
2. Test: Quantenmechanik –UE WS2005/2006 20. Jänner 2006

Beispiel 1: Drehimpuls, Kopplungen, Wahrscheinlichkeiten

Ein Zweiteilchen–System besteht aus zwei Spin–1–Teilchen deren räumliche Freiheitsgrade nicht
berücksichtigt sind. Der zugehörige Gesamthilbertraum H gesamt = C3 ⊗ C3 ist daher 9–dimensional
und wird von den orthonormierten Elementen |1, r; 1, s

〉

der Produktbasis E1⊗1 aufgespannt

E1⊗1 =
{

|r, s
〉

| − 1 ≤ r, s ≤ +1
}

|r, s
〉

= |1, r; 1, s
〉

= |1, r
〉(1)

⊗ |1, s
〉(2)

wobei |r, s
〉

als Kurzschreibweise für die Elemente der Produktbasis aufgefasst wird. Die Faktoren

|1, r
〉(1)

bzw. |1, s
〉(2)

der Elemente der Produktbasis sind Elemente von Drehimpulsbasen Ej1 bzw. Ej2

mit j1 = 1 bzw. j2 = 1 womit r = −1, 0, +1 bzw. s = −1, 0, +1 zu verstehen ist. Beachte dabei, dass
im allgemeinen Elemente |j, m

〉

von Drehimpulsbasen Ej =
{

|j, m
〉

| −j ≤ m ≤ +j
}

per definitionem
den folgenden Gleichungen zu genügen haben

J2 |j, m
〉

= ~2 j(j + 1) |j, m
〉

Jz |j, m
〉

= ~m |j, m
〉

J± |j, m
〉

= ~
√

(j ∓ m)(j ± m + 1) |j, m ± 1
〉

wobei J± = Jx ± iJy die entsprechenden Schiebeoperatoren darstellen. Der Hamiltonoperator H des
Zweiteilchen–Systems ist durch den folgenden Ausdruck gegeben

H = 1
~2

(

S(1)
z + S(2)

z

)2
+ 2

~2 S
(1) . S(2)

wobei S(1) . S(2) = S(1)
x ⊗S(2)

x +S(1)
y ⊗S(2)

y +S(1)
z ⊗S(2)

z bedeutet, bzw. S(1)
z +S(2)

z = S(1)
z ⊗1(2) +1(1) ⊗S(2)

z

zu verstehen ist.

1. Stelle H als Funktion des Gesamtdrehimpulsoperators S = [Sx,Sy,Sz]
T = S(1) + S(2) dar.

2. Berechne mit Hilfe der im folgenden angegebenen Clebsch–Gordan Koeffizienten die Eigen-
zustände |(11)SM

〉

des Gesamtdrehimpulses für S = 0 und S = 2,

|(11)SM
〉

=
∑+1

s=−1

〈

1, M − s; 1, s |SM
〉

|1, M − s; 1, s
〉

dh. drücke die Elemente |(11)SM
〉

der Standardbasis für S = 0 und S = 2 explizit als Line-
arkombination der Elemente |r, s

〉

der Produktbasis aus. Beachte, dass die Zustände |(11)1M
〉

für M = 0,±1 für dieses Beispiel nicht explizit zu berechnen sind.

< 1,M−s;1,s | 2M > = 1√
6

√

(2+M)!(2−M)!
(1+M−s)!(1−M+s)!(1+s)!(1−s)!

< 1,M−s;1,s | 1M > = (1+M−s)(1−s)−(1−M+s)(1+s)

2
√

2
.
√

(1+M)!(1−M)!
(1+M−s)!(1−M+s)!(1+s)!(1−s)!

< 1,−s;1,s | 00 > = (−1)1+s 1√
3

3. Verwende die Tatsache, dass die Eigenzustände |(11)SM
〉

des Gesamtdrehimpulses auch Ei-
genzustände des Hamiltonoperators H sind und berechne damit die Eigenwerte ESM von H.
Gib auch die Entartung der Eigenwerte samt zugehörigen Eigenvektoren an und ordne die EWe
entsprechend ihrer Größe beginnend mit dem kleinsten.

