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It is explicitly shown that the nonvamshmg spacehke or tlmehke contributions to the Feynman
propagator of quantum-field theory do ot reflect any violation of local causality, such as propaga-
tion faster than light. An experiment is proposed to test the causality of quantum-field theory by
measuring the broadening of a very short light pulse. For these pulses theory predicts a nondissipa-
tive behavior, with the pulse broademng only stemmlng from preparation and measurement uncer-

tainties.

The usual implementation of local causality in
quantum-field theory requires independence of the field
amplitudes at spatially separated points,! since according
to theory of relativity no event can be caused from re-
gions outside of its own light cone. To distinguish this
restricted causality from earlier ones (which allow for in-
stantanuous action at a distance, such as Newton’s law of
gravitation) it shall be called “local” (also known as
micro- or Einstein) causality. Local causality is assured
by a proper connection between spin and statistics; e.g.

for the case of a (massive) scalar field ¢, the commutator

is given by the Pauli-Jordan function

[¢(0),¢(x)]=i[AR(x)—-AA(x)]
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where Ar and A, denote the retarded and advanced
Green’s functions, respectively. The commutator van-
ishes for spacelike separations t?—x2 <0, that is outside
the light cone. This presupposes the invariance of suit-
able velocities corresponding to propagation processes
used for synchronization. Since gravitational waves are
presently unattainable, for all practical purposes, the
speed of light or other electromagnetic radiation have
been defined as a unique value, ¢ =229 792458 m/sec
{the units throughout this paper will be such that ¢ =1
and i=1). .

It is, however, not evident that this uniqueness of the
velocity of light (corresponding to a singular distribution)

holds for quantized systems as well. One rﬁighﬁtﬁ»ney—c_:r}" at-

tempt to consider the velocity of light (which is inserted
into the “bare” theory) as a parameter which becomes re-
normalized en route to the full model, very much like
mass or charge. Moreover, via the Wick decomposition,
perturbative-quantuin-field theory induces a definition of
the Green’s function with nonvanishing contributions for
spacelike separated points: for massive fields the ‘“‘causal”
Green’s function in configuration space is

A (x)={0|T#(0)p(x)[0)
0:6( __xl)[m N _x2)1/2]KI[m(_x2)1/2}+ SN

which for the massless case (m =0) and for small
=12—x2£0 (close to the light cone) can be expanded,

T yleldmg Adx)ex™

The dlscusswn of possible causality violations due to
—__the specific form of the causal Green’s functlons dates
back to the early days of quantum theory.? Fierz® and
‘Killen* have attempted to argue via the uncertainty prm-
ciple. This argument shall be briefly reviewed here, since
-on closer inspection it seems unconvincing. They at-
tempt to prove that although quantum-mechanical
scattering amplitudes in principle show nonlocal contri-
butions (as well as others indicating slower propagation
than ¢), due to the uncertainty principle these cannot be
detected. They start by tesselating space-time into dis-
Jjoined regions R; such that the (second-order) amplitude
for Mgller scattering of a photon is a sum

(pp3lS?pipy)= 3 SPUR,R,)
’ R,Ry

of all scattermg processes from one region R, into anoth-
er. R S 2)(R 1-R ;) can be evaluated as [D¥(x) < A, (x)]
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with  8V(k)=(1/2m) [ 7272 exp(ikx)dx =sin(ka /2) /mk

and the size a =diam(R) [both regions have been as-
sumed to be of equal (directional) size]. Only in the limit
a— « becomes §,—8 and the energy-momentum is ex-
actly conserved at the vertex. On close inspection we
note that there is no reason why for arbitrary time resolu-
tion At the energy change of the emittor or absorber line
~AQ, should be within the uncertainty limits imposed
by quantum theory (that is, AtAQ, <<#), as was argued
by Fierz and Killen; for any Az there exist AQ,’s such
that 8,,(p}o—P1,0+TQo)#0 for AtAQ,> 1. Therefore,
the above argument via phase-space considerations
remains ambiguous. Arguments for causality violation in
quantum mechamcs have indeed been put forward by He-
gerfeld® and Rubin.®

In what follows it will be shown that, despite nonlocal
contributions to amplitudes, causality is not violated in
quantum-field theory. This will be done by explicitly cal-
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where P stands for the principal value and x? —R?
with R 2—x, +x2+x2 (see, for instance, Bogohubov and
Shirkov’ for details). Upon integration of the coordinates
one obtains the causal Green’s functions in (2+ 1) dimen-

sions
{ |17~

where Pz—xl +x32, and the causal Green’s function in
(1+1) dimensions (from now on, the spacial index is
dropped, such that x =x,)

(|t|—P)

2|1/2
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AU (x, 1) = e(|t|—|x1)—i7o1n|x2—z21] :
4 T

The initial value problem can be defined as follows: (i)
propagation in the vacuum with no sources present (cor-
responding to the free-wave equation), (ii) the (scalar)
photon is represented by a square-well pulse of width o
and zero velocity at t,=0 (this configuration represents
two pulses transversing each other from opposite direc-

tions and with opposite velocities)
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FIG. 2. Dispersion-free propagation of a sqliére-&ell liéht
pulse.

sion w(k) or in configuration space by integration over
the initial values®

A D(x —y, ,to,;?),
-3t

+ e
u(y,t)—ZRef_w (=0

X8 dx ,

%—le

where Re denotes the real part of the integral and

A (x —y, —1)
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Upon integration the solution u (y,?) is given by

Llglo_ o _ |, _
u(y,t)—z[e S ly il | +o S tl]

—Re|Lin |22Tl0/2=1)

T | y?—(o/2+1t)?

Notice that the last term on the right-hand side only con-
tributes if the argument of the integral is negative, yield-
ing a factor of In(—|a|)=iw-+Inlal. For the above argu-
ment this is only the case for the four regions indicated in
Fig. 1. The final solution can be written down as

_ |6tte /)=y +1)
4= 6o /2)~lyp.~e]) *

It is drawn in Fig. 2.

e —— A similar problem is the calculation of the field v (y,#)

from a very shortlived line charge ¢(x,7)
=(1/2m)8(7)8((c /2)—|x|). Integration over the inho-
mogeneous wave equation yields

u(y,t)=81rRef(:dej “dx AU D(x —y, t —1)q (x,7)
=0

Tl =1yl

et

Again, lacal causality for the propagation of a quantized.
field is confirmed.

The main result of the above calculation is that the
width of a wave packet traveling in the vacuum remains

--=--—-—-—————onstant (contrary to a spreading of the packet if acausal

effects were to be expected). The packet does not decay
in time. Hence the vacuum of quantum-field theory
remains dispersion-free for the propagation of light and
no acausality occurs. It should be worth investigation
under which circumstances an experimental test validates
these predictions.
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IThe notions of causality and locality (or separability) are used ‘

in a different context: in an EPR-type configuration with a
spin singlet state decaying into two spin-1 states, let (s;-a)(x)
denote a measurement of the spin s of the ith subsystem in
the direction a at the position x, then quantum mechanics
predicts an expectation value

((5,-a)(0)(s,°b)(x)}=—ab ,

independent of the separation x? of the two subsystems. This
and other consequences of quantum nonseparability (among
them the most prominent “collapse of the wave packet”) has
been the basis of speculations concerning a “nonlocality of

quantum mechanics.” : )
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