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QED between conducting plates: Corrections to radiative mass and g —2
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The effects of parallel conducting plates on mass and the anomalous magnetic moment of the
electron are studied. The resulting renormalized corrections to standard values are finite, and gauge
and cutoff independent. The relation of our result to recent progress in precision experiments on the
anomalous magnetic moment is briefly discussed.

I. INTRODUCTION " gle conducting plate, the present investigation concen-

trates on the relativistic treatment of a free electron be-

The presence of a conductor imposes boundary condi- tween two parallel conductors. Our calculation is based
tions on the quantized electromagnetic field. For a pair of ~ on boundary conditions derived from the assumption of
conducting plates the modification of the zero-point ener- ideal conducting plates. In this way, the findings of BBL
gy of the vacuum leads to an attractive force between the 3 and ours cannot be directly compared, since the physical

plates, the well-known Casimir effect.™? assumptions and the experiments addressed are different.
The investigation of effects concerning perturbatlve In Sec. II we deduce boundary conditions on the elec-
corrections for electron fields near a conductor, however,  tromagnetic potential and find consistent Feynman rules

has been conducted to a small degree. Previous research _ within a specific gauge-fixing procedure. The electromag-
employs nonrelativistic perturbation theory: Power® in__ netic field modes are discretized in the direction perpen-
1966 and subsequently Barton* tried to calculate the  dicular to the plates. Consequently all matrix elements in-
correction to the radiative mass of a point source between  cluding internal photon lines are modified. Assuming
conductors. The calculation yielded ultraviolet-divergent  plane-wave electron fields moving parallel to the plates,
terms, making a momentum cutoff necessary. Later work _ the resulting effects on the anomalous magnetic moment
by Barton and Grotch® and recently by Fischbach and ~ and the electron mass are computed in Sec. III. Heuristi-
Nakagawa® concerns the anomalous magnetic moment ¢ of cally, the electron becomes lighter, since there is less field
the electron. These authors and subsequently Boulware,  surrounding the source. Whereass UV divergencies
Brown, and Lee (BBL) (Ref. 7) have pointed out that the remain, the difference between the renormalized masses
formalism employed is not gauge invariant. In their treat- with and without plates turns out to be finite, and gauge
ment, BBL considered an electron closely orbiting in a _ and cutoff independent. This situation very much resem-

strong magnet1c field near a smgle conducting plate. ] bles Casimir’s original results, where the difference be-
One major result of this paper is the rigorous treatment ~  tween the diverging zero-point energies is finite.
of boundary effects on the electromagnetic field between Our findings for the radiative mass difference Am and

conducting plates, and, more generally, on ideal conductor  the corrections to the anomalous magnetic moment
surfaces. This is applied to one-loop corrections of the  A(g —2) are (a is the plate distance)

electron mass and anomalous magnetic moment in the Am
framework of relativistic quantum electrodynamics.
Thereby, the electron will be assumed to move essentially _
free. Its mass and anomalous magnetic moment will be oy ® _

defined in a weak external field; hence, experiments ad-. Alg—2)= am [In{4am)—2] . (12)
dressed here only deal with small aberrations of an elec-
tron trajectory in a weak -magnetlc fle}d. The elecgon currently under use, A(g —2)~ —6. 6 10~ 12, which is of
moves between two conducting plates. ,Smf:e 1t 18 as.sumedk the same magnitude as the hadronic corrections to (g —2)
free, no strong forces (such as a magnetic field binding the (Ref. 9). The introduction of a physical cutoff modeling

electron to a tlght orbit) can be applied. We empha51ze . . . ..
the finite pl f 1
that this situation is quite different from the one in recent ¢ finite plasma frequency is shown to yield negligible

= ——2 [In(4am)+1], (1.1)
m 2am .

Taking a =1 cm, which is the size of Penning traps

prec131on experiments by Dehmelt, Schwinberg, and Van corrections.
Dyck, in which the electron is trapped by a strong mag-
netic field”® and bound to a cyclotron radius much small- ~ II. PERTURBATION THEORY BETWEEN
er than the plate distance. ) - CONDUCTING PLATES
This configuration is envisaged by BBL, who assume a
strong magnetic field with electron bound states.. In In what follows, techniques are developed to evaluate

BBL’s treatment, these nonfree electron states are an _ QED matrix elements between parallel conducting plates.
essential difference to our approach. Whereas their non-  Starting from a discussion of boundary conditions for the
relativistic approach treats an electron located near a sin-  vector potential it is shown that the electromagnetic field
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modes become discretized in the direction orthogonal to
the plates. This affects momentum integration, where an
integral is substituted by a summation. In contrast with
previous work>® which frequently argues with scalar
fields or simply assumes Dirichlet boundary conditions
for the potential, we precisely define when this is justified.

