ELEKTRODYNAMIK UND RELATIVITÄTSTHEORIE

Vorlesung für Studenten der Technischen Physik

Helmut Nowotny

Technische Universität Wien

Institut für Theoretische Physik

7., von A. Rebhan korrigierte Auflage Wien, Februar 2006

Für den Inhalt verantwortlich:

Helmut Nowotny, Wien.

Verlag und Druck:

Institut für Theoretische Physik, Technische Universität Wien.

Alle Rechte

beim Autor Helmut Nowotny, Wien.

Vielleicht, daß mancher eh' die Wahrheit finden sollte, Wenn er mit mindrer Müh die Wahrheit suchen wollte; Und mancher hätte sie wohl zeitiger entdeckt, Wofern er nicht geglaubt, sie wäre tief versteckt. Verborgen ist sie wohl; allein nicht so verborgen, Daß du der finstern Schriften Wust, Um sie zu sehn, mit tausend Sorgen Bis auf den Grund durchwühlen mußt. Verlaß dich nicht auf fremde Müh, Such selbst, such aufmerksam, such oft; du findest sie. Die Wahrheit, lieber Freund! die alle nötig haben, Die uns als Menschen glücklich macht, Ward von der weisen Hand, die sie uns zugedacht, Nur leicht verdeckt, nicht tief vergraben.

(Christian Fürchtegott Gellert)

Vorwort zur 6. Auflage

Das vorliegende Skriptum "Elektrodynamik und Relativitätstheorie" umfaßt den Vorlesungsstoff meiner gleichnamigen Vorlesung, ersetzt aber nicht völlig den Vorlesungsbesuch, da es nicht als eigenständiges Lehrbuch anzusehen ist. Hiezu fehlen nämlich viele ergänzende Erläuterungen und Darstellungen, die zu einem umfassenden und vollkommen selbsttragenden Aufbau dieser klassischen Theorien gehören.

Außer der Behebung einiger Schreibfehler weist diese 6. Auflage zwei wesentliche Unterschiede zu den früheren Auflagen auf. Das neue Kapitel XIII.3 beschreibt einen allgemeinen Zugang zu den elektrotechnischen Begriffen Impedanz und Admittanz über die elektromagnetischen Felder. Ferner wurde versucht (über das ganze Skriptum verteilt), die beiden bei harmonischer Zeitabhängigkeit üblichen Darstellungen (einerseits als Realteil eines komplexen Ausdruckes, wobei aber die Angabe, daß nur der Realteil betrachtet wird, weggelassen wird, und anderseits als Summe eines komplexen Ausdruckes plus konjugiert komplexer Ausdruck, was vor allem in Hinblick auf Multiplikationen rechentechnisch vorteilhaft ist) so zu verwenden, daß bei beiden Darstellungen die gleichen Amplituden auftreten.

Konzeption der Vorlesung

Die Vorlesung ist so konzipiert, daß nach einer kurzen historischen Erläuterung die allgemeine Struktur und die vollen Grundgleichungen der jeweiligen Theorie postuliert werden, aus denen dann alle Spezialfälle hergeleitet werden. Dies entspricht nicht der historischen Entwicklung, die erst nach vielen Irrwegen und Umwegen zu den heute gebräuchlichen Formulierungen geführt hat. Es erleichtert aber den Durchblick durch diese Theorien und vermeidet so das gesonderte Lernen der vielen Teilaussagen, die ja alle aus den Grundgleichungen folgen (diese müssen auf jeden Fall gelernt werden).

