram) of the automaton (in its reduced form)
is known to the experimenter (or, if you prefer, is given to the experimenter by some
“oracle”).

The most important problem, among others, is thedistinguishing problem:it is
known that an automaton is in one of a particular class of internal states: find that state.

In the first kind of experimental situation, only asingle copy of the automaton
is accessible to the experimenter. The second type of experiment operates with an
arbitrary numberof automaton copies. Both cases will be discussed in detail below.

If the input is somepredeterminedsequence, one may call the experiment apreset
experiment. If, on the other hand, (part of) the input sequence depends on (part of)
the output sequence, i.e., if the input isadaptedto the reaction of the automaton, one
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may call the experiment anadaptive experiment.We shall be mostly concerned with
preset experiments, yet adaptive experiments can be used tosolve certain problems
with automaton propositional calculi.

Research along these lines has been pursued by S. Ginsburg [17], A. Gill [18], J.
H. Conway [30] and W. Brauer [31].

2.1 Single-automaton configuration

In the first kind of Gedankenexperiment, onlyone singleautomaton copy is presented
to the experimenter. The problem is to determine the initialstate of the automaton,
provided its transition and output functions are known (distinguishing problem). In
a typical experiment, the automaton is “feeded” with a sequence of input symbols
and responds by a sequence of output symbols. An input-output analysis then reveals
information about the automaton’s original state.

Assume for the moment that such an experiment induces a statetransition of the
automaton. I.e., after the experiment, the automaton is notin the original initial state.
In this process a loss of potential information about the automaton’s initial state may
occur. In other words: certain measurements, while measuring some particular fea-
ture of the automaton, may make impossible the measurement of other features of
the automaton. This irreversible change of the automaton state is one aspect of the
“observer-participancy” in the single-automaton configuration. (This is not the case
for the multi-automaton situation discussed below, since the availability of an arbi-
trary number of automata ensures the possibility of an arbitrary number of measuring
processes.)

In developing the intrinsic concept further, the automatonand the experimenter are
“placed” into asingle“meta”-automaton. If the experimenter reacts mechanically, this
can be readily achieved by simulating both the original finite deterministic “black box”
automaton as well as the experimenter and their interplay bya universal automaton.
One can imagine such a situation as one subprogram checking another subprogram,
also including itself. For an illustration, see Fig. 1.

In certain cases it is necessary to iterate this picture in the following way. Sup-
pose, for instance, the experimenter attempts acompleteintrinsic description. Then,
the experimenter has to give a complete description of his own intrinsic situation. In
order to be able to model the own intrinsic viewpoint, the experimenter has to intro-
duce an or system which is areplica of its own universe. This amounts to substituting
the “meta”-automaton for the automaton in Fig. 1. Compare also a drawing by O. E.
Rössler [3], Fig. 2, where “≈” stands for the interface, which is denoted by the symbols
“↔” throughout this article. Yet, in order to be able to model intrinsic viewpoint of a
new experimenter in this new universe, this new experimenter has to introduce another
system which is areplicaof its own universe,. . ., resulting in an iterationad infinitum.
One may conjecture that an observer in a hypothetical universe corresponding to the
“fixed point” or “invariant set” of this process has completeself-comprehension; see
Fig. 3. Of course, in general this observer cannot be a finite observer: a complete de-
scription would only emerge in the limit of infinite iterations (cf. K. Popper’s “paradox
of Tristram Shandy”). Finite observers cannot obtain complete self-comprehension.
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Figure 1: Schematic diagram of an experiment on a single automaton, both taking place
in a “meta”-automaton.

Figure 2: Author’s notes from a seminar talk by O. E. Rössler.

5



exp.

exp.

exp.
exp.�--� -

�
-

�

-

�

system

system

system
system

Figure 3: Hierarchy of intrinsic perception.

2.2 Multi-automata configuration

The second kind of experiment operates with anarbitrary numberof automaton copies.
One automaton is a copy of another if both automata are isomorphic and if both are in
the same initial state. With this configuration the experimenter is in the happy condition
to apply as many input sequences to the original automaton asnecessary. In a sense,
the observer is not bound to “observer-participancy,” because it is always possible to
“discard the used automaton copies,” and take a “fresh” automaton copy for further
experiments. For an illustration, see Fig. 4.

