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Abstract

In order to make it operationally accessible, it is proposed to base the notion of the di-

mension of space–time on measure–theoretic concepts, thus admitting the possibility of

noninteger dimensions. It is found then, that the Hausdorff covering procedure is op-

erationally unrealizeable because of the inherent finite space–time resolution of any real

experiment. We therefore propose to define an operational dimension which, due to the

quantum nature of the coverings, is smaller than the idealized Hausdorff dimension. As

a consequence of the dimension of space–time less than four relativistic quantum field
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theory becomes finite. Also, the radiative corrections of perturbation theory are sensitive

on the actual value of the dimension 4 − ε. Present experimental results and standard

theoretical predictions for the electromagnetic moment of the electron seem to suggest a

non–vanishing value for ε.

I. Introduction

The perception of a seemingly threedimensional space is as old as occidental civilisation it-

self, possibly much older. Theaitetos, a contemporary of Plato1 (around 400 B.C.), pursued

a geometric approach by looking for regular convex bodies covering all space2, a method

very similar to modern techniques. Among others, also the Alexandrian mathematician

Ptolemy (2nd century A.D.) reportedly3 finished a treatise on the threedimensionality of

space. Many modern philosophers such as Kant4 and also physicists have considered the

dimension of space and space–time as something a priori given. Such an approach implies

that dimension is a proposition which, though it may be elicited by experience, is seen to

have a basis other than experience.

The objective of this article is to show the existence of a basis of experience which, contrary

to a priori notions, leads to a measureable dimension of space or space–time. It turns out

that such an operationalistically defined dimension will not necessarily be an integer; rather

a real number, and lower than the associated “ideal” dimensions of three and four.

Before concentrating on the physics, an overlook of mathematical concepts and reasoning

concerning dimensionality seems appropriate. One of the most intuitive dimensional con-

cepts has been introduced by Brower in 1922 and worked out by Menger and Uryson5. It

is called the topological dimension αT and defined via a recursion:

(i) αT (∅) = −1, and
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(ii) αT (E) is the least integer n for which every point of an arbitrary set E has small

neighborhoods whose boundaries have dimension less than n.

This definition yields only integer dimensions and is too rude a criterion to characterize

many sets developed in the late nineteenth century. At that time a debate took place after

Cantor had proposed a set, often referred to as Cantor ternary set, with zero Lebesque

measure which, in the sense of length, seems a trivial subset of a line. On the other hand,

a bijective mapping between the points on the line and the points of the Cantor ternary

set can easily be found with a suitable parametrisation6.

With the works of Caratheodory and Hausdorff7 these problems could be eased, however

for the price of introducing noninteger dimensions. The new notion of measure was based

on a covering ∪iBi of a given set E and a limit in which all individual constituents Bi

of this covering become infinitesimal in diameter. Hausdorff showed that there exists a

measure µ, called the Hausdorff measure, and a unique number αH , called the Hausdorff

dimension, such that for any set E,

µ(E,α) = lim
ε→0+

inf
{Bi}

{∑
i

(diamBi)
α : α ∈ R, α > 0, ∪iBi ⊃ E, (diamBi) ≤ ε

}
,

(1.1a)

µ(E,α) =

{
0, if α > αH(E);
∞, if α < αH(E).

(1.1b)

since the diameter presupposes the notion of a distance, we remark that with respect to

variation of the metric, αH need not be an invariant.

A couple of other characteristic measures and their associated dimensions have been in-

troduced since Hausdorff’s article8. One of the most important is the capacity dimension

αC , which for self–similar sets, equals αH and is defined as

αC = lim
ε→0+

log [n(ε)] / log
(
ε−1
)
, (1.2)

where n(ε) is the number of segments of reduced length ε.

The Hausdorff measure has a second, rather important application for the definition of

integral measures, although this analytic aspect is rarely appreciated. It gives some crude
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and heuristic hints on the packing density of space–time points and thus the support of

[quantized] fields. Whereas in section II an operational definition of a physical measure

is given, section III envisages analytical consequences of such a measure. The importance

of an upper bound on αH of four lies in an improvement of convergence of formerly weak

divergencies in continuous quantum field theory, which becomes defined and finite. At

the same time it is possible to preserve symmetries such as Lorentz covariance. Since

the measure changes all transition matrix elements, a value for αH can be obtained by

comparing sensitive theoretical predictions with experiment.

