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Fermionic squeezing is derived in analogy to squeezed light, but with two distinct features: (i) In-
tramode squeezing can be achieved by noise attenuation in the particle sector at the cost of noise
amplification in the antiparticle sector (or vice versa). Multimode squeezing requires the presence of at
least two field modes, one field mode acting similarly as the antiparticle sector in intramode squeezing.
(ii) Due to the invariance of the operator algebra under generalized Bogoliubov-Valatin transformations,
squeezing is characterized by trigonometric functions. Possibilities for an experimental realization are

discussed.

PACS numbers: 71.50.+t, 42.50.Dv

Squeezed light' is traditionally introduced in the
context of minimum-uncertainty states, in particular,
Glauber’s coherent states.? Since coherent states of light
require arbitrarily high occupation numbers of photons
per field mode, on the basis of Pauli’s exclusion principle
it may be suspected that fermions cannot exhibit squeez-
ing. However, despite the fact that coherent states (and
minimum-uncertainty states in general) are not a neces-
sary prerequisite for squeezing, fermion coherent states
have been formally discussed®* and characteristic fea-
tures of squeezing have been predicted.>®

In the following it is shown that squeezed fermion
states can be introduced in close analogy to squeezed
light. Formally, squeezing is represented by a canonical
transformation of the field operators’ a;— u,;(s)a,
+ v (s)aj (the indices i, j,k stand for quantum numbers
characterizing the field modes and s stands for the
squeezing parameters). The «’s and v’s can be arranged
in a matrix M =(% ) (an asterisk denotes complex con-
jugation, a superscript ¢ denotes transposition, and the
superscript dagger symbol denotes Hermitian conjuga-
tion). Let I stand for unity and K =({). In order to
represent canonical transformations (i.e., to preserve the
algebraic commutator and anticommutator relations), M
has to satisfy MEKM? =K, or equivalently 't —ovet =],
uv' —vu'=0, for bosons and MM =1, or equivalently
uut+oe" =1, uv'+vu' =0, for fermions. In general, the
matrices M form a group with respect to multiplication,
which (with the additional requirement that u ~! exists)
is isomorphic to the real symplectic group Sp(2/V,R) for
bosons, and to SO(2NV,R), the group of real orthogonal
(2N x2N) matrices, for fermions.* More specifically, for
N =2, fermion squeezing can be carried out by a gen-
eralized canonical Bogoliubov-Valatin transformation of
the field variables.® This transformation rotates the field
operators into each other, thereby preserving their alge-
braic (anticommutation) properties. Within one field
mode, noise from zero-point fluctuations can be attenuat-
ed and amplified in the particle and the antiparticle sec-
tors, respectively (and vice versa). This demonstrates

that occupation numbers higher than 1 are not a neces-
sary condition for squeezing. Heuristically speaking, in-
stead of a redistribution of the n-particle amplitudes
within one mode for boson squeezing (due to a restric-
tion in Fock space to |0) and 1)), fermion squeezing is
characterized by a mixture either between different field
modes or between the particle and antiparticle sectors
within one field mode. The Letter concludes with a short
discussion on the requirements for a realization of
squeezed fermion states.

Let w(x) denote the general solution of the free Dirac
equation for spin-% particles. In a Fourier expansion
the three-momentum p and spin o characterize the
modes of the field,’

R 172
= _dp | m —ipx
y(x) ;0 om " | po bpotipoe ™"

+dpotpoe ™, (1)

where u and v are the spinors representing particles and
antiparticles, respectively, and px =wt —p-x. For the
moment only one field mode with its particle and an-
tiparticle components will be considered and these in-
dices will be omitted. The field operators obey anticom-
mutator relations, in particular, {b,b" =bb ' +b'b=1d,
d'} =1 and all others (in particular, mixed type) zero.
w(x) can be split up into the positive- and negative-
frequency parts of particle (operator b) and antiparticle
(operator d) wave functions [N+ =(m/py)'"?
xexp(*ip-x)]:

¥ () =y )+ (x) |

v (x) =N bue ',
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Hermitian fermion quadrature operators x and y can be
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introduced by
x=(5)"20p+x4), y=(3)"Gp+ya) ,
xp=(3)"2(b+b"), xg=(5)"2(d+d"),
yo=i($)"2(b=b"), ys=i($)"*@—d"),
b=(5)"2(xp—iyp), d=(3)"(xq—iys),

such that

(3

{x,x}= {y,y} = {xb,xb} = {xd,xd} = {yb,yb} ={yd,yd} =]

G(")(X|, .

(all other anticommutators vanish). With p, =ix and
p, =iy,'? the (one-mode) free-field Hamiltonian can be
written as'!

H=00b"b+d"d—1)=io(yx,+yaxs)
=w(p,xs+p.,xa) .

A coherent state |coh) can be defined by the require-
ment that the nth-order correlation function G * factor-
e 2
izes:

o x2) =(coh| ¥ P (x ) - P ) T x4 0) - T (xan) |coh)

=e*(x) - e*)elxn+y) - elxan). 4)

Since only one field mode is considered, the coherent
state can be written as |coh)=|8)®|8)=|8,8) (8 and §
stand for the particle and antiparticle contributions, re-
spectively), such that b|B,8) =p|B,8), d|B,8 =45|8,8),
where B and § are anticommuting ¢ numbers (or ele-
ments of a Grassmann algebra), which anticommute
with the field operators and associated sets of adjoint an-
ticommuting ¢ numbers 8 and 6.° The expansion in
terms of the Fock states is

|3 =exp(bB—pb)|0) =exp(—gB/2)[|0)+]1)]

(for |8) analogously).