Aufbau der Vorlesung

Nach einer vor allem historischen Einleitung werden die folgenden drei Teilgebiete behandelt: Elektrodynamik im Vakuum (Teil 1), spezielle Relativitätstheorie (Teil 2) und Elektrodynamik in Materie (Teil 3). Ein möglicher Einwand gegenüber diesen Vorlesungsaufbau mag sein, daß Teil 1 und Teil 3 viele Wiederholungen aufweisen und deshalb zweckmäßigerweise zusammen betrachtet werden sollen. Hiebei kommt jedoch ein Punkt

zu kurz: die Elektrodynamik im Vakuum stellt eine im wesentlichen geschlossene Theorie dar analog zu der im Teil 2 behandelten speziellen Relativitätstheorie, während die Elektrodynamik in Materie ein nicht exakt lösbares Vielteilchenproblem ist und somit grundlegend auf Näherungen angewiesen ist, die die Gültigkeit der jeweiligen Aussagen einschränken (auch wenn dies nicht immer sofort ersichtlich ist). Es war mir ein Anliegen, diesen Punkt wesentlich herauszuarbeiten, und dies dürfte durch eine getrennte Betrachtung am besten zu erreichen sein.

Im Sinne einer noch geschlosseneren Behandlung des Vorlesungsstoffes wäre die spezielle Relativitätstheorie an den Anfang der Vorlesung zu stellen und die Elektrodynamik in einer Viererformulierung zu postulieren. Ich habe dies bewußt nicht getan und formuliere die Elektrodynamik entsprechend der historischen Entwicklung zuerst mit Dreiervektoren, da das Rechnen in dieser Formulierung vor allem für technische Anwendungen sehr wichtig ist.

Einheitensysteme

Bedingt durch die getrennte Entwicklung einzelner Teilgebiete der Elektrodynamik haben sich im Laufe der Zeit mehrere Einheitensysteme entwickelt. Im wesentlichen beschränken wir uns auf zwei Einheitensysteme: auf das in technischen Anwendungen gebräuchliche Internationale Einheitensystem (SI-System) und auf das Gaußsche System, welches (vor allem im Rahmen der speziellen Relativitätstheorie) die physikalische Struktur der Theorie der Elektrodynamik klar zu Tage treten läßt. Diese beiden Maßsysteme (und auch andere) stiften oft Verwirrung, die einen ganz einfachen Grund hat: es werden Größen, die zwar zur Kennzeichnung einer physikalischen Eigenschaft gleich gut geeignet sind, aber doch nicht gleich sind, mit dem gleichen Namen und dem gleichen Symbol bezeichnet (und erst der Hinweis auf das jeweilige Maßsystem macht die Kennzeichnung eindeutig). Dieses freizügige Vorgehen führt letzten Endes dazu, daß manche Gleichungen, die denselben physikalischen Sachverhalt beschreiben, in den verschiedenen Einheitensystemen verschieden sind, d.h. die Verwendung bestimmter Gleichungen bedingt bereits die Verwendung eines bestimmten Einheitensystems und umgekehrt. Hiemit ergibt sich ein eklatanter Unterschied z.B. zur Mechanik, in der die Gleichungen unabhängig vom verwendeten Einheitensystem sind und vor einer zahlenmäßigen Auswertung noch jedes gewünschte Einheitensystem verwendet werden kann. Wenn man diese Problematik einmal durchschaut hat, sollte es mit den Einheiten der Elektrodynamik keine Schwierigkeiten mehr geben (leider trüben Prüfungserfahrungen diese Erkenntnis).

Danksagung

Zu ganz besonderem Dank bin ich meinem Kollegen Dietrich Grau verpflichtet, welcher den gesamten Vorlesungsstoff einer kritischen Durchleuchtung unterzogen und viele Fehler und Schwachpunkte aufgezeigt hat. Seine Anregungen sind in der vorliegenden Auflage des Skriptums weitgehend berücksichtigt. Es wurden aber keine Anpassungen an die neuen Rechtschreibregeln vorgenommen. Schließlich danke ich für allfällige Hinweise auf sicherlich noch vorhandene weitere Fehler oder auch auf zu große Gedankensprünge in den Herleitungen und Überlegungen bereits im Voraus.

