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Abstract. Spacetime is modelled a s  a fractal subset of R". Analysis on homogeneous sets 
with non-integer Hausdorff dimension is applied to the low-order perturbative renormalisa- 
tion of quantum electrodynamics. This new regularisation method implements the Dirac 
matrices and  tensors in R4 without difficulties, is gauge invariant, covariant and  differs 
from dimensional regularisation in some aspects. 

1. Introduction 

The basis of a new regularisation method proposed here is a fractal spacetime support 
of the quantised fields. By 'fractal spacetime' a subset X of R" ( n  presumably 4) with 
zero n-dimensional Lebesgue measure is understood. Earlier applications of the 
Hausdorff measure to the spacetime dimensional problem can be found in Stillinger 
[ 11 and Barrow [2]. In two recent papers by Zeilinger and Svozil[3], operationalisation 
of these notions has been proposed, followed by further phenomenological analysis 
by Jarlskog and Yndurain as well as Muller and Schafer [4]. Independently there 
have been considerations with regards to quantum foam by Isham and, more recently, 
by Crane and  Smolin [5]. 

Heuristically, the fractal support X will be thought of as a uniformly distributed 
point subset of R", which is assumed unbounded and closed. X inherits the metric of 
R". For the time being, no physical reasoning such as quantum foam [5] (cutting out 
regions in spacetime by black holes) will be given, nor will there be any concrete 
fractal set envisaged. No scaling of the dimensional parameter will be considered 
(such that D = 4 for macroscopic and D < 4 for microscopic events), and D = constant 
will be assumed. 

The behaviour of the measure (volume, area, length, etc) under variations of scale 
is essential for a definition of the Hausdorff measure and an associated dimension. 
To illustrate this, the measure p of an arbitrary but finite spacetime region E of X 
will be considered. In an  actual measurement, p of E, among others, will depend on 
two quantities: ( i )  on the resolution of the experiment S, and i i i )  on a dimensional 
parameter d. p needs to be independent of the resolution 6, a quite reasonable condition 
for the volume, which otherwise would not be defined unambiguously. But then, for 
two resolutions S and S', 

(1.11 pi& d )  = pcc(S', d ) .  
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It is not evident that this condition is satisfied for arbitrary d. In fact, as can be 
expected, with an appropriate definition of the measure, there exists a unique number 
0, called dimension, for which the above relation is satisfied. This number can be 
measured only with finite accuracy, such that for actual measurements, relation ( 1.1) 
will never yield the dimension parameter D exactly. 

The Hausdorff and other types of measure originate in Carathiodory’s construction, 
which is defined as follows: for each metric space X ,  each set F of subsets E, of X ,  
and each positive function 5, such that 0 S &‘( E , )  G CO whenever E, E F, a preliminary 
measure qbfi can be constructed corresponding to 0 < 6 00, and then a final measure 
p, as follows: for every subset E c X ,  the preliminary measure 4 , ( E )  is defined by 

Since Cbfi 3 &, for 0 < S < u S CO, the limit 

@ ( E ) =  lim 4 8 ( E ) = s u p d f i ( E )  (1.3) 
6-0- t  b>O 

exists for all E c X .  In this context, p can be called the result of Carathiodory’s 
construction from 5 on F. 4, can be referred to as the size 6 approximating measure. 

Let there be, for instance, 

&‘(E,, d )  = w(d)(d iam E , ) d  (1 .4)  

for non-empty subsets E,  of X .  The geometrical factor w ( d )  depends on the geometry 
of the sets E, used for covering. 

When F is the set of all non-empty subsets of X ,  the resulting measure pH is called 
the d-dimensional Hausdorff measure over X ;  in particular, when F is the set of all 
(closed or open) balls in X ,  w ( d )  = ~ ~ ’ * 2 - ~ / T ( d / 2 +  1). Other types of measures are 
discussed in Federer [6, p 169ffl. In what follows, the Hausdorff measure p H  is 
considered, reproducing the usual results for length, area and volume, etc, of integer- 
dimensional point sets. There is no forcing reason to apply pH a priori; i t  is not unique 
and other measures d o  not seem ambiguous or i l l  suited for application in calculus. 

Of course, principally one could resist speaking about D as the ‘dimension’ of a 
set. Rather, this parameter could be considered as a heuristic criterion for the packing 
density of the elements of the set (note, however, that although the set of rationals 0 
is dense, D ( 0 )  = 0, as for all countable point sets). The dimensional parameter could 
then be ascribed to the topological dimension DT, which per definitionem is always 
integer. However, the concept of topological dimension turns out to be operationally 
unrealisable (see [3] for details). The same can be said from a definition of dimension 
as the number of independent vectors of a manifold. 