4. Berechne die Wahrscheinlichkeit, bei einer Messung der z–Komponente des ersten Spin–1–

Teilchens den Messwert +~ und bei der z–Komponente des zweiten Spin–1–Teilchens den
Messwert −~ zu messen, wenn sich das System im Grundzustand befindet.
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Beispiel 2: Zeitunabhängige Störungstheorie

Ein Zweiteilchen–System besteht aus zwei Spin–1–Teilchen deren räumliche Freiheitsgrade nicht
berücksichtigt sind. Der zugehörige Gesamthilbertraum H gesamt = C3 ⊗ C3 ist daher 9–dimensional
und wird, wie in Beispiel 1, von den orthonormierten Elementen |1, r; 1, s

〉

der Produktbasis E1⊗1

aufgespannt

E1⊗1 =
{

|r, s
〉

| − 1 ≤ r, s ≤ +1
}

|r, s
〉

= |1, r; 1, s
〉

= |1, r
〉(1)

⊗ |1, s
〉(2)

wobei |r, s
〉

als Kurzschreibweise für die Elemente der Drehimpuls–Produktbasis aufgefasst wird.
Beachte dabei wieder, dass Elemente |j, m

〉

von Drehimpulsbasen Ej =
{

|j, m
〉

| − j ≤ m ≤ +j
}

ihren Definitionsgleichungen zu genügen haben, die bereits in Beispiel 1 angegeben sind.

Der Gesamt–Hamiltonoperator H(ξ) = H0 + W(ξ) des Zweiteilchen–Systems ist als Summe der
Operatoren H0 und W(ξ) = ξ W gegeben, wobei der Operator H0 den ungestörten Hamiltonoperator,
der Operator W(ξ) die Störung, bzw. ξ mit 0 < ξ < 1 einen dimensionslosen Parameter darstellt.

H(ξ) = H0 + W(ξ)

H0 = 1
~4

(

S(1)
z + S(2)

z

)4
+ 2

~2 S
(1) . S(2)

W = 1
~2 S

(1)
z ⊗ S(2)

z

Beachte, dass S(1) . S(2) = S(1)
x ⊗ S(2)

x + S(1)
y ⊗ S(2)

y + S(1)
z ⊗ S(2)

z bedeutet, bzw. unter S(1)
z + S(2)

z =
S(1)

z ⊗ 1(2) + 1(1) ⊗ S(2)
z zu verstehen ist.

1. Stelle den ungestörten Hamiltonoperator H0 als Funktion des Gesamtdrehimpulsoperators S =
[Sx,Sy,Sz]

T = S(1) + S(2) dar.

2. Berechne mit Hilfe der in Beispiel 1 angegebenen Clebsch–Gordan Koeffizienten die Eigen-
zustände |(11)1M

〉

mit M = 0,±1 des Gesamtdrehimpulses, dh. drücke auch die Elemente
|(11)1M

〉

der Standardbasis explizit als Linearkombination der Elemente |r, s
〉

der Produkt-
basis aus. Benutze, dass der Gesamtdrehimpuls–Zustand |(11)00

〉

und die Gesamtdrehimpuls–
Zustände für S = 2 mit M = 0,±1,±2 bereits in Beispiel 1 explizit zu berechnen sind.

3. Verwende die Tatsache, dass die Eigenzustände |(11)SM
〉

des Gesamtdrehimpulses auch Ei-
genzustände des Hamiltonoperators H0 sind und berechne damit die Eigenwerte ESM von H0.
Gib auch die Entartung der Eigenwerte ESM samt zugehörigen Eigenvektoren an und ordne
die EWe entsprechend ihrer Größe beginnend mit dem kleinsten.

4. Berechne für die Grundzustandsenergie E
(0)
min von H0 in 1.ter Ordnung zeitunabhängiger Störungs-

theorie für nicht–entartete Energieniveaus die Energiekorrektur ε
(1)
min(ξ). Verwende dabei die

Formel ε
(1)
min(ξ) =

〈

umin |W(ξ) |umin

〉

, wobei |umin

〉

den Grundzustand darstellt.

5. Berechne für den höchsten angeregten Zustand E (0)
max

von H0 in 1.ter Ordnung zeitunabhängiger
Störungstheorie für entartete Energieniveaus die Energiekorrekturen ε

(1)

max,`(ξ) mit ` = 1, 2, . . ..
Beachte dabei, dass die Größen ε

(1)

max,`(ξ) die Eigenwerte jener Matrix sind, die dem Störoperator
W(ξ) in der orthonormierten Eigenbasis von H0 zugeordnet ist, die von den Eigenzuständen
von H0 aufgespannt werden, die zum entarteten Energieeigenwert E (0)

max gehören.


