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I. INTRODUCTION 

Penrose [40] (see also [41]) has discussed a new point of view concerning the na
ture of physics that might underline conscious thought processes. He has argued 
that it might be the case that some physical laws are not computable, i.e. they can
not be properly simulated by computer; such laws can most probably arise on the 
"no-man's-land" between classical and quantum physics. Furthermore, conscious 
thinking is a non-algorithmic activity. He is opposing both strong AI (according to 
which the brain's action, and, consequently, conscious perceptions and intelligence, 
are manifestations of computer computations, Minsky [35, 36]), and Searle's [47] 
contrary viewpoint (although computation does not in itself evoke consciousness, 
a computer might nevertheless simulate the action of a brain mainly due to the fact 
that the human brain is a physical system behaving according to (computable) math
ematical "laws"). 

The aim of this paper is to examine the incompatibility between the hypothesis 
of strong determinism and computability, to give new examples of uncomputable 
physical laws, and to discuss the relevance of erodel 's Incompleteness Theorem in 
refuting the claim that an algorithmic theory-like strong AI-can provide an ad
equate theory of mind. Our starting point is the following paragraph from Penrose 
[40] p.560: 

It seems to me that if one has strong determinism, but without many worlds, then the mathe
matical scheme which governs the structure of the universe would probably have to be non
algorithmic. For otherwise one could in principle calculate what one was going to do next, 
and then one could 'decide' to do something different, which would be an effective contra
diction between 'free will' and the strong determinism of the theory. By introducing non
computability into the theory one can evade this contradiction-though I have to confess 
that I feel somewhat uneasy about this type of resolution, and I anticipate something more 
subtle for the actual (non-algorithmic!) rules that govern the way that the world works! 
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II. FROM BOSCOVICH TO GODEL 

Perfect detenninism was considered earlier by Boscovich [4], Leibniz and 
Laplace (see Barrow [2]). The main argument is similar to the one used by Pen
rose: if all our laws, say, of motion, were in the form of equations which determine 
the future uniquely and completely from the present, then a "superbeing" having a 
perfect knowledge of the starting state would be able to predict the entire future. 
The puzzling consequence appears as soon as one tries to carry out this prediction! 

GOdel was interested in this problem as well. According to notes taken by 
Rucker ([46], p.181) GOdel's point of view is the following: 

It should be possible to form a complete theory of human behaviour, i.e. to predict from 
the hereditary and environmental givens what a person will do. However, if a mischievous 
person learns of this theory, he can act in a way so as to negate it. Hence I conclude that such 
a theory exists, but that no mischievous person will learn it. In the same way, time-travel is 
possible, but no person will ever manage to kill his past self. 

And he continues: 

There is no contradiction between free will and knowing in advance precisely what one will 
do. If one knows oneself completely then this is the situation. One does not deliberately do 
the opposite of what one wants. 

III. STRONG DETERMINISM 

According to Penrose ([40], p. 558-559) strong detenninism 

is not just a matter of the future being determined by the past; the entire history of the universe 
is fixed, according to some precise mathematical scheme, for all time. 

Thus strong detenninism is a variant of Laplace's scenario, l according to which the 
stage is set at the beginning and everything follows "mechanistically" without the 
intervention of God, withoutthe occurrence of "miracles" (cf. Frank [24 D. 

Strong detenninism does not imply a computable Universe, as it says nothing 
about the computability of initial conditions or of physical laws. 2 

Let us discuss this in the context of the computer science. Any program p re
quiring some particular input s can be rewritten into a new program pi requiring no 
(the empty list 0) input. This can for instance been realized by coding the input s of 
p as constants of pl. Likewise, any part of p' can be externalized as a subprogram 
s, whose code can then be identified with an input for the new program p. In this 
sense, the terms effective computation and initial value are interchangeable and the 
naming merely a matter of convention. Therefore, if strong detenninism leaves un
specified the computability of initial values serving as input for recursive natural 
laws, it may as well leave unspecified the recursion theoretic status of natural laws. 

