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Abstract

Classical Pitowsky correlation polytopes with particular emphasis on the
Minkowski-Weyl representation theorem are reviewed. A numerical study of the
generation of optimal Boole-Bell type inequalities for arbitrary experimental se-
tups is presented. These inequalities represent the faces of classical Pitowsky
correlation polytopes [1, 2], which are based on the“conditions of possible ex-
perience”stated by George Boole in the 19th century[3]. We introduce CddIF, a
Mathematicapackage created as an interface betweenMathematicaand thecdd
program by Komei Fukuda[4], which represents a highly efficient method to solve
the hull problem for general classical correlation polytopes.
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1 Boole-Bell Type Inequalities And Their Geometric
Representation

In the middle of the 19th century the English mathematician George Boole formulated
a theory of ”conditions of possible experience” [5, 3, 6, 1, 7]. These conditions are re-
lated to relative frequencies of logically connected events and are expressed by certain
equations or inequalities. More recently, similar equations for a particular setup which
are relevant in the quantum mechanical context have been discussed by Clauser and
Horne and others [8, 9, 10]. Pitowsky has given a geometrical interpretation in terms
of correlation polytopes [11, 1, 2, 7].

1.1 Simple urn model

Consider an urn containing some balls of different colors and styles: Each ball can be
described by two properties, let us say ”yellow” and ”wooden”, so each ball can have
the property ”yellow” or the property ”wooden”, but it can also have both - ”yellow and
wooden”. The state of the urn can be given by the probabilities to draw a ball with one
of these properties:p1 is the proportion of yellow balls in the urn,p2 the proportion of
wooden ones andp12 denotes the proportion of yellow and wooden balls. If there are
enough balls in the urn these proportions are in fact the probabilities to get a ball with
the special property by drawing. Clearly the inequalities

0≤ p12≤ p2 ≤ 1 and 0≤ p12≤ p1 ≤ 1 (1)

are fulfilled by the proportions and sop1, p2 and p12 can be seen as probabilities of
two events and their joint event only if these inequalities are satisfied. Simply by taking
some appropriate numbers (p1 = 0.6,p2=0.72 andp12=0.32) we can see, that equations
(1) are not sufficient. If we take the probability to draw a ball which is either yellow
or wooden (p1 + p2 - p12) into consideration, a new inequality can be found that is not
satisfied by the numbers chosen:

0≤ p1 + p2− p12≤ 1 (2)

It can be shown that the inequalities (1) and (2) are necessary and sufficient for the
numbersp1, p2 andp12 to represent probabilities of two events and their joint [1].

1.2 Geometrical interpretation

Itamar Pitowsky [11, 1, 2, 7] has suggested a geometric interpretation. Let us take
the set of all numbers (p1, p2, p12) satisfying the inequalities stated above as a set
of vectors in a three-dimensional real space. This procedure yields a closed convex
polytope with vertices (0,0,0), (1,0,0), (0,1,0) and (1,1,1) (cf. Figure 1). The extreme
points (vertices) can be interpreted as follows:
(0,0,0) is a case where no yellow and no wooden balls are in the urn at all,
(1,0,0) is representing the configuration that all balls are yellow and no one is wooden.
(0,1,0) is representing the configuration that all balls are wooden and no one is yellow.
(1,1,1) is a case with only yellow and at the same time wooden balls.
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Figure 1: Polytope associtated with the urn model

1.3 Minkowski-Weyl representation theorem

The Minkowski-Weyl representation theorem (e.g., [12, p. 29]) states that compact
convex sets are “spanned” by their extreme points; and furthermore that the represen-
tation of this polytope by the inequalities corresponding to the planes of their faces is
an equivalent one.

Stated differently, every convex polytope in an Euclidean space has a dual descrip-
tion: either as the convex hull of its vertices (V-representation), or as the intersection of
a finite number of half-spaces, each one given by a linear inequality (H-representation)
This equivalence is known as theWeyl-Minkowskitheorem.

The problem to obtain all inequalities from the vertices of a convex polytope is
known as thehull problem. One solution strategy is the Double Description Method
[13] which we shall use but not review here.

1.4 From vertices to inequalities

For the above simple urn model, the inequalities are rather intuitive and can be easily
obtained by guessing. This is impossible in the general case involving more events and
more joint probabilities thereof. In order to obtain the relevant inequalities—Boole’s
“conditions of possible experience”—we have to find a hopefully constructive way to
derive them.

Recall that a vector is an element of the polytope if and only if it can be represented
as a certain bounded convex combination, i.e., a bounded linear span, of the vertices.
More precisely, let us denote theconvex hullconv(K) of a finite set of pointsK =
{x1, . . . ,xn} ∈ Rd by

conv(K) =

{
λ1xi + · · ·+λnxn

∣∣∣ n ≥ 1,λi ≥ 0,
n

∑
i=1

λi = 1

}
. (3)

In the probabilistic context, the coefficientsλi are interpreted as the probability that the
event represented by the extreme pointxi occurs, wherebyK represents the complete
set of all atoms of a Boolean algebra. The geometric interpretation ofK is the set of all
extreme points of the correlation polytope.

In summary, the connection between the convex hull of the extreme points of a
correlation polytope and the inequalities representing its faces is guaranteed by the
Minkowski-Weyl representation theorem. A constructive solution of the corresponding
hull problem exists (but is NP-hard [2]).

For the special urn model introduced above this means that any three numbers (p1,
p2 andp12) must fulfill an equation dictated by Kolmogorov’s probability axioms [14]:

(p1, p2, p12)= λ1(0,0,0)+λ2(0,1,0)+λ3(1,0,0)+λ4(1,1,1)= (λ2+λ4,λ3+λ4,λ4).
(4)
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It is important here to realize that these logical possibilities are exhaustive, That is, by
definition, there cannot be any other classical case which is not already included in the
above possibilities(0,0,0),(1,0,0),(0,1,0),(1,1,1). the third “component bit” of the
vector is a function of the first components. Actually, the function is a multiplication,
since we are dealing with the classical logical “and” operation here. (If one or more
cases are omitted, the corresponding polytope would not be optimal; i.e., it would be
embedded in the optimal one.) Therefore, any “state” of a physical system represented
by a probability distribution has to satisfy the constraint

λ1 +λ2 +λ3 +λ4 = 1. (5)

The extreme casesλi = 1,λ j = 0 for i ∈ {1,2,3,4} and j 6= i just correspond to the
vertices spanning the classical correlation polytope as the convex sum (3).

