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Preface

In contrast to quantum circuits, quantum Turing machines or the algebraic
definition of unitary transformations, programming languages allow the com-
plete and constructive description of quantum algorithms including their clas-
sical control structure for arbitrary input sizes and hardware architectures.

This thesis investigates how the classical formalism of structured pro-
gramming can be adapted to the field of quantum computing, based on the
machine model of a universal computer with a quantum oracle allowing the
application of unitary gates and the measurement of single qubits. Starting
with the abstract notion of programs as finite automatons (finite programs)
and in analogy to classical programming languages, the concept of structured
quantum programming languages (QPLs) is developed and illustrated by the
experimental language QCL.

A QPL is called imperative if it provides quantum registers (quantum
variables), elementary gates and single qubit measurements. A procedural
QPL additionally supports unitary subroutines and non-classical concepts
like the reverse execution of code to derive the adjoint operator or the unitary
“uncomputing” of temporary quantum registers (scratch space management).
A procedural QPL is called structured it also allows the use of qubits and
boolean expression of qubits (quantum conditions) in structured flow-control
statements (quantum if-statement).

A QCL interpreter for the Linux operating system as well as a numerical
simulator for arbitrary quantum oracles are available as free software from

http://www.itp.tuwien.ac.at/~oemer/qcl.html

Overview

Chapter 1 gives a general introduction to quantum computing and describes
the key concepts and formalism necessary for the discussion of QPLs.

After a short historical overview (1.1), the formalism and the postulates
of quantum mechanics are presented in section 1.2. Section 1.3 introduces
the key concepts of classical computation and develops a formal notion of
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machines and programs which differs from the usual formalizations by treat-
ing machines and programs as separate entities. In section 1.4 the abstract
machine concept is applied to quantum computing and the main components
of a quantum computer, namely qubit-registers, unitary gates and qubit mea-
surements, are discussed using a new formalism called register notation which
allows the compact and abstract description of quantum circuits. Finally,
section 1.5 discusses the formal description and the design of quantum algo-
rithms.

Chapter 2 presents the concept of structured quantum programming lan-
guages as a new formalism for quantum computing.

After a general introduction to classical and quantum programming lan-
guages (2.1), section 2.2 discusses universal quantum computers and intro-
duces the hybrid quantum architecture as the computational model of quan-
tum programming. After an introduction to the key elements of classical
structured programming languages (2.3), the remainder of chapter 2 demon-
strates how these concepts can be adapted to quantum computing: Sec-
tion 2.4 discusses the minimal requirements for a universal QPL (imperative
quantum programming), section 2.5 introduces unitary subroutine (procedural
quantum programming) and, finally, section 2.6 demonstrates how conditional
operators can be used to realize the semantics of conditional branching on
qubits and quantum conditions (structured quantum programming).

iv



Chapter 1

Quantum Computing

1.1 The Way to Quantum Computing

1.1.1 From Huygens to Planck

Before the adoption of quantum theory, one of the main problems of what
now is referred to as classical physics was the dual nature of light. While
its linear propagation and the lack of a physical medium seemed to suggest
a particle-like behavior, phenomena like interference and diffraction are well
known properties of waves.

In 1690, Christiaan Huygens explained optical birefringence in his Traité
de la lumière where he developed a comprehensive wave-theory of light. [35]
14 years later, Isaac Newton published his Opticks in which he explained
phenomena like reflection, dispersion, color and polarization by interpreting
light as a stream of differently sized particles.

The corpuscular-theory of light dominated the scientific discussion until
the beginning of the 19th century when Young and Fresnel demonstrated sev-
eral shortcomings of the theory which can be resolved assuming transversal
light-waves in a universal medium called Ether. In 1873 in his Treatise on
Electricity and Magnetism, Maxwell published a set of 4 partial differential
equations which lay the foundation to classical electrodynamics and elegantly
explains light as electromagnetic waves. Maxwell’s theory however was still
unable to explain the radiation of black bodies as well the the discrete energy
spectra of atoms. Both shortcomings would prove crucial in the development
of quantum theory.