Throughout this paper, the need for a generalised calculus based on non-integer- 
dimensional topological spaces is strongly felt. The stakes are high, not only in physics. 
This paper intends to develop some of the perspectives, but it should be recognised 
that some of the approaches are conjectural in nature. In P 2 ,  a short introduction to 
the calculus on non-integer-dimensional sets with their points uniformly distributed is 
given. In § 3 follows a treatment of the Fourier-Stieltjes transformation needed for 
the evaluation of Feynman rules in momentum space. Finally, some low-order radiative 
corrections to free quantum electrodynamics are evaluated for D < 4. The investigation 
is completed by two appendices, one containing explicit calculations of low-order 
radiative corrections, the other containing a brief introduction to measure theory. 
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2. Integration on measurable metric sets 

Consider a measurable metric set [ X ,  p H ]  with X c R", n 3 4. The elements of X are 
denoted by x, y ,  z ,  . . . , and represented by n-tuples of real numbers 

x = (x ,  , xz , . . * , X" 1 ( 2 . 1 )  

such that X is embedded in R". X shall be further restricted by the following stringent 
conditions. 

( i )  X is closed. 
(ii) X is unbounded. 
( i i i )  X is regular (homogeneous, uniform) with its points randomly distributed. 
The importance of these requirements, as well as their basic definitions, will be 

The metric d ( x , y )  as a function of two points x and  EX is defined via the 
explained below. 

Kronecker 6 function in n dimensions 
( 2 . 2 ~ )  

and the diameter of a subset E c X is defined by 

d ( E ) = ( d i a m  E ) = s u p { d ( x , y ) :  x , y ~  E }  (2 .2b )  

The Hausdorff measure p H  of a subset E c X  with the associated Hausdorff 
respectively. i (  E, ,  d )  is defined in (1 .4) .  

dimension D E  R is defined by 

D = sup{d E R: d > 0 ,  ,uH ( E ,  d )  = a}. (2 .4)  

In the following I shall study generalisations of simple functions on X ,  f ( x ) =  
Z g P , , y E ,  (x),  where xE is the characteristic function of E :  continuous functions 
lim,,,f(x) = f ( y )  whenever h-,, d(x,  y )  = 0, are considered. The Lebesgue-Stieltjes 
integral over continuous functions can be evaluated as the limit of infinitesimal covering 
diameter: when { E , }  is a disjoined covering and x, E E,,  then insertion into definition 
(A2.13) yields 

I- 

From now on, X is assumed metrically unbounded, i.e. for every x E X and r > 0 there 
exists a point y such that d(x ,  y )  > r. The assumption that D is uniquely defined in 
all of X requires X to be regular (homogeneous, uniform) with respect to the measure, 
i.e. pH (B, (x) ,  D )  = p H  (B,(y), D )  for all elements x, , V E X  and (convex) balls B,(x) 
and B , ( y )  c X of the form B , , , ( x )  = { y :  d(x ,  y )  6 r, x, y F. X } .  In particular [ 7 ]  

for all points x E X .  The upper and lower limits of a sequence of sets { E , }  are defined 
by I&I,+~ E, = U A = ,  n,x=, E, and E,. This implies that D is 
constant in X (for ball coverings, w ( B , ( x ) ,  D )  = 7rD"2-"/T(D/2+ 1 ) ) .  Uniformity 
plays an essential role for further explicit evaluation of the formal expressions. I t  
seems to be also a dominant pattern in nature, from Brownian motion to percolation. 

T 

E, =nF,, 
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In  the limit d (  E , )  + 0, the infimum is satisfied by the requirement that the variation 
over all coverings {E,,} is replaced by one single covering E,,  such that U, E,t + E, 3 x,. 
One finds for the integral ( 2 . 5 )  

Xcan be tesselated into (regular) polyhedra; in particular it is always possible to divide 
R" into parallelepipeds of the form 

E ,,,, .,,, = { ( X I , .  . . , x,) E X :  X, =(i,-l)AX, +a,, 0 s  a, s Ax,,j= 1 , .  . . , n}. (2.8) 

For n =2 ,  E,,, ,? is shown in figure 1. Since X is uniform 

The range of integration X may also be parametrised by polar coordinates with 
r = d(x ,  0) and angle a. Er,R can be thought of as spherically symmetric covering 
around a centre at the origin (see figure 2 for the two-dimensional case). In the limit, 
the function l ( E r , * ,  D )  is given by 

(2.10) 

When s(x) is symmetric with respect to some centre X,,E X, i.e. s(x) = constant for all 
x satisfying d(x, xo) = r for arbitrary values of r ;  then a transformation 

(2.11) x + 2 :  x + z = x - X" 

I I I 

I I 
I I 

I I 

I 
I I 

I I 
I I 
I 1 

I 

Figure I .  The parallelepiped covering for D = 2. 