Inhaltsverzeichnis

INHALTSVERZEICHNIS

I. Einleitung	
1. Historische Entwicklung der Elektrodynamik	. 1
A. Elektrizität	. 1
B. Magnetismus, elektrische Ströme	. 2
C. Optik	
2. Vektor- und Tensorrechnung (dreidimensional)	
A. Vektoren	
B. Tensoren	
C. Formeln zur Vektorrechnung	6
3. Vektorfelder	
A. Tensorfelder	
B. Integralsätze	
C. Graphische Darstellung von Vektorfeldern	
4. Grundlegende Experimente der Elektrodynamik	
A. Coulombsches Gesetz	
B. Gaußsche Methode zur Ausmessung von Magnetfeldern	
C. Magnetfeld und Ströme	
D. Versuche zur Feststellung des Äthers	
5. Maßsysteme	
A. Die verschiedenen Einheitensysteme	
B. Das Gaußsche System	
C. Das SI–System	
O. Bas of System	-0
Teil 1 : Elektrodynamik im Vakuum	
Ten 1. Elektrodynamik im vakuum	
II. Grundgleichungen	
1. Feld-, Kraft- und Bewegungsgleichungen	21
A. Übersicht	21
B. Maxwellgleichungen	22
C. Lorentzkraft	23
D. Bewegungsgleichungen	23
2. Potentiale und Eichtransformationen	
A. Elektrodynamische Potentiale	24
B. Lorenz-Éichung	
C. Coulomb-Eichung (Strahlungs-Eichung)	26
3. Berechnung der Felder bei gegebenen Quellen	
A. Fouriertransformierte Maxwellgleichungen	
	27
B. Greensche Funktionen D	
	28
B. Greensche Funktionen D	28 29
B. Greensche Funktionen D	28 29 30

III. Elektrostatik im Vakuum	
1. Randwertprobleme der Elektrostatik	32
A. Elektrische Felder mit natürlichen Randbedingungen	32
B. Randbedingungen auf geschlossenen Flächen	33
C. Randbedingungen bei Anwesenheit von Leitern	35
D. Methode der Bildladungen	36
2. Elektrische Multipolentwicklung	38
A. Feld in weiter Entfernung von lokalisierten Quellen	. 38
B. Sphärische Multipolmomente	
C. Mittelwert des elektrischen Feldes (Kugelbereich)	41
3. Elektrostatische Energie	
A. Selbstenergie und Wechselwirkungsenergie	42
B. Kapazitätskoeffizienten	43
C. Lokalisierte Ladungsverteilung in einem äußeren Feld	. 44
D. Wechselwirkung zweier Dipole	45
4. Kräfte in elektrischen Feldern	46
A. Kraft auf eine lokalisierte Ladungsverteilung	46
B. Maxwellscher Spannungstensor	. 47
C. Bewegung eines geladenen Teilchens	48
IV. Magnetostatik im Vakuum	
1. Stationäre Ströme, Magnetostatik	40
A. Magnetische Felder mit natürlichen Randbedingungen	
B. Magnetisches Dipolmoment	
C. Mittelwert des magnetischen Feldes (Kugelbereich)	
D. Vergleich: elektrischer und magnetischer Dipol	
2. Magnetische Multipolentwicklung	
A. Skalares magnetisches Potential	
B. Sphärische magnetische Multipolmomente	
C. Vektorielle Kugelflächenfunktionen	
3. Magnetostatische Energie	
A. Selbstenergie und Wechselwirkungsenergie	
B. Induktionskoeffizienten	
C. Lokalisierte Stromverteilung in einem äußeren Feld	
4. Kräfte in magnetischen Feldern	
A. Kraft auf eine lokalisierte Stromverteilung	
B. Bewegung eines geladenen Teilchens	
C. Magnetische Flasche	