All this sounds rather abstract and mathematical, but the emergence of chaotic 
physical motion has confronted the physics community with the theoretical ques
tion of whether or not to accept the classical (Le., non-constructivist) continuum. 
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As envisioned by Shaw [48) and Ford (23), along with many others, "classical 
chaos" emerges by the effectively computable "visualization" of the incompress
ible algorithmic infonnation of the initial values. Thereby, the classical continuum 
serves as an "urn" containing (almost, i.e., with probability one) only (uncom
putable) Martin-LOf/Chaitin/Solovay random elements. With probability one, the 
physical system "chooses" one random element of the continuum "urn" as its initial 
value. In this sense, chaotic dynamics expresses almost a tautology: put Martin
LOf/Chaitin/Solovay randomness in, get chaotic motion out. The non-tautologic 
feature is the "choice" of one element of the classical (i.e., non-constructivist) con
tinuum. In order to be able to choose from non-denumerable many uncomputable 
objects, the axiom of choice has to be assumed. But then, one is confronted with 
"paradoxical" constructions utilizing this axiom (cf. Wagon [56, 49]). In particular, 
one could transfonn every given physical object into any other physical object (or 
class of objects) in three processing steps: 

• decompose the original object into a finite number of pieces; 

• apply isometric transfonnations such as rotations and translations to the pieces; 
and finally, 

• rearrange them into the final fonn. 

This might be the ultimate production belt: one can obtain an arbitrary number of 
identical copies from a single prototype! We mention this utopy here not because of 
immediate technological applicability but to point out the type of shock to which the 
physics community is going to be exposed if it pretends to keep the "skeleton in the 
closet of continuum physics". Indeed, all the following examples of strong deter
minism clashing with uncomputability and randomness originate in the assumption 
of the appropriateness of the classical continuum for physical modelling. 

Quantum theory does not offer any real advancement over classical physics in 
this respect. It is a "half-way" theory, in between the continuum and the discrete. 
As Einstein put it (20), 

There are good reasons to assume that nature cannot be represented by a continuous field. 
From quantum theory it could be inferred with certainty that a finite system with finite energy 
can be completely described by a finite number of (quantum) numbers. This seems not in 
accordance with continuum theory and has to stipulate trials to describe reality by purely 

algebraic means. Nobody has any idea of how one can find the basis of such a theory. 

Continuous hidden variable models of quantum mechanics such as Bohm's model 
(3) operate with pseudo-classical particles. The real-valued initial position of 
a Bohmean particle, for instance, is Martin-LOf/Chaitin/Solovay random with 
probability one. The particles move through computable quantum potentials. As 
in chaos theory, the random occurrence of single particle detections originates 
again in the assumption of the classical continuum. From this point of view, the 
Bohmean model of quantum mechanics is not a "mechanistic" theory, although its 
evolution laws might be recursive. 
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Everett's many-world interpretation of quantum mechanics [21] is not much of 
an advance either. It saves the strong determinism by abandoning the wave func
tion co))apse at the price ofa Universe branching off into (sometimes uncountable) 
many Universes at any measurement or beam splitter equivalent. Currently, there is 
very little knowledge concerning the computational status of the wave function3 or 
continuous observables. Implicitly, the underlying sets are the classical (Le., non
constructive) continua. 

IV. Is DESCRIPTION POSSIBLE? 

Can a system contain a description of itself? Of course, no finite system can contain 
itself as a proper part. What we mean by "description" here is an algorithmic repre
sentation of the system. Such an algorithmic representation could be interpretable 
as a "natural law" since it should allow the effective simulation of the system from 
within the system. 

Von Neumann [55] was concerned with the question of self-description in the 
context of the self-reproduction of (universal) automata. His Cellular Automaton 
model was inspired by organic life-forms, and the description "blueprint" for self
reproduction was inspired by the DNA. Today, automaton self-reproduction is just 
one application ofKIeene's fixed-point theorem [45, 39]. 

Von Neumann realized that there must be a difference between an "active" and a 
"passive" mode of self-description. The "passive" description is given to the system 
by some God-like external agent or oracle. It is then possible for a finite system 
to contain such a "passive" representation of itself within itself as a proper part. 
Based on this description, the system is capable of simulating itself.4 Such a self
description in general cannot be obtained "actively" by self-inspection. The reason 
for this is computational complementarity [37, 49] and the recursive unsolvability 
of the rule inference problem [30, 49]. 

