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Abstract

Physical systems can be characterized by several types of complex-
ity measures which indicate the computational resources employed.
With respect to these measures, several chaos classes may be distin-
guished. There exists a constructive approach to random physical
motion which operates with computable initial values and determin-
istic evolution laws. For certain limits, these chaos classes render
identical forms of random physical motion. These observations may
have some implications on a unique time direction for macroscopic
reversible systems.
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1. The classical deterministic continuum physics induces an indetermin-
ism which is at least as strong as the probabilistic interpretation of the
Schrödinger wave function—“Almost all” (with respect to an arbitrary mea-
sure) elements of the continuum are uncomputable, i.e., they cannot be cal-
culated by an algorithm on a universal computational device [1]. Therefore,
if one assumes equidistribution, the initial configuration of a classical sys-
tem must be represented by an uncomputable number with probability one.
Since present–day definitions of uncomputability are essentially equivalent to
(normalized) randomness [2, 3], this renders chaotic motion for deterministic
evolution functions capable of “unfolding” the randomness of the initial val-
ues. A sufficient criterion for such an evolution function is the instability of
trajectories towards variations of the initial configuration δX0, such that at
later times t and for positive Lyapunov exponent λ+, δXt ≈ δX0 exp(λ+t).
In this sense the “deterministic chaos” of classical physics originates in the
assumption of the continuum (see also refs. [4, 3]).

Quantum theory partially circumvents these uncomputabilities by pos-
tulating a discrete phase space. Nevertheless, despite a discrete state space
for bounded systems, the Schrödinger wave function is represented as el-
ement of a continuum. Moreover, the probabilistic interpretation of the
Schrödinger wave function, which undergoes a deterministic evolution be-
tween state preparation and measurement, is generally perceived as an ex-
pression of indeterminism.

2. Rather than attempting a deeper investigation of the differences be-
tween classical and quantum physics with respect to the random evolution
of the Schrödinger wave function (see for instance refs. [5, 6, 7, 8, 9, 3]),
this Letter deals with a specification of the appropriateness of formal notions
of randomness for physical chaotic motion. Thereby, techniques from algo-
rithmic complexity theory and the theory of recursive functions provide a
powerful basis.

Heuristically speaking, complexity is a measure of the resources necessary
to perform a computation. These resources can be grouped into the following
two categories. (i) Dynamic or computational complexity measures charac-
terize the minimal amount of time (and storage capacity), whereas (ii) static
or algorithmic complexity measures specify the minimal program size (and
loop depth) necessary to perform a computational task. The associated defi-
nitions of randomness are based upon intuitive notions of incompressibility—
either in time resources, such that no computational “shortcut” exists [10], or
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in program size, such that no shorter description interpretable as generating
law [11] may reproduce a random timeflow. The formal definitions will be
given next. They rest upon the representation of an experimental sequence
in a symbolic string x [2].

The static complexity H(x) of a string x is defined to be the length of the
shortest program p which runs on a computer C and generates the output x,
i.e., H(x) = infC(p)=x length(p). If no program makes a computer output x,
then H(x) = ∞.

A sequence x is absolutely Chaitin random (ACR) [11, 12, 13] if the static
complexity of the initial segment x(n) = x1 . . . xn of length n does not drop
arbitrarily far below n, i.e., limn→∞H[x(n)]− n > −∞.

It has been proved [13] that an ACR sequence passes all statistical tests of
randomness, such as frequency tests and that like. Therefore, ACR is equiv-
alent to previous notions of randomness proposed by Martin–Löf, Solovay
and others, based upon statistical criteria [13, 3].

For physical applications, normalized ACR, henceforth called CR ran-
domness, is very important [2]. An infinite sequence x is CR random, if
K(x) = limn→∞H(x(n))/n > 0. This notion of randomness is equivalent to
uncomputability.

The normalized dynamical (computational) complexity KD(x(n)) of a
sequence x(n) = x1 . . . xn is the number of computing steps it takes for
the fastest program p running on machine M to calculate an arbitrary i’th
position xi of x(n), devided by n, i.e.,
KD(x(n)) = supi=1,···,n infM(p)=xi

[computing steps(M(p))]/n.
An infinite sequence x is T–random (TR) iff for the fastest program run-

ning onM the number of computing steps τ for calculating an arbitrary n–th
position xn of x is of the order of or greater then n; that is τ(n) ≥ O(n), or
KD(x) = limn→∞KD(x(n)) = lim supn→∞ τ(n)/n > 0.

Both K and KD are intractable, i.e., there exists no “systematic” way to
derive them. This is ultimately a consequence of Gödel’s celebrated incom-
pleteness theorem [14, 1, 15]. Moreover, TR is a machine dependent concept
(for more details, see ref. [3]). Table 1 schematically shows the various forms
of complexity and the

associated types of randomness.
Several attempts have been made in the literature to propose complexity

measures which grasp the intuitive notion of “organization”. These measures
shall not be critically discussed here, but their enumeration seem in order.

3



complexity static algorithmic/ Chaitin/Martin–Löf/Solovay
program size randomness
loop depth —

dynamic computational/ T–randomness
time
storage size —

Table 1: Forms of complexity and their associated types of randomness

The notion of “logical depth” was introduced by Bennett, ref. [16]. It comes
close to time complexity. A notion of “self–generating” complexity was pro-
posed by Grassberger in ref. [17]. A criterion called “thermodynamic depth”
has been introduced by Lloyd and Pagels, ref. [20] and is critically reviewed
in [3].

