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Abstract

A critical review of randomness criteria shows that no–go theorems
severely restrict the validity of actual “proofs” of undecidability. It is
suggested to test microphysical undecidability by physical processes
with low extrinsic complexity, such as polarized laser light. The publi-
cation and distribution of a sequence of pointer readings generated by
such methods is proposed. Unlike any pseudorandom sequence gen-
erated by finite deterministic automata, the postulate of microscopic
randomness implies that this sequence can be safely applied for all
purposes requireing stochasticity and high complexity.
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1. In a strictly formal sense, any “proof” of randomness is among the
most demanding tasks perceivable [1, 2] — indeed it is equivalent to finding
all true (not merely all provable) mathematical theorems in an attempt to
“solve the unsolvable”[3]. This idealistic goal turns out to be impossible
[4, 2, 5]. For this and deeper [6] reasons it is suggested to drop a rather
speculative terminology and substitute the humbler term undecidable for
“randomness” when it comes to physical operationalizations. A sequence of
physical events is said to be undecidable if it is not possible to predict the
forthcoming events by knowledge of previous ones. The term randomness
will be reserved for the formal notion defined below.

Undecidability is a relative concept. The ability to find a law predicting
events depends on rather subjective criteria: Experience and intuition are
very often the only guiding principles, and finding laws is nothing less but
a great and rare art. If these attempts fail, then the events are undecidable
with respect to the corresponding trials and efforts. Of course that does
not imply that there are no laws. — These heuristic considerations are
supported by the provable fact that there exists no systematic (“deductive”)
method to derive laws even for arbitrary finite sequences of data [7]. The
same is true for statistical tests: statistical tests correspond to “laws” in the
sense that failure of statistical tests (of randomness) implies that significant
predictions are possible. A sequence “looking” perfectly random may pass
various statistical tests but fail others. Thus it should always be clearly
spelled out with respect to which test(s) undecidability has been proved.

The following Gedankenexperiment illustrates the relativity of the notion
of undecidability (and of randomness). Consider a physical system Σ produc-
ing numbers on a display. Assume an observer A, for whom Σ for all practical
purposes is a “black box”; i.e., despite the display A has no knowledge of
Σ. Assume a second observer B, who by intuition or other insight knows
that Σ calculates the digits of π, displays them, and in doing so has arrived
at a specific n’th digit. In this case one may ask the following questions.
(i) How does A without communicating with B learn about the “meaning”
of Σ, i.e., how could A find out that Σ outputs the digits of π ? (ii) To
what extend is the predictive power of B restricted by finite computational
resources ? — What sense makes any “knowledge” claimed by B that Σ has
arrived at the n = 10200’th decimal place of π ? For even if one uses a whole
galaxy as computer, and even if one is willing to wait for the result of the
computation for a time comparable to the age of the universe, at least with
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present–day mathematical means, it is impossible to confirm this statement
and to predict the 10200 + 1’th decimal place of π [8, 9].1 Although ideally
π can be calculated deterministically to an arbitrary precision, one is forced
to a probabilistic description by restrictions in computational resources and
intuition — this was, after all, the perception of Laplace’s “old” probability
theory.2

The above Gedankenexperiment is no exception. There are rather few
physical systems whose evolution can be predicted [3]. Statistical tests some-
times are very weak hints on the stochastic nature of the underlying evolution.
Take for instance the simplest nontrivial sequence build from natural num-
bers 1, 2, 3, · · ·, enumerated in binary notation: 11011· · ·. It can be shown
that it is a Bernoulli–sequence [12], i.e. any arbitrary partial sequence occurs
with the expected limiting frequency. The same has been demonstrated nu-
merically [10] for the decimal expansion of π up to 26 million places and for
partial sequences of length 6. What can be learned from these examples is
that sequences looking rather chaotic may stem from extremely low–complex
deterministic evolution.

The reverse is true as well. Randomness is prevalent in classical determin-
istic physics, where it is introduced via the continuum postulate [3]. Classical
chaos is modeled by “unfolding” the randomness of the real initial values by
a deterministic evolution. In quantum physics the situation is different. Al-
though the quantum phase space is discrete and the Schrödinger equation
for the wave function Ψ is deterministic, the probabilistic interpretation of
|Ψ|2 is mostly perceived as introducing indeterminism. This is most strongly
felt for the occurrence of single microphysical events, when the ensemble in-
terpretation may no longer be comfortably used. In what follows, emphasis
is layed on this feature of quantum theory (see also ref. [13]).

2. Before concentrating on an operationalization, some mathematical

1To put it pointedly, although A may have no access to a CRAY 2 supercomputer,
he might be willing to believe Bailey’s claim [10] that the next ten digits following the
29 359 000’th digit in the decimal expansion of π are 3, 4, 1, 9, 2, 8, 4, 1, 7, 8, but he wont
accept a claim such as “with a probability greater than 1/10, the 108’th digit in a decimal
expansion of π is 7”.