V. Is PREDICTION POSSIBLE? 

Is there any incompatibility between the strong determinism and computability, as 
Penrose suggests? Is it indeed impossible for a person to "learn his own theory" 
(GOdel)? 

Let us assume that we have both strong determinism and computable physical 
laws. For the remainder of this paper we fix a finite alphabet A and denote by A· the 
set of all stringsoverA; Ixl is the length of the stringx. A (Chaitin)computerC is a 
partial recursive function carrying strings (on A) into strings such that the domain 
of C is prefix-free, Le. no admissible program can be a prefix of another admissible 
program. If C is a computer, then Tc denotes its time complexity, Le. Tc(x) is the 
running time of C on the entry x, if x is in the domain of C; Tc (x) is undefined in the 
opposite case. One can prove Chaitin 's Theorem (see, for instance, Chaitin [12, 13], 
Calude (8), Svozil [49]) stating the existence of a universal computer U such that for 
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every computer C there exists a constant sim(U, C)-which depends upon U, C
such that in case C(x) = y, there exists5 Y! such that 

U(Y!) =y, 

IY!I ~ Ixl +sim(U,C). 

(1) 

(2) 

Assume, now, for the sake of a contradiction, that an "algorithmic prediction" is 
possible. Then the universal computer can simulate the predictor, so it can itself 
act as a predictor. What does this mean? The computer U can simulate every other 
computer (1), in a shorter time. Formally, to equation (1) we add 

Tu(x') < Tc(x). (3) 

Now, let us examine the possibility that U is a predictor. For every string x in the 
domain of U let 

t(x) = min{Tu(z) I z E A., U(z) = U(x)}, (4) 

i.e. t(x) is the minimal running time necessary for U to produce U(x).6 
Next define the temporal canonical program (input) associated with x to be the 

first string (in quasi-lexicographical order) x# satisfying the equation (4): 

JI = min{z E dom(U) I U(z) = U(x) , Tu(z) = t(x)}. 

So, 
U(JI) = U(x), and Tu(x#) = t(x). 

As the universal computer U is a predictor itself, and for itself, it follows 
from (3) that there exists a string Y! such that U(Y!) = U(x#) = U(x), and 
Tu(Y!) < Tu(x#) = t(x), which is false. Therefore, every universal predictor is 
"too slow" for certain tasks, in particular, predicting "highly time-efficient" (or, 
alternatively, "highly time-consuming") actions of itself? 

The reason for the above phenomenon can be illustrated by showing the exis
tence of" small-sized" computers requiring "very large" running times. To this aim 
we use Chaitin's version of the Busy Beaver function~. Denote by H Chaitin com
plexity (or, algorithmic information content), that is the function defined on (all) 
strings by the formula 

H(x) = min{lylly EA*,U(y) =x}, 

i.e. H(x) is the length of the smallest program for the universal computer U to cal
culate x. For every natural m let us denote by string(m) the mth string in quasi
lexicographical order, and let ~ (n) be the largest natural number whose algorithmic 
information content is less than or equal to n, i.e. 

~(n) = max{m 1m E N,H(string(m)) ~ n}. 
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Chaitin ([13], 80-82, 189) has shown that I grows larger than any recursive func
tion, i.e. for every recursive function f, there exists a natural number N, which de
pends upon f, such that I(n) ~ f(n), for all n ~ N: indeed, any program of length 
n either halts in time less than I(n+ 0(1)), or else it never halts. 

As H(string(I(n))) :5 n, it follows that U(yn} = string(I(n)), for some string 
Yn of length less than n. This program Yn takes, however, a huge amount of time to 
halt: there is a constant c such that for large enough n, U(yn} takes betweenI(n-c) 
and I(n+c) units of time to haIt. To conclude, the equation (1) is compatible with 
(2) (Chaitin's Theorem), but incompatible with (3). 