A. Boundary conditions for gauge potentials

To compute perturbative corrections in QED between
conducting plates, a photon propagator satisfying the
correct boundary conditions has to be applied. As is well
known, the electric field strength parallel to and the mag-
netic field strength orthogonal to the surface have to van-
ish at the surface of an ideal conductor. Covariantly for-
mulated this yields the constraint

Fun e8| g=0. (2.1

The subscript S means “at the surface of the conductor,”
and ny=0, n orthogonal to the surface in the rest frame
of the conductor. Usually calculations in QED are done
in terms of the gauge potentials A p rather than in terms
of the field strength F,,=0,4,—d,4,. The question
arises, what constraints should be imposed on 4.

Let us assume for the moment that the surf;ce is the
plane x3;=0. Then (2.1) is equivalent to the integrability
conditions

(3;4;—3;4;) | x,—0=0 for ;,j€[0,1,2}, (2.2)
implying (for a simply connected surface)

Ay(x0,x1,%2,0)=8;Alxgyx1,%y), i=0,1,2.  (2.3)

Choosing the axial gauge (Ref. 10) 4;=0 and then per-
forming the gauge transformation 4,—A4, =4 u—0uA
with the x3-independent A from (2.3), we find 4,, | s=0.
Thus in general 4, has to be pure gauge

A, s=8,A (2.4)

at the surface of a conductor, and there is a class of
gauges with the gauge potential 4, vanishing at the sur-
face. Since there is no metric involved, the above reason-
ing applies to the case of a curved surface as well, if an
axial gauge A4,n*=0 is used with a fixed n, nowhere

" tangential to the surface. R
Considering the case of an infinite conducting plate

i

A= [ d% D (x =y W4T W]
= [ d*%[D,,(x —p) =D (x —F)o()]j*(p)

. ) o o
= [ty [ 1" D, —e ¥ B, Ela) o)
T

‘ Hence, Eq. (2.10) is equivalent to .
- Dyfk)=D, (K)o(v) . (2.12)

The disturbing sign factor o(v) (Ref. 12) vanishes only in

. implemented using mirror charges.!!

with coordinates x;=0, boundary conditions are easily
To each field
strength F,,, generated by the current Ju we add the field
strength F, generated by the mirror current .7,u.' Charges
of opposite signs move symmetric to the mirror:

FHx)=—jME)olu),
X-y=x”0'(ﬂ), (2.5)

1, p+3,

a-(‘u)= '—'1, ‘LL=3-

The reflection of any vector or tensor includes a sign
change for each index 3. Thus we find

(2.6)
and the total field F,,(x)=F,(x)+4F,,(x) satisfies (2.1):

F,,|s=0 for u,vs£3, (2.7)

Fuy(x)=—F(X)o(u)o(v)

F,; is unconstrained. Considering now a gauge potential

u
A, and using the corresponding gauge for A4 ;:
Apix)=—A,(X)o(u), (2.8)
and hence
. " 0, ©=0,1,2,
. A,uIS=(Ap+Ay)lS= 2A3, #-—__3, (2-9)

A3 is an even function of x3, whereas 4y, 4;, and A, are
odd.

Our aim is to formulate Feynman rules. Therefore we
want to express the propagator obeying the boundary con-
ditions as a sum of identical propagators taking into ac-
count the contributions from the image currents. This is
possible only if we require

A, |s=0. (2.10)
This “gauge condition” has to be consistent with the
gauge chosen for the propagator. Thus we are lead to use
the axial gauge 43 =0. It is the only translation-invariant
gauge consistent with (2.9) and (2.10). To see this in more
detail, we compute the gauge potential from the current,
using the photon propagator D,,(x —y) in a yet unspeci-
fied, but translational-invariant gauge:

(2.11)

|
the axial gauge
- AP=n,4*=0 with n,=(0,0,0,1), (2.13)

yielding the propagator



ngk,+nk,
nk

nzk“kvi
(n-k? |
(2.14)

_1
K21i0 (B

Dy k)=

An ideal condensator (two infinite, parallel, perfectly
conducting plates located at x3=0 and x3;=a) is treated
analogously. Because of multiple reflections, there is an
infinite set of mirror currents (Fig. 1). To be consistent
with (2.10) and (2.12), again the axial gauge (2.13) has to
be used.