The variances Ax and Ay for |ﬁ,6> will be derived
next. The solution of the Heisenberg equation of motion
for the field operators i(d/dt)b=[b,Hl=bH — Hb =wb
and i(d/dt)d=Id,Hl=wd is b(t) =b(0)exp(—iwt)
and d(¢) =d(0)exp(—iwt). Interms of x and y,

x (1) =(1/2){[b(0) +d (0)lexp(—iwt)

+[67(0)+d1(0)lexplint)} ,
(5)
y(@)=/2){[b(0)+d(0)]lexp(—iw?)

—[670)+47(0)lexpliow?)} .

With (x;)?=(B|x|B)?>=0 and (x#)=1, the variance of
x» becomes

(Axp) =B (xp —x))2P =1+,
and similarly
(Axa)2=(Ayp) =(Ap,) =(Ax)?=(Ap) =1 ;

i.e., the coherent states |B,6) are minimum-uncertainty
states.

Next we turn to intramode squeezing, i.e., squeezing
within one mode composed out of a particle and an an-
tiparticle sector. Thereby the invariance of the operator
algebra with respect to rotations will be used. (Unlike
boson field operators, whose algebraic properties are
preserved by hyperbolic transformations, fermion an-
ticommutator relations are invariant under rotations.)

3342

Historically, the so-called Bogoliubov-Valatin transfor-
mation® has been introduced in the context of the
Bardeen-Cooper-Schrieffer model of superconductivity: '?

b—» bs; g=bcoss —dexp(if)sins ,
(6)
d— d; ¢=d coss +bexp(—if)sins .

This transformation is canonical,'? since it conserves all
the algebraic properties, in particular, {bs,o,bf,g}
={d5,g,d;9} =1 (all other anticommutators zero); furth-
ermore, H; p=w(by ¢bs o+ d, ods ¢). The variances of the
particle and antiparticle components of the rotated quad-
rature operators depend on each other and transform as
(for simplicity, the result is enumerated for §=0 and x,
with = and ¥, respectively)

(Axp )2 =(Axp)?|1 = sin2s] ,

(Axg5)2=(Ax4)?|1 Fsin2s],
@)

(Aps.s) > =(Apy) 2|1 £ sin2s|,
(Ayg.s)2=(Ays)?|1 Fsin2s| .

It is thus possible to reduce the variance in the particle
or the antiparticle sector of one quadrature component at
the cost of the quadrature component of the other sector.
B and & transform according to

Bs =Bcoss+8exp(if)sins |
(8)

8; =8 coss — Bexp(—iB)sins .

Multimode squeezing utilizes the invariance of the
operator algebra ({b;,b/} ={d;,d/} =5;; and all other an-
ticommutators zero) under canonical transformations’
bi— u,-jbj+v,-kb;f. The u’s and ¢’s can be arranged in a
matrix M =(/.+), which has to be unitary in order to
preserve the anticommutator relations for the new vari-
ables. A general N-mode transformation comprises N
x(N—1)/2 squeezing parameters.'* For two-mode



VOLUME 65, NUMBER 26

PHYSICAL REVIEW LETTERS

24 DECEMBER 1990

squeezing, a parametrization of M can be given by

e “coss —e'lsins 0 0 e ~'“cost 0 0 —e ""sint
e “sins  e“coss 0 0 0 e “"cost e sint 0
M(s,t,0,0,u,v) = 0 0 e'“coss —e “¥sins 0 —e'sint e cost 0 ’ ©)
0 0 e%sins e ~“coss eVsins 0 0 e cost

which reduces to (6) for b, =b, b»=d, and t=0c=pu
=v=0.

We conclude with some brief remarks on the genera-
tion and detection of squeezed fermion states. These
should, in principle, be obtainable by similar techniques
as for squeezed light, i.e., by nonlinear elements,' such
as second-harmonic generation or parametric amplifiers.
Since the interaction Hamiltonian of standard Yukawa-
Frohlich type, Hin < eyy (¢ and y stand for Bose and
Fermi field operators, respectively), is bilinear in the
Fermi field, any physical system representable by Hin
may serve as squeezing device. For example, the pairing
interaction of superconductivity renders an effective
squeezing of the electron-hole wave functions which, in
the BCS model,'? is parametrized by

s==arcsin(+ {1+ (e —p)/[(e—p)2+A21"3) 12,

As for light, particle counts are only sensitive to sta-
tistical properties such as fermion bunching® or anti-
bunching, which is not a sufficient signature for squeezed
states. Therefore, phase-sensitive devices such as in-
terference experiments or, more generally, measurement
of nth-order correlation functions (n = 2) are necessary
for the detection of fermion squeezing. Indeed, as has
been pointed out by Yurke,’ in an interference experi-
ment with squeezed fermion states entering both input
ports, the phase sensitivity is a function of the squeezing
parameters and the total number of particles n passing
the interferometer, and could in principle approach 1/n.
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