Figure 2. The spherical covering E , , ,  used for the definition of the infinitesimal volume 
element for D=2.  
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can be performed to shift the centre of symmetry to the origin (since X is not a linear 
space, (2.11) need not be a map of X onto itself; (2.11) is measure preseming). The 
integral over a D-dimensional metric space is then given by 

(2.12) 

The remaining integral is known in the theory of the Weyl fractional calculus (see, for 
instance, [SI).  There, the Weyl fractional integral W - D  is given by 

. r~ 

J ( t -x)”- ’ f ( t )d t .  w-”f(x) =- 
I 

T ( D )  0 

When W-”f(O) is considered, the integral in (2.12) is reproduced (the Weyl fractional 
differentiation can be defined likewise). In particular, for S ( x )  = (x2+ 12)-“, and for 
the Gaussian ( ~ ( x )  = exp( -sx*), 

The integral defined in (2.7) satisfies the following conditions. 
(i) Linearity: 

where f i  and fi are arbitrary functions and a and b are arbitrary constants. 
(ii) Translational invariance: 

c 

since d p H  (x - xO) = d p H  ( x )  as a consequence of homogeneity (uniformity). 
(iii) Scaling property: 

r r 

since d p H  ( x l a )  = a-D d p H ( x ) .  
By evaluating the integral of a generating function of the form 

g(x, s, q )  = exp(-sx2+xq) 

(2.13a) 

(2.13b) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

it has been shown by Wilson [9] that conditions (2.14)-(2.16) define the integral up 
to normalisation: 

(2.18) 
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Any function of the form g(x2, xq,,  . . . , xqn) can be generated by using differentiation 
with respect to s and q and summation of g(x,  s, 4 ) .  Notice that, for q = 0, (2.18) is 
identical to (2.13b), which was obtained directly without conditions (2.14)-(2.16). 

The generalised S I D '  function for sets with non-integer Hausdorff dimension can 
be defined via 

(2.19) 

3. Fourier-Stieltjes transformation and Feynman rules 

In this section, the Fourier-Stieltjes transform ?(k) of a continuous function f (x )  on 
an unbounded measurable metric space [ X ,  /.LH] will be considered. As a starting 
point, the n-dimensional linear vector space R", n 3 4, n E N is chosen. As has been 
already assumed in the preceding section, X c R "  is embedded in R". Then the 
Fourier-Stieltjes transformation is given by 

where the points x = (x , ,  . . . , x,) and k = ( k , ,  . . . , k , )  are represented by n-tuples of 
real numbers and 2 is the space of the k. 

Although in principle, X may be embedded in a vector space of higher dimension 
than four, for the moment a coordinate frame is chosen such that for all points x E X ,  
x, = 0 for i > 4; and X and 2 c R4. Then the function f (x )  in (3.2) is proportional to 
2 d ( x , )  for all i > 4, and the coordinates can be represented by x = (x ,  , . . . , x,) and 
k = (k , ,  . . . , k,). 

The main questions remaining to be answered are: (i) what is the functional form 
of the Fourier-Stieltjes transforms and (ii)  what is 2 and its Hausdorff measure 
pH (g)? The following conjectures will be stated below. 

( i )  D ( X )  = ~ ( 2 ) .  
( i i )  2 inherits all properties of X ,  in particular its closedness, unboundedness and 

regularity. 
(iii) The functional form of the Fourier-Stieltjes transform?( k)  depends on D ( X ) ;  

in particular when X = R", f( k )  is the ordinary Fourier transformf( k)  in n dimensions. 
Next, g( k )  will be derived for a class of functions of the form g(x2, xq,,  . . , , xqn) 

useful for evaluation of Feynman integrals in perturbative quantum field theory [9]. 
These functions can be produced with the help of the generating function g(x, s, q )  = 
exp(-sx2+xq) introduced in (2.17) 

g(k,s, q ) =  lX exp( - sx*+xq- ih )  dpH(X). (3.3) 
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A translation x + q/2s - x yields 

i ( k ,  s, q )  = exp(q2/4s -ikq/2s) exp(-sx2+ikx) d p H  (x) .  (3.4) 5, 
When ~ ( x )  is the orthogonal projection along the k axis and D >  1, the remaining 
integral can be split up [ l ]  into a (D-1)-dimensional subspace X \ r ( X )  and a 
one-dimensional integration along r ( X ) ,  since D ( r ( X ) )  = 1 (see also Falconer [7, 
p 75ffl for details): 

eXp( -SX2) dpH (X). (3.5) I X \ = ( X )  