In this context, extrinsic and operational (or intrinsic) concepts10,11,12 are extremely im-

portant for an understanding of the meaning of the physical dimension. A quantity is

called extrinsic if it refers to a system, although it is not obtained by measurements that

are feasible within that system. Rather it refers to some sort of knowledge coming from

the “outside environment”. It is quite obvious that it will never be possible to measure

the extrinsic dimension of the whole universe.

On the other hand, an operationally obtained quantity is derived from measurements and

procedures within a given system. From this point of view, a “surrounding environment”

need not be assumed and the knowledge of an “outside world” may be considered as

complicating and superfluous. When we speak of an operational measurement of the

dimension of space–time, this is all we can do. Even if we would concede the reality of

a space–time arena and an associated external dimension, we may never be able to know

it, since it could very well be, that the operational dimension is only an approximation

to some presumably “true” value. However, a criterion will be given to indicate if the

extrinsic dimension of a local region of space–time is four.

Since the introduction of so–called fractals 13 and even before14,15, there have been propos-

als to utilize Hausdorff’s dimensional concepts. However, to our knowledge, no research

has been pursued to clarify the dimension of space–time (compare references 4 and 16-20).
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II. Operational definition of dimension

We propose that dimensional concepts in physics are only meaningful if they have an oper-

ational base. This means that it has to be at least in principle possible to define procedures

and construct devices for a measurement of dimension. Conceptual difficulties are encoun-

tered by a straightforward adoption of mathematical notions of dimension. In particular,

two limiting conditions have to be recognized for the implementation of definitions:

(i) There is no physical meaning to an infinitesimal covering with the diameters of all

constituents of this covering (balls etc.) going to zero, as implied by Eqs.(1.1) and

(1.2). Since the physical systems available to us have only finite energy content, it

is impossible to realize configurations of infinitesimal spacial or time resolution;

(ii) There are always uncertainties associated with a measureable quantity. Therefore,

the physical dimension, as all parameters derived from such quantities, will be de-

termined with some degree of uncertainty.

In what follows we suggest a modification of the Hausdorff measure which takes these

restrictions into account and will thus be applicable to physical systems.

A. Operational measure

In analogy to the Hausdorff measure µ, a physically meaningful measure ν can be defined

via a limit. The coverings however, must be restricted to those of finite diameter δexp. This

diameter can be identified with the space–time resolution in a specific system. We assume

that space–time is a set E, and arbitrary coverings {Bi} of E such that E ⊂
⋃
i Bi. Then

the operational measure ν(α, δexp) can be defined as a function of an arbitrary dimension

α and the maximal experimental resolution δexp associated with a specific experiment:

ν(α, δexp) = lim
ε→δexp+

inf
{Bi}

{∑
i

(diamBi)
α : α > 0, ∪iBi ⊃ E, δexp ≤ (diamBi) ≤ ε

}
.

(2.1)
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This limit exists, since the infimum guarantees7 that the value of ν increases for decreasing

ε. In the limit the coverings become smaller in diameter ε until they reach the resolution

δexp. For infinitesimal resolution, ν(α, δexp) tends to the Hausdorff measure of E with an

associated dimensional parameter α:

lim
δexp→0+

ν(α, δexp) = µ(α). (2.2)

Before defining an operational dimension associated with ν, it is necessary to work out in

greater detail the classical and quantum meaning of a covering.

B. Classical and quantum meaning of a covering

In mathematics a covering {Bi} of E is understood as a set of sets {Bi} covering all of E,

i.e. E ⊂ ∪iBi, no matter if there are multiple overlaps, such that
⋃
i6=j Bi ∩ Bj 6= ∅ [see

Fig. 1]. It is not necessary to know the dimension of the coverings, since this would result

in a recursion and would considerably weaken the power and the elegance of Hausdorff’s

definition. Only in the limit (diam Bi) −→ 0+ ambiguities from multiple countings are

resolved and the measure is defined uniquely. In physics, we do not have this limit at our

disposal. The resulting ambiguities will have far–reaching consequences.