1



CHAPTER 1. QUANTUM COMPUTING 2

1.1.2 The Century of Quantum Physics

Classical electodynamics predict that the energy distribution in a cavity –
and therefore the spectrum of a black body – is proportional to the number
of vibrational modes, which leads to an energy density of

Uλ(T ) = 8πkTλ−4,

known as Rayleigh-Jeans Law, which is not integrable. [14]
In the year 1900, Max Planck found a way to avoid this contradiction,

which is also known as ultraviolet catastrophe, by the ad-hoc assumption, that
the possible energy states are restricted to E = nhν, where n is an integer,
ν the frequency and h the Planck constant, the fundamental constant of
quantum physics, with a value of

h = 2πh̄ = 6.626075 · 10−34Js

This restriction causes the probability of frequencies ν À kT/h to de-
crease exponentially and leads to the integrable distribution

Uν(T ) =
8πν2

c3
hν

ehν/kT − 1

which is also in exact accordance with the experimental data.
Five years later, Albert Einstein explained the photo-electric effect by

postulating the existence of light particles, later called photons, with the
energy E = hν.

In 1913, Niels Bohr calculated the value of the Rydberg constant, by
assuming that the angular momentum of electrons orbiting the nucleus sat-
isfies the quantization condition L = nh̄ = nh/2π. This restriction could be
justified by attributing wave properties to the electron and demanding that
their corresponding wave functions form a standing wave; however this kind
of hybrid theory remained unsatisfactory.

A complete solution for the problem came in 1923 from Werner Heisen-
berg who used a matrix-based formalism; two years later Erwin Schrödinger
published an equivalent solution using complex wave functions.

In 1927, Heisenberg formulated the uncertainty principle, which formal-
ized the complementarity of the wave and the particle picture, claimed by
Bohr which, while being mutually exclusive, are both essential for a complete
description of quantum events. Together with a statistical interpretation
of Schrödinger’s wave function, they lay the theoretical foundation for the
Copenhagen interpretation of quantum mechanics. [17]
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“We regard quantum mechanics as a complete theory for which
the fundamental physical and mathematical hypotheses are no
longer susceptible of modification.”

Werner Heisenberg and Max Born, Solvay Congress of 1927

While its explanation of quantum phenomena like entanglement or mea-
surement still seems somewhat unsatisfactory, even after 75 years, the Copen-
hagen interpretation can still be regarded as the mainstream in quantum
physics. Apparent contradictions like the famous EPR paradox [29] have not
only been verified by experiment, but also serve as fundamental principles for
new fields of research like quantum cryptography and quantum computing.

1.1.3 Beyond the Church-Turing Thesis

The basic idea of modern computing science is the view of computation
as a mechanical, rather than a purely mental process. In 1936, Alan Tur-
ing formalized this concept by constructing an abstract device, now called
Turing-Machine, which he proved to be capable of performing any effective
(i.e. mechanical, algorithmic) computation. At about the same time, Alonzo
Church showed that any function of positive integers is effectively calculable
only if recursive. Both findings are, in fact, equivalent and are commonly
referred to as the Church-Turing Thesis. In its strong form, it can be sum-
marized as

Any algorithmic process can be simulated efficiently using a
Turing machine

This means that, no matter what type of machine is actually used for
a certain computation, an equivalent Turing Machine can be found which
solves the same problem with only polynomial overhead.

The strong Church-Turing Thesis came under attack when in 1977 Robert
Solovay and Volker Strassen published a fast Monte-Carlo test for primality
[55, 43], a problem for which no efficient deterministic algorithm was known
at that time.1 While this challenge could easily be resolved by using a prob-
abilistic Turing Machine, it raises the question whether even more powerful
models of computation exists.