3. In what follows, a classification of chaotic motion with respect to the
computability of the initial values and the evolution functions, together with
the type of randomness, will be given.

(i) Chaos I is generated by a computable evolution of a system with
uncomputable (CR) initial values. If the initial value is element of the con-
tinuum, the probability that it is random is one, for “almost all” initial val-
ues are random reals. The randomness of the initial value “unfolds” in the
deterministic time evolution [18]. This is precisely the signature for chaos
in classical, deterministic continuum mechanics—the evolution of suitable
(positive Lyapunov exponents) deterministic (= computable) functions with
initial values from a continuous spectrum, which serves as a kind of “pool of
random reals”. Therefore, the randomness of a classical deterministic chaos
resides in its initial configuration.

(ii) Chaos II is generated by the uncomputable evolution of a system
with computable initial values. It operates with computable initial values
and uncomputable evolution laws.

(iii) Chaos III is generated by the uncomputable evolution of a system
with uncomputable initial values.

Whereas chaos of class I, II and III supports CR, it assumes unconceivably
complex physical systems. The following chaos class can, for finite times, only
support TR. It has the advantage of requireing merely computability, in some
cases only finite resources.

(iv) Chaos IV is generated by the computable evolution of a system with
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deterministic indeterministic

computable chaos IV chaos II
initial T–random Chaitin random
values (Chaitin random) nonrecursive

recursive resources resources
Cellular single quantum
Automata events ?

uncomputable chaos I chaos III
initial Chaitin random Chaitin random
values nonrecursive nonrecursive

resources resources
deterministic single quantum
continuum theory events ?

Table 2: Schematic representation of the features of chaos classes

computable initial values. The (incompressible) dynamic complexity of TR
sequences is generated by the unfolding of a computable, but TR initial value
(the associated evolution law must have positive Lyapunov exponent(s)), or
by a dynamically incompressible algorithm and arbitrary initial values. One
relevant result of the theory of computability is that computable algorithms
may have uncomputable limits [1]. Therefore, with “suitable” evolution func-
tions and in the limit of infinite time, chaos IV is capable of becoming CR
random. In Table 2 the various aspects of the four classes of chaos are rep-
resented schematically.

4. One central result of symbolic dynamics [2] can be formulated as
follows. For chaos I and with probability one (i.e., for random initial values),
the normalized static complexity K(x) of single trajectories (representable
as symbolic string x = x0x1x2 · · ·) is equal to the overall metric entropy
measure hµ(f) of a dynamic system with evolution function [19] f , and to
the sum of all positive Lyapunov exponents, K(x) = hµ(f) =

∑
λ+>0 λ+. This

connection between entropy measure and the algorithmic complexity measure
of single trajectories provide a powerful link of algorithmic information theory
and the theory of computability on the one hand and statistical physics and
thermodynamics on the other hand.

In what follows, I shall concentrate on speculations concerning these con-
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nections for the constructive chaos IV. The capability of computable func-
tions to “produce” uncomputable output on computable initial values may
have some far–reaching consequences in the physical perception of reversibil-
ity. Heuristically speaking, algorithmic complexity may be “created” by an
investment of dynamic complexity, for instance by an (infinite) amount of
time. One may therefore define the ratio R = δK/δKD and call a system
for which on the average R > 0, “creative”, expressing the fact that algo-
rithmic complexity is created. In this sense, the above equivalence between
K of single trajectories and the overall entropy measure hµ may also hold
for a suitable, i.e., “creative”, chaos IV. It may not be unjustified to specu-
late that creativity induces a unique time direction, and that the creation of
algorithmic complexity is a formal aspect of irreversibility.

Since both K and KD are uncomputable, R is uncomputable. One may,
nevertheless, employ heuristic measures such as standard type of compression
algorithms for a bound from above on K and KD, and hence approximate R—
such a method is not unfamiliar in physics, when one is forced to apply opera-
tional entropy measures which need not coincide with the exact ones. This is
demonstrated by the following example. Fig. 1 shows Pascal’s triangle, mod
2, representing even and odd binomial coefficients, which may be locally gen-
erated by an asymmetric Cellular Automaton with the following nontrivial
rules (all others zero) 1/0/0 → 1, 0/1/0 → 1, 1/0/1 → 1, 0/1/1 → 1.
Fig. 2 shows a heuristic study of K and R on this structure. On the average,
there is an increase of K, corresponding to a positive R. Hence, the heuris-
tic compression algorithm for the determination of K and R induces a time
arrow. From this point of view, one may expect that further investigations
will, for deterministic reversible systems with computable initial values, yield
new insight into the second law of thermodynamics.

5. Besides a classification of chaos, a constructive, i.e., computable ap-
proach to random physical motion has been attempted. All chaos classes
may yield identical forms of random physical motion. Chaos IV has the ad-
vantage that it is conceivable and that it is capable of rendering a limit which
can be directly linked to entropy measures.

This work was supported in part by the Erwin–Schrödinger–Gesellschaft.
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Figure captions

.
Fig.1 Pascal’s triangle (mod 2) is equivalent to the evolution of a one

dimensional state–2 Cellular Automaton. Dots and blanks indicate the digits
0 and 1, respectively.

Fig.2 Heuristic toy model study of R = δK/δKD on Pascal’s triangle
(mod 2), drawn in Fig. 1. A standard (Huffman) compression algorithm for
the calculation of the algorithmic complexity was used. This can however
yield only a bound from above on H.
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