The next question is what meaning can be given to a covering in a microscopic world

governed by quantization of action ? And just what can serve as a covering ? To define

coverings in these domains, a further move towards abstraction seems necessary. A form of

stochastic covering is introduced by the following requirement: Assume a quantum state

| ψ〉 is localized in the sense that it is possible to define its momenta

Mn =
∑
i

∫
xni | 〈xi | ψ〉 |2 dxi <∞.

Then a covering can be defined by the condition that it includes all greater than or equal

to an arbitrary, fixed value p (see Fig. 2):

Bi =
{
x ∈ R4 : | 〈x | ψi〉 |2≥ p

}
. (2.3a)
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Alternatively, Bi can be represented by a fuzzy set with its characteristic function41 iden-

tified with

χBi(x) =| 〈x | ψi〉 |2 . (2.3b)

For simplicity we consider only states yielding convex coverings. In varying the width of

the state, the resolution is changed. In principle the resolution of these coverings could go

to zero by changing the definition and taking a value for the probability density ps such

that ps ≤| 〈xs | ψ〉 |2 is fulfilled only for a singular point xs. Then the limit δexp −→ 0+

could be performed and Hausdorff’s definition adopted without changes. However, the

problem then arises just how to cover all of E with states available, which would result

in infinitely many states with infinite energy and thus would again encounter unresolvable

conceptual difficulties in the physical realization.

C. Operational dimension

There is no unique or most evident definition of physical dimension, hence several forms

will be given. It depends on the particular problem which convention is more suitable for

a physical application.

Although the concept of topological dimension seems quite straightforward, it is difficult to

realize operationally. Both prerequisites, the notion of a neighborhood as well as a point to

start the recursion [having as surrounding the empty set with αT (∅) = −1] cause problems

in their implementation. Furthermore, this notion of dimension is not suitable for analytic

applications, since it is not integrated into some concept of measure.

We have defined δexp as the maximal resolution associated with a specific experiment, and

ε ≥ 1, measured in units of δexp, as the diameter of coverings used in the limit of (2.1).

Our major concern will therefore be dimensional concepts originating in measure theory.

The capacity dimension αC has been mentioned already in the introduction. Its definition

can be maintained if E is assumed to be self–similar9: for δexp fixed,

αC = − log [n(ε)] / log(ε). (2.4a)
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Here, n(ε) is the number of segments or constituents of equal diameter ε, covering all of

E, where E is normalized to unity. An equivalent definition for δexp fixed is

α = −∆ log[n(ε)]

∆ log(ε)
, (2.4b)

which as its limit has,

αC = −d log[n(ε)]

d log(ε)
. (2.4c)

For our purposes, αC can very well be a function of the experimental resolution δexp

r0δexp =
[
(∆x)2 + (c∆t)2

]1/2
, (2.5)

where r0 is some reference length measured in the same units as ∆x. As can be argued using

uncertainty relation considerations, the maximal resolution in a measurement involving

photons of total energy Etot within a time span ∆t is given by

r0δexp ≥
ch2

4πE2
tot∆t

. (2.6)

From now on, we drop the index “exp” whenever we refer to the maximal experimental

resolution. Taking an estimated energy content of the universe and the age of the universe

yields a maximal resolution of21

Godknowswhat.

Equation (2.4a) can be derived from the definition of a modified Hausdorff dimension (2.1)

in the following way: with the assumption of a unit “volume” or measure covered with

identical objects of diameter ε, Eq. (2.1) reduces to

n(ε)εαC = ν(αC , ε) = 1. (2.7)

The capacity dimension is widely used in mathematics as well as in physics because of

its applicability. However, it has to be assumed that the sets conine space–time to be

self–similar if its capacity dimension is a constant with respect to the covering diameter ε

at a fixed resolution δ.
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Furthermore, we propose it to be reasonable, that the operational measure (2.1) should

not depend on the resolution δ. This implies that for two different resolutions δ and δ′,

the dimension parameter αop(δ) [the index “op” indicates that αop is an operator

(δ), δ) = ν(αop(δ
′), δ′). (2.8a)

In differential form, this reads

dν(α(δ), δ)

dδ

∣∣∣∣
α=αop(δ)

= 0. (2.8b)