2For completeness another problem will be mentioned here which is treated elswhere
[6]: If the measurement process is intrinsic and selfreferential, i.e., the measuring device
cannot be arbitrarily separated from the system to be measured, to what extent could the
resulting data be used to make predictions ?
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concepts of randomness are reviewed. Besides the intuitively evident but
not very practical approach by von Mises [14, 15, 16], there are two rele-
vant definitions of randomness, which are equivalent [2]. A sequence x(n) =
x0 · · ·xn−1 is defined to be random if (i) it passes all statistical tests of ran-
domness; or (ii) if there exists no finite size description of a “law” which is
able to reproduce the sequence with arbitrary length.

The latter requirement of “lawlessness” can be represented in terms of
algorithmic complexity theory envisioned by Chaitin, Kolmogorov and oth-
ers [1, 2]. The algorithmic complexity H(x(n)) of a sequence x(n) is the
minimal program length necessary to output x(n) on a computer, i.e., if p
symbolizes the program running on a computer model C, then H(x(n)) =
minC(p)=x(n) length(p). A sequence is defined to be random if, as x(n) in-
creases in length n, H(x(n)) increases as well such that limn→∞[n−H(x(n))] <
∞. Heuristically speaking, this definition implies that a random sequence
cannot be substantially “compressed” by computational efforts, and any pro-
gram outputting x(n) boils down to mere enumeration, at best.3

In a strictly formal sense, randomness is undecidable [1, 2]. This is due
to the fact that it is not systematically (i.e., deductively) possible to find
the shortest program generating x(n), or correspondingly, to perform all
statistical tests on x(n).

In practice one is restricted to a finite number of trial programs (or,
correspondingly, of statistical tests) with no guarantee whatsoever that this
is a proper collection. Moreover, all sequences of physical pointer readings
are bounded in length (n < ∞). The pedagogical lesson to be learned from
these kind of formalistic considerations again is that all practical “proofs”
of undecidability (and even more so of randomness) are severely hampered
by no–go theorems. Their preliminarity and relativity strongly restrict their
validity and applicability.

3. We next turn our attention to the generation of suitable sequences
of pointer readings ψ(n) = ψ0 · · ·ψn−1 from “quantum coin tosses”. These
can then be subject to statistical and complexity tests, as suggested below
(see also ref. [13]). For any test of quantum mechanical undecidability it is
essential to use signals with no (extrinsic) noise from a controllable source

3There is no space here to discuss different definitions of randomness, such as normal-
ized randomness, i.e., K(x(n)) ≡ limn→∞H(x(n))/n > 0, which has important applica-
tions in symbolic dynamics [17, 6], or definitions of randomness based upon complexity
measures [18, 16, 19].
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of very low extrinsic complexity.4 To the author’s knowledge the optimal
realization of such a source is a laser emitting coherent and polarized light.
All emitted quanta from such a source are in an identical state. The polarized
laser light is then directed towards a material with anomalous refraction,
such as a CaCO3 crystal, which is capable of separating light of different
polarizations. Its separation axis should be arranged at ±45◦ with respect to
the direction of polarization of the incident laser beam. Then each of the two
resulting beams, denoted by 0 and 1, respectively, has a polarization direction
±45◦ from the original beam polarization. A detector is in each of the beam
passes (see Fig. 1). For an ideal anomalous refractor, the probability that
a light quantum from the polarized source will be in either one of the two
beams is 1/2.

A binary sequence ψ(n) can be generated by the time–ordered observation
of subsequent quanta. Whenever the quantum is detected in beam 0 or 1, a
corresponding digit 0 or 1 is written in the next position of ψ(n), producing
ψ(n+ 1). In this way, n observations generate a sequence [11] ψ(n).

It is suggested that such a sequence is published and suitably distributed
(e.g. by electronic mail) by a bureau of standards [20]. This sequence could
then be taken as a reference for statistical tests, some of which are suggested
below, and more generally, as a standard for a generic random sequence.

This should be understood as follows. Compare ψ to any pseudorandom
sequence ϕ, generated by a finite deterministic automaton. Whereas ϕ could
be applicable to a great variety of purposes such as numerical integration or
optimization of database retrieval, it will inevitably fail specific statistical
tests. Take for example the statistical test corresponding to the generating
algorithm of ϕ itself — the law which is encoded by this algorithm is per
definitionem capable of generating (“predicting”) all digits of ϕ. Thus, at
least with respect to its own generation law, ϕ is provable nonrandom.

The postulate of microphysical indeterminism and randomness on the
other hand asserts that there is no such “generating” law and hence no
statistical test to “disprove” the randomness property of ψ. In fact, with
this postulate ψ is characterized by the fact that it passes all statistical tests
with probability one. Thus ψ can serve as generic source for a random bit
sequence.