A generalization to arbitrary configurations is straightforward. To solve the hull
problem for more general cases, an efficient algorithm has to be used. There are some
algorithms to solve this problem, but they run in exponential time in the number of
events, thus it can be solved only for small enough cases to get a solution in conceivable
time.

1.5 From inequalities to vertices

Conversely, a vector is an element of the convex polytope if and only if its coordinates
satisfy a set of linear inequalities which represent the supporting hyper-planes of that
polytope. The problem to find the extreme points (vertices) of the polytope from the
set of inequalities is dual to the hull problem considered above.

1.6 Quantum mechanical context

In the quantum mechanical case the elementary irreducible events are clicks in particle
detectors and the probabilities have to be calculated using the formalism of quantum
mechanics.

Figure 2: Experimental setting to test the violation of Boole - Bell type inequalities

As an example we take a source that produces pairs of spin-1
2 particles in a singlet-

state (|ψ〉= 1√
2
(| ↑↓〉− | ↓↑〉)). The particles fly apart along the z axis and after the

particles have separated, measurements on spin components along one out of two di-
rections are made. If, for simplicity, the measurements are made in the x-y plane
perpendicular to the trajectory of the particles, the direction of the measurement can
be given by angles measured from the vertical x axis (α1 andα2 on the one side,β1

andβ2 on the other side). On each side the measurement angle is chosen randomly
for each pair of incoming particles and each measurement can yield two results - inh̄

2
units: “+1” for spin up and “-1” for spin down (cf. Figure 2).
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Deploying this configuration we get probabilities to find a particle measured along
the axis specified by the anglesα1, α2, β1 andβ2 either in spin up or in spin down state
- denoted aspa1, pa2, pb1, pb2 - and we also take the joint event of finding a particle on
one side at the angleα1 (α2) in a specific spin state and the other particle on the other
side along the vectorβ1 (β2) in a specific spin state, denoted aspa1b1, pa2b1, pa1b2 and
pa2b2. T o construct the convex polytope to this experiment we build up a truth table
of all possible events using a “1” as “spin up is detected along the specific axis” and a
“0” as “spin down is detected along the specific axis” (table 1). The rows of this table

α1 α2 β1 β1 α1β1 α1β2 α2β1 α2β2

0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0
1 1 1 0 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0
0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1

Table 1: Truth table for four propositions

are then identified with the vertices of the convex polytope. By using the Minkowski-
Weyl theorem and by solving the hull problem, the vertices determine the hyper-planes
confining the polytope, i.e. the inequalities which the probabilities have to satisfy. As
a result the following inequalities are gained:

0≤ paibi ≤ pai ≤ 1,0≤ paibi ≤ pbi ≤ 1 i = 1,2
pai + pbi− paibi ≤ 1 i = 1,2

(6)

−1≤ pa1b1 + pa1b2 + pa2b2− pa2b1− pa1− pb2 ≤ 0
−1≤ pa2b1 + pa2b2 + pa1b2− pa1b1− pa2− pb2 ≤ 0
−1≤ pa1b2 + pa1b1 + pa2b1− pa2b2− pa1− pb1 ≤ 0
−1≤ pa2b2 + pa2b1 + pa1b1− pa1b2− pa2− pb1 ≤ 0

(7)

The last four inequalities are known asClauser-Horne inequalities. As noticed
above the probabilities have to be seen in a quantum mechanical context. If we consider
the singlet state of spin-1

2 particles|ψ〉 = 1√
2
(| ↑↓〉− | ↓↑〉) it is well known that the

probability to find the particles both either in spin up or in spin down states is given
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by P↑↑(θ) = P↓↓(θ) = 1
2sin2(θ/2) - whereθ is the angle between the measurement

directions. The single event probability is clearlypi = 1
2. By choosing

a1 =−π
3

a2 = b1 =
π
3

b2 =
π
3

(8)

as measurement directions, we get forp= (pa1, pa2, pb1, pb2, pa1b1, pa2b1, pa1b2, pa2b2):

p = (
1
2
,
1
2
,
1
2
,
1
2
,
3
8
,
3
8
,0,

3
8
) (9)

and one of the inequalities found in (7) is violated:

pa1b1 + pa1b2 + pa2b2− pa2b1− pa1− pb2 =
3
8

+
3
8

+
3
8
−0− 1

2
− 1

2
=

1
8

> 0 (10)

The generalization is straightforward. Violations of certain inequalities involving
classical probabilisties—Boole’s “conditions of possible experience” [3]—also appear
in higher dimensions in configurations containing more particles and/or more measure-
ment directions. We shall consider more examples below.

2 Installation

2.1 Mathematica

All functions described in the following section can be found in theMathematica-
packagecddif.m. In general this package has to be loaded into the currentMathematica-
kernel by the command<<’path to cddif.m’ /cddif.m , short description and
usage of the functions is available by entering?’<function>’ .

To guarantee a proper run of all functions it is necessary (and hopefully suf-
ficient) that cdd is located in any directory listed in the PATH-variable (usually
/bin, /usr/bin, /usr/local/bin, . . . )1 or in the current working directory, which can be
shown by evaluatingDirectory[] or changed using the functionSetDirec-
tory [ directory String] . If you like to avoid the frequent use of this function you
can append this command to the package-filecddif.mbefore the lineEnd[] so that on
each loading of the package the directory is set automatically to your personal working
directory.

2.2 cdd

cdd is a C++ (ANSI C) implementation of the Double Description Method [13] for
generating all vertices (i.e. extreme points) and extreme rays of a general convex poly-
hedron given by a system of linear inequalities and the dual problem of generating a
system of linear inequalities given all vertices by Komei Fukuda[4].