Inhaltsverzeichnis

1. Ebene Wellen
B. Monochromatische ebene Wellen 65 2. Polarisation 66 A. Lineare, zirkulare, elliptische Polarisation 66 B. Graphische Darstellung der Polarisation 68 3. Energie und Impuls von ebenen Wellen 69 A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
2. Polarisation 66 A. Lineare, zirkulare, elliptische Polarisation 66 B. Graphische Darstellung der Polarisation 68 3. Energie und Impuls von ebenen Wellen 69 A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 75 L. Das Feld eines beliebig bewegten Teilchens 77
A. Lineare, zirkulare, elliptische Polarisation 66 B. Graphische Darstellung der Polarisation 68 3. Energie und Impuls von ebenen Wellen 69 A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 75 Las Feld eines beliebig bewegten Teilchens 77
B. Graphische Darstellung der Polarisation 68 3. Energie und Impuls von ebenen Wellen 69 A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
3. Energie und Impuls von ebenen Wellen 69 A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
A. Poyntingvektor und Energiedichte 69 B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
B. Maxwellscher Spannungstensor und Impulsdichte 69 4. Wellen in Hohlleitern 71 A. Randbedingungen für Hohlleiter 71 B. Zerlegung der Maxwellgleichungen 72 C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
4. Wellen in Hohlleitern
4. Wellen in Hohlleitern
B. Zerlegung der Maxwellgleichungen
C. Transversale elektromagnetische Wellen (TEM Wellen) 73 D. TM-Wellen und TE-Wellen 74 VI.Elektromagnetische Felder im Vakuum 1. Das Feld eines beliebig bewegten Teilchens 77
D. TM-Wellen und TE-Wellen
D. TM-Wellen und TE-Wellen
1. Das Feld eines beliebig bewegten Teilchens
1. Das Feld eines beliebig bewegten Teilchens
A. Lienard-Wiechert-Fotentiale
D. Danashnung den Folden
B. Berechnung der Felder
C. Beispiel: gleichförmig bewegtes Teilchen
2. Bewegte Ladungen: Abstrahlung von Wellen
A. Berechnung der Felder für $r \to \infty$
C. Berechnung des Vektors \vec{q}
D. Hertzscher Vektor \vec{Z}
E. Beispiel: gleichmäßige Abbremsung eines Teilchens
3. Abstrahlung bei periodischer Zeitabhängigkeit
A. Näherungsentwicklung 91
B. Elektrische Dipolstrahlung 92
C. Magnetische Dipolstrahlung
D. Elektrische Quadrupolstrahlung
4. Multipolstrahlung
A. Berechnung von $\vec{r} \cdot \vec{B}$ und $\vec{r} \cdot \vec{E}$
B. Elektrische Multipolfelder
C. Magnetische Multipolfelder
D. Berechnung der Strahlungsfelder
E. Multipolkoeffizienten

${\bf Teil} \ {\bf 2}: {\bf Spezielle} \ {\bf Relativit \"{a}ts theorie}$

VII.	Relativistische Kinematik	
1.	Grundlagen der speziellen Relativitätstheorie	103
	A. Versuch von Michelson-Morley	103
	B. Längenkontraktion, Zeitdilatation	105
	C. Postulate der speziellen Relativitätstheorie	105
	D. Lorentztransformationen	106
2.	Vierergrößen	108
	A. Raum–Zeit–Welt	108
	B. Längenkontraktion, Zeitdilatation	110
	C. Vierervektoren, Metrik	111
	D. Vierergeschwindigkeit, Viererbeschleunigung	113
3.	Relativistische Addition von Geschwindigkeiten	
	A. Berechnung mittels Lorentztransformationen	
	B. Berechnung mittels Weltlinie	
4.	Sichtbarkeit der Längenkontraktion?	
	A. Superschnappschuß	
	B. Satz von Terell	118
VIII	I. Relativistische Mechanik	
	Punktteilchen	120
	Relativistische Bewegungsgleichung	
	A. Bewegungsgleichung, Viererkraft	
	B. Energiesatz	
	C. Freies Punktteilchen	
	D. Gleichförmig beschleunigte Bewegung	
3.	Teilchenstöße	
	A. Gesamtimpulserhaltung	125
	B. Schwerpunktsystem	126
	C. Elastische und inelastische Stoßprozesse	127
4.	Beispiele von Teilchenstößen	129
	A. Elastischer Stoß zweier Teilchen	
	B. Compton–Streuung	
	C. Inelastische Proton-Proton Streuung	
		132

