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New forms of charge shielding are obtained by taking into account the mixing of the phonon and Coulomb fields 
mediated by their electronic polarizability. 

The calculation of  the phonon-e lec t ron  and elec- 
tric charge screening is a standard procedure in many- 
particle physics ,1. However, very little has been pub- 
lished on its exact form and its field theoretic defini- 
tion from renormahzation techniques [2]. A consistent 
evaluation of  charge screening, as it is done in this let- 
ter yields results which cannot be predicted by reason- 
ing based on evidence from classical (not quantized) 
potential theory alone. The notion that a charge is 
shielded by the polarization of  its surrounding charges 
of  the same type has to be refined when more than one 
potential is acting between them. An operational mea- 
surement of  one potential will always be influenced 
by the other interaction (and vice versa). In particular, 
the screening of  one potential will depend on the 
screening of  the other potential. Subtlety lies in the 
complex structure of  quantum field theory with its 
various radiative corrections mixing the fields in such 
a way that it is impossible to redefine the full potential 
as the bare potential divided by a factor (the dielectric 
constant), which will be referred to as multiplicative 
screening. The question then is what is the meaning of  
this type of  charge screening. Renormalization theory 
gives a satisfactory answer. It is the purpose of  this let- 
ter to find new insight into these mechanisms of  charge 
shielding. 

The lagrangian formalism is chosen as a starting 
point for further considerations. To describe the dy- 
namics in solids, the lagrangian density of  the electron 

,1 For a treatment of charge screening see e.g. ref. [1 ]. 
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field ~s(X, t) (s is the spin index), the scalar field of  
the acoustic phonon ¢(x, t) and the (electrostatic) 
Coulomb field q~(x) can be written as [3]: 

L =Lel  + L~o,~ +Lin t , 

Lel(X, t) = ~ ~[(x, t){iO/at - ep)~s(X, t ) ,  
s 

1 L~,e~(x, t) = ~1 [(i~/Ot, V)¢(x,  0]  2 + ~ [V~(x)] 2 

Lint(X, t) = ~ ~ ( x ,  t) ~s(X, t)[gtp(x, t) + e~b(x)] . 
(1) 

After quantization, perturbation theory is applied, and 
the following situation is encountered immediately: 
since the phonon and Coulomb fields couple to the 
charge density of  the electron, polarization diagrams 
with respectively one outgoing phonon leg and one 
outgoing Coulomb leg mix the fields and mediate a 
transition (at least virtual) between each other [4]. 
Therefore a comprehensive treatment must be made. 
It is further assumed that these fields are matrix renor- 
realizable [5]. This means that the following relation 
between bare fields and full fields (indicated by an 
asterisk) can in component  notation be written as 

oi(x, t )=Zi /o;(x ,  t) , (2) 

where we have arranged the fields in vector form o(x, 
t) = (~0(x, t), ¢(x)). Eq. (2) is the defining equation 
for the renormalization matrix Z. In the special case 
where the fields are multiplicative renormalizable 
(which is always assumed without proof  in screening 
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Fig. 1. The irreducible (proper) polarization of the phonon- 
Coulomb system. 

calculations), the nondiagonal terms of  Z vanish. 
We now turn to the explicit evaluation of  Z. From 

eq. (2) the propagator of  the phonon and Coulomb 
field, def'med by Gij = (Toio j ), transforms in matrix 
notation as (t indicates • • * t t ransposmon) G = ZG Z . For 
the model lagrangian density (1) the bare propagator in 
momentum space is o f  diagonal form G(q, ~) 
= diag(G~(q, 6o), G¢(q)) and the irreducible (proper) 
polarization can be written as (see fig. 1) 

II(q, w) = P(q, ~) 
eg e 2 

From Dyson's equation for the full propagator G *-1 
= G -1 _ II, G* can be computed explicitly (det = 1 
- {g2Go + e2Go}P): 

-e2G4rP)G~ egG~PG4~ 1 ( 3 )  

F k (1 egG~PGo (1 -g2G~oP)Ge~]" 
G* det-1 

The renormalization matrix Z can be evaluated from 
the scaling law of  the propagator. Its components are 
not  uniquely defined and a block form can be assum- 
ed such that  Z21 vanishes: 

(1 - g2 Gw_p)tl2 -egG gP 
(1 - g2G ~p)I/2 

Z = (4) 
det ~1/2 

o (1 

Eq. (4) has two limits: 
(i) for such strong-coupling materials where e • g, 

Z is given by Z = diag((l - g2Ggp)112, 1) in agreement 
with previous results [4], and 

(ii) for e >>g, Z is given by Z = diag(1, (1 
- e2Gcp)I/2),  which yields just the usual screening of  

the Coulomb potential [1]. We now turn to the scaling 
of  the electron field ~k, the vertex part P and the charges 
The charges, in analogy to the Bose fields, have to be 
arranged in a vector form Q = (g, e) t. The complete 
set of  Dyson's equations (see refs. [2,4]) is invariant 
under the transformation (2) and 

= z ~  ~ * ,  (Sa) 

I" = ( Z r ) - I  , (5b) 

Q = Zr(Z  ~ ) -2  (Z t ) - I  Q * .  (5 c) 

For any perturbative calculation this enables us to 
write the full fields and charges in terms of  the bare 
fields and the screened (renormalized) charges, in 
which all the scaling factors have been absorbed, there- 
by taking into account all radiative corrections. 