Computation is a physical process, inevitably bound to physical degrees of free
dom; all known physical laws, in tum, are ultimately expressible by algorithms for 
information processing (i.e., they are computable). The above discussion revealed 
some mathematical limits; they can be completed with pure physical limits, as dis
covered by Mundici [38].8 Due to the fact that every computer is subject to the ir
reversibility and uncertainty of time-energy, and maximality of the speed of light, 
one can derive the following result: The total time t and energy E spent for every 
computation consisting of n steps satisfy the inequality: 

2 h 
t ~ n 2M' 

where h is Planck constant. For instance, it follows that computations involving 
more than 1030 steps are infeasible. 

This suggests that even inthe case the Universe is deterministic and unique, and 
its underlying laws are algorithmic, an algorithmic prediction is impossible. It jus
tifies also GOdel 's claim according to which "no person will ever learn his theory" 
in spite of the fact that such a theory might exist. 

VI. UNCOMPUTABILITY AND RANDOMNESS: Two EXAMPLES 

Various physical problems lead to the question whether a function, in a certain a 
class, has a real root. Results due to Richardson [44], Caviness [11], Wang [57] (see 
also Matijasevit [34]) show that for a large class of well-defined functions such a 
problem is not algorithmically solvable. Da Costa and Doria [18] have proven some 
undecidability results in physics using this tool. A different approach, based on 
Specker's Theorem, was developed by Pour-EI and Richardson [43]. In this chap
ter we shall build on the work of Richardson, Wang, and Chaitin to show that two 
problems in elementary physics are undecidable and display pure randomness. 

Richardson-Wang and Chaitin Theorems 

An exponential Diophantine equation is of the form 
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where E 1 ,E2 are expressions constructed from variables and natural numbers, using 
addition, multiplication, and exponentiation. The equations which do not make use 
of exponentiation are called Diophantine equations. Fermat's famous equation 

is an example of an exponential Diophantine equation. For every fixed s, the above 
equation is a Diophantine equation, for instance, the equation 

By a family of (exponential) Diophantine equations we understand an (expo
nential) Diophantine equation 

(5) 

in which the set ofall variables at, ... , an,xI, ... ,Xm is divided into two classes, un
knowns, Xl, ... , Xm , and parameters, a 1. ... , an. A set S C N n is called (exponential) 
Diophantine if there exists a family of (exponential) Diophantine equations (5) such 
that 

for some naturals Xl, ... ,xm }. 

Due to work of Davis, Matijasevic, Putnam, Robinson (see Matijasevic [34]) the 
following classes of sets were shown to coincide: 1) the class of recursively enumer
able sets, 2) the class of exponential Diophantine sets, 3) the class of Diophantine 
sets. 

By virtue ofthe existence of recursively enumerable sets which are not recursive 
(see, for instance, Calude [7]) we deduce that the problem of testing whether an 
arbitrary (exponential) Diophantine equation has a solution (in natural numbers) 
is recursively undecidable.9 A universal (exponential) Diophantine set, i.e. a set 
which "codes" all (exponential) Diophantine sets is recursively enumerable, but not 
recursive. 

In contrast with the case of (exponential) Diophantine equations-dealing with 
solutions in natural numbers--the problem of deciding the solvability of polyno
mial equations with integer coefficients in real unknowns is decidable. In the unary 
case this can be done by the well-known Sturm method; in the general case one have 
to use Tarski's method [53]. To get undecidability we have to allow the use of some 
other functions; an easy way to achieve this is to consider the addition, multiplica
tion, composition and the sine function, all rationals and 3t. 

For our aim it is convenient to reformulate Richardson [44] and Wang [57] re
sults as follows. We define, for every natural n ~ 1, !l.n to be the minimal (with 
respect to set-theoretical inclusion) family of expressions which contains all ratio
nalsand 3t, the variables xl, ... ,xn, the functions sin (x) and e", and which is closed 
under the operations of addition, multiplication, and composition. 

The following predicates are recursively undecidable: 
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• For every G(Xl) E At. ''there exists a real number r such that G(r) = 0" . 

• For every G(Xl) E At. the predicate "the integral J~:[(x2 + 1)G2(x)]-ldx 
is convergent". 