X 

exp( -sp2 + ikp) dp L 
The first integral on the right-hand side is standard and the second integral is evaluated 
in (2.18). Hence the Fourier-Stieltjes transform i ( k ,  s, q )  is given by 

(3.5) DIZ -D/Z  i ( k ,  s, q )  = 7~ s exp[- ikq/~s + ( q 2  - k2)/4s]. 

For q = 0, g(x, s, 0) reduces to a Gaussian distribution and g ( k ,  s, 0) reduces to the 
results of Stillinger [ 13. 

Substitution of s by 1/4s yields the inverse transformation (3.2) of g ( k ,  s, 0) = 
( 7 ~ / s ) ~ ' ~  exp(-k2/4s) 

1 7T D12 
g(x, s, 0) = - (-) IR exp(ikx - k2/4s) d p H  ( k ) .  

v s  (3.7) 

If and only if V =  ( 2 7 ~ ) ~ ,  D ( X )  = D ( Z ) ,  and 2 is homogeneous (uniform) such that 
d p H ( k )  can be parametrised as in (2.10), then an identical calculation yields 

g(x, s, 0) = exp(-sx2). (3.8) 
The same argument holds for the generating function (2.17) for the calculation of 

Feynman diagrams. Therefore, for this specific functional class it has been shown that 
.? inherits all properties of X ,  in particular its dimension, homogeneity (uniformity) 
and measure. 

Finally, one obtains with g(x, s, q )  from (2.17) and g ( k ,  s, q )  from (3.6) 

(3.9a) 

In particular, when f ( k )  = 1, insertion into (3.6) with q = 0, s = 1 / 4 r n Z  + 0 yields 

lR exp(ikx) d p H ( k )  = ( 2 7 ~ ) ~  lim n D  exp(-m2x2)  = ( 2 ~ ) ~ S ' ~ ' ( x )  

as can be explicitly seen by evaluating 

(3.10) 
n - r x  

1 
8'D'(x)f (x)  dpH (x)  = - f(0) lim I,' exp(--t)tD12-' d t  = f (0)  

T(D/2)  n - r  

where (2.13b) has been used. 
Defining the quantum field theory in momentum space makes a derivation of 

covariant Feynman rules in D-dimensional momentum space straightforward. The 
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free n-point functions are not changed. The only difference to conventional Feynman 
rules is the substitution of the measure in the momentum integral 

( 2 ~ ) - ~ d ~ k +  ( 2 7 r - ”  d p H ( k ) .  (3.11) 

For symmetric kernels, a representation of p H  ( k )  in terms of spherical coordinates is 
useful: 

(3.12) 

When the starting point for a definition of field theory is X space, one would have to 
transform all expressions there to D-dimensional Fourier-Stieltjes transforms. In  
particular, the n-point Green functions would differ from the usual form. However, 
one can speculate that both approaches may yield identical results, since physical 
quantities should not depend on which one of the dual variables x and k is chosen 
as parametrisation. 

It should be noted that this approach is not entirely identical with dimensional 
regularisation. In  particular, the Minkowski metric tensor ge,, = diag(1, -1, -1, -1) 
in flat spacetime, as well as the unit tensor a,, = diag(1, 1, 1, l ) ,  obey 

g g ’ Jy=a ;=4  (3.13) 

since they are defined in kcR4. For the same reason, the y matrices as well as the 
E tensor are the same as for R4 and ys can be incorporated in field theory without 
conceptual difficulties. 

( 2 ~ ) - ”  d p H  ( k )  = (27r-O dCID-l k L, - dk. 

4. Renormalisation 

In  this section, an  account will be given of the lowest-order contributions to radiative 
corrections of quantum electrodynamics with a fractal support of the fields. These 
contributions are defined for Hausdorff dimensions arbitrarily close but smaller than 
four. However, in this context, I shall not discuss contributions from overlapping 
radiative corrections, nor questions concerning the convergence of the perturbation 
expansion. 