In 1985, David Deutsch adopted a more general approach and tried to
develop an abstract machine, the Universal Quantum Computer, which is
not targeted at some formal notion of computability, but should be capable

1In 2002, Manindra Agrawal, Neeraj Kayal and Nitin Saxena eventually found a deter-
ministic primality test [40] with a worst case time complexity of O(n12).
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of effectively simulating an arbitrary physical system and consequently any
realizable computational device [24, 56]. Deutsch also described a simple
quantum algorithm which would be capable of determining in a single step
whether a given one-bit oracle function f : B → B is either constant or
balanced. The algorithm was later generalized for n-bit functions f : Bn → B
(Deutsch-Jozsa problem [26]) and demonstrates that a quantum computer is
indeed more powerful than a probabilistic Turing machine.

At the same time, Richard Feynman showed how local Hamiltonians can
be constructed to perform arbitrary classical computations [31].

In 1994, Peter Shor demonstrated how prime factorization and the cal-
culation of the discrete logarithm could be efficiently performed on a quan-
tum computer [54]. The immense practical importance of these problems
for cryptography made Shor’s algorithm the “killer-application” of quantum
computing.

One year later, Lov Grover designed a quantum algorithm for finding
a unique solution to Q(x) = 1 in an unstructured search space of size n,
requiring only O(

√
n) evaluations of the black-box oracle function Q [32].

At this time, Peter Zoller and Ignacio Cirac demonstrated how a linear
ion trap can be used to store qubits and perform quantum computations
[19]. In 2001, a team at IBM succeeded to implement Shor’s algorithm on
an NMR based 7-qubit quantum computer to factorize the number 15 [18].

1.2 Quantum Mechanics

1.2.1 Quantum Computation as Quantum Mechanical
Theory

Strictly spoken, the algebraic formulation of quantum mechanics, which shall
be introduced in this section, is not a physical theory in its own right, but
rather provides a framework to formulate physical theories within. Depend-
ing on how exactly the Hilbert spaces and Hamiltonians are constructed,
different theories emerge, from non-relativistic quantum electrodynamics,
which still maintains many formal analogies to classical physics, to quan-
tum chromodynamics which introduces entities like quarks and gluons which
are completely meaningless outside the scope of quantum mechanics.

Quantum computing is yet another theory on top of the abstract quantum
mechanical formalism. It is, however, not a physical theory in the sense that
it tries to accurately describe natural processes, but is built on abstract
concepts like qubits and quantum gates, without regard to the underlying
physical quantum-dynamical model.
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This top-down approach is at the same time the greatest strength and
the greatest weakness of quantum computation. While it guarantees that its
computational model is in fact the most general which is physically realiz-
able in a quantum mechanical universe, the lack of a concrete and scalable
“reference implementation”, like the Turing machine is for classical comput-
ing, leaves open the question whether quantum computers with more than a
handful of qubits are in fact possible, under realistic assumptions for noise
and experimental accuracy.

1.2.2 Linear Algebra

1.2.2.1 Braket Notation

The “braket” notation is a very compact formalism for linear algebra and was
introduced by Dirac. Table 1.1 lists the most commonly used expressions.

Notation Description
|ψ〉 general “ket” vector, e.g. |ψ〉 = (c0, c1, . . .)

T

〈ψ| dual “bra” vector to |ψ〉, e.g. 〈ψ| = (c∗0, c
∗
1, . . .)

|n〉 nth basis vector of some standard basis N = {|0〉, |1〉, . . .}
|ñ〉 basis vector of an alternate basis Ñ = {|0̃〉, |1̃〉, . . .}
〈φ|ψ〉 inner product of |φ〉 and |ψ〉
|φ〉 ⊗ |ψ〉 tensor product of |φ〉 and |ψ〉
|φ〉|ψ〉 abbreviated tensor product |φ〉 ⊗ |ψ〉
|i, j〉 abbreviated tensor product of the basis vectors |i〉 and |j〉
M † adjoint operator (matrix) M † = (MT )

∗

〈φ|M |ψ〉 inner product of |φ〉 and M |ψ〉
‖ψ‖ abbreviated norm ‖|ψ〉‖

Table 1.1: Dirac Notation

1.2.2.2 Hilbert Space

Definition 1 A set V is called vector space over a scalar field F iff the
operations + : V × V → V (vector addition) and · : F × V → V (scalar
multiplication) are defined, and

(i) (V,+) is a commutative group,

(ii) λ|ψ〉 = |ψ〉λ,
(iii) λ(µ|ψ〉) = (λµ)|ψ〉,



CHAPTER 1. QUANTUM COMPUTING 6

(iv) (λ+ µ)|ψ〉 = λ|ψ〉+ µ|ψ〉,
(v) λ(|ψ〉+ |φ〉) = λ|ψ〉+ λ|φ〉.