Following Chaitin [12, 13] we do not ask whether an arbitrary Diophantine equation 
has a solution, but rather whether it has an infinity of solutions. Of course, the new 
question is still undecidable. In the former case the answers to such questions are 
not independent lO, but in the later one the answers can be independent in case the 
equation is constructed properly. Actually Chaitin has effectively constructed such 
an exponential Diophantine equation (see his last Lisp construction in [14]) with the 
property that the number of solutions jumps from finite to infinite at random as a cer
tain fixed parameter is varied. Actually, saying that the "number of solutions jumps 
from finite to infinite at random" is not a figure of speech, it is just a remarkable 
technical statement: if the parameter n takes the values 1,2, .. ., and (On = 0 in case 
the corresponding equation has finitely many solutions, and (On = 1, in the oppo
site case, then the sequence (01 (02 ••• (Oi ••• is random in Martin-LOf/Chaitin/Solovay 
sense; see Calude [8]. The real number number 

Q = 0.(01002" '(Oi'" 

represents the halting probability of a universal computer. In case we assume the 
hypothesis of strong determinism, Q has also a "physical" significance: it repre
sents a constant of the Universe. l1 The number Q is not invariant under changes of 
the underlying universal computer. However, all "constants" Q share a number of 
fascinating properties (see, for instance, Calude [8]); these changes might be sim
ilar to changes of other "constants of Nature", as Newton's gravitational constant, 
the charge of an electron or the fine-structure constant, under certain circumstances 
(changing the number of dimensions of the space, for instance). 

One-dimensional Heat Equation 

Improper integrals, for example, Fourier and Laplace transforms, playa particu
larly important role in modelling physical phenomena (see, Courant, Hilbert [19], 
~tefiinescu [52]). Two examples involving the Laplace transform illustrate uncom
putabilityand randomness. 

Let us first consider the heat conduction on an infinite slab. It is described by 
the one-dimensional heat equation: 

au a2u 
- - -::3 = O,X E R, t > 0, at ar-

u(X,O) = f(x) I 

u(X,t) is bounded. 

(6) 
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If au and a2~ are supposed to be continuous and bounded, then the solution of at ax 
(6) may be obtained via the Laplace transform (see, Friedrichs [25]):12 

1 1'" (._y)2 u(x,t) = r.;; e-41 f(y)dy. 
2y1ft -'" 

(7) 

A Problem of Electrostatics 

Let us consider the plane electrostatic problem13 on R x R+ which satisfies the 
boundary potential condition 

<I> (x, 0) = f(x). 

If <I> is an electrostatic potential, then the electric field E is given by 

E = -grad <1>. 

If D is a plane domain (i.e. an infinitely long cylinder with cross section D) 
bounded by a surface C composed of several conductors14 at different potentials, 
then <I> is is a solution of the system15 

{ 

a2<1> a2<1> 
-2 + ~ = 0, (x,y) ED, ax ay-

<I> (x, 0) = f(x). 

(8) 

The problem (8) can be solved via the formalism of differential forms.16 The 
solution of (8) is given by 

y 1'" f(t) <I>(x,y) = - ( )2 y2 dt. 
jt _'" t -x + (9) 

First we look at the solution of the one-dimensional heat equation (7). If fey) = 
(y2 + 1) -1 , then, for every fixed (Xo, to), the solution 

1 1'" e - (.~~;)2 
u(xo,to) = 2. r.;t:: 2 dy 

y1ftO _'" Y + 1 

is finite. 
Consider now the function fey) = eY2 • Let to> 1 and Xo E R be fixed. Then 

(xn_y)2 2 ('Q4y)2 3 2 ~ 4 
e-"4iOf(Y»eY- =e<iY+T-T. 
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For fixed Xo, limy-+oo[il + ~ -1] = 00, so the integral 

i: e - (roi;)2 f(y)dy 

is divergent. 
If fey) = cr + 1)-lH-2(y) then, for every fixed (xo,to), we get the solution 

(rOiy)2 

1 100 e - ° 1 roo 1 
u(xo,to) = 2v;Uo -00 (y2 + 1)H2(y) dy = 2v;Uo i-oo (y2 + 1)J(2(y) dy. 