I shall start with the renormalisation of the bare two-point Green function So of 
the electron. The full propagator S can be formally written as the analytic continuation 
of a sum over self-energy diagrams S = ( y p - m , - I + + i E ) - ’ ,  where mo is the bare 
electron mass and is the proper self-energy. Substituting for Z its lowest-order 
contribution (A1.3), and  recalling (A1.4), yields 

(4.1 

where the physical mass m and the renormalisation constant Z2 are defined by 

m = m o - A  ( 4 . 2 ~  
Z, = 1 + E. (4.2b 

Close to the pole, the gamma function can be expanded as T(x) = x-’  - %+O(x)  for 
x<< 1, where %? ~ 0 . 5 7 7  22 is Euler’s constant. Insertion into (4.2) yields for 4 -  D<< 1 

m = Z 2 m ,  (4.3u) 
3 a  

2, = 1 +- - 
2~ 4- D‘  (4.36) 
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The bare photon propagator is renormalised by the formal summation of vacuum 
polarisation diagrams II, whose lowest-order contribution has been evaluated in (Al.2).  
Again, n(q') can be expanded around the mass shell q 2 = 0  (cf (A1.3)),  yielding 

rI(qZ)= P + q % ( q ' ) .  (4.4) 

A( q 2 )  = [ 1 - P - q 2 r (  9')I-I. 

The full photon propagator can be written as (qpq,, - g P , , q 2 ) A ,  with 

(4.5) 

The term in brackets contributes to the renormalisation of the bare charge e,,, which 
relates to the renormalised charge e by 

er  = e i [ l -  P - q 2 x ( q 2 ) ] - ' .  (4.6) 

For zero momentum transfer 9'+ 0 and for 4 - D << 1 ,  ( Z 3 ) - 2  = 1 - P reduces to 

2 a  
~ 4 - D  ( Z J 2 =  1 -n(q'=O) = 1 +- - 

yielding 

e; 2 
a" = - = a ( 1 + - L) . 

4 7  ~ 4 - D  

(4.7) 

(4.8) 

All other contributions to the renormalisation of the electric charge cancel, as can be 
explicitly seen by a summation of the lowest-order radiative corrections to the charge 

(4.9) 

As can be shown from (A1.4) and (A1.7) ,  or derived from Ward identities, L equals 
B and only the 2, factor remains for the renormalisation of the electric charge. 

I shall next consider corrections to the magnetic moment due to vertex corrections 
as (A1.6). In particular, the term proportional to a,,,q" remains finite for Hausdorff 
dimensions smaller than six. It gives rise to low-order contributions to the anomalous 
magnetic moment as well as the I Z 0 splitting of energy levels in atoms (Lamb shift). 

Utilising the expansion of the gamma function into a polynomial r( 1 + z )  = ET='=, c , z ' ;  
with coefficients co = 1, c,+] = ( n  + 1)- '  Z:=, (-1) '+'sJ+, c,-, and s, = %?, s, = l(  n )  for 
n 3 2, Re z > 0, where l(  n )  is the Riemann zeta function (e.g. s2 = 7r2/6) ,  one obtains 
for small 4-  D 

a e ( D = 4 ) - a , ( D )  = a[(4")- ' -22-D7r'-"'2r(3-  D/2) ]  

eo( 1 - B + L -  P ) .  

a 
- ( %? + log( 7r))(4 - D). 
87r 

(4.10) 

Here, a, is the form factor of the electromagnetic current proportional to uPyq". 
Presently the difference between experimental [ 101 and theoretical [ 113 values of a, 
suggests D a 4 - ( 5 . 3 * 2 . 7 ) x  lo-' at the scale of the Compton wavelength of the 
electron. 

Similarly, corrections to the I f 0  levels for a hydrogen-like atom [ l l ]  can be 
derived: for SE = A E ( D = 4 ) - A E ( D ) ,  
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This correction is very small and yields 

CY3 

24rr 
a E ( 2 p : ) z -  Ry,[%+log(~)] (4-  D)C0.03*0.01 MHz (4.12) 

and the lower bound D 2 4 - (1 .01 0.3) x 
The degree of divergence DZV of any given diagram in terms of the number of 

external photon lines B and external electron lines F can be calculated by power 
counting: let b and f be the number of internal photon end electron lines, and V the 
number of vertices. Then the number of loop integrals of dimension D is given by 

L = b + f - V + l  (4.13) 

function. The degree of divergence D I V  can be where 1 comes from the overall 
defined as 

DIV= DL-2b-$ (4.14) 

The following topological relations hold: 2 V = F + 2f and V = B + 2b. Substitution of 
b and f in (4.14) yields a cancellation of V and 

DI v = 4 - (4  - D ) L - B - ; F. (4.15) 

The degree of divergence of some radiative corrections is given by 

DZV(Z) = 1 - (4-  D)L 

Dzv(r) = - (4-  D)L 

DZV(II) = 2 - (4 - D)L .  

