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The possibility of p- and dwave superconductivity with the two electron constituents of the Cooper pair
in a relative angular momentum /=1 or 2 and m =0 state with respect to their axis of relative motion is
studied. In order for the corresponding wave function to be localized within the binding potential, the ef-
fective masses of the electrons have to be high. These considerations apply to heavy-fermion systems such

as UPt; and UBe;;.

Recent experiments®? indicate a new type of electron
pairing in the superconducting phase of heavy-fermion sys-
tems, such as UBe;; and UPt;, associated with a relative an-
-gular momentum of the electrons forming the Cooper pair
of /#0. While this possibility has been considered ever
since the Bardeen-Cooper-Schrieffer (BCS) theory was intro-
duced,’ in this context it has been proposed by Varma?* and
Anderson® (while Tachiki and Maekawa® and consequently
Razafimandimby, Fulde, and Keller’ suggested applying
conventional s pairing of the electrons in the /=0 config-
uration to explain the experimental findings). In the follow-
ing I shall argue that, depending on the effective electron
mass, which must at least be of the order of a few hundred
vacuum electron masses, a p and d state yields a binding

and the appearance of a superconducting energy gap similar

to s-wave pairing.

The widely accepted heuristic notion of a Cooper pair? is
that of two electrons in a relative s state®!® formed by a
linear combination of electron motions away and towards
one another, with spins antiparalle! (see Fig. 1). This oscil-
lation is made possible by a dynamic equilibrium between
Coulomb repuision and attractive phonon interaction, medi-
ated by ionic vibrations polarizing the lattice.!! In what fol-
lows this potential problem is studied in greater detail, as-
suming a model “‘potential tube’ behind each electron (see
Fig. 2). Since this potential corresponds to a highly distort-
ed spherical potential, it will not be invariant under the rota-
tion group SO(3), but rather under D, and the bound-state
solutions will be very difficult to enumerate explicitly. If
one approximates them by solutions of spherical symmetric
potentials (which is a quite naive and rough procedure),
only the m=0 states with wave functions concentrated
along the axis of electron movement will be dynamically al-
lowed, since otherwise the electron wave function would not
be appreciably within the highly assymmetric pairing poten-
tial.

In what follows a qualitative model is applied to construct
the pairing potential. Following Weisskopf,? this potential is
then inserted into the Schrddinger equation and applied to
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FIG. 1. Two correlated electrons forming a Cooper pair in an s
state.

-

the calculation of the pair wave function and the energy
spectrum. The binding energy is then identified with the
superconducting energy gap, which assumes the well-known
BCS expression. It turns out that /=1, m=0 and /=2,
m=0 states (with the m number measured parallel to the
potential tube) acquire energy gaps of the same type, only -
differing by the density of states at the Fermi surface.
Whether these /=1 and 2 states exist depends on the
length of the potential tube compared to the mean distance
of the electrons in this state: Heuristically speaking, if
“most” of the electron pair wave function is within the po-
tential tube, both electrons feel this binding potential. This
is also the reason why the m=0 states do not contribute.
The mobility of the electrons and, in turn, the extension of
their wave functions depend on the effective masses.

In the following I shall give a brief sketch of Weisskopf’s
approach® and consider a cubic lattice of positive ions with
lattice distance a, filled with a degenerate gas of free atoms,
one per ion. In such a lattice, electrons at the Fermi surface
travel with wvelocities of approximately v~ pgfm ~ 1/ ma,
where pr is the Fermi momentum, m the electron mass, and
Planck’s constant 4 has been set to one. The electrons
spend a time T~ a/v within a distance a from a given ion,
and thereby transfer a momentum p~ V7/a to the ion,
where Vis the Coulomb potential, V= e a ~ 1/ma?. If the
fon is assumed to be coupled linearly only to its nearest
neighbor, we obtain from oscillator dynamics that its dis-
placement due to momentum transfer is given by
8 ~ p/Mwp, where M is the ion mass and ep is the Debye
frequency entering the oscillator potential Mw$5%/2, which
can be identified with the average ionic Coulomb potential
V. yielding wp ~ V/B, where 8:= (M/m)¥2~ 100 for usual
values of M and m. With this, the average ionic displace-
ment for an electron passing the ion is 8 ~ @¢/B. Assuming
an average relaxation time of the order of wj!, the poten-
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FIG. 2. The model potential tube behind each electron. It is a
cylinder with a diameter of one lattice distance a and with a length
L of the order of a few hundred lattice distances.
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tial will extend over a distance
L=vojyl=ap )

behind the electron. From these qualitative considerations
it follows that the potential tube formed by an electron pass-
ing through the lattice is a kind of narrow tail, approximate-
Iy 100 lattice spacings long, with a diameter of not more
than a single lattice distance, produced by ions less than T(lyb-

of a lattice distance displaced. Since a displacement 3
changes the ordinary potential V=e%a of an ion by
U~ e%/a?~e* L, it is possible to formulate a mutual
binding potential for the electrons in a Cooper pair by

LKA=—%@MML—0ML—MH), @

where the function d[{] indicates the average electron dis-
tance. In a naive model, d[/] is approximated by values
from a spherical symmetric Coulomb potential d[/]
~al3n?—1(I1+1)], where »n stands for the principal quan-
tum number.