A better understanding of the behavior of ν(α, δ) for self–similar sets may be obtained

by “smearing out” the Hausdorff measure. As an example, we discuss the case, where a

modified Heavyside function smeared out in ε,

θε(α) =

{
1

2
− 1

π
arctan[(α− αH)/ε]

}
could serve as a model for the measure. In Fig. 3, θε(α) is plotted as a function of covering

diameter ε and dimension α. For this case we find:

(i) For constant diameter ε,the measure decreases monotonously in α:

∂ν(α, ε)

∂α
< 0 (2.9)

for all α and ε 6= 0, and

(ii) the Hausdorff dimension is an umklapp point in the sense that

∂ν(α, ε)

∂ε
=

{
> 0, if α > αH ,
= 0, if α = αH ,
< 0, if α < αH .

(2.10)

We propose to generalize equation (2.10) as a criterion on ν such that it may serve as

a definition of an operationally defined dimension αop for all self–similar coverings. For

constant resolution δ,
∂ν(α, ε)

∂ε

∣∣∣∣
α=αop

= 0. (2.11)
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Notice however, that even for self–similar sets, this criterion might not apply, since the

associated physical coverings need not be self–similar. For general purposes, the nondif-

ferential form (2,8a) will be most useful, since it is not restricted to self–similar sets or

coverings.

Another differential criterion may be obtained in a similar way as a generalization of the

umklapp property (1.1) of the Hausdorff measure. Here again, the jump of the measure

at αH will be replaced by a smooth transition as a result of the finite resolution. It is

therefore a natural generalization of Hausdorff’s original approach to define as the new

operational dimension the point of maximal slope: for constant resolution δ,

∂2ν(α, ε)

∂α2

∣∣∣∣
α=αop

= 0. (2.12)

This definition does not employ variations of resolution and is not restricted to self–similar

sets. Rather, the operational dimension may generally be a function of the resolution

and thus scale–dependent: αop = αop(δ) [This would imply that space-time is not self–

similar. It should be noted however, that if self–similarity is assumed, αop = αC ]. However,

definition (2.12) cannot be applied to all coverings, as can be seen from the discussion of

the Koch curve below. In these cases, some other generalization of the original umklapp

property (1.1b) has to be utilized to obtain αop.

D. Bounds on the operational dimension

In this section it is argued that the double or multiple counting of some space–time points

which are then contained in two or more constituents of a covering {Bi} has decisive

impact on the operational dimension as compared to the “real” or Hausdorff dimension.

Such a multiple counting is inevitable in the experimental realization of a covering: the

boundaries of the constituents Bi are never known with certainty. Thus to be sure that all

of space or space–time is covered, more B′is with a larger “volume” than necessary have

to be assumed.
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The consequences are straightforward: assume µH(αH) is the [extrinsic] Hausdorff measure

of space–time with an associated Hausdorff dimension αH [of four ?]. Because of multiple

counting one obtains

ν(αH , ε) > µH(αH). (2.13)

Eq. (2.9) can only be satisfied by an adjustment of the operational dimension αop such

that

ν(αop, ε) = µH(αH). (2.14)

Since the number of constituents card({Bi}) = n(ε) as well as the resolution δ is fixed,

and when ε is measured in units of δ, (2.14) can only be satisfied for

αop < αH . (2.15)

This condition is a direct consequence of the impossibility to perform the limit δ −→ 0+

for physically realizeable coverings. Only in this limit there is no double counting.

The experimental uncertainty intrinsic in the determination of αop can be obtained imme-

diately if a homogenuous covering can be applied such that

ν(αop, ε) = n(ε)εαop = const.

Then,

∆αop =
1

log ε

[
∆n

n(ε)
+ αop

∆ε

ε

]
, (2.16)

where ∆n and ∆ε are uncertainties in the number of constituents and the covering diameter

respectively.
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E. Examples of coverings and dimensionality of physical units

In what follows two examples for physical coverings are given. First, we consider a cavity

filled with longitudinal modes. We study a configuration with waves propagating in a

onedimensional waveguide, as shown in Fig. 4.