At this point I only refer to the documentation of the program
for the installation of the cdd - package, in particular to the file

1for setting environment variables look at the manual ofsetor env
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cdd.readme included in the package and to the online documentation at
http://www.ifor.math.ethz.ch/˜afukuda/cddman/cddman.html. cdd is available
for free and you can download it from the homepage of Komei Fukuda[4]
(http://www.ifor.math.ethz.ch/˜fukuda/cddhome/cdd.html), where you can also
find a manual to the usage ofcdd , especially descriptions to the format of the input-
and output-files and to options that can be passed tocdd .

2.3 Installation on windows-platforms

cdd is available to compile on UNIX-like systems, to runcdd on Windows - systems
you can either try to compile it in Windows2 or look somewhere else, if anybody has
already done this work . Currently a version runnable on Windows platforms ofcdd
can be downloaded from http://tph.tuwien.ac.at/˜svozil/cdd/cdd.exe. (a different com-
pilation is at http://www.wis.kuleuven.ac.be/wis/algebra/kathleen/files/cdd061.exe).
On Windows-systemsMathematicamust be able to findcdd in a directory listed in
the PATH-variable or in the current working directory, too. To set the PATH-variable
in Windows 2000/NT go to the “control panel” and click on the “system properties”,
then click “advanced” and there is a place where the variable PATH is specified. Here
you can add your path tocdd (separated by a semicolon). In WindowsME you need
to go execute “msconfig” to get to the System Configuration Utility - in “Environ-
ment” you can edit the PATH-variable and for Windows98/95 you must edit the file
“autoexec.bat”to get the path set.
Finally it can be necessary to rename thecdd - executable file (e.g. fromcdd061.exe)
to cdd.exe. The CddIF-Package usescdd as default command to runcdd , using
the functionSetCddCmd [ cmd String] you can change this behavior. Like already
stated above you can also add this commandline to the package-filecddif.mjust before
theEnd[] -statement to change the default command automatically when loading the
package.

3 Description Of Functions

In this section all functions of theCddIF - package are listed. For each function the
syntax including the necessary parameters (if parameters are optional, it has an “opt: ”
as prefix), a description and an example is given.

3.1 CddFormat

CddFormat [ vertices,opt: options]

vertices (List): List of m vertices in n dimensions of the form

{{x11, x12,..., x1n}, {x21,..., x2n},..., {xm1, xm2,..., xmn}}
2the manual says: “The program cdd.c is written in ANSI C, and thus it should run on personal computers

without any changes if one uses a compiler supporting ANSI standard.”
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options (List): Options to cdd (e. g. adjacency, nondegen-
erate, minindex,...) - see documentation to cdd
(http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

Description: A list of vertices, which can be determined for example by
TruthTable [ ...,IncludeVars→False] , are converted to a format recognized bycdd .
Additionally options tocdd can be declared.

Example:

In[]= CddFormat [ {{1,0,0},{0,1,0},{1,1,1}}]

Out[]= {V-representation begin, {3, 4, integer },
{1, 1, 0, 0 }, {1, 0, 1, 0 }, {1,1, 1, 1 },
end}

3.2 ToCddExtFile

ToCddExtFile [ file,vertices,opt: options] or
ToCddExtFile [ file,particles,measurements,opt: options]

file (String): Filename for output of H-representation (“.ext” -suffix is automatically ap-
pended)

vertices (List): List of m vertices in n dimensions of the form

{{x11, x12,..., x1n}, {x21,..., x2n},..., {xm1, xm2,..., xmn}}

options (List): Options to cdd (e. g. adjacency, nondegen-
erate, minindex,...) - see documentation to cdd
(http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

Description: Creates a file with“.ext” -extension that contains the data of the given
configuration to use incdd . Eighter a list of vertices of the considered correlation
polytop or the number of particles used and the possible measurements to each can be
handed over. In the latter case the list of vertices is generated automatically.

Example:

In[]= ToCddExtFile [ “test”,2,3 ]

Out[]= test.ext
writes the file“test.ext” to the current working directory, containing the vertices
of the 2-particles 3-measurements configuration.
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3.3 TruthTable

TruthTable [ particles,measurements,opt: options]

particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

opt: options: The only possible option isIncludeVars → True/False . If In-
cludeVars → True is defined, the function includes a list of variables be-
longing to the given configuration as titles of the columns and output will be
made inMatrixForm , otherwise a list containing all vertices is returned. De-
fault is IncludeVars → True .

Description: Creates a truth table of the given configuration, containing all vertices
of the corresponding correlation polytopes. For generating this table all possible single
events are rated eighter 0 or 1 (i. e. true or false) and the joint events are evaluated
using the logicalANDoperation.

Example:

In[]= TruthTable [ 2,2 ]
Out[]=

a1 a2 b1 b2 a1b1 a1b2 a2b1 a2b2
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0
0 1 1 0 0 0 1 0
1 1 1 0 1 0 1 0
0 0 0 1 0 0 0 0
1 0 0 1 0 1 0 0
0 1 0 1 0 0 0 1
1 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
1 0 1 1 1 1 0 0
0 1 1 1 0 0 1 1
1 1 1 1 1 1 1 1

3.4 RunCdd

RunCdd [ file]

file (String): File handed over tocdd as command parameter (automatically extended
with “ext.” -suffix.
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Description: RunCdd [ ...] executescdd (with file as parameter) and returns the
corresponding H-representation, which can be used in various other functions like
PlotInequalities [ . . .] or GetViolInequalities [ . . .] .
Using this function you have to pay attention to the potentially long runtime in cal-
culating the faces (i. e. the inequalities) of the correlation polytope. It can be more
beneficial to useToCddExtFile [ file,...] to create a“.ext” -file, followed by exe-
cuting cdd outside ofMathematica(eventually on a faster computer) to convert the
date to H-representation stored in an“.ine” -file. Afterwards you can read in this file
utilizing ReadInHRep [ file]

Example:

In[]= RunCdd [ “test” ]

Out[]= {{H-representation }, {begin }, {684,16,real }, {2,0,-
2,.... },...., {end}},
whereas 2-particles 3-measurement configuration is taken into consideration
here.

