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Abstract. - Violations of Lorentz transformation for space-time scales render corrections to 
relativistic energy-momentum relations and vice versa. 

Some recent articles[1-31 on tests of the special theory of relativity (STR) were 
motivation to write down a result obtained several years ago: thft the transformation 
properties of intrinsic space and time scales depend on the dispersion relation (that is the 
energy-momentum relation) of a particular system; and vice versa: a deviation from the 
Lorentz transformation would result in nonrelativistic transformation of energy and mass, 
as well as nonrelativistic energy-momentum relations. 

Throughout this communication, Einstein's original operationalizations for the 
concepts [4] of simultaneity and two-way velocity of light are applied. This enables a better 
comparison between STR and alternate theories. A quantized two-state system { i l) ,  12)) is 
considered, which can serve as a clock (present-day state of the art atomic clocks can be 
described very similarly). The system starts out in a state i l) ,  which is no eigenstate of the 
Hamiltonian H .  It will, therefore, undergo oscillations between 11) and 12). Assume an 
arbitrary real number tA for the initial time, and an arbitrary real number tB > tA  for a later 
time. Denoting the amplitudes of the states by c l ( t )  = (l /+(t))  and c2(t) = (2l+(t));  and 
assuming symmetric transition rules Hll = Hz2 and H12 = HZl, the Schrodinger equation 
reads 

(la) i - ~1 = Hi1 ~1 + Hi2 ~2 , 

(1b) i - e2 = Hz1 e1 + H2* e2 . 

Its solutions are oscillations in Hilbert space. With the above initial condition 
I c ~ ( ~ A ) I '  = 1 - / c 2 ( t ~ ) 1 ~  = 1, a short calculation yields 

(2) 

d 
dt 
d 
dt 

Icl(tB)12 = cos2 [H12(tA - tB)l 
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The time span tB - tA  has been defined arbitrarily; and (2) can be measured. Hence, the 
energy scale of H has to be calibrated, such that (2) is satisfied. This condition sets the 
energy scale in a particular frame of reference. 

Now consider two reference frames, a and b, both carrying (quantized) clocks with them. 
Suppose an observer in a watches the clock in 6, as b passes with a velocity U. The observer 
is comparing the times of synchronized clocks resting in a with the time of the clock resting 
in b. Since the quantum states of the clocks can be described similarly in both systems, state 
vectors and amplitudes can be identified: for instance 11,) = , lb)  = 1) and c l ( t l d  = cl(tLd. 
Since in both frames a Schrodinger equation similar to (1) can be written down, the 
dynamics is the same, and we obtain by identifying the amplitudes for state l ) ,  

The indices a and b mean <<measured in a and b.. For infinitesimal time difference 
At = tB - fA-+ dt, eq. (3) yields 

Next, some velocity c 
defined to be constant 
covention immediately 

(prefereably a sound velocity or the maximum signal velocity) is 
in all reference frames, in particular c, = c b  = c. With eq. (4), this 
yields the dilatation laws for space scales parallel to v :  

- .I d a  
dxb . 
- -  

Now, the question is, what is the y-factor in (4) and (5 ) ,  defined by the ratio between the 
nondiagonal elements of the Hamiltonians in the two frames a and b? 

An immediate thought (yielding Galileian-type transformation properties) would be to 
identify H12, with H I Z b  by definition, yielding y = 1. As has been shown [SI, this would result 
in noncovariant transformation laws for H, although the phenomenology may be the same as 
for STR. 

When, for some reasons, it is desireable to obtain symmetric transformation laws (which 
need not necessarily be Lorentz covariant), the usual energy-scale calibration may be 
applied: Assume an object (for instance the clock described above) at rest in a reference 
frame a, with an associate energy E,. When it is transferred to another reference frame b 
such that it is a t  rest there, then the energy scale in a and b have to be calibrated 
(.synchronized.), such that E ,  = E b  for this object. This principle is identical to saying that 
particle rest masses are the same for all reference frames. Such an energy calibration 
convention is .evident>>, although not unique. I t  completes Einstein's synchronization 
conventions for space and time scales. 

Going back to the clock model described above, the clock in b moves with a velocity v and 
an associated momentum p with respect to a. By identifying HI2 = E ( p ) ,  one obtains 

That these dilatation laws do not necessarily reproduce Lorentz-type transformation 
properties is straightforward. In fact, only for a particular type of dispersion relation, where 
E ( p )  = [Et  + c2p2]*, is Lorentz covariance reproduced. For a .cellular ether., composed out 
of cells [6], coupled linearly to their equilibrium position and their immediate neighbors 
(locally), this relation is satisfied for weak analytic fwces. For media with different type of 
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dispersion relations (such as soliton phenomena), intrinsic space-time scales transform 
differently from STR. On the other hand, deviations from the Lorentz transformation would 
render nonrelativistic dispersion relations. For example, from muon lifetime ex- 
periments [3,7], a bound on the following dispersion relation ansatz can be given: when 
E ( p )  = [E; + c2p2 + ~ ( c ~ p ~ / E ~ ) ~ ] ~ ,  then 

Q 10-3. ( 7) 

In conclusion it can be said that different dispersion relations (energy-momentum 
relations) yield different transformation properties for intrinsic space-time co-ordinates. 
The same holds true vice versa, that is space-time transformation laws allow the 
specification of energy-momentum relations 
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