3 Definition

In the foregoing section, important features of the extrinsic-intrinsic concept have been
isolated in the context of finite automata. A generalisationto arbitrary physical sys-
tems is straightforward. The features will be summarised bythe following definition.
(Anything on which experiments can be performed will be calledsystem. In particular,
finite automata are systems.)

An intrinsic quantity is associated with an experiment
(i) performed on asingle copyof the system,
(ii) with the experimenter being part of the system.

An extrinsicquantity, denoted by a tilde sign “̃” is associated with an experiment
(i) utilising, if necessary, anarbitrary number of copiesof the system,
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Figure 4: Schematic diagram of an experiment on an arbitrarynumber of identical
automaton copies.

(ii) with the experimenter not being part of the system.
One may ask whether, intuitively, the extrinsic point of view might be more ap-

propriately represented by, stated pointedly, the application of a “can-opener” for the
“black box” to see “what’s really in it.” Yet, while the physical realisation might be
of some engineering importance, the primary concern is the phenomenology (i.e., the
experimental performanceof the system) and not how it is constructed. In this sense,
the technological base of the automaton is irrelevant. For the same reason, i.e., because
this is irrelevant to phenomenology, it is not important whether the automaton is in its
minimal form.

The requirement that in the extrinsic case anarbitrary number of system copies
is available is equivalent to the statement thatno interaction takes place between the
experimenter and the system. (The reverse information flow from the observed system
to the experimenter is necessary.) This results in a one-wayinformation flow in the
extrinsic case:

system
=⇒
/⇐=

experimenter ,

and a two-way information flow in the intrinsic case:

system⇐⇒ experimenter .

An information “backflow” makes possible the application ofdiagonalization tech-
niques and also results in complementarity, which might be seen as a “poor man’s
version of diagonalization.”

The definition applies to physical systems as well as to logics and (finite) automata.
Automaton worlds provide an ideal “playground” for the study of certain algorith-
mic features related to undecidability, such as “computational complementarity” and
“intrinsic indeterminism.” Theextrinsic-intrinsic problemis the interrelation between
extrinsic and intrinsic entities.
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4 Complementarity

The input-output analysis of finite automata yields a fresh insight into the quantum
mechanical feature of complementarity on a very elementarylevel. Conversely, the
Copenhagen interpretation of quantum mechanics [19, 20] can be applied for the anal-
ysis of automata. To substantiate this claim it is necessaryto interrelate two strains
of investigation: (i) the lattice theoretic [21] approach for a representation of quantum
physics, pioneered by G. Birkhoff and J. von Neumann [22] andlater extended to the
calculus of propositions [23, 24] and orthomodular logic [25, 26, 27, 28]; (ii) the theory
of finite automata, in particular of Moore and Mealy automata[6, 29, 30, 31]. Com-
putational complementarity in the automata context has been first investigated by E. F.
Moore in his articleGedanken-Experiments on Sequential Machines[6]. Informally
stated, measurement of one aspect of an automaton makes impossible measurement of
another aspect andvice versa. The namecomputational complementarityis due to D.
Finkelstein [32, 33], who also made the first attempt to construct logics from experi-
mentally obtained propositions about automata; see also the more recent investigation
by A. A. Grib and R. R. Zapatrin [34]. The following investigation has been carried out
independently. Although the goals are very similar, the methods and techniques used
here differ from the ones used by previous authors.

The investigation is based on the construction of primitiveexperimental statements
or propositions. Then thestructureof these propositions will be discussed, thereby
defining algebraic relations and operations between the propositions. Although spe-
cific classes of finite automata will be analysed, these considerations apply to universal
computers as well. (Finite automata can be simulated on universal computers.)