3.5 ShowVRep

ShowVRep [ particles,measurements]

particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

Description: Shows the V-representation of a given configuration.

Example:

In[]= ShowVRep [ 2,2 ]

Out[]= {V-representation
begin,
{16, 9, integer },
{1, 0, 0, 0, 0, 0, 0, 0,0 }, {1, 1, 0, 0, 0, 0, 0, 0,
0},
{1, 0, 1, 0, 0, 0, 0, 0, 0 }, {1, 1, 1, 0, 0, 0, 0, 0,
0},
{1, 0, 0, 1, 0, 0, 0, 0, 0 }, {1, 1, 0, 1, 0, 1, 0, 0,
0},
{1, 0, 1, 1, 0, 0, 0, 1, 0 }, {1, 1, 1, 1, 0, 1, 0, 1,
0},
{1, 0, 0, 0, 1, 0, 0, 0, 0 }, {1, 1, 0, 0, 1, 0, 1, 0,
0},
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{1, 0, 1, 0, 1, 0, 0, 0, 1 }, {1, 1, 1, 0, 1, 0, 1, 0,
1},
{1, 0, 0, 1, 1, 0, 0, 0, 0 }, {1, 1, 0, 1, 1, 1, 1, 0,
0},
{1, 0, 1, 1, 1, 0, 0, 1, 1 }, {1, 1, 1, 1, 1, 1, 1, 1,
1},
end}

3.6 ConvToHRep

ConvToHRep [ particles,measurements,opt: file,opt: options] or
ConvToHRep [ vertices,opt: file,opt: options]

particles (Integer): Number of particles

measurements (Integer): Number of possible measurements to each particle (equivalent
to number of detection angles)

vertices (List): List of m vertices in n dimensions of the form

{{x11, x12,..., x1n}, {x21,..., x2n},..., {xm1, xm2,..., xmn}}

file (String): Filename that is used for the conversion from a“.ext” -file to a“.ine” -file
which is equivalent to a conversion from V-representation to H-representation.
Default is“tmp” .

options (List): Options tocdd (e. g.adjacency, nondegenerate, minindex,...) - see doc-
umentation tocdd (http://www.ifor.math.ethz.ch/ fukuda/cddman/cddman.html)

Description: This function converts a given configuration (n particles, m Measure-
ments) or a given list of vertices from V-representation into a H-representation. Like
above3.4 the potentially long calculation time has to be taken into consideration, de-
pending on the complexity of the problem.

Example:

In[]= ConvToHRep [ 2,3,”2 3” ]

Out[]= {{H-representation }, {begin }, {684, 16,real }, {2,
0,... }..., {end}},
wheras in this case the files“2 3.ext” (created byMathematicacontaining the
data forcdd ) and “2 3.ine” (created bycdd as result of the calculation) are
generated in the current working directory.

3.7 ReadInHRep

ReadInHRep [ file]

file (String): ”.ine” - file containing the H-representation which is to be read in.
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Description: Reads the H-representation from a given“.ine” -file for further use
in various functions likeGetViolInequalities [ . . .] or PlotInequali-
ties [ . . .] .

Example:

In[]= ReadInHRep [ “2 3” ]

Out[]= {{H-representation},{begin},{684, 16,real},{2, 0,...}...,{end}}

3.8 GetInequFromHRep

GetInequFromHRep [ hrep]

hrep (List): H-representation yielded for example from the functionRead-
InHRep [ . . .] or ConvToHRep [ . . .] .

Description: Returns the inequalities from a given H-representation as a list. To
make the list more readable you can applyInequToRead [ . . .] on it.

Example:

In[]= GetInequFromHRep [ConvToHRep [ 2,1] ]

Out[]= {{a1 - a1b1 + b1, 1 }, {-a1 + a1b1, 0 }, {a1b1 - b1,
0}, {-a1b1, 0 }}

3.9 InequToRead

InequToRead [ inequalities]

inequalites (List): List of inequalities yielded fromGetInequFromHRep [ . . .]

Description: Makes the list of inequalities yielded from
GetInequFromHRep [ . . .] more readable.

Example:

In[]= InequToRead [GetInequFromHRep [ConvToHRep [ 2,1] ] ]

Out[]= a1−a1b1+b1≤ 1
−a1+a1b1≤ 0
a1b1−b1≤ 0
−a1b1≤ 0
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3.10 GetViolInequalities

GetViolInequalities [ hrep, angles, functions, inequ-nr,violation] or
GetViolInequalities [ file, angles, functions, inequ-nr,violation,opt: options]

hrep (List): H-representation yielded for example from the functionRead-
InHRep [ . . .] or ConvToHRep [ . . .] .

file (String): File containing the demanded H-representation incdd format.

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If you choose the configuration “2
particles - 2 measurements” the list must have the dimension[2,2] , in this
case the particles a and b are measured each along two axis given by the angles
a1, a2, b1 andb2, so this parameter has the form{{a1 , a2} , {b1 , b2}}.

functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin-1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
is given byP↑↑(θ,φ) = P↓↓(θ,φ) = 1

2 sin2[ (θ−φ)
2 ], whereθ andφ are the measure-

ment angles of the particles.
In defining these functions you have to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.Prob[ {x ,y }]= 1

2Sin[(x - y)/2] 2).

inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is{min,max } oderAll .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options can bePrintOut → True/False , which specifies, if the
inequalities are printed out during evaluation or not.

Description: GetViolInequalities [ . . .] calculates the discrepancy of in-
equalities using the given probability functions and therefore the quantum mechanical
violation for a distinct adjustment (i. e. special angles) of the detectors and returns all
violated inequalities.