(4.16a) 

(4.16 b )  

( 4 . 1 6 ~ )  

Due to gauge invariance and  symmetry considerations, the effective degree of diver- 
gence for all above graphs reduces to - (4-  D)L ,  indicating that for 0 < D s 4 divergen- 
cies may become weaker or  disappear. 

5. Concluding remarks 

Technically, the regularisation method is almost identical to dimensional regularisation 
[12]. Conceptually, these notions are very different. Spacetime is embedded in a 
manifold of higher and integer dimension (presumably 4). The non-integer Hausdorff 
dimension did not emerge as an  analytic continuation of a dimensional parameter to 
the complex plane, but rather had to be adopted to cope with an irregular spacetime 
structure: the assumption of fractal spacetime enforces the use of a measure with 
non-integer dimension and  makes the application of the Lebesgue-Stieltjes integral 
inevitable. Advantages of this approach are that ys  or the E tensor need not be 
generalised to non-integer dimensions, and preservation of gauge invariance and 
covariance. The scheme resembles supersymmetric dimensional regularisation via 
dimensional reduction [13], and can be briefly formulated as follows. 

(i) First perform the algebra exactly as in D = 4 ,  with four-component Dirac 
metrices, tensors and vectors. 

i i i )  Then d o  the momentum integrals as in ordinary dimensional regularisation. 
(iii) Apply the Fourier-Stieltjes transformation to obtain results in configuration 

space (instead of momentum space). 
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It is not evident that spacetime is a Hausdorff space, where every pair of distinct 
points have disjoint neighbourhoods [ 141. In fact, the uncertainty relation of quantum 
theory suggests that there exists a maximal resolution S,,, associated to any experiment, 
beyond which the operational concept of distance and  point separation becomes 
unattainable [3]. Therefore, two points separated by a distance S,,, have no 
(operationally realisable) disjoint neighbourhoods. Hence, in a strict (positivistic) 
sense, spacetime will never be proven to be Hausdorff. 

It is in no way clear yet whether S,,, could, at least in principle, be reduced to 
arbitrary small numbers, thereby smoothly defining topologies and their associated 
open sets with ever smaller diameters. To encounter this question, throughout this 
paper, an extrinsic viewpoint has been adopted: a fractal space X embedded in R“ 
has been considered. Alternatively, it would have been possible to adopt an  intrinsic 
viewpoint by ‘glueing’ the ‘neighbouring’ segments of X together. This could be 
achieved with a sophisticated topology. Creatures living on X would perceive such a 
structure in the following way: they would find themselves living in R“. Its topological 
structure would then correspond to the graininess of X .  Although both extrinsic and 
intrinsic viewpoints yield equivalent results, the latter would be favourable for concep- 
tual and pragmatic reasons. Its development remains a challenge to future research. 
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Appendix 1. Lowest-order radiative corrections of QED 

In the following the electron self-energy X, the vacuum polarisation II and the vertex 
correction A are enumerated as a function of the Hausdorff dimension D (see also 
[12, 131). 

The lowest-order contribution to the vacuum polarisation 

1 1 
n,,(q) = -e2 Tr - (;:FD(” yk-m+iE  ’”yk-yq-m+ia  

can be written as 

nrY(q)  = (4 ,4” - q 2 g p v ) n ( q Z )  
(A1.2) 

n(q2) = a 2 4 - D ~ 1 - D ’ 2 r ( 2 -  D/2)mD-4F(2-  D/2 ,2 ;  2; -q2/4m2) 

where a is the fine structure constant and F ( a ,  b ;  c; z )  is the hypergeometric series 

( a  + i ) (b  + i)  Z n - l  

F ( a ,  b;  c ;  z )  = 1 +- -+ -+. . .+- n +. . . .  ab z a ( a + l ) b ( b + l )  z 2  

c l !  c ( c + l )  2! ( n - I ) !  ,=o c + i  
The lowest-order contribution to the electron self-energy 

dDk -1 1 
Z ( p ) = - i e 2  l ( 2 ~ ) ~  - k2- l ‘+ iE  ?’& y p - y k - m + i s  YP (A1.3) 
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can, after some calculation, be written as 

