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Dimensional shadowing is introduced as a formal method to reduce extra dimensions in configura-
tion space by considering a fractal subset. The Hausdorff dimension of the fractal is then perceived

as the physical dimension of configuration space.

1. Unified field theories suggest a N—dimensional con-
figuration space with N = N—4 > 0 extra dimensions not
perceived in nature. The common heuristic reasons for
this proposition are: (i) the “volume” [Hausdorfl measure]
does not scale like puy (6, RY) = &V uy(1,RY), where
0 is some length scale and 1 stands for its unity. In-
stead, experience tells us that increasing (or decreasing)
the spacial size of an object by §, changes its volume by
approximately 82, corresponding to a spacial [Hausdorff,
if not denoted otherwise] dimension Dy = 3; (ii) the num-
ber of spacial degrees of freedom D is not N but three,
corresponding to a threedimensional vector space; (iii)
longrange static potentials around a [conserved] point

charge, behaving as r2=D" for DP > 2, when 7 is the dis-
tance from the charge, suggest a dimensional value D¥
of approximately three. There is good evidence, that all
these parameters coincide and Dy ~ D ~ DP ~ 3.

According to these observations, physical configuration
space is modelled as a product space R* = R? xRy, where
R; stands for the time “continuum”. The dimension D of
its Cartesian product is [1] D > Ds + D; ~ 4. Hence,
some kind of “dimensional reduction” has to effectively
decrease the number of operational attainable dimen-
sions. These may be defined via the Hausdorff dimension,
or the maximal number of linear independent vectors of a
vector space [this assumes the existence of a vector space],
via the distance dependence of potentials, or otherwise.
However, it is in no way trivial, that all these definitions
coincide. The common notion of dimensional reduction
in the Kaluza-Klein approach assumes compactification:
Configuration space is assumed as R* x SV where SV is
a compact N-dimensional manifold. These extra dimen-
sions are assumed to be “curled up” to very small sizes,
such that these additional degrees of freedom could be
observed only in the high energy regime.

2. In this brief communication a very different ap-
proach to dimensional reduction is pursued: configura-
tion space X is assumed to be a fractal embedded in a
higherdimensional space RY with arbitrary integer di-
mension D(RY) = N > 4. It is then assumed, that
due to some [yet unknown| mechanism, the dimension of
the configuration space X is approximately equal to four
D(X)~ 4.
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Assumed is a parametrization of RV as usual; i.e.
points are written in N—component vector notation @ =
(ai,...,an). The standard Euclidean metric d" (z,y) =
[N (yi — 2:)2]/? can be applied. When the compo-
nents of N orthogonal basis vectors &®, i = 1,..., N

are given by eéi) = §;j, any vector may be written as

=N, aW&® with a) = a;. In avector space [which
is closed under addition of arbitrary vectors and multipli-
cation of scalars|, a dimension D* can be defined as the
maximal number of linear independent vectors g(i), for
which Z?:Ll a@p(® = (i if and only if all scalars () = 0.
Note however, that D* and D need not coincide, as can
be inferred from rational scalars, where DY = N, but
D =0 [since QY is a countable point set, D(QY) = 0.

X has been modelled to reproduce the observed scaling
property of the volume pg (8, X) ~ d*ug(1,X). Con-
cepts of linear independent vectors cannot be directly
applied, since X is no vector space [with trivial excep-
tions such as X = R%]. However, it may be conjectured,
that the restrictions on X reduce the maximal number
of linear independent vectors from N to n < N, pre-
sumably four. It has indeed be shown':®, that associ-
ated to every integerdimensional regular [rectifiable] n—
dimensional fractal embedded in RY, is a locally defined
tangential n—dimensional vectorsubspace of RY.

3. When D(X) = n is an integer, it can be shown
[2] that the standard calculus, such as integration and
Fourier analysis on n—dimensional manifolds, can be ap-
plied to X. This holds true even for generalizations to
noninteger dimensions. Quantum mechanical matrix el-
ements would be identical to standard calculations in R*
Minkowski space—time.

4. The question is, do [Lipschitzl maps exist which
project X onto a lowerdimensional manifold, thereby
preserving its measure theoretic and its topologic struc-
ture [is X rectifiable] ? It can be shown!, that an
orthogonal projection 7(X) onto R™, yields for a very
general class of fractals [Souslin sets], D(m(X)) =
min(D(X),n). However, orthogonal projections [such
as w((ay,...,a4,05,...,a5)) = (a1,...,aq)] are not pre-
serving the topological structure of X. In the low energy
regime, orthogonal projection is equivalent to standard
compactification, where effectively R* x SN — R* is as-
sumed.

The following general result has been stated quite
recently!, although specific lowdimensional examples
[N =2, n =1 etc.] were proven much earlier [3, see



FIG. 1: A Lipschitz function ¢ maps the 1-dimensional ball
B! onto B} C X with diameter § < eLip(y).

in particular 3. 2. 19 and 3. 3. 22]: Let X be a n-
dimensional subset of RY, where n is an integer. The
following statements are equivalent:

(i) X is  regular, that is  its  density
lim, o7 "pug (BN (x)) exists almost everywhere.
BN(@)={y:ye X, d¥(xr,y) <r}isaballin X
with radius r and center x;

(il) X is countable n rectifiable, i.e. it can be de-
composed into X = J;=; ¢i(Y;) UG, where Lip-
schitz functions ¢; map bounded subsets Y; of R™
onto X and py(G) = 0 [i.e. this decomposition
into Lipschitz functions holds in almost all of X].
A Lipschitz function ¢ requires d™ (¢(a), (b)) <
Lip(¢)d™(a,b). Here, Lip(y) is some Lipschitz con-
stant, a,b € R™ and p(a),¢(b) € X. Hence,
when Y; = B”(a) is a neighborhood of a € Y,
0i(Y:) = BY(pi(a)) C X is a neighborhood of
wi(a) in X with § < eLip(¢p;) [see Fig. 1]. More
generally, when {Y;} is a filter in R™, {p;(Y;)} is a
filter in X

(iii) X has a n—dimensional tangent vectorsubspace of
RY almost everywhere3.

Hence, (i)—(iii) suggest, that every regular n—
integerdimensional fractal subset of RY is locally per-
ceived as a n—dimensional vectorspace R”.

5. By increasing the dimension of X [heuristically
speaking, by “filling up more and more” of RY], the
N = N — 4 dimensions of the theory open up. They cor-
respond to additional degrees of freedom in configuration
space. Dimensional saturation occurs at D(X) = N. A
similar argument holds true for decreasing elements of X.
In particular, when X becomes countable [it still could
be dense|, D(X) = 0.

6. A lowerdimensional configuration space has been
“emulated” by a fractal subset of a higherdimensional
manifold, yielding a sort of “shadowing’ of RN onto
a smallerdimensional set which is locally perceived as
R" c RY. Dimensional shadowing may present an al-
ternative way of dimensional reduction. Like reduction
by “curling up” extra “compactified” dimensions, it is a
formal procedure so far, which would have to be mo-
tivated by physical reasoning in order to transcend its
purely technical virtue.
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