Example:

In[]= GetViolInequalities [ConvToHRep [ 2,2] ,{{- π
6 ,0},{0,π

6}},Prob]

Out[]= (-a1b1+a1b2+a2-a2b1-a2b2+b1 ≤1 9
8)

The probability for the single event of measuring one particle in spin “up” or
spin “down” at any angle is given byProb[ {x }]= 1

2 and the probability of the
joint event has been calculated byProb[ {x ,y }]= 1

2Sin[(x - y)/2] 2.
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3.11 PlotInequalities

PlotInequalities [ hrep, range, angles, functions,opt: options] or
PlotInequalities [ file, range, angles, functions, inequ-nr,violation,opt: options]

hrep (List): H-representation yielded for example from the functionRead-
InHRep [ . . .] or ConvToHRep [ . . .] .

file (String): File containing the demanded H-representation incdd format.

range (List): Parameter specifying the range for the variable x, which is plotted on
the horizontal axis. It has the form{x , xmin , xmax}(seeMathematicafunction
Plot [ . . .] )

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If you choose the configuration “2
particles - 2 measurements” the list must have the dimension[2,2] , in this
case the particles a and b are measured each along two axis given by the angles
a1, a2, b1 andb2, so this parameter has the form{{a1 , a2} , {b1 , b2}}.

functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin-1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
is given byP↑↑(θ,φ) = P↓↓(θ,φ) = 1

2 sin2[ (θ−φ)
2 ], whereθ andφ are the measure-

ment angles of the particles.
In defining these functions you have to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.Prob[ {x ,y }]= 1

2Sin[(x - y)/2] 2).

inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is{min,max } oderAll .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options for theMathematica- functionPlot [ . . .] can be handed over.

Description: This function yields a plot of (violated) inequalities, whereas the func-
tion plotted isf (x) = p(x)−b derived from the inequalites of the formp(x)≤ b (p(x) is
a linear combination of functions to calculate the probabilities of (joint) events, depen-
dent on one variable). Consequently the degree of violation is represented as a positive
value of f (x).

Take for example the case “2 particles - 2 measurement directions”, where the
inequality

−pa1b1 + pa1b2 + pa2− pa2b1− pa2b2 + pb1 ≤ 1
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appears. The probability for the single event of measuring one particle in spin “up” or
spin “down” at any angle is given by

pa1(x) = pa2(x) = pb1(x) = pb2(x) =
1
2

and the probability of the joint event can be calculated by

pa1b1(x,y) = pa2b1(x,y) = pa1b1(x,y) = pa2b2(x,y) =
1
2

sin[(x− y)/2]2.

If we define the measurement angles by

a1 =−π
3

+x a2 = b1 = 0 b2 = 2∗π

the inequality can be written as

1+
1
2

sin
1
2
(−π

3
−x)− sinx

2
− 1

2
sin

1
2
(−π

3
+x)≤ 1

The left side is dependent on x (p(x) = 1+ 1
2 sin1

2(−π
3 −x)− sinx

2 − 1
2 sin1

2(−π
3 +x))

andb = 1. The function to be plotted isf (x) = p(x)−b, thus

f (x) = 1+
1
2

sin
1
2
(−π

3
−x)− sinx

2
− 1

2
sin

1
2
(−π

3
+x)−1

Example:

In[]= PlotInequalities [ConvToHRep [ 2,2] ,{x,0,π},{{- π
3 +

x,0},{0,2x}},Prob]

Out[]=

The functions to calculate the probabilities have been defined as
Prob[ {x }]:= 1

2 for a single event andProb[ {x ,y }]:= 1
2Sin[(x -

y)/2] 2 for two-particle events.

3.12 ContPlotInequalities

ContPlotInequalities [ hrep, rangex, rangey, angles, func, ineq-
nr,violation,opt: options] or

ContPlotInequalities [ file, rangex, rangey, angles, func, ineq-
nr,violation,opt: options]

hrep (List): H-representation yielded for example from the functionRead-
InHRep [ . . .] or ConvToHRep [ . . .] .
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rangex (List): Parameter specifying the range for the variable x, which is plotted on
the horizontal axis. It has the form{x , xmin , xmax}(seeMathematicafunction
Plot [ . . .] )

rangex (List): Parameter specifying the range for the variable y, which is plotted on
the vertical axis. It has the form{y , ymin , ymax}(seeMathematicafunction
Plot [ . . .] )

angles (List): List of measurement angles for each particle, whereas the dimension of
the list must represent the configuration. If you choose the configuration “2
particles - 2 measurements” the list must have the dimension[2,2] , in this
case the particles a and b are measured each along two axis given by the angles
a1, a2, b1 andb2, so this parameter has the form{{a1 , a2} , {b1 , b2}}.

functions (Symbol): Functions to calculate the quantum mechanical probability of the
events. Considering for example two spin-1

2 particles in a singlett state, the prob-
ability to find the particles both either in spin “up” or both in spin “down” states
is given byP↑↑(θ,φ) = P↓↓(θ,φ) = 1

2 sin2[ (θ−φ)
2 ], whereθ andφ are the measure-

ment angles of the particles.
In defining these functions you have to notice, that for all possible events (sin-
gle events, two-particle-events,. . . ) an apropriate function definition has to exist,
each taking a list as parameter (e.g.Prob[ {x ,y }]= 1

2Sin[(x - y)/2] 2).

inequ-nr (List): Range of rows in H-representation used for checking violated inequal-
ities. Specifying this can be useful, if many inequalities have to be evaluated.
The form of the parameter is{min,max } oderAll .

violation (Real): Only inequalities are printed out, that are violated more than this pa-
rameter. Default value is 0.

opt: options: Options for theMathematica-functionPlot [ . . .] can be handed over.