4.1 Finite automata

A finite (i,k,n)-automatonhas a finite number of i internal states, k input and n output
symbols. It is characterised by its transition and output functionsδ ando, which are
often represented by transition and output tables and by a diagram. For an example see
below. The output function of aMoore-type automatadepends solely on its internal
state, whereas the output function ofMealy-type automatadepends on the input and
the internal state.

4.2 Automaton propositional calculi

A finite automaton will be treated as a “black box,” whose transition and output tables
(i.e., informally speaking, its “intrinsic machinery”) are given in advance butwhose
initial state is unknown.Only a singlecopy of the automaton will be made available
to the experimenter. The automaton is “feeded” with certaininput sequences from the
experimenter and responds with certain output sequences. We shall be interested in the
distinguishing problem: “identify an unknown initial state.”

Consider propositions of the form

“the automaton is in state a j ”

with (1≤ j ≤ i). Propositions can be composed to form expressions of the form
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“the automaton is in state a j or in state am or in state
al · · · .”

Any proposition composed by propositions can be represented by a set. E.g., the
above statement “the automaton is in state a j or in state am or in
state al · · ·” represents the set{ j,m, l , . . .}. The element1 is given by the set ofall
states{1,2, . . . , i}. This corresponds to a proposition which is always satisfied:

“the automaton is in some internal state”

The element0 is given by theemptyset /0 (or {}). This corresponds to a proposition
which is false (by definition the automaton has to be insomeinternal state):

“the automaton is in no internal state”

The class of all propositions and their relations will be called automaton proposi-
tional calculusand denoted byA. Each particular outcome which, if defined, has the
valueTRUE or FALSE, shall be called “event.” In this sense, an automaton propositional
calculus, just as the quantum propositional calculus, is obtainedexperimentally. It con-
sists of all potentially measurableelements of the automaton realityand their logical
structure, with the implication as order relation.

The elementary propositions can be conveniently constructed by a partitioning of
automaton states generated from the input-output analysisof the automaton as follows:
Let w= s1s2 · · ·sk be a sequence of input symbols,

ai,w = aiδs1(ai)δs2(δs1(ai)) · · ·δsk(· · ·δs1(ai) · · ·) (1)

and

z= o(ai,w) = o(ai)o(δs1(ai))o(δs2(δs1(ai))) · · ·o(δsk(· · ·δs1(ai) · · ·)) . (2)

Let
αw

z = {ai | o(ai,w) = z} (3)

be the set of initial states which, on some fixed input sequence w yield some fixed
output sequencez= t0t1t2 · · · tk. I.e.,αw

z is the equivalence class of propositions identi-
fyable by inputw and outputz. The elements{αw

z } of the partition

v(w) =
⋃

z

{αw
z } (4)

define the equivalence classes of propositions identifiableby inputw and outputz.

V =
⋃

w

v(w) = {v( /0),v(s1), . . . ,v(sk),v(s1s2), . . .} (5)

is the set of partitions.
Let pi be propositions of the form “the automaton is in state ai .” The

proposition
p1∨ p2 (6)
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(interpretable as “p1 or p2”) defines a proposition of the form “the automaton is
in state a1 or in state a2” (or the set theoretic union “p1∪ p2”) if and only
if there exist input sequencessj · · ·sm such thatp1 ∨ p2 is identified by the partition
v(sj · · ·sm).

The proposition
p j ∧ pm (7)

(interpretable as “p j and pm”) defines a proposition of the form “p j and pm” (or the
set theoretic intersection “p j ∩ pm”) if and only if there exist input sequencessj · · ·sm

such thatp1∧ p2 is identified by the partitionv(sj · · ·sm).
The complement

¬p1 (8)

(or p′1) of a propositionp1 (has the meaning of “notp1” and) is defined if and only if

p1∧¬p1 = 0

p1∨¬p1 = 1

(or, with the propositionsp1 and¬p1 = p j expressed as sets,p1 ∩ p j = 0 = /0 and
p1∪ p j = 1= {1,2, . . . , i}), and there exist input sequencessj · · ·sm such that¬p1 is a
proposition identified by the partitionv(sj · · ·sm).