In case H was in ~t. thenK is in ~l as well. So, the problem to test, for fixed (xo, to), 
whether the solution u(xo,to) is finite or not for an arbitrary function H E ~l, is 
recursively undecidable. 

Using Chaitin's construction we can exhibit a sequence of functions Hi E ~1 
such that the induced sequence Cl c2 ... Ci .• " Ci = 0, if the corresponding solution 
is finite, Ci = 1, in the opposite case, is random. So, in the space of all solutions of 
(7) there are areas in which convergence and divergence alternate in a pure random 
way. 

Similar results can be obtained for the solution of the electrostatic plane prob
lem. For fixed xo,yo, Yo ::j:. 0, the solution (9) can be represented as 

1 1'" f(you+xo) <I>(XO,yo) = -:::z Z 1 duo 
ltyo -00 U + (10) 

If f(x) = G(x)-Z, where G is a function in ~l, then the the problem of testing 
whether <I>(xo.Yo) is finite or not is recursively undecidable. Again, we can effec
tively construct a sequence of solutions displaying pure randomness, i.e. for which 
the sequence of answers to the convergence problem is random. 

VII. INCOMPLETENESS 

In a remarkable paper entitled Intelligent M achines17 ([54], 107-127) Turing inves
tigates the possibility as to whether machines, i.e. computers, might show intelli
gent behaviour. He considers the argument that machines are inherently incapable 
of exhibiting human-like intelligent behaviour, because human mathematicians are 
capable of determining the truth or falsity of mathematical statements in a way that 
machines, as embodiments of formal systems that are subject to the limitations of 
GOdel's Incompleteness Theorem, cannot. Turing notes that GOdel's Incomplete
ness Theorem 

rests essentially on the condition that the machine must not make mistakes. But this is not 
a requirement for intelligence. 

He is suggesting that machines might perhaps equal human mathematicians if they 
were equipped with a human-like capacity to make mistakes. 
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The analysis of predictability outlined in this paper is subject to Turing's objec
tion regarding mistakes. Accordingly, we address the following question: Is Tur
ing's argument irrefutable? 

At a first sight, requiring the absence of mistakes might seem to be overly re
strictive. But how can a mistake-making machine be constructed? Where should we 
place the border between "admissible" and "non-admissible" mistakes in order to 
preserve the "intelligibility" of our Universe. How can a mistake-making machine 
discover the regularities, common factors, recurrences, and implications, which tell 
us what things are and how are they going to be in the future? According to Barrow 
([2] p. 269): 

the intelligibility of the world amounts to the fact that we find it to be algorithmically com
pressible. We can replace sequences of facts and observational data by abbreviated state
ments which contain the same information content. These abbreviations we often call "laws 
of Nature". 

However, we know that a total compression of the Universe is not actually possible 
as the existence of chaotic processes points out (Chaitin [12, 13], Rucker [46], 
Svozil [49, 50, 51], Calude [8], Calude and Salomaa [10)). How can we describe 
seemingly random processes in nature and reconcile them with supposed order? 
How much can a given piece of information be compressed? Calude and Salomaa 
[10] have suggested that the Universe is actually globally random, and, conse
quently, locally ordered. The Universe, like any network-like structure can be seen 
both at local and global levels. Local properties require only a very nearsighted 
observer-and for this level, science is indeed very useful and successful-but 
global properties are much more difficult to "see", they need a sweeping vision. For 
instance, the overall shape of a spiderweb is a global property, while the average 
number of lines meeting a vertex is a local characteristic. 

The relevance of Godel's Incompleteness Theorem [32] argument has been 
questioned by different authors, especially by Boolos, Chalmers, Davis and Perlis 
(see [41]; it contains also Penrose's reply). In our opinion, Turing's critique
mentioned above-is the most substantial. It questions the status of Godel's 
famous unprovable statement: is this unprovable statement-seen to be "true" by 
Penrose--esoteric, accidental? Does the incompleteness phenomenon have any 
relevance for a scientist's daily life? This is a rather delicate question. If we adopt 
a topological point of view (see Calude, Jurgensen, Zimand [9)), then incomplete
ness is a rather common, pervasive phenomenon: the set of true, but unprovable 
statements is topologically "very large", i.e. with respect to any reasonable topol
ogy the set of true and unprovable statements of a sufficiently rich, sound, and 
recursively axiomatizable theory is dense and in many cases even co-rare. It is 
important to notice that the above result holds true not only globally, but even for 
"fixed" problems. For instance, the halting problem: there exists a large set of true, 
but unprovable, statements stating that some Turing machine will never halt on a 
fixed entry. 