Inhaltsverzeichnis v

IX. Relativistische Elektrodynamik	
1. Feldstärketensor, Maxwellgleichungen	133
A. Viererstrom, Viererpotential	133
B. Die inhomogenen Maxwellgleichungen	134
C. Die homogenen Maxwellgleichungen	135
D. Kontinuitätsgleichung und Ladungserhaltung	136
2. Transformationseigenschaften	137
A. Transformationsgleichungen des Feldstärketensors	137
B. Invarianten des Feldstärketensors	138
3. Kraft- und Energiegleichungen	139
A. Lorentzkraftdichte	
B. Elektromagnetischer Energie-Impuls-Tensor	140
C. Bilanzgleichungen	140
D. Bewegungsgleichung für eine geladenes Punktteilchen	141
4. Relativistische Optik	
A. Ebene Wellen	142
B. Doppler–Effekt	142
C. Aberration	143
X. Relativistische Hamiltonfunktionen	
1. Hamilton–Formalismus	145
A. Grundlagen	
B. Extremalprinzip für die Wirkung	
C. Hamiltonsche Gleichungen	
2. Hamiltonfunktion eines freien Punktteilchens	
A. Nichtrelativistische Hamiltonfunktion	
B. Relativistische Hamiltonfunktion	
C. Bewegungsgleichungen eines freien Punktteilchens	
3. Freie elektromagnetische Felder	
A. Elektrodynamik als Lagrangesche Feldtheorie	
B. Lagrangedichte des freien elektromagnetischen Feldes	
C. Bewegungsgleichungen des freien Feldes	
4. Elektromagnetische Wechselwirkung	
A. Lagrangefunktion der Wechselwirkung	
B. Bewegungsgleichungen der elektromagnetischen Felder	
C. Bewegungsgleichungen eines Punktteilchens	
O. Dowogungogionumgon omeo i unixuonemon	100

${\bf Teil} \ {\bf 3}: \ {\bf Elektrodynamik} \ {\bf in} \ {\bf Materie}$

XI.	. Grundgleichungen (Materie)	
-	1. Aufteilung der Quellen, Elektronentheorie	155
	A. Übersicht	155
	B. Mittelwertbildung	156
	C. Modifikation der Teilfelder	157
4	2. Makroskopische Maxwellgleichungen	161
	A. Maxwellgleichungen	161
	B. Materialgleichungen	161
	C. Randbedingungen an der Grenzfläche zweier Medien	163
	D. Einheitensysteme	
•	3. Materialeigenschaften, Dispersionsrelationen	164
	A. Grenzen der Anwendbarkeit der Materialgleichungen	164
	B. Beziehung von Clausius – Mossotti	
	C. Orientierungspolarisierbarkeit	166
	D. Kramers – Kronig Relationen	167
	E. Normale und anomale Dispersion	
4	4. Energie- und Impulsbilanz	170
	A. Bilanzgleichungen der makroskopischen Maxwelltheorie	170
	B. Minkowski–Tensor für lineare Medien	171
	C. Dissipative Medien	173
ΧT	I. Elektro- und Magnetostatik	
	1. Elektrostatik	175
-	A. Gleichungen, Randbedingungen, Feldlinienverlauf	
	B. Lösungsmethoden für Probleme der Elektrostatik	
	C. Punktladung vor einem dielektrischen Halbraum	
	D. Dielektrische Kugel in einem homogenen Feld	
6	2. Energie und Kräfte im elektrischen Feld	
•	A. Elektrostatische Energie in dielektrischen Medien	
	B. Kraftdichte in einem dielektrischen Medium	
	C. Beispiel: Dielektrikum in einem Plattenkondensator	
9	3. Magnetostatik	
	A. Gleichungen, Randbedingungen, Feldlinienverlauf	
	B. Lösungsmethoden für Probleme der Magnetostatik	
	C. Homogen magnetisierte Kugel	
	D. Kugel in einem homogenen magnetischen Feld	
_	4. Energie und Kräfte im magnetischen Feld	
	A. Feldenergie in einem magnetisierbaren Medium	
	B. Kraftdichte in einem magnetisierbaren Material	