By defining the wavelength λ as the fundamental constituency of the covering, the measure

is just the number of wavelengths n(λ) filling the cavity, times λα, plus an extra term t(λ)

from double counting and boundary effects. On the Gedankenexperiment level, n(λ) is

directly obtained by measurement of the induction current in a loop perpendicular to the

field, and the wavelength λ is varied by tuning the frequency. t(λ) was introduced just

to make sure that the modes really cover all of the cavity. It represents corrections due

to systematic errors steming from uncertainties in the determination of λ and n(λ) and

becomes important if the fine structure of the wall affects the resonance frequency. For all

these reasons, t(λ) will never vanish as for the case of absolute precision. From (2.1), the

measure is then given by

ν(α, λ) = n(λ)λα + t(λ). (2.17)

Applying condition (2.8) for two different wavelengths λ and λ′ and assuming t(λ) ∼ t(λ′),

an explicit expression for αop is obtained:

αop ∼
log [n(λ′)/n(λ)]

log(λ/λ′)
. (2.18)

If the cavity is onedimensional and of length L, then n(λ) = L/λ and thus αop = 1.

Another example is the covering of space or space–time with holographic images of balls

or objects of arbitrary shape. Since all considerations of the last paragraphs also apply to

this sort of covering, it will not be treated in detail.

The following study of the Koch curve K [see Fig. 5 and ref. 13] is not directly connected

to space–time measurements. However, it yields some insight for the basic applications of

(2.8) and (2.11) to define αop.
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Let µ = 1 be the Hausdorff measure (“volume”) of K, normalized to unity. Ideally, with

increasing resolution δ = 3−N , which can be thought of going in discrete steps labelled by

N , more and more structure appears. At the Nth step, n(δ) = 4N identical segments [all

of length 3−N ] can be seen. Identifying the covering diameter ε with the resolution δ, and

applying (2.11), yields
∂µ

∂δ
=
∂[4− log δ/ log 3δαH ]

∂δ
= 0 (2.19)

This renders αH(K) = log 4/ log 3.

A more physical implementation of a covering of K has to take into account a finite

and fixed uncertainty ρ independent of the diameter ε for a fixed resolution δ of the

coverings. To make sure that all of K is covered, for a calculation of the number n(ε) of

covering constituents, the diameter has to be substituted by a reduced covering diameter

∆ = ε − ρ, 0 ≤ ∆ ≤ ε. [From now on, we consider coverings of diameter ε, measured in

units of the resolution δ = 3−M . Hence, ε ≥ ρ ≥ 1]. A decrease in the effective ball size in

turn increases n(ε) by

n(ρ, ε) = n(ρ = 0, ε)[ε/∆]αH . (2.20)

Taking this into account, yields an operational measure of the form

ν(ε, ρ, α) = n(ε)[1− ρ/ε]−αH εα. (2.21)

Utilizing (2.8) for a definition of αop, and inserting n(ε) = 4M−log ε/ log 3 and ε = 3−N , one

obtains for ε/ρ ≥ 1

αop(K) = αH(K)
log(ε− ρ)

log ε
. (2.22)

Note, that (2.11) cannot be applied straightforwardly, since the covering is not self–similar

[although the Koch curve is a self–similar set]. This dimensional parameter has the fol-

lowing features:

(i) in the limit ρ −→ 0, αop(K) −→ αH(K);

(ii) αop(K) is strictly monotonous decreasing in ρ [see (2.15)]: the higher ρ is, the more

constituents n(ρ, ε) have to be taken into account to guarantee that all of K is covered.
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Since in this scale, ε > 1, αop has to decrease in order to compensate for these

additional coverings.

(iii) When the uncertainty approaches the resolution, ρ −→ (ε − 1)−, αop(K) −→ 0.

Physically, the ρ ∼ ε–limit corresponds to the perception of each of the finite number

of segments of the Koch curve [seen with finite resolution] as a point set with zero

diameter. As for all countable point sets, the dimension of the Koch curve in this

limit is zero. For even greater uncertainties (for ρ ∈]ε− 1, ε]) one can hardly speak of

a covering anymore, since the uncertainty is of the same size as the resolution. The

argument then yields negative values of the operational dimension. It is certainly

an interestin question, whether these negative values can be given a conceptually

significant meaning.

We only note, that in this particular example, definition (2.12) cannot be employed to de-

fine a dimension. This shows that the operationalization of standard metrological concepts

on fractals is a subtle problem worth of careful analysis in every specific case.