The natural way to model "admissible mistakes" is to work with probabilistic 
Turing machines18 instead of (ordinary) Turing machines. A probabilistic Turing 
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machine has some distinguished states acting as "coin-tossing states" for which the 
finite control specifies p ~ 2 possible next states. The computation is determinis
tic except that in the distinguished states the machine uses the output of a random 
experiment to decide among the p possible next states. So, a probabilistic Turing 
machine can make mistakes; the output is not "truly correct", but "correct within a 
probability". Classical results due to De Leuuw, Moore, Shannon, and Shapiro [17] 
and Gill [29] show that the class of functions computed by probabilistic algorithms 
coincides with the class of recursive functions. The difference is only in complexity: 
if we do not insist on a guarantee, then sometimes it is possible to compute faster. 
All results pertaining incompleteness, previously discussed, remain valid, so it ap
pears that Turing's objection cannot be supported anymore: this probabilistic space 
inherits the non-computability of the deterministic one. 

VIII. COMPUTABILITY 

Is the theory of computability (recursion theory)19 an appropriate framework to dis
cuss physical laws and thought processes? It is not unreasonable to suspect that the 
notion of computation will playa major role in future research in the natural sci
ences; however, the global picture is more complex than it appears on a first anal
ysis. 

Recursion theory is useful for proving the existence of uncomputable physical 
laws. If we are interested in "useful" physical laws, i.e. laws which can be effec
tively used for practical purposes, then the theory of computation might not be the 
appropriate tool. Indeed, it may happen that some function is computable, but it is 
very difficult to compute,20 or even worse, that the computable function is impos
sible to compute at all. For instance, consider the Continuum Hypothesis21 and the 
following function 

f(n) = { ~: if the Continuum Hypothesis is true, 
if the Continuum Hypothesis is false, 

suggested in Bridges [5]. According to classical logic, f is computable because 
there exists an algorithm that computes it, i.e. the algorithm that returns either one 
or zero, for all non-negative integers. Deep work due to GOdel [33] and Cohen[ 16] 
shows that neither the Continuum Hypothesis nor its negation can be proven 
within Zermelo-Fraenkel set theory augmented with the Axiom of Choice, the 
standard framework of classical mathematics, so we will never know which of 
the two algorithms--"print one", or "print zero"-is the right one. We conclude 
that the standard theory of computable functions does not match computational 
practice! The paradoxical nature of this example comes from the underlying logic 
of computability. To handle this problem we have to distinguish between existence 
in principle and existence in practice. A possible approach is to consider provable 
computable functions introduced by Fischer [22]. A computable function is called 
provable with respect to some formal system S which contains second order arith
metic if there exists an algorithm which computes it and which can be proven to 
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be total in S. These functions are interesting because they are functions we usually 
work with in practice, e.g. in numerical analysis. What do we lose sacrificing all 
computable functions in favour of provable computable ones? Gordon [31] has 
proven that this class of functions is a complexity class, i.e. it can be computed 
with limited resources, say in time. Now, if we apply some results in Calude [7] we 
arrive at the conclusion that there is an essential difference between computable 
functions and provable computable functions: in a constructive sense, the fonner 
class is of second Baire category (i.e. large) while the later one is meagre (i.e. 
small). Infonnally this means that most computable functions are not provable 
computable; the difference between functions "computable in principle" and 
provable computable functions is significant.22 