X ( p ) = A  - ( Y P -  m ) B + ( ~ p  - m ) 2 u ( ~ )  
where A, B and U are given by 

m D - 3 r ( 2  - 0 1 2 )  2 - D  l - D I 2  A z - 3 ~ ~ 2  7~ 

B = -Am-‘ = 3 ~ ~ 2 ~ - ~ 7 ~ ’ - ~ m ~ - ~ r ( 2 - D / 2 )  

U( p )  = - c Y ~ ’ - ~ ~ T ’ - ~ / ’ I ‘ ( ~ -  D / 2 ) ( p 2 +  m2)2 

F ( 2 - 0 1 2 ,  1 ;  0 1 2 ;  - p 2 / m 2 )  

+ F ( 2 - 0 / 2 , 1 ;  D / 2 + 1 ;  - p 2 / m 2 )  

(A1.4) 

( A 1 . 5 ~ )  

( A l . 5  b )  

( A 1 . 5 ~ )  

The lowest-order contribution to the vertex term A, with the photon momentum q and  
two outgoing electron momenta p and p’, is given by 

1 1 
x Yu y p -  y k - m + i &  ” y p ’ - y k - m + i &  Y “  ( A 1 . 6 )  

can for q = p ’ - p ,  be written as 

io q” 
2 m  

h,(q) = [ ~ + g ( q ) ] ~ ,  + a 2 3 - D 7 T 1 - D ! Z r ( 3  - 0 1 2 )  ( A 1 . 7 )  

with L = B defined in ( A 1 . 5 b ) .  g ( q )  is a function proportional to r ( 3  - D / 2 )  vanishing 
for q 2 +  0, which will not be enumerated here. The term proportional to o,,,q” yields 
contributions to the anomalous magnetic moment and to the 1 # 0 Lamb shift. 

Appendix 2. Measure theoretic glossary 

This glossary will be of use as a quick reference to measure theoretic concepts (see 
also [ 1 5 ] ) .  A more comprehensive treatment can be found in [ 6 ] .  

A measure p is a real-valued non-negative function defined on a set of sets E, c X ,  
such that 

P ( E ,  12% 0 ( A 2 . l ~ )  

p ( 0 )  = 0. (A2.1 b )  
A measure is called countable subadditive if, for any sequence { E , }  of sets in X 

whose union U, E, c X 

P (U E l )  c P ( E ,  1. ( A 2 . 2 )  

A non-empty set H of sets E, E H is hereditary if, whenever F c E, ,  then F E  H. 
An outer measure is a real-valued non-negative monotone and countably subadditive 

set function, defined on a hereditary ring H. 
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A metric space [ M ,  d ]  is a set M and a real-valued function d, called distance, on 

d ( x ,  Y )  3 0 ( A 2 . 3 ~ )  

d ( x ,  y )  = O ~ X  = y  (A2 .36)  

d ( x ,  Y )  = d ( y ,  x) ( A 2 . 3 ~ )  

d ( x , y ) s d ( X ,  z ) + d ( z , y ) .  (A2.3d ) 

M x M ,  such that for all x ,  y ,  z E M :  

I f  E and F are non-empty subsets of M ,  the distance between them is defined by 

d (  E, F )  = inf{d(x, y ) :  x E E, y E F } .  (A2 .4)  

A sphere with centre xo and radius r is a subset E c [ M ,  d ]  such that 

E = {x: d ( x O ,  x )  < r } .  (A2 .5 )  

We are now in a position to define the Hausdorff measure. If X is a metric space, 
D is a positive real number and  E is a subset of X ,  then the D-dimensional Hausdorff 
(outer) measure pH ( E ,  D )  is defined to be the number 

(A2.6)  p H  ( E ,  D )  = sup inf 1 w (  E, ,  D ) [ d  ( E , ) I D :  E c U E, ,  d ( E , )  < & V i  

where w ( E , ,  D )  is a geometrical factor depending on the type of covering and d ( E )  
denotes the diameter of E, defined by d ( E )  = sup{d(x, y ) :  x ,  Y E  E } .  Since w ( E , ,  D )  
[ d  ( E , ) I D  is positive, the following definition, employing disjoint sets for coverings, is 
identical to (A2.6) :  

pH ( E ,  D )  = lim [ 1 w ( E , ,  D ) [  d ( E , ) ] ” :  E = U E,,  E, n E, = 0, d ( E , )  &Vi,  j . (A2 .7 )  

F > O  { !  I I 

E + O  , 
I I 

The Hausdorffdimension D is defined by 

d = s u p { d  E R :  d>O,ILH(E,d)=COj=inf{dE[W: d > O , p H ( E , d ) = O } .  (A2.8) 

D is invariant under variation of equivalent distances d ,  and d 2 ,  such that two positive, 
real numbers a and b exist with a d , ( E ) s  d , ( E ) s  b d , ( E )  for all subsets E of X .  
Moreover, invariance under very general coordinate transformations (such as the 
Lorentz transformation) has been proven in [ 161. 