Eq. (5c) defines the screening of  the charges. In 
what follows we assume that ( Z ¢ ) - 2 Z  r is of  the or- 
der of  unity [2,4]. Due to the block form of  Z only 
g screens multiplicatively: Z l l g  = g*. In the following 
g* is identified with the coupling constant go measur- 
ed from "far away" such that  screening effects are 
negligible. This leads to charge screening of  the 
Feynman-Stueckelberg type (here t~g = g2/4n): 

Ctg(q, 6o) = ag o [eg(q, w) ,  

eg(q, w) = 1 -- 41rC~goG~o(q, w)P(q, ~ ) .  (6) 

From eq. (5c) it can be easily seen that in this scheme 
of  renormalization the screening of  the electric cou- 
pling constant is of  nonmult!pllcative character (only 
reducing to its standard form if e >> g) and cannot be 
written in a closed form as in (6). 

Since q~(x) is independent of  t, the lagrangian den- 
sities L~o,~ and Lin t are invariant under an orthogonal 
rotation of  the fields (and the charges) into two new 
fields p = (~', ~): o = R o p with 

cos 0 sin 0 
R 0 = ~. 

- s i n O  c o s O /  

IfO = arctan(e/g) the fields in O decouple and become 
multiplicative renormalizable. From eq. (2) the rela- 
tion between the associated diagonal matrix Y( for  O) 
and Z can be obtained: Z = R_ o YRo,.  On equating 
coefficients one obtains 

Z2 2 _g* sin 0 cos 0 . 
g sin O* cos O* 
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Fig. 2. The static dielectric functions eg(X, 0) and eh(x, 0) as 
a function of momentum in units of 2k F./3 = y = 1. 

After defining an effective charge h by 

_ g 

h s in0  cos0  (7) 

and using the multiplicative scaling of  the Coulomb 
propagator G¢ = (Z22)2G~2 (that  is due to the block 
form of  Z) ,  a multiplicative scaling for h is obtained 
(ah = h2/47r): 

eg(x, O) = 1 +/3p(x, 0) ,  

1 7p(x, O) 
eh(X, O)= 1 + 

x 2 1 +/3p(x, 0 ) '  

1 l + x  
p(x, 0) = 1 + ~ ( 1  - - x 2 )  ln 1 - x " (9) 

Similarly, tire investigation of dynamical screening 
can be performed by inserting pf0)(q, 03) into eqs. 

(6) and (8). 
The advantage of the outlined approach is a consis- 

tent t reatment of  the shielding mechanism for charge 
screening when two or more potentials couple to the 
same fermionic current. Usually it is impossible to 
redefine the fields and charges in such a way that their 
screening is factorizable. For  the quite general form of  
the lagrangian density (1) however, two charges can 
be defined which, due to the block form of  the re- 
normalization matrix, screen multiplicatively. 
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O~h(q, 03) = Otho/eh(q, 03), References 

e2Go(q)P(q, 03) 
eh(q, 03) : 1 -- 1 -- 4¢r~goG0(q , co)P(q, 03) " (8) 

Fig. 2. shows the static dielectric functions eg(X, 0) and 
eh(X, 0) as a function o f  the momentum in units o f  
twice the Fermi momentum x = Iq l/2k F. For  the 
proper  polarization term its lowest order contr ibut ion 
P(O)(x, 0) (known as the RPA) was inserted [6] (/3 

= (mel/rr2)(kF/w2)g2 and T = (mel/27rkF)e2) 

[1 ] G.D. Mahan, Many-particle physics (Plenum, New York, 
1981) pp. 448f, 544 553. 

[2] V.L. Bonch-Bruevich and S.V. Tyablikov, The Green func- 
tion method in statistical mechanics (North-Holland, 
Amsterdam, 1962) pp. 68-84. 

[3] Y. Nambu, Phys. Rev. 117 (1960) 648. 
[4] K. Svozil, LBL-preprint 16305 (June 1983), to be pub- 

lished in Phys. Rev. B. 
[5] L Baulieu and R. Coqueraux, Ann. Phys. 140 (1982) 163. 
[6] L. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 28 

(1954) No. 8. 

266 