The potential U(r) in (2) is constant up to the distance
L, where it is cut to zero. The second Heavyside function
refers to the total angular momentum / Assuming that the
wave function of the two electrons in the sstate (n=1 and
I=m=0) is concentrated at an average distance of less
than or equal to g, their distance in an /#0 state can be es-
timated to be of the order of'? d[/}. In order for the elec-
trons to feel the attractive potential, the wave function has
to appreciably overlap the potential, yielding the require-
ment that L = d[/]l. The §,, function is necessary since the
potential is highly asymmetric, such that only states with
m =0 with respect to the potential axis are assumed to con-
tribute for the same overlap reasoning as above. The eigen-

states and the associated energy eigenvalues can be obtained
by a factorization of the radial part of the pair wave function ’

from the angular-dependent part:!3 14
Kl’p,l,m(rxe,ﬁb):nljl(Pr) Y[m(e’d)) , 3)
where #; is a normalization factor for a large sphere of ra-
dius R. The radial part is given by
1
sinz
-

2= (—1)’2’{—d— -4

zdz

With the functions Y, normalized, the three-dimensional
problem can be reduced to a one-dimensional problem if the
radial wave function is multiplied by r. Hence, the follow-
ing wave function can be defined: =

T(p):= f r¥pimd0de = mrj(pr) , (%)
and the superposition of states
‘I’(r)=2a(p')‘l’(p') . (6)
pl

Equations (4) and (5) yield the wave functions of the
I=0,1, and 2 states: -

%m=%mmo, (7a)

v(p)= %[—sin—p(;&—cos(pr)] , (7b)
2 3 . 3cos(pr)

¥y(p)= E[[ O 1} sin(pr) — —C—QI-S;H—I . (79
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The Schrddinger equation of the pair function can then be
written as

2
1’—-+U]\II=E‘I' , (®)
m

with the binding potential U(r) from (2). This one-
dimensional probiem has solutions (6) with coefficients

ale,)=(e,+A)"1 9

where the energy variable €,= (p*— p?)/ m instead of p has
been introduced as argument of the weight function a. In
this energy scale, the Fermi energy er=0 and the eigen-
value E will be the negative binding energy of the pair,

=—A. The gap function A is interpreted here as the
binding energy, and turns out to be analogous to the BCS
expression

1

uN[R] "’ (10)

A=wp exp[—

where u=e* L and N[/} is the density of Fpairing states at
the Fermi surface. Thus, in this approximation we find the
same type of gap dependence for arbitrary / (we have shown
[=1,2). Whether />0 pairing is possible depends very
much on the length of the potential tube compared to the
mobility of the electrons forming that pair. The average
momentum spread Ap of a bound state is connected to its
binding energy A by the relation® Ap = mA/pyr. An approxi-
mate measure for the extension of the wave function can be
defined by p~1/Ap~ pfa/mA. This compares to the
length of the potential tube: For usual s-wave superconduc-
tors, the ratio Q:=p/L ~ p#/A(mM)V? is small enough for
the s-wave function to be within the potential tube, but too
large for the p-wave function to be included. For this kind
of potential'® the relative expansion of the states with /=0
and 1 is approximately given by d[0}:d[1] ~ 1:10. With the
requirement that the wave function is well confined within
the potential tube, Q(m*, I=1)~ Q(m, I=0) I[where
Q(m*, 1=1)~10p/L], in order for the system to be a p-
wave superconductor it should contain electrons with effec-
tive masses m* of at least equal to or greater than 100m.
Similar considerations apply for d pairing, since in the n =3,
I=1 configuration, m*~ 600m and in the n=3, /=2 con-
figuration, m*~ 400m.

In conclusion, it should be noted that the following inputs
have been made: () strongly simplified lattice dynamics
yielding a potential tube behind the electrons, and (ii)
spherical symmetric pair wave functions with distance
behavior as for of the Coulomb potential. These are rather
rough approximations which can be considered only as first
estimates of the dynamics involved. However, the results
obtained agree well with values observed in heavy-fermion
systems, where m*= O ((102-10%) m) and may serve as an
additional indication for /20 superconductivity. Future ex-
periments may confirm this evidence further.
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