With a non–integer dimension of space–time the question as to the dimensionality of

physical units naturally arises. Yet, it turns out that the dimension of physical units4

[or parameters and constants] such as length, time, energy and so on turns out to be a

matter of definition. All measurements are either digital in nature, such as a click in an

apparatus, or a comparison with a standard already existing. The experimental outcome

is always a relative number, such as a fraction of some scale. We therefore propose to

define a set of scale dimensions consistently [as has been done for the SI] and use these

standards irrespective of the operational dimension of the associated physical quantity.

F. Packing versus covering

In many instances it is impossible to produce a covering of the fractal structure, when

rigid bodies have to be used. There, no overlaps are conceiveable. In these cases, only
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a packing22 would be possible, leaving parts of space–time uncovered. A packing {Pi} is

defined as a set of sets, such that there are only isolated points which are common to two

or more sets of {Pi} [see Fig. 6].

An experiment has already be performed23, in which thousands of ball bearings were being

poured into spherical flasks of various sizes; thereby gently shaking each flask as it was

being filled. The densities σ obtained are

σ ≈ η − εN−1/3, (2.23)

where the packing fraction η =(filled volume) / (all volume) and the parameter ε are

constants depending on the type of packing. The right term of (2.23) is a surface term,

which can be significantly reduced and is therefore often neglected in computer simulations

with periodic boundary conditions24,25.

In three dimensions22,23, the closest random packing turns out to be a configuration with

η = 0.6366 and ε = 0.33. The loosest incompressible random packing is found with

η = 0.6000 and ε = 0.37; and for the cubic close packing one calculates η = 0.7405.

We propose here to (i) generate covering configurations from packing configurations {Pi}

−→ {Bi} by virtually extending the diameter 2ri of [spherical] packing constituents

Pi = {x ∈ R4 : |x− xi,0| ≤ ri} (2.24)

to the greatest diameter 2Rc of the circumcercle between any neighboring balls [see Fig.7]:

Bi = {x ∈ R4 : |x− xi,0| ≤ Rc}; (2.25)

(ii) to generalize these considerations concerning packings of rigid bodies to noninteger

dimensions. In this way a “hard–sphere” covering of space and space–time would make

the definition of a dimensional parameter possible. Hence, η(α) would depend on the

dimension of the geometric space. This would provide an alternate operationalization of

dimension, not restricted to coverings.
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III. Analytic applications of the operational dimension

Measures are of importance in mathematics in two different ways. They can be used to

estimate the size of sets in number theory, and they can be used to define

integrals16,26,27. Although Cauchy’s original quest was initiated by analytic aspects of

measures in connection with Fourier transforms, little has been published on this

second and equally important application28. One reason is certainly the difficulties

encountered in the actual evaluation of integrals as compared to more attractive

applications in number theory.

A. Upper dimensional bounds from quantum theory

We consider perturbative calculations in continuous quantum field theory, such as Quan-

tum Electrodynamics (QED). By evaluating transition matrix elements, integrals of the

following type are encountered29:

J =

∫
Kdµ. (3.1)

Here K stands for the integral kernel and dµ is some integral measure, usually identified

with the Hausdorff measure d4x = dtdxdydz of R4. The type of kernel depends on the

quantum theory. For example, nonrelativistic static electrodynamics yields kernels for

which the associated integral J diverges linearly. Introduction of covariant QED improves

the situation: there the divergence of J is of logarithmic type and thus much weaker30.

Several approaches have been proposed to overcome these remaining infinities, most of

them trying to alter the structure of the theory and also the kernels by some physical

cutoff such as the Planck length or by formal arguments such as renormalization.

The following approach is very different. In its center stands the question: Given a partic-

ular model, for instance QED, Which space–time structure renders a defined, finite field

theory ? In other words: Which measure and which associated dimension has to be taken

in order for the integrals and thus the theory to be finite ?
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As the infinities of QED are logarithmic in nature, it turns out that these changes in

measure may be extremely small. In particular, an identification of the integral measure

with the operationally defined measures of section II yields a finite theory.