B. Green’s functions and Feynman rules

Anticipating the gauge independence of our final result,
we ﬁrst compute the Fourier representation of the propa-
gator D#,,(x, y) obeying the boundary conditions 4, =0 at
x3=0 and x; =a, regardless of the gauge:
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FIG. 1. Mirror currents in an ideal condensator with perfect- -
ly conducting plates at x3=0 and x;=a. Charges +q of alter-
nating sign are located at +z +2an, n €Z.

with e; =(O’O,? 0,1). Using the formula

0

, (2.16)

ei2ank3=i£ 2 5 k3_~_;1£
~ 2 =—c ‘n=—o a
Dp.v(x,y)= 2 [D;w(x’y +2anes). i "
n=—co _ -
] .and the Fourier representation of the free  propagator D .
— D, (x,y +(2an —29%e3)], (2,15 we obtain
J
A i /n' i 3
Butey)= 3 f ol R)e =g 3201 _ o
n=—ow - -
1 * d’k ~ ik(x—yp) . .
== > o (e ™57 sinkeyx 3 sink, 3, 2.17)
n=—cw, n#0 . . - ‘

where k =(kg,k1,k;) and k3=nm/a. In order to guaran-
tee the correct causal behavior, Feynman boundary condl-
tions (k2—k2+i0) have to be imposed.

We now turn to the formulation of Feynman rules in
momentum space. At first this seems to be an unattain-
able task, because the configuration is not translation in-
variant. For this reason, momentum is not conserved per-

i

3 f

n=—o0

n=£0, ky=nm/a

~ 1
Dy.v(xyy.) = ?d—

k k(x—p), iy (x3—a/2) o —iky(p3—i/2) ik, (y3—a/2
oy Duntie)e e [e™ —(—1ye" 0Ty

pendicular to the plates. Nevertheless a reasonable ap-
proximation is obtained in processes of interest: For ini-
tial and final electron states we assume plane waves to be
confined to the interior of the condensator and to have
momentum parallel to the plates. Recasting the photon
propagator (2.17) as

the integrals over configuration space at the vertices become (see Fig. 2)

sror . .3_ R — z .
f0<x3<a dix o0’ —p HR(x,x “/2)=(21T)353(£'—£+/_€)21rSa(p'3——p3+k3),

and -

g —g—k)oyr @ —g —T)a(pd—
fo<y3<ad4ye £ k)l[e i O

(2.18)
(2.19)

R +7/:)3(y3:—a/2)]
=(2m)°8%g" —g —k)27[8,(g5 —g3—K3)—8,(q5 —gs +k3)],  (2.20)
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FIG. 2. Configuration-space integration for elementary
scattering processes.

respectively, where the following notation has been intro-
duced:

sin(ka /2)

ok (2.21)

I S LN
Salk)=— [ dxe™=

In the limit @a—c we observe §,(k)—8(k). reflecting
merely approximate momentum conservation for finite
plate distance a. Convolution of §,(k)—8(k) with a
smooth function f(k) yields the Fourier transform of
Lf (k)—f(0)]/k, which is rapidly decreasing (the order in
1/a corresponding to the differentiability of f). The ap-
proximation 8, ~8 is therefore appropriate for sufficient-
ly large a (Ref. 13). Hence, we are left with the interpre-
tation of the second 8, function in formula (2.20). It
represents the contribution from an odd number of reflec-
tions, thus including a momentum transfer +2k; to the
plates. The one-loop contributions we are interested in are
shown schematically in Fig. 3. In the case of the electron
self-mass the bubble has no meaning, whereas for the con-
tributions to the anomalous magnetic moment, the bubble
represents the interaction with an external magnetic field
orthogonal to the plates, thus changing only momenta
parallel to the plates. Hence, in either case we have
P3=q;3, while the external momenta p; and g; are as-
sumed to be zero. Combining Egs. (2.19) and (2.20),

8, (ps—p3+k3)8,(q3—q3+k3)=0,

unless k3;=nm/a=0. For n =0 the §, functions in (2.20)
cancel, removing this term from the sum over momenta.
It will turn out that just this gap in the sum (2.18), stem-
ming from the odd reflections, yields the leading contribu-
tion to the boundary correction.