4The term “extrinsic” has been chosen to refer to external configurations only. Micro-
physical indeterminism is equivalent to the postulate of infinite “intrinsic” complexity.
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4. In what follows several statistical and algorithmic tests are suggested
which could be applied to ψ(n).

(i) Frequency counting: for ψ(n) to pass this test it has to be proven that
any arbitrary sequence of m digits occurs in ψ(x) with a limiting frequency
2−m. In order to obtain a reasonable confidence level (see ref. [15] for details),
m has to be smaller than approximately n− 7. An infinite sequence passing
this test for arbitrary m is called Bernoulli sequence. As has already been
mentioned, this criterion is rather weak. It is satisfied by the enumeration of
the natural numbers [12] and within finite accuracy, by the decimal expansion
of π [10]. Actually, in the above experimental setup, the statistics of a 1–digit
string (m = 1) should be used for calibration of a suitable angle, which is
defined by the requirement that 0 and 1 should occur in ψ(n) with frequency
1/2.

(ii) Algorithmic compressibility: ψ(n) could be the input of various com-
pression algorithms (e.g. the Huffman algorithm), which should produce a
(compressed) string of length Hc(n) with H(ψ(n)) ≤ Hc(n) ≤ n. On the
average, Hc(n) should increase as n increases, i.e., 〈∆Hc(n)/∆n〉 = 1. Ev-
ery compression algorithm is a kind of “code breaking device” based upon
a hypothesis on “laws” governing sequences. Some of them are used for
commercial applications and are readily available.

(iii) Spectral test: This is a critical test at least for linear congruential
sequences. For a detailed discussion see ref. [15]. The idea is to investigate
the “granular” structure of ψ(n) in D–dimensional space in the following
way. Split ψ(n) into N ≡ n/k subsequent partial sequences ψ(n, i) of length
k. Generate N binary numbers 0 ≤ xi < 1 by xi ≡ ψ(n, i)/2k. For a D–
dimensional analysis, arrange subsequent xi’s into M ≡ N/D D–touples Xj.
The Xj’s could be perceived as points in RD. Consider further all fami-
lies of (D − 1)–dimensional parallel hyperplanes with points Xj. If 1/ν(D)
denotes the maximal distance of these hyperplanes, ν(D) is called the D–
dimensional “accuracy” of ψ(n). ν(D) should on the average be independent
of the dimension, i.e., 〈∆ν(D)/∆D〉 = 0. For statistical reasons, one can-
not achive a D–dimensional accuracy of more than about 2k/D and 1/MD.
Thus the spectral test is relyable only for ν(D) < 2k/D and sequence length
n > kD(ν(D))D.

(iv) High–dimensional integration: Assume an analytically computable
D–dimensional integral F (D) ≡

∫ 1
0 · · ·

∫ 1
0 dx1 · · · dxDf(x1, . . . , xD). Consider

again a representation of ψ(n) intoM = n/kD pointsXj in theD–dimensional
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unit interval. Define F ′(D) ≡ (1/M)
∑

j f(Xj). Then for arbitrary test func-
tions f and with probability 1, the discrepancy |F (D) − F ′(D)| ∝ M−1/2

only depends on the number of points and not on the dimension.5

The proposed tests are not independent. Certain compression algorithms
use tables of repeating sequences and are thus connected to frequency count-
ing methods. The spectral test analizes the distribution of points generated
from sequences in a unit interval of highdimensional space. It is thus a cri-
terion for the quality of approximation in numerical integration.

There are other fairly strong statistical tests such as the law of the iterated
logarithm [21, 14], but many of them turn out to be unpractical for their low
confidence levels in applications.

5. In summary, it is proposed to investigate the postulate of undecid-
ability of microphysical events by statistical and algorithmic tests. None of
these actions can actually prove randomness, since due to no–go theorems
which are ultimately based on Gödel’s incompleteness theorems, such a proof
is impossible. All one can attempt to do is to at least ensure the applicabil-
ity of undecidable physical measurement series for particular tasks, such as
theorem proving [22], Monte Carlo integration and database retrieval. It is
further suggested to create and distribute such a sequence for testing and as
a generic standard.

This work was supported in part by the Erwin Schrödinger–Gesellschaft
für Mikrowissenschaften.

Figure captions

Fig.1 Experimental setup for generation of a sequence ψ(n). Light from a
polarized laser source is split into two beams of equal intensity, each having
a polarisation direction of ±45◦ with respect to the original direction of
polarisation. Incoming light quanta are then detected. Subsequent countings
in detectors 0 and 1 correspond to subsequent bits of ψ(n).

5For the Simpson method of numerical integration, in order to obtain accuracies of the
order of M−1/2, one needs at least MD/8 points to obtain the same order of discrepancy.
There the number of points depends on the dimension.
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