Since K as well as dµ may be very complex in their space–time representation and we

shall be only interested in the dimension [and not in their explicit form, since this would

require more information on the space–time structure], it is of some advantage to consider

the Fourier transformation of the integral J . By means of the convolution theorem, the

product in J factorizes:

J = Kdµ. (3.2)

The problematic ultraviolet (UV) structure of conventional QED stems from kernels pro-

portional to

K ∝ k−4. (3.3)

Thus in order for J to be UV-finite, dµ has to behave like kα, with

α < 4. (3.4)

Since the dimension of the Fourier transform28 µ(k) is equal to the dimension of the

measure in space–time µ(x), this requirement is satisfied by all operationalistically defined

measures provided the Hausdorff dimension is less than four.

B. Lower dimensional bounds from experiment

A modification of the integral measure changes all predictions of perturbative quantum

field theory. On the other hand, the standard Hausdorff measure d4k agrees quite well

with experiment. From this qualitative argument it can be inferred that the change of

measure has to be “very small”. Thus the dimension of the measure will not differ “too

much” from four. For the following quantitative analysis we shall calculate corrections

to the best known value of quantum field theory, the anomalous magnetic moment of the
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electron (g-2). From the difference between the theoretic and experimental value of (g-2),

a value for the Hausdorff dimension of space–time can be derived.

Since the mathematics of fractional integration and differentiation can be found in the

literature [see for instance Refs. 16,31–33], we shall just enumerate the results necessary

for further calculations. In what follows, then the following way: assume a symmetric test

function f(k2). Then dαk is defined as∫
f(k2)dαk =

∫
dα−1Ω

∫ ∞
0

f(k2)kα−1dk =
2πα/2

Γ(α/2)

∫ ∞
0

f(k2)kα−1dk. (3.5)

In particular, if f(k2) = [k2 + l2]−n,∫
dαk

[k2 + l2]n
=
πα/2lα−2nΓ(n− α/2)

Γ(n)
. (3.6)

All these integrals are used for dimensional regularization of continuous field theory [see

for instance reference 32]. Their evaluation as well as their application is standard. Since

perturbative calculations are standard as well, we shall not explicate the detailed calcula-

tion of the lowest order contribution to the anomalous magnetic moment of the electron,

derived from a graph shown in Fig. 8. With αf = e2/4π standing for the fine structure

constant, the result is

(g − 2)(α) =
αf
2π
π
α
2−2Γ(3− α

2
). (3.7)

For (g − 2)(α = 4) the expression reduces to the well known standard value of αf/2π. A

theoretical deviation of (g − 2) from the experimentally observed value can be defined as

∆g = (g − 2)theor

∣∣∣
α=4
−(g − 2)exp. (3.8)

We propose that such a deviation, if it exists, could also be explained by changes of the

dimension of the measure and thus the Hausdorff dimension of space–time. The present

best values for ae = (g − 2)/2 are34−38:

aexpe = 1 159 652 193(4)× 10−12
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atheore = 1 159 652 460(128)(43)× 10−12

For the theoretical value, corrections up to fourth order in αf , as well as strong and weak

contributions have been taken into account. It is interesting to note, that the difference

between experimental and standard theoretical value aexpe −atheore = −267(128)(43)×10−12

is larger than two standard deviations. In fact, if this difference in the values is assumed

not merely statistical in nature, and if they are not attributed to other factors [such as

apparatus dependencies36,37 or asymptotic behavior of the perturbation series], one obtains

to first order in ∆α = 4− αH

∆α =
2π

αf

2

C + log(π)
∆g. (3.9)

Here, C ∼ 0.57722 is Euler’s constant. Insertion of ∆g yields an estimate of the dimension

of space–time

αH = 4− 5.3(2.5)(0.8)× 10−7. (3.10)

D. Relativistic invariance of the measure

As in nonrelativistic physics, covariant theories assume Lorentz or Poincare invariance of

the dimension a priori. Since the main objective of an operational definition of the mea-

sure and the dimension is their determination by experiment, the assumption of invariance

under coordinate transformation cannot be taken for granted any longer. The question

arises if ν and α are invariants and if it is possible to formulate covariant theories including

operational dimensions different from four. This is by no means trivial, since other regu-

lators such as a spacial lattice spoils the covariance of relativistic field theory and yields a

preferred frame of reference relative to which the lattice is at rest.