We thus arrive at modified Feynman rules in which in-
tegrals of photon momenta perpendicular to the plates
have to be substituted by sums
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FIG. 3. Types of processes to be considered.

dk3 1 ko
f 27 24 nr_z_w

n#0, ky=nn/a

2.22)

Photons that undergo an even number of reflections (in
other words, 2a periodicity) discretize the spectrum,
whereas odd-numbered reflections cancel the term 7 =0.
Momentum transfer to the plates is negligible.

C. Physical considerations

So far we have only considered an idealized condensa-
tor. Now there is the following question: what modifica-
tions should be expected for realistic situations? The
plates will be of finite extension and will become transpar-
ent to electromagnetic radiation above the plasma fre-
quency of the conductor. However, the Compton wave-
length of the electron, the only length scale of QED, is ex-
tremely small compared to the distance (and the more so
with respect to the size) of the plates. Therefore boundary
conditions affect long-distance and consequently infrared
{IR) behavior. As we have seen, the energy of the elec-
tromagnetic modes orthogonal to the plates is discretized,
the minimal momentum being 7/a. So we expect that the
main contribution to boundary effects will stem from the
IR edge of the momentum integrals. In our approach an
UV cutoff at the plasma frequency A will yield negligible
corrections of the order of m/aA (Ref. 14). These conjec-
tures are confirmed by explicit calculations in the Appen-
dix. Following Fischbach and Nakagawa,® we assume a
plate distance of a =1 cm and a plasma frequency of
A =1 ¢V and find the proportions

C m:Ar/a =0.51x10%1:6.2x 107> . (2.23)

Using dimensional regularization and Feynman parame-
trization, one-loop contributions involve (Euclidean)
momentum integrals of the form

f d>Kk 1 Tla—ow)
[(k +gP+m?]® T(a) (m?)2—2 ’

(2.24)

Differences of the following form have to be evaluated
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- © dZm—lk d*?K
;nz—g} n0 ni 2 Dy “ :f [(k +q)2+m2]°‘
(k+q)+ =-+a | +m?
=_1T_f d2w_1k +l0 1 2j+1
a v [(k+qV+q2+m?]* " a ma
17942 _Na—0+1/2) | 1 I S
T T d @) (gl tmde-er12 20 | ma WEN, @23
|
where g =(g,q;) and the Euler-Maclaurin formula (A1) a,=f(0), (3.2)

have been used. The result, being just minus the (omitted)
zeroth term in the sum is a first confirmation that we are
dealing with IR effects. It suggests that boundary effects

. are of the order of 1/ma. However, since one integration

is discretized, the IR behavior has deteriorated, the

minimal momentum 7 /a acting as a natural IR cutoff,

Possible IR problems are hidden in the Feynman parame-
ter integrals. As seen in Egs. (3.4) and (3.9) below, m is
effectively replaced by xm which leads to a logarithmic
divergence of the right-hand side of (2.25). In this way
matrix elements contributing to the anomalous magnetic
moment of the electron and to its self-mass, to be treated
below, will provide an additional factor In(ma)~24. The
leading effects are thus proportional to {In(ma)]/ma
~10~7 for a =1 cm. This “IR” dependence on In(ma)
represents the central result of our work. As shown in the
Appendix, the result is insensitive to the plasma frequency
of the conductor where the plates become transparent for
electromagnetic radiation.

III. APPLICATION

In what follows radiative corrections to the mass and
magnetic moment of the electron are evaluated. In princi-
ple all matrix elements containing internal photon lines
are changed by small amounts.

A. Anomalous magnetic moment of the electron

The lowest-order contribution to the anomalous mag-
netic moment of the electron a, is obtained by evaluating
the vertex-correction graph shown in Fig. 4 (Ref. 15). Us-
ing Gordon’s identity, A,=v,+T, can be written on
shell as

u(p —q)Au(p)

=70 —q) |Vuf1@*) + 5 —owa fala?) [u(p), G.D

with

g =2(14a,) being the gyromagnetic ratio. Thus to first
order we have to compute

n - .