Description: Like the function PlotInequalities [ . . .] Cont-
PlotInequalities [ . . .] yields a graphical representation of the violation
of Boole-Bell type inequalities, but in this case the functions are dependant on two
variables: f (x,y) = p(x,y)− b derived from p(x,y) ≤ b, where p(x,y) is a linear
combination of functions to calculate the probability for single or joint events. Like in
the description of thePlotInequalities [ . . .] -function we take the “2 particles
- 2 measurement directions”, the only difference is the selection of the measurement
angles:

a1 = x a2 = b1 = 0 b2 = y

Thus the functionf (x,y) is now given by

f (x,y) = 1− 1
2

sin
x
2

+
1
2

sin
x−y

2
− 1

2
sin

y
2
−1

and can be plotted as contour plots. A higher level of violation is represented by a
darker contour layer.
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Example:

In[]= ContPlotInequalities [ConvToHRep [ 2,2] ,{x,0,π},{y,0,π},{{x,0},{0,y}},Prob,All]

Out[]=

The functions to calculate the probabilities have been defined as
Prob[ {x }]:= 1

2 for a single event andProb[ {x ,y }]:= 1
2Sin[(x -

y)/2] 2 for two-particle events.

3.13 Cdd

Cdd [ values,opt: command ]

values (List): Data handed over tocdd in an input-file. Each element of the list must
be a string and represents a row in the output-file.

opt: command (String): Command to be executed on the generated output-file (default
is “cdd” - the default value can be changed utilizing the functionSetCd-
dCmd [ newcommand String] ). Here you can specify for example “cddf” or
“cddr”.

Description: Simple Interface to runcdd in Mathematica. The current version can-
not distinguish, whethercdd has produced correct output or not, so you have to pay
attention while using this function.

Example:

In[]= Cdd [ {“H-Representation”,“begin”,“6 4 real”,“2 -1 0 0”,“2 0 -1 0”,“-1 1 0 0”,“-1 0 1
0”,“-1 0 0 1”,“4 -1 -1 0”,“end”}]

Out[]= {{“*”, “cdd:”, “Double”, “Description”, “Method”, “C-Code:Version”,
“0.61b”, “(November”, 29, “1997)”}, {“*”, “Copyright”, “(C)”, 1996, “Komei”,
“Fukuda,”, “fukuda@ifor.math.ethz.ch”}, {“*Input”, “File:tmp.ine”, “(”, 6, “x”,
“4)” }, {“*HyperplaneOrder:”, “LexMin”}, {“*Degeneracy”, “preknowledge”,
“for”, “computation:”, “None”, “(possible”, “degeneracy)”}, {“*Vertex/Ray”,
“enumeration”, “is”, “chosen.”}, {“*Computation”, “completed”, “at”,
“Iteration”, 6.}, {“*Computation”, “starts”, “at”, “Thu”, “Mar”, 22, “18:48:36”,
2001}, {“*”, “terminates”, “at”, “Thu”, “Mar”, 22, “18:48:36”, 2001},
{“*Total”, “processor”, “time”, “=”, 0, “seconds”}, {“*”, “=”, 0, “hour”, 0,
“min”, 0, “sec”}, {“*FINAL”, “RESULT:” }, {“*Number”, “of”, “Vertices”,
“=”, 4, “Rays”, “=”, 1}, {“V-representation”}, {“begin”}, {5, 4, “real”}, {1, 2,
1, 1}, {1, 1, 1, 1}, {1, 1, 2, 1}, {1, 2, 2, 1}, {0, 0, 0, 1}, {“end”}, {“hull” }}
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4 Examples

These two examples and are originally solved in a paper by Pitowsky and Svozil [15].
The associatedMathematica- notebooks are “32.nb” (three particles - 2 measurement
directions) and “23.nb” (two particles - three measurement directions)

4.1 Three particles and two measurement directions

In this configuration three particles (a, b andc) are measured in detectors which can be
switched between two angles each. Consequently there are six different propositions
for single particle events:a1, a2, b1, b2, c1, c2, supposing thata1 is the detection (i. e.
the click in a counter) of the particlea in the detector set along the axis specified by
the first angle for particlea, b2 the detection of particleb at the second angle for this
particle, and so on . . . (cf. Figure 3). If we also take two and three particle events into

Figure 3: Setting for ”2 particles - 3 angles”

account (for example the eventa2c1 means a click in the counter for particlea at the
second angle AND a click in the counter for particlec at the first angle), there are 26
different events:

a1, a2, b1, b2, c1, c2, a1b1, a1b2, a2b1, a2b2, a1c1, a1c2, a2c1, a2c2, b1c1, b1c2, b2c1,
b2, c2,a1b1c1, a1b1c2, a1b2c1, a1b2c2, a2b1c1, a2b1c2, a2b2c1, a2b2c2

4.2 Violations of inequalities

The truth table for this configuration can be obtained utilizing the function
TruthTable [ 3,2 ] 3, executingConvToHRep [ 3,2] yielded the appropriate H-
representation, but this would last quite long, due to the complexity of the correlation
polytope for this setting (there are 53856 hyper-planes limiting the polytope). Be-
cause of this fact trying to read in the H-representation created bycdd (usingRead-
InHRep [ . . .] ) could also result in memory resource problems byMathematica.
To avoid this symptoms it is suggested to export the list of vertices and applycdd out-
side ofMathematicato the file containing the list of vertices (V-representation). This
can be done by invokingToCddExtFile [ “3 2”,3,2 ] , which creates a file “32.ext”.
This file can be handed over tocdd as parameter to get the file “32.ine” comprising
the H-representation of the correlation polytope (Command:“cdd 3 2.ext”).
Now the search for violated inequalities can begin using the functionGetVio-
lInequalities [ . . . ] :
May be accepted that the functions to calculate the quantum probabilities of the (joint)
events (Prob ) have been defined byProb[ {x }]:= 1

2, Prob[ {x ,y }]:= 1
4 and

Prob[ {x ,y ,z }]:= 1
8 ∗ (1−Sin[x+ y+ z]), where x, y and z are the angles used

for detection of each particle,
3due to lack of space not listed here, but it can be found in theMathematica- notebook3 2.nb
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GetViolInequalities [ “3 2.ine”,{{0,π
2},{0,π

2},{0,π
2}},Prob,All,0.4]

yields:

{{-3 a1+2 a1b1 +a1b1c1 -4 a1b1c2 +3 a1b2 -3 a1b2c1 -

a1b2c2 +a1c1 +3 a1c2 +2 a2b1 -2 a2b1c1 -a2b1c2 -

2 a2b2 +a2b2c1 +3 a2b2c2 +a2c1 -a2c2 -2 b1+

b1c1 +2 b1c2 +b2c1 -2 b2c2 -c1 ≤ 0,0.5},

{-2 a1+2 a1b1 +a1b1c1 -4 a1b1c2 +2 a1b2 -2 a1b2c1 -

a1b2c2 +a1c1 +2 a1c2 +3 a2b1 -3 a2b1c1 -a2b1c2 -

2 a2b2 +a2b2c1 +3 a2b2c2 +a2c1 -2 a2c2 -3 b1+

b1c1 +3 b1c2 +b2c1 -b2c2 -c1 ≤ 0,0.5},

{-2 a1+a1b1 +a1b1c1 -4 a1b1c2 +2 a1b2 -3 a1b2c1 -

a1b2c2 +2 a1c1 +2 a1c2 +2 a2b1 -3 a2b1c1 -

a2b1c2 -a2b2 +a2b2c1 +2 a2b2c2 +a2c1 -a2c2 -

2 b1+2 b1c1 +2 b1c2 +b2c1 -b2c2 -2 c1 ≤ 0,0.5},

{-2 a1+2 a1b1 +a1b1c1 -4 a1b1c2 +2 a1b2 -3 a1b2c1 -

a1b2c2 +3 a1c2 +2 a2b1 -3 a2b1c1 -a2b1c2 -

2 a2b2 +a2b2c1 +2 a2b2c2 +a2c1 -2 b1+2 b1c1 +

2 b1c2 +b2c1 -b2c2 -c1 -c2 ≤ 0,0.5},

{-a1+a1b1 +a1b1c1 -4 a1b1c2 +a1b2 -3 a1b2c1 -

a1b2c2 +a1c1 +2 a1c2 +a2+a2b1 -2 a2b1c1 -

a2b1c2 -2 a2b2 +a2b2c1 +3 a2b2c2 -a2c2 -b1+

b1c1 +2 b1c2 +b2+b2c1 -2 b2c2 -c1 ≤ 1,1.5},

{-a1+2 a1b1 -a1b1c1 -3 a1b1c2 +a1b2 -4 a1b2c1 +

a1b2c2 +3 a1c1 +a2+a2b1 -2 a2b1c1 -a2b1c2 -

2 a2b2 +a2b2c1 +3 a2b2c2 -a2c2 -2 b1+2 b1c1 +

2 b1c2 +b2+2 b2c1 -3 b2c2 -2 c1 +c2 ≤ 1,1.5},

{-2 a1+2 a1b1 -a1b1c1 -3 a1b1c2 +a1b2 -2 a1b2c1 -

a1b2c2 +2 a1c1 +2 a1c2 +a2+a2b1 -4 a2b1c1 +

a2b1c2 -2 a2b2 +a2b2c1 +3 a2b2c2 +2 a2c1 -3 a2c2 -

b1+3 b1c1 +b2-b2c2 -2 c1 +c2 ≤ 1,1.5}
{. . .}. . .}

4.3 Graphical representation

UsingPlotInequalities [ . . .] a graph can be created showing the violation of
inequalities dependent on one variable. Defining the probability functions as above,
executing

PlotInequalities [ “3 2.ine”,{x,0,π},{{0,x},{0,x},{0,x},Prob,{10000,20000},0.4 ]
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yields the following plot (cf. Figure 4), whereas the corresponding H-representation
has to be stored in the file“3 2.ine”, {10000,20000} indicates the range of row num-
bers taken for calculating the graph and0.4 is the minimal degree of violation to
include the inequality in the graph:

Figure 4: PlotInequalities[“32.ine”,{x,0,π},{{0,x},{0,x},{0,x},Prob,{10000,20000},0.4]

To display inequalities dependent on two variables the functionCont-
PlotInequalities [ . . .] is provided. This function shows the violation
as a contour plot, a more violated set of detection angles results in a darker region in
the plot.

ContPlotInequalities [ “3 2.ine”,{x,0,π},{x,0,π},{{0,x},{0,y},{x,y}},Prob,{10000,20000},0.4 ]

returnsContourGraphics -objects, which can be displayed for example by execut-
ing

Show [GraphicsArray [Partition [ cont, 3 [[ {1,2 },All ]]] ] ] //
TableForm

(see figure 5).

Figure 5: ContPlotInequalities[“32.ine”,{x,0,π},{x,0,π},{{0,x},{0,y},{x,y}},Prob,{10000,20000},0.4]
Show[GraphicsArray[Partition[cont,3][[{1,2},All]] // TableForm

4.4 Two particles and three measurement directions

In the case of two particles (a andb) with three properties (whereas the properties are
three different angles of the detectors for each particle denoted bya1, a2, a3, b1, b2, b3

- see figure 6) 15 different events can be found:

{a1, a2, a3, b1, b2, b3, c1, c2, c3, a1b1, a1b2, a1b3, a2b1, a2b2, a2b3, a3b1, a3b2, a3b3}

Figure 6: Setting for ”2 particles - 3 angles”
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4.5 Violations of inequalities

UsingTruthTable [ 2,3] all vertices of the corresponding correlation polytope can
be found - we get a dimension of 15 and 64 vertices as result (table 2).

