
Dimensional reduction via dimensional shadowing

Karl Svozil∗
Institut für Theoretische Physik, University of Technology Vienna,

Wiedner Hauptstraÿe 8-10/136, A-1040 Vienna, Austria

Dimensional shadowing is introduced as a formal method to reduce extra dimensions in con�gura-
tion space by considering a fractal subset. The Hausdor� dimension of the fractal is then perceived
as the physical dimension of con�guration space.

1. Uni�ed �eld theories suggest a N�dimensional con-
�guration space with N̄ = N−4 > 0 extra dimensions not
perceived in nature. The common heuristic reasons for
this proposition are: (i) the �volume� [Hausdor� measure]
does not scale like µH(δ,RN ) = δN µH(1,RN ), where
δ is some length scale and 1 stands for its unity. In-
stead, experience tells us that increasing (or decreasing)
the spacial size of an object by δ, changes its volume by
approximately δ3, corresponding to a spacial [Hausdor�,
if not denoted otherwise] dimensionDs = 3; (ii) the num-
ber of spacial degrees of freedom DL is not N but three,
corresponding to a threedimensional vector space; (iii)
longrange static potentials around a [conserved] point
charge, behaving as r2−DP for DP > 2, when r is the dis-
tance from the charge, suggest a dimensional value DP

of approximately three. There is good evidence, that all
these parameters coincide and Ds ≈ DL ≈ DP ≈ 3.
According to these observations, physical con�guration

space is modelled as a product space R4 = R3
s×Rt, where

Rt stands for the time �continuum�. The dimension D of
its Cartesian product is [1] D ≥ Ds + Dt ≈ 4. Hence,
some kind of �dimensional reduction� has to e�ectively
decrease the number of operational attainable dimen-
sions. These may be de�ned via the Hausdor� dimension,
or the maximal number of linear independent vectors of a
vector space [this assumes the existence of a vector space],
via the distance dependence of potentials, or otherwise.
However, it is in no way trivial, that all these de�nitions
coincide. The common notion of dimensional reduction
in the Kaluza-Klein approach assumes compacti�cation:
Con�guration space is assumed as R4×SN̄ , where SN̄ is
a compact N̄�dimensional manifold. These extra dimen-
sions are assumed to be �curled up� to very small sizes,
such that these additional degrees of freedom could be
observed only in the high energy regime.
2. In this brief communication a very di�erent ap-

proach to dimensional reduction is pursued: con�gura-
tion space X is assumed to be a fractal embedded in a
higherdimensional space RN with arbitrary integer di-
mension D(RN ) = N ≥ 4. It is then assumed, that
due to some [yet unknown] mechanism, the dimension of
the con�guration space X is approximately equal to four
D(X) ≈ 4.
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Assumed is a parametrization of RN as usual; i.e.
points are written in N�component vector notation ~a =
(a1, . . . , aN ). The standard Euclidean metric dN (x, y) =
[
∑N
i=1(yi − xi)2]1/2 can be applied. When the compo-

nents of N orthogonal basis vectors ~e (i), i = 1, . . . , N
are given by e

(i)
j = δij , any vector may be written as

~a =
∑N
i=1 a

(i)~e (i) with a(i) = ai. In a vector space [which
is closed under addition of arbitrary vectors and multipli-
cation of scalars], a dimension DL can be de�ned as the
maximal number of linear independent vectors ~b(i), for
which

∑DL

i=1 α
(i)~b(i) = ~0 if and only if all scalars α(i) = 0.

Note however, that DL and D need not coincide, as can
be inferred from rational scalars, where DL = N , but
D = 0 [since QN is a countable point set, D(QN ) = 0].
X has been modelled to reproduce the observed scaling

property of the volume µH(δ,X) ≈ δ4µH(1, X). Con-
cepts of linear independent vectors cannot be directly
applied, since X is no vector space [with trivial excep-
tions such as X = R4]. However, it may be conjectured,
that the restrictions on X reduce the maximal number
of linear independent vectors from N to n < N , pre-
sumably four. It has indeed be shown1,3, that associ-
ated to every integerdimensional regular [recti�able] n�
dimensional fractal embedded in RN , is a locally de�ned
tangential n�dimensional vectorsubspace of RN .