—ieI‘,,(p,p —q):(—i€)3f (‘;ﬂ_l)cn iDaB(k)ya_p—q—jk—m -
i p

nyﬂ_k__,my . (3.3)

Applying the axial-gauge propagator (2.14), terms stem-
ming from k,kg are proportional to ¥, on shell. The
on-shell contribution from (nokp+ngk,)/kn yields a
term proportional to ¥, and additional terms which, for
P3=¢g3=0, are odd in k;. For these terms the principal
value prescription gives a vanishing result. Hence we find
the well-known formula

d*t  ix¥1—x)

, . 4)
Q) (k2—x2%m?2)3 34

[2(0)=8e?m? f: dx [

The above argument concerning axial-gauge contributions
bolds true also for substitution (2.22). Therefore, between
conducting plates, a, = f,(0) is modified into

w = —~iela(p,p’)
> P

T ¢

FIG. 4. One-loop contribution to the vertex correction.
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201 w 2, 24172
2 f dx xU—x) 2y S i EEEnRD T o1 n?h?) P k] (3.5)
n=—c0, ns0 nir T =1 nh
’ — | +xZm? .
a
I
with h =m/ma. The one-loop boundary correction to the a,(r)=0.2x10"12,

anomalous magnetic moment is the difference a,(weak)=0,05x 102,

Ll

Aae=l [h > - fﬂwdx

n=1, x=hn

B. Electron mass between conducting plates

We begin with the lowest-order contribution to the elec-

231/2 tron self-energy, shown in Fig. 5:
x [ HEEEL organ 2 (3.6 . |
3(p)=—ie® iD V" v, 3.8
= f(z e e e m 68
T}elf dscomputatlon in the Appendix [(AS)—(A8)] finally Subtraction of the mass counterterm of unbounded
n space-time
a
Aae=—2—rg(2—ln4ma) . (3.7) dm =3Z(p) lt—m
For a plate distance of a =1 cm, Ag,=—3.3x10"12, =—je? f d’k fl 2m +(n —2)xm (3.9)
which has to be compared to other corrections:’ (2m)" (k?—x?m?)?
a (a*)=—23(73)x 10712, ~ gives a small finite contribution to the physical mass of an

electron between conducting plates. Contributions from
- the axial-gauge propagator are again odd in k3 or k, and

a,(muon)=2.8 X 10—12, .
a,(hadronic)=1.6(2)x 1012, v vanish. Thus with €e=(2—n/2)

Am=06m(a)—m

Sl 3 TR {kaziizm-z P e —en. o0
nA0, ky=nm/a
The momentum cutoff used in the Appendix allows us to perform the limit €—0:
Am’i=% hn;li=hn_ fowdx ln1+(1_;c-x2)m FI+x =
=——% (Indma +1) . (3.11)

2ma

For a=1cm, Am/m=—3.7x10"1%

Fortunately in either case axial-gauge terms did not
contribute. This is not so surprising: physical quantities
are gauge independent. Since the electron current, the
source of the electromagnetic field, is parallel to the
plates, the sign factor in (2.11) does not contribute and P
gauge independence continues to hold for boundary ef-
fects computed with the propagator (2.15). FIG. 5. One-loop contribution to the self-energy.

4

= =i Z(p)
P



IV. CONCLUSION

In this paper finite gauge- and cutoff-independent
corrections to the renormalized electron mass and its
anomalous magnetic moment are computed for a nonlo-

calized electron moving on a straight line between two

conducting plates. Our argument is based upon the obser-
vation that the electromagnetic potential is pure gauge at
the surface of an ideal conductor, with 4, vanishing for a
specific class of gauges (at least, if each component of the
conductor is simply connected).

Treating an ideal condensator, only the axial gauge
A3 =0 is consistent with the boundary condition 4,=0.
Feynman rules were derived, assuming free plane-wave
electron fields moving parallel to the plates.

Our original motivation was the investigation of correc-
tions to the physical parameters of QED near the surface
of a conductor. Whereas the contribution to the electron
mass is beyond the scope of present detectibility for a con-
densator with a plate distance @ =1 cm, we find the
lowest-order correction to the anomalous magnetlc mo-
ment a, of an electron as

Aa,=—3.3x10712, =

comparable to the uncertainty of the most accurate exper-
imental values (Van Dyck'®)

a,=1159652193(4)x 10712, -

There seems to exist a discrepancy between our results,
agreeing with previous work®~%!7 in order of magnitude,
and recent estimates of Boulware, Brown, and Lee.” BBL
find a significant correction to the cyclotron frequency,
but claim that the contribution to the anomalous magnetic
moment is completely negligible. Indeed, for electrons lo- .
calized between the plates there will be no logarithmic
enhancement factor.'®