Inhaltsverzeichnis vii

XIII. Elektrotechnik	
1. Elektrodynamik quasistationärer Ströme	191
A. Lineare Stromkreise	191
B. Ohmsches Gesetz	191
C. Beispiel: Kondensatorentladung	193
2. Elektrotechnische Stromkreise	
A. Kirchhoffsche Gesetze	195
B. Elektrische Leistung	196
C. Beispiel: Parallelresonanzkreis	198
3. Elektromagnetische Zweipole	
A. Energiebilanz für lineare Medien	
B. Eingangsimpedanz eines linearen Zweipols	
C. Strahlungswiderstand von Antennen	
XIV. Wellen in Materie	
1. Wellenausbreitung in materiellen Medien	208
A. Telegraphengleichungen	
B. Zeitliche Fouriertransformation	
C. Dispersionsrelationen für monochromatische ebene Wellen	209
2. Reflexion und Brechung von Wellen	
A. Reflexionsgesetz, Brechungsgesetz	
B. Randbedingungen für die Wellenamplituden	
C. Fresnelsche Formeln	
D. Brewster–Winkel, Totalreflexion	217
3. Elektrodynamik in Metallen	
A. Ladungen und Wellen in Metallen	
B. Metalloptik	
C. Skineffekt	
4. Kristalloptik	223
A. Ebene Wellen in Kristallen	
B. Fresnelsche Normalengleichung	224
C. Doppelbrechung	
XV. Ausbreitung elektromagnetischer Wellen	
1. Interferenzerscheinungen	230
A. Lichtintensität und Lichtemission	
B. Interferenz mehrerer Lichtwellen	
2. Skalare Beugungstheorie	233
A. Kirchhoff–Identität, Kirchhoff–Verfahren	
B. Babinetsches Theorem	
C. Fraunhofer-Beugung	
D. Fresnelsche Beugung	

XVI. Elektrodynamik bewegter Materie	
1. Grundgleichungen	242
A. Feldgleichungen	242
B. Materialgleichungen	
C. Näherungsgleichungen für langsam bewegte Materie	246
2. Momententensor	
A. Elektrische Polarisation und Magnetisierung	
B. Transformation des Momententensors	
3. Experimente	
A. Unipolarinduktion	
B. Der Versuch von Fizeau	
Anhang	
A. Mathematische Ergänzungen	
1. Formeln zur Vektorrechnung	
1.1 Vektorrechnung (dreidimensional)	
1.2 Integralsätze (dreidimensional)	
1.3 Vektorrechnung (vierdimensional)	255
1.4 Integralsätze (vierdimensional)	258
2. Kugelfunktionen	260
2.1 Laplace Gleichung	260
2.2 Legendre Polynome	262
2.3 Kugelflächenfunktionen	263
2.4 Vektorielle Kugelflächenfunktionen	265
3. Zylinderfunktionen	267
3.1 Laplace Gleichung	267
3.2 Zylinderfunktionen	267
3.3 Helmholtz Gleichung	268
3.4 Sphärische Zylinderfunktionen	269
4. Spezielle dreidimensionale Koordinatensysteme	271
4.1 Kartesische Koordinaten	271
4.2 Zylinderkoordinaten	273
4.3 Kugelkoordinaten (Polarkoordinaten)	275
B. Einheitensysteme	
1. Gaußsches Maßsystem	277
1.1 Gaußsche Einheiten	277
1.2 Formeln der Elektrodynamik (Gaußsches System)	
2. SI–System	
2.1 SI – Einheiten	
2.2 Formeln der Elektrodynamik (SI – System)	
3. Umrechnungen	281
3.1 Umrechnunstabelle für Formeln	
3.2 Umrechnunstabelle für Einheiten	
4. Konstante	
5. Konsistente Zahlenwerte der Konstanten im SI–System	
Literatur	