A partial order relation pj � pm, or

p j → pm (9)

(with the interpretation “p j impliespm,” or with “wheneverp j is true it follows thatpm

is true, too”) is defined if and only ifp j implies pm, and there exist input sequences
sj · · ·sm such thatp j andpm are propositions identified by the partitionv(sj · · ·sm). The
partial order relation can be conveniently represented by drawing the Hasse diagram
thereof. This can be done by proceeding in two steps. First, the Boolean lattices
of propositional structures based on all relevant state partitions v(w) are constructed.
Then, the union of all these Boolean subalgebras renders thecomplete partial order of
the automaton propositional calculus. This can also be understood graph theoretically
[38, 39]. AMathematicapackage by Ch. Strnadl [40] can be obtained from the author.

4.3 Example

For an explicit model of a non distributive and modular automaton propositional cal-
culus consider the transition and output tables 1 of a (3,3,2)-automaton. Its diagram is
drawn in Fig. 5.

Input of 1, 2 or 3 steers the automaton into the respective state. At the same time,
the output of the automaton is 1 only if the guess is a “hit,” i.e., if the automaton was
in that state. Otherwise the output is 0. After the measurement, the automaton is in
a definite state, i.e., the state corresponding to the input symbol. If the guess has not
been a “hit,” the information about the initial automaton state is lost. Therefore, the
experimenter has to decide before carrying out the measurement which one of the fol-
lowing hypotheses should be tested (in short-hand notation, “{1}” stands for “the
automaton is in state 1” et cetera): {1} = ¬{2,3},{2} = ¬{1,3},{3} =
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1 2 3
δ1 1 1 1
δ2 2 2 2
δ3 3 3 3
o1 1 0 0
o2 0 1 0
o3 0 0 1

Table 1: Transition and output table of a (3,2,2)-automatonof the Mealy type.

1

2

3

1

2

3

1

2

3

1

2

3

Figure 5: Diagram of a (3,2,2)-automaton of the Mealy type featuring computational
complementarity.
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¬{1,2}. Measurement of either one of these three hypotheses (or their complement)
makes impossible measurement of the other two hypotheses.

No input, i.e., the empty input string/0, identifies all three internal automaton states.
This corresponds to the trivial information that the automaton is insomeinternal state.
Input of the symbol 1 (and all sequences of symbols starting with 1) distinguishes
between the hypothesis{1} (output “1”) and the hypothesis{2,3} (output “0”). Input
of the symbol 2 (and all sequences of symbols starting with 1)distinguishes between
the hypothesis{2} (output “1”) and the hypothesis{1,3} (output “0”). Input of the
symbol 3 (and all sequences of symbols starting with 1) distinguishes between the
hypothesis{3} (output “1”) and the hypothesis{1,2} (output “0”). The propositional
calculus is thus defined by the partitions

v( /0) = {{1,2,3}} , (10)

v(1) = {{1},{2,3}} , (11)

v(2) = {{2},{1,3}} , (12)

v(3) = {{3},{1,2}} . (13)

It can be represented by the lattice structure of Fig. 6. Thislattice is of the “Chinese
latern” MO3 form. It is non distributive, and it is a pasting of three Boolean algebras
22.

The obtained intrinsic propositional calculus in many waysresembles the lattice
obtained from photon polarisation experiments or from other incompatible quantum
measurements. Consider an experiment measuring photon polarisation. Then, three
propositions of the form “the photon has polarisation pφ1,” ( i = 1,2,3),
cannot be measured simultaneously for the anglesφ1 6= φ2 6= φ3(modπ). An irreversible
measurement of one direction of polarisation would result in a state preparation, mak-
ing impossible measurement of the other directions of polarisation, and resulting in a
propositional calculus of the “Chinese latern” formMO3.

The propositional calculiFi of all Mealy-type automata withi internal states can be
constructed by combinatorical arguments [41]. Fig. 7 showsF4, the Hasse diagrams
of generic intrinsic propositional calculi of Mealy automata up to 4 states.