If E is a subset of X (which need not necessarily be a measurable set), the 
characteristic function x E  is defined for all x E X by the relations 

(A2.9) 

For instance, E = {x: ,yE ( x )  = I}. 
A U ring S is a non-empty set of sets such that 

if E E S  and F E S  then F\E E S ( A 2 .  l o a )  

if E,  E S then U E, E S 
I 

(A2.1 Ob) 

i.e. a U ring is closed under the formation of countable unions and differences. 

property U S = X .  
A measurable space [ X ,  S, 11.1 is a set X and a U ring S of subsets of X with the 
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A function 1; defined in a measurable space [ X ,  S, p ] ,  is called a simple function 
if there is a finite disjoint set of sets { E , ,  . . . , E,} of measurable sets and  a finite set 
{ P , ,  . . . , P , }  of real numbers such that 

i f x E  E, 

i f x a U  E,. 
f ( x )  = 

J 

To represent this function, one can also write 
n 

f ( x )  = P i X E ,  ( x )  
1 = 1  

(A2.11) 

(A2.12) 

where xE (x )  is the characteristic function of E. The product of two simple functions, 
and  any finite linear combination of simple functions, are again simple functions. 

A simple function f on a measurable space is integrable if p (  E,) < 00 for every 
index i for which P ,  # 0. The Lebesgue-Stieltjes integral o f f  is defined by 

(A2.13) 

If E is a measurable set, then the Lebesgue-Stieltjes integral o f f  over E is defined by 
r r 

(A2.14) 

The simplest example for f is the characteristic function f = ,yE of a measurable set F 

X E  d p = l E d p = p ( E ) .  (A2.15) 

I f f  and g are integrable functions and a and  b are real numbers, then 

( a f + b g ) d p = a  

i f f z g  

5 

i f a s f c b  then a p ( E ) L I E f d p s b p ( E ) .  

(A2.16 a )  

(A2.16b) 

( A 2 . 1 6 ~ )  

(A2.16d) 

Next, negative-valued measures are allowed and a signed measure v is a real-valued 
countable additive set function on the set of all measurable sets of a measurable space 
[X, S, v ]  such that 40) = 0, and such that v assumes at most one of the values +CO 

and --CO. 

In the following, u(x) will be calledfinite if Iv(x)l <-CO. 

A set function g is called continuous if, for every increasing or decreasing sequence 
{ E , }  of sets, for which limn E, = E, we have limn g(E,) = g ( E ) .  We proceed by 
establishing the Radon-Nikodym theorem: if [ X ,  S, p ]  is a totally a-finite measure 
space and  if a cr-finite signed measure v on S is absolutely continuous with respect 
to p, then there exists a finite-valued measurable function on X such that 

(A2.17) 
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for every measurable set E. The function 

f = dv /dp  (A2.18) 

is called the Radon-Nikodym derivative. It can be proven that if A and p are totally 
a-finite measures such that p << A and if v is a totally c+-finite signed measure function 
such that U<< p, then 

dv/dA = (dv/dp)(dp/dA).  (A2.19) 

Note added in proof: A recent observation [17] concerns the induction of an intrinsic metric 
d ' ( x ,  y )  d ( x ,  y )  for any two points x, y E X ,  where X c R" is a fractal embedded in R" and d ( x ,  y )  is 
the metric of [R", d ] ,  such as the one defined in (2.2). Hence [X, d'] is a metric space, where d'  defines a 
topology on X (see also (A2.3)). A property is called intrinsic if  it can be formulated in terms of [ X ,  d ' ] .  

Furthermore, it has been pointed out [ 181 that a regular fractal of HausdorfI dimension D = N E  N is 
intrinsically perceived as RN, independent of the dimension n 3 N of the embedding space. This result can 
be generalised to non-integer dimensions and presents an alternative to dimensional reduction via 'compac- 
tifying' extra dimensions. 
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