3. When D(X) = n is an integer, it can be shown
[2] that the standard calculus, such as integration and
Fourier analysis on n�dimensional manifolds, can be ap-
plied to X. This holds true even for generalizations to
noninteger dimensions. Quantum mechanical matrix el-
ements would be identical to standard calculations in R4

Minkowski space�time.
4. The question is, do [Lipschitz] maps exist which

project X onto a lowerdimensional manifold, thereby
preserving its measure theoretic and its topologic struc-
ture [is X recti�able] ? It can be shown1, that an
orthogonal projection π(X) onto Rn, yields for a very
general class of fractals [Souslin sets], D(π(X)) =
min(D(X), n). However, orthogonal projections [such
as π((a1, . . . , a4, a5, . . . , aN )) = (a1, . . . , a4)] are not pre-
serving the topological structure of X. In the low energy
regime, orthogonal projection is equivalent to standard
compacti�cation, where e�ectively R4 × SN̄ → R4 is as-
sumed.

The following general result has been stated quite
recently1, although speci�c lowdimensional examples
[N = 2, n = 1 etc.] were proven much earlier [3, see
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FIG. 1: A Lipschitz function ϕ maps the 1�dimensional ball
B1
ε onto B2

δ ⊂ X with diameter δ ≤ εLip(ϕ).

in particular 3. 2. 19 and 3. 3. 22]: Let X be a n�
dimensional subset of RN , where n is an integer. The
following statements are equivalent:

(i) X is regular, that is its density
limr→0 r

−nµH(BNr (x)) exists almost everywhere.
BNr (x) = {y : y ∈ X, dN (x, y) ≤ r} is a ball in X
with radius r and center x;

(ii) X is countable n recti�able, i.e. it can be de-
composed into X =

⋃∞
i=1 ϕi(Yi) ∪ G, where Lip-

schitz functions ϕi map bounded subsets Yi of Rn
onto X and µH(G) = 0 [i.e. this decomposition
into Lipschitz functions holds in almost all of X].
A Lipschitz function ϕ requires dN (ϕ(a), ϕ(b)) ≤
Lip(ϕ)dn(a, b). Here, Lip(ϕ) is some Lipschitz con-
stant, a, b ∈ Rn, and ϕ(a), ϕ(b) ∈ X. Hence,
when Yi = Bnε (a) is a neighborhood of a ∈ Yi,
ϕi(Yi) = BNδ (ϕi(a)) ⊂ X is a neighborhood of
ϕi(a) in X with δ ≤ εLip(ϕi) [see Fig. 1]. More
generally, when {Yi} is a �lter in Rn, {ϕi(Yi)} is a
�lter in X;

(iii) X has a n�dimensional tangent vectorsubspace of
RN almost everywhere3.

Hence, (i)�(iii) suggest, that every regular n�
integerdimensional fractal subset of RN is locally per-
ceived as a n�dimensional vectorspace Rn.

5. By increasing the dimension of X [heuristically
speaking, by ��lling up more and more� of RN ], the
N̄ = N − 4 dimensions of the theory open up. They cor-
respond to additional degrees of freedom in con�guration
space. Dimensional saturation occurs at D(X) = N . A
similar argument holds true for decreasing elements of X.
In particular, when X becomes countable [it still could
be dense], D(X) = 0.

6. A lowerdimensional con�guration space has been
�emulated� by a fractal subset of a higherdimensional
manifold, yielding a sort of �shadowing� of RN onto
a smallerdimensional set which is locally perceived as
Rn ⊂ RN . Dimensional shadowing may present an al-
ternative way of dimensional reduction. Like reduction
by �curling up� extra �compacti�ed� dimensions, it is a
formal procedure so far, which would have to be mo-
tivated by physical reasoning in order to transcend its
purely technical virtue.
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