We shall consider an arbitrary covering {Bi} realized in some frame of reference I. For

the evaluation of the diameters (diam Bi), the metric plays a decisive role. For space–

like coverings, the Minkowski metric gµν = diag(+,+,+,−) yields a positive definite
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metric. If instead the covering is time–like, the metric −gµν = diag(−,−,−,+) must be

used. Coverings on the light–cone have to be excluded, since they render zero measure.

With the Minkowski metric, the diameter (diam Bi) is an invariant under the proper

Lorentz group. Since the dimension is [for space–like and time–like regions separately]

invariant with respect to the variation to positive definite equivalent metrices39, it is also

an invariant under proper Lorentz transformations, leaving out reflections from space–like

to time–like surfaces. However, the resolution δ depends on the experimental setup and is

not relativistically invariant. This leaves us with the situation that, although formally the

dimension of space–time is invariant, the particular experiment is not.

E. Hausdorff versus operational dimension

As has been already pointed out, one could take the viewpoint, that an extrinsic quantity

and thus the Hausdorff dimension is “ the real thing”, if such a thing has a meaning

whatsoever. Since its value will probably never be known, we are relegated to what we

can measure. However, throughout this investigation we have encountered two different

approaches to measure the dimension of space–time:

(i) the algebraic approach, utilizing the umklapp property (2.12) of the modified Haus-

dorff measure (2.1), yielding a dimension αop; and

(ii) the analytic approach, yielding an approximation to the Hausdorff dimension of

space–time via the calculation of sensitive radiative corrections. The dimensional

values obtained in that way bear uncertainties similar to the algebraically obtained

values, and are operational as well.

It is possible to establish a criterion to answer the question whether the Hausdorff dimen-

sion of space–time is four: Suppose αH is the Hausdorff dimension of space–time, and

∆αop is the uncertainty in the determination of the operational dimension [this should not

be confused with the expression in (3.10)]. Then a deviation of the external dimension
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from its ideal value of four can be experimentally observed, if the following condition is

satisfied:

| 4− αH |> ∆αop. (3.11)

IV. Conclusion

Throughout this paper it has been avoided on purpose to speculate on reasons why the

Hausdorff dimension of space–time should differ from four [for an interesting suggestion,

see for instance Ref. 40]. In particular, no specific scaling of α(δ) has been proposed,

since this would require a dynamical model. The point rather is: once the dimension is

measureable, then why should it be exactly an integer and four?

Several criteria have been introduced for operational definitions of the dimension of space–

time. The existing mathematical concepts of measure had to be adopted mainly to account

for the finite resolution available in experiments. As could have been expected, there will

always be some uncertainty in the determination of the dimension. Due to the nature

of physically realizeable coverings, the operational dimension will be smaller than the

Hausdorff dimension of space–time .

A smaller Hausdorff dimension of space–time would also result in the resolution of ul-

traviolet divergencies of continuous field theory. Furthermore, it would modify all field

theoretic calculations. Although most transition matrix elements are insensitive with

respect to dimensional variations, comparison between the best experimental values for

the electron anomalous magnetic moment with theoretical predictions gives the value

αH = 4− 5.3(2.5)(0.8)× 10−7.
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We pass the question for further confirmation of noninteger dimensionality of space–time

to experiment. Although this is not everyday laboratory work, it certainly poses new and

interesting challenges.

It is certainly clear to us, that parts of this paper are not presentations of results of research

but rather should be valued as outlining a research programme. We think, that it very

well fulfills the definitions of a progressive scientific research programme in the sense of

Lakatos42. ©
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Figure captions

Fig. 1: One of the many possible coverings {Bi} of a string E. The sets Bi may overlap.

Fig. 2: Definition of a stochastic covering. The state is assumed gaussian and the area

covered depends on the state width as well as on the parameter p in Eq. (2.3):

the smaller p is, the more area is covered.
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Fig. 3: A smeared out Heavyside function may serve as a model for the functional be-

havior of the operational measure ν.

Fig. 4: Cavity with resonant mode and HF-source

Fig. 5: The Koch curve is drawn with increasing resolution δ: more and more structure

appears.

Fig. 6: Packing of the set E from Fig. 1

Fig. 7: Covering generated from the packing of Fig. 6

Fig. 8: Lowest order vertex correction diagram contributing to the electron anomalous

magnetic moment.
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