IX. CONCLUSIONS 

The paradox mentioned by Penrose is not real, because "real predictors" do not 
exist.23 This is because every (universal) predictor is "too slow" for certain tasks, 
in particular for predicting actions of itself. Two more examples of un computability 
of physical laws are discussed. Turing's objection concerning GOdel's Incomplete
ness Theorem is confronted with the fact that, from a topological point of view, the 
incompleteness phenomenon is common and pervasive; this result is still true for 
probabilistic Turing machines, i.e. for machines allowed to make "reasonable" mis
takes. Although we have refuted Penrose's argument that strong determinism and 
computability are logically incompatible, we have found independent reasons to 
support his conclusion concerning the non-computability of physical laws. Finally 
we are lead to the following question: is the theory of computation an appropriate 
framework to discuss physical laws and thought processes? We argue that for prov
ing non-computability results the answer is affinnative; for more practical purposes, 
in which we are interested not only in discovering physical laws, but in using them 
to make predictions, the answer might be negative. Other aspects of the problem, 
e.g., the role of the observer and "approximation" in making predictions, will be 
treated in another paper. 

• 

1. 
2. 

3. 

NOTES 

This work has been partly done while the first author has visited Bucharest Univer
sity and the University of Technology Vienna, and the fourth author has visited the 
University of Auckland. The work of the first and fourth authors has been supported, 
in part, by Auckland University Research Grants A18/XXXXX/62090/3414012, 
A18/XXXXX/62090/F3414030. 
"A thing caruwt occur without a cause which produces it". 
Assuming the Church-Turing Thesis, this is equivalent to saying that the laws of na
ture correspond to recursive functions. 
See Pour-EI and Richards [43], and the objections in Penrose [40], and Bridges [6]. 
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4. Certain prediction tasks cannot be speeded up, though; see the discussion below. 

5. And can be effectively constructed. 

6. Actually, t(x) is not computable. 

7. For an early investigation of a forecast inspired by recursion theory see Popper [42]. 

8. Gandy [27, 28] has put forward related arguments imposing limitations to mathemat
ical knowledge by the finiteness of physical objects. 

9. This solved in the negative Hilbert's Tenth Problem. 

to. The reason is simple: we can determine which equations have a solution if we know 
how many of them are solvable. 

11. There is something attractive about permanence. 

12. Notice that the solution of the problem (6) may be also obtained by means of the 
Fourier transform. It is possible that for some functions f the Laplace (or Fourier) 
transform does not exists, and still (7) verifies (6). 

13. A problem of electrostatics is plane if there is a distinguished direction such that all 
data are constant in this direction and the field to be determined is also constant in 
this direction; Friedrichs [25]. 

14. The conductors are materials which do not exert any force on charged particles in 
their interior, but they do so at the boundary. In a state of equilibrium the charges 
contained in a conductor are distributed over the boundary. 

15. The same system can be derived from conduction of electricity on a conducting sheet 
covering the domain D. 

16. The local existence of a potential III is described by the equality E = -dill; see Bam
berg and Sternberg [1]. 

17. This paper has attracted less interest than Computing Machinery and Intelligence 
([54],133-160); for instance, Penrose does not quote it at all. 

18. This type of machine is sometimes called a Monte Carlo algorithm. 

19. A truly remarkable achievement of modem mathematics is the discovery of recur
sive (or, computable) functions, i.e. functions which can be computed by algorithms. 
Within the realm of this theory it is possible to prove the existence of functions that 
are not computable by any algorithm whatsoever. The theory of computability has not 
yet become part of mainstream physics, but it can serve perfectly well as a guiding 
principle to hitherto informal notions such as "determinism". 

20. Actually, for every computational measure, for instance, time or space, there exist 
arbitrarily difficult to compute functions; see Calude [7]. 

21. There is no cardinal number strictly in between aleph-null, the cardinal of the the set 
of natural numbers, and aleph-one, the cardinal of the set of reals. 

22. In this context it is interesting to note a result-<lbtained in 1964--which can be 
considered as " Chaitin (very first) Incompleteness Theorem": For any formal system 
there is a computable total function that goes to infinity more quickly than any prov
ably computable total function in the formal system. For the construction we take 
F(n) to be n times the maximum of the values of the first n provably computable total 
functions for all arguments up to n; "first" means first in a recursive enumeration of 
all theorems in the formal system. This note was has kindly communicated to us in 
[15]. 

23. Penrose himself seems to have anticipated this. 
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