However, as has been pointed out before, these two re-
sults cannot be directly compared: BBL concentrate on
the conﬁgurauon of the Penning trap (g —2) experi-
ments,® where a single electron rotates in a strong magnet-

]
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ic field with cyclotron frequency w,.. Since the wave-
length ¢/w, is small in comparison with the distance to
the conductor, the situation is complementary to our in-
vestigation on essentially free electrons. Observing that
the electron passes through about 20 cyclotron orbits until
the reflected electromagnetic wave returns, it could well
be that interference changes the effect considerably.
Indeed, quite recently Bordag'’ found the correction to a,
in a strong magnetic field as a function of the ratio of the
cyclotron frequency o, and the lowest eigenfrequency
w=1(c/a) of the photon states. His relativistic result is
of the form Aa,=(a/ma)f(o./0) with logarithmic
singularities for odd values of the ratio w,/0. We want
to point out that one reason for this discrepancy between
BBL and Bordag!” could be the nonrelativistic approach
of BBL. In their fundamental analysis Barbiker and Bar-
ton* found that the nonrelativistic approximation is not
always applicable when dealing with magnetic effects.
For example, the magnetic moment of localized electrons
between conducting plates is found to be isotropic in the
fully relativistic one-loop computation, whereas the non-

relativistic result for the orthogonal component vanishes.
Barton and Grotch® could trace this difference to the
reduction of the Dirac wave function to the two com-
ponent spinor.
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APPENDIX

In this appendix we quote the Euler-Maclaurin formula
and the asymptotic expansion of the I" function,'® and ap-

~ ply these to the computation of differences of sums and

integrals that occur in Sec. III.
The Euler-Maclaurin formula is

h zf(a +vh)— f f(x)dx————[f(b)—f(a)]+ 2112” oyl ) )—f*~Na)]+R,, (A1)
with A =(b —a)/n, o
2sin(2vmrx /h)
=____( )mh2m+1 LN VHAN /TR T (2m+l)(x)dx
f gl 2vr) 2m+1 f
and the Bernoulli numbers Bg=1, B;= —7, B,=1 s By= —3—’0, «e.» By, 1=0. In general the Euler-Maclaurin for-
mula yields only asymptotic expansions in A, as illustrated by a special case of (2.25): o= +,a=1, g, =0,
© 2
= i 12 == ﬂj D) —|— cothma
a n=-—en, nzx0 n% +m2 m m-a
T 7 +2’IT g ~2ma
T m am? m 1 —2ma
Val(y) g
= T2 a'";f*,'!{w (A2)
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The asymptotic expansion of In[I'(z)], z— 0, |argz | <, is

n—1 B
Inl(z)=zInz —z — +Inz +1nV2r+ 3 z

= 2k (2k —1)z%

—zlnz —z — tinz 4 InvVZm 4 i+0( 1/2), |Ra(2)| <

—+R,(2)

IBan

2n(2n —1) |z |~ cos(Largz)

(A3)

To see how the result depends on the plasma frequency of a nonideal conductor and to have well-defined expressions

throughout we use a momentum cutoff A (=1 eV).
For convenience we define the operator

h

Nk
SV — [ f (o

N-—1
Apy(fXN=h S flnh)+

n=1

B
o O+ 22U (VR ()]

B,

4' [f“'(N‘—h)—f"’(O)]—l— e

(A4)

with h =7/ma ~3Xx 1071 N =Aa/m=2X10*. The trapezoidal definition of A, y allows us to treat each term in (3.6)

and (3.11) separately, even in the limit N — co:

Ay y(Inx)=— 1k Inh +A[InD(N)++1nN —N InN +N]

—_ 1 I3 1 1
’w—ihlnh+21n27r—[—h 12N+h0 N3 ]
.=h Ln(2am)+——+10 |2 | |; (A5)
2 12N N’
) h—év-+0(h3N3), hN=% «<l1,
A,,N(ln{1+(1+x2)1/2])=-iln2+h—>< (A6)
’ 2 Rl =21
hN+ h3N3 y - m >> 3]
- AN +0(h3N?), hN=-$— <1,
Ap (1 4x)17)= — — 4 % (AT
' 212 1 A 1
140 W 3 hN=;>> 3
Ap n(x)=0. (A8)
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