4.4 The inverse problem

The previous paragraphs concentrated on the construction of a suitable propositional
calculus from the input-output analysis of an automaton. The inverse problem is the
construction of suitable automata which correspond to (orthomodular) lattices, in par-
ticular to subalgebras of Hilbert lattices. Stated differently: “given an arbitrary ortho-
modular (subalgebra of a Hilbert) latticeL; is it possible to construct an automaton
propositional calculusA realisingL?” If, as will be shown below, (for finite lattices)
the question can be decided positively and constructively,then one obtains an explicit
automaton model for every arbitrary quantum system (but notvice versa).

Let anorthomodular latticebe a lattice satisfying the orthomodular law, and let a
Hilbert lattice be the lattice of all closed subspaces of a Hilbert space, with the “in-
fimum” operator defined by the intersection of subspaces, the“supremum” operator
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{}

{1} {2} {3} {1, 2} {1, 3} {2, 3}

{1, 2, 3}

Figure 6: LatticeMO3 of intrinsic propositional calculus of a (3,2,2)-automaton of the
Mealy type.
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Figure 7: The classF4 of non isomorphic Hasse diagrams of the intrinsic propositional
calculi of generic 4-state automata of the Mealy type.
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defined by the closure of the linear span of subspaces and the orthocomplement de-
fined by the orthogonal subspace. Any finite (“finite” means that the lattice has a finite
number of elements) orthomodular lattice is isomorphic (1-1 translatable) to some fi-
nite (lattice) automaton propositional calculus. I.e.,

finiteorthomodularlattice
⇒
⇐

finiteautomatonpropositionalcalculus (14)

Threfore, any finite orthomodular subalgebra of a Hilbert lattice is isomorphic (1-1
translatable) to some finite automaton propositional calculus. I.e.,
{

finiteorthomodularsubalgebra
ofHilbertlattice(quantumlogic)

}
⇒
⇐

finiteautomatonpropositionalcalculus (15)

An actual proof of these statements is too technical and willbe given elsewhere
[41]. It makes use of the fact that every orthomodular lattice is a pasting of its maximal
Boolean subalgebras, also calledblocks[25, 42]. These blocks can be elegantly repre-
sented by sets of partitions of automata states, because “atface value,” every automaton
state partitionv(· · ·) with n elements generates a Boolean algebra 2n. If one identifies
these Boolean algebras with blocks, the set of automaton state partitionsV represents
a complete family of blocks of the automaton propositional calculus.

4.5 Discussion

Strictly speaking, automaton models for quantum systems correspond to nonlocal hid-
den variable models. The “hidden” physical entities are the“true” initial states of
automata.

It is not entirely unreasonable to speculate about logico-algebraic structures of au-
tomaton universes in general. To put it pointedly, one couldask“how would creatures
embedded in a universal computer perceive their universe?”The lattice-theoretic an-
swer might be as follows. LetFi stand for the family of all intrinsic propositional
calculi of automata withi states. From the point of view of logic, the intrinsic propo-
sitional calculi of a universe generated by universal computation is the limiting class
limn→∞Fn of all automata withn→ ∞ states. SinceF1 ⊂ F2 ⊂ F3 ⊂ ·· · ⊂ Fi ⊂ Fi+1 ⊂
·· ·, this class “starts with” the propositional calculi represented by Fig. 7, p. 14.

It is tempting to speculate that we live in a computer generated universe. But then, if
the “underlying” computing agent were universal,there is no a priori reason to exclude
propositional calculi even if they do not correspond to an orthomodular subalgebra of
a Hilbert lattice. I.e., to test the speculation that we live in a universe created by univer-
sal computation, we would have to look for phenomena which correspond to automaton
propositional calculi not contained in the subalgebras of some Hilbert space — such
as, for instance, the one represented by Fig. 8, p. 16, which was obtained from the state
partition{{{1},{2},{3,4}},{{1},{2,4},{3}},{{1,2},{3},{4}},{{1,3},{2},{4}}}.
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{}

{1} {2} {3} {4}

{1, 2} {1, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Figure 8: Hasse diagram of an algebraic structur which is neither a lattice nor a partial
order.
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