a1 a2 a3 b1 b2 b3 a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 1 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
1 0 1 1 0 0 1 0 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 0 1 0 0 1 0 0
1 1 1 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 1 0 0 0 0 0 1 0
0 1 1 0 1 0 0 0 0 0 1 0 0 1 0
1 1 1 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 0 1 1 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 1 1 0 0 0 0
1 1 0 1 1 0 1 1 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0 0 0 0 0 1 1 0
1 0 1 1 1 0 1 1 0 0 0 0 1 1 0
0 1 1 1 1 0 0 0 0 1 1 0 1 1 0
1 1 1 1 1 0 1 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 0 1 0 0 1 0 0 1 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 1
1 0 1 0 0 1 0 0 1 0 0 0 0 0 1
0 1 1 0 0 1 0 0 0 0 0 1 0 0 1
1 1 1 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 0 0 0 1 0 1 0 0 0
1 1 0 1 0 1 1 0 1 1 0 1 0 0 0
0 0 1 1 0 1 0 0 0 0 0 0 1 0 1
1 0 1 1 0 1 1 0 1 0 0 0 1 0 1
0 1 1 1 0 1 0 0 0 1 0 1 1 0 1
1 1 1 1 0 1 1 0 1 1 0 1 1 0 1
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 1 1 0 1 1 0 0 0 0 0 0
0 1 0 0 1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 1 1 0 1 1 0 1 1 0 0 0
0 0 1 0 1 1 0 0 0 0 0 0 0 1 1
1 0 1 0 1 1 0 1 1 0 0 0 0 1 1
0 1 1 0 1 1 0 0 0 0 1 1 0 1 1
1 1 1 0 1 1 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 1 0 1 1 1 0 0 0 1 1 1 0 0 0
1 1 0 1 1 1 1 1 1 1 1 1 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0 1 1 1
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a1 a2 a3 b1 b2 b3 a1b1 a1b2 a1b3 a2b1 a2b2 a2b3 a3b1 a3b2 a3b3
1 0 1 1 1 1 1 1 1 0 0 0 1 1 1
0 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 2: Truth table for 6 propositions

Executinghrep=ConvToHRep [ 2,3] a H-representation of the polytope de-
scribed by the truth table above can be created. This results in 684 hyper-planes re-
spectively 684 inequalities from the 64 vertices limiting the polytope:

{{H-representation }, {begin }, {684, 16, real },

{2, 0, -2, 1, -1, 0, -1, 1, -1, 0, 1, 1, 1, -1, -1, 1 },

{2, -2, 0, 1, -1, 0, -1, 1, 1, 1, 1, -1, 0, -1, -1, 1 },

{... },

{1, -1, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 },

{end}, {Konfiguration,2,3 }}

All inequalities can be displayed by

GetInequFromHRep [ hrep] // InequToRead

The result of this operation is

-a1b1 + a1b2 + 2 a2 - a2b1 - a2b2 - a2b3 - a3 + a3b1 + a3b2 - a3b3 + b1 + b3 ≤ 2

2a1 - a1b1 - a1b2 - a1b3 - a2b1 + a2b2 - a3 + a3b1 + a3b2 - a3b3 + b1 + b3 ≤ 2

a1 - a1b1 - a1b3 - a2b1 + a2b2 + a2b3 - a3 + a3b1 + a3b2 - a3b3 + b1 - b2 ≤ 1

...

...

a1- a1b1 + b1 ≤ 1

Using

GetViolInequalities [ hrep,{{0,2π
3 ,4π

3 },{{0,2π
3 ,4π

3 }},Prob,All] //
TableForm

all inequalities can be displayed that are violated at the specific anglesa1 = b1 =
0, a2 = b2 = 2π

3 and a3 = b3 = 4π
3 taking the functionsProb[ {x }]:= 1

2 and
Prob[ {x ,y }]:= Sin[ x−y

2 ]/2 to calculate the quantum probabilities, which is equiv-
alent to the probability to find two spin-1

2 particles in a singlet state (|ψ〉 = 1√
2
(| ↑↓

〉− | ↓↑〉)) both either in spin “up” or both in spin “down”.
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-a1 - a1b1 + a1b2 + a1b3 - a2 + a2b1 + a2b3 + a3b1 + a3b2 - a3b3 - b1 - b2 ≤ 0 1
4

-a1 - a1b1 + a1b2 + a1b3 + a2b1 - a2b2 + a2b3 - a3 + a3b1 + a3b2 - b1 - b3 ≤ 0 1
4

-a1 + a1b2 + a1b3 - a2 + a2b1 - a2b2 + a2b3 + a3b1 + a3b2 - a3b3 - b1 - b2 ≤ 0 1
4

-a1b1 + a1b2 + a1b3 - a2 + a2b1 - a2b2 + a2b3 - a3 + a3b1 + a3b2 - b2 - b3 ≤ 0 1
4

-a1 + a1b2 + a1b3 + a2b1 - a2b2 + a2b3 - a3 + a3b1 + a3b2 - a3b3 - b1 - b3 ≤ 0 1
4

-a1b1 + a1b2 + a1b3 - a2 + a2b1 + a2b3 - a3 + a3b1 + a3b2 - a3b3 - b2 - b3 ≤ 0 1
4

-a1 + a1b2 + a1b3 - a2b2 + a2b3 - b3 ≤ 0 1
8

-a1b1 + a1b3 - a2 + a2b1 + a2b3 - b3 ≤ 0 1
8

-a1b1 + a1b2 - a3 + a3b1 + a3b2 - b2 ≤ 0 1
8

-a1 + a1b2 + a1b3 + a3b2 - a3b3 - b2 ≤ 0 1
8

a2b1 - a2b2 - a3 + a3b1 + a3b2 - b1 ≤ 0 1
8

-a2 + a2b1 + a2b3 + a3b1 - a3b3 - b1 ≤ 0 1
8

4.6 Graphical representation

Like in the configuration “three particles - two angles” described above a graphical
representation can be generated either dependent on one or dependent on two variables.
On the one hand side by using

PlotInequalities [ hrep,{x,0,π},{{0,x,4π
3 },{{0,x,4π

3 }},Prob]

we get a plot of all violated inequalities (cf. Figure 7),

Figure 7: PlotInequalities[hrep,{x,0,π},{{0,x,4π
3 },{{0,x,4π

3 }},Prob]

on the other hand side contour plots of all inequalities violated for example more than
0.2 can be generated by executing

cont=ContPlotInequalities [ hrep,{x,0,π},{y,0,π},{{0,x,y},{{0,x,y}},Prob,All,0.2]

To display the outcome of the calculation enteringShow /@ cont results in Con-
tourPlots of the following form (cf. Figure 8):

Figure 8: ContPlotInequalities[hrep,{x,0,π},{y,0,π},{{0,x,y},{{0,x,y}},Prob,All,0.2]
Show /@ %
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