From now on, we will only consider complex vector spaces, i.e. F = C.

Definition 2 Let V be a complex vector space. A function 〈·|·〉 : V×V→ C
is called inner product iff

(i) 〈ψ|(λ|φ〉+ µ|χ〉) = λ〈ψ|φ〉+ µ〈ψ|φ〉,
(ii) 〈ψ|φ〉 = 〈φ|ψ〉∗,
(iii) 〈ψ|ψ〉 ∈ R, 〈ψ|ψ〉 ≥ 0, 〈ψ|ψ〉 = 0⇔ |ψ〉 = o.

An inner product also defines the norm ‖|ψ〉‖ =
√
〈ψ|ψ〉 (also written as

‖ψ‖). The following inequalities apply:

|〈ψ|φ〉| ≤ ‖ψ‖‖φ‖ (Schwarz inequality) (1.1)

‖|ψ〉+ |φ〉‖ ≤ ‖ψ‖+ ‖φ‖ (triangle inequality) (1.2)

Definition 3 (Completeness) Let V be a vector space with the norm ‖ · ‖
and |ψn〉 ∈ V a sequence of vectors.

(i) |ψn〉 is a Cauchy sequence iff ∀ε > 0 ∃N > 0 such that

∀n,m > N, ‖|ψn〉 − |ψm〉‖ < ε (1.3)

(ii) |ψn〉 is convergent iff there is a |ψ〉 ∈ V such that

∀ε > 0 ∃N > 0 ∀n > N, ‖|ψn〉 − |ψ〉‖ < ε (1.4)

V is complete iff every Cauchy sequence converges.

Definition 4 A complete vector space H with an inner product 〈·|·〉 and the

corresponding norm ‖ψ‖ =
√
〈ψ|ψ〉 is called Hilbert space.

A Hilbert space H is separable if there exists an enumerable set S ⊆ H
which is dense in H, i.e. for any |ψ〉 ∈ H and ε > 0 there exists a |σ〉 ∈ S
with ‖|ψ〉 − |σ〉‖ < ε. From now on, we will only consider separable Hilbert
spaces.

A vector |ψ〉 ∈ H is normalized or a unit-vector iff ‖ψ‖ = 1. An enu-
merable set of normalized vectors B = {|ψ0〉, |ψ0〉, . . .} is called orthonormal
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system iff 〈ψi|ψj〉 = δij. An orthonormal system B is an (orthonormal) basis
of H iff any vector |ψ〉 ∈ H can be written as

|ψ〉 =
∑

i

λi|ψi〉 with |ψi〉 ∈ B

Since Hilbert spaces are complete by definition, any separable, complex
Hilbert space H with some basis B is algebraically isomorphic and isometric
to either

(i) Cn with the basis {|0〉, |1〉, . . . |n− 1〉} with |k〉 = (δ0k, δ1k, . . . δn−1,k)
T

if dimH = |B| = n or

(ii) l2 (i.e. the space of complex sequences 〈ξn〉 for which
∑
k |ξk|2 is defined)

with the basis vectors |k〉 = (δ0k, δ1k, . . .)
T if dimH = |B| = ℵ0

In quantum computing we usually deal with finite dimensional Hilbert
spaces, so unless otherwise noted we will always assume H = Cn. In Cn, a
“ket” vector |ψ〉 can be written as column vector and the dual “bra” vector
〈ψ| can be written as row vector 〈ψ| = (|ψ〉∗)T , which allows the inner
product 〈·|·〉 to be formally expressed as ordinary matrix multiplication.

Definition 5 Let H1 and H2 be Hilbert spaces with the bases B1 and B2,
then the tensor product

H = H1 ⊗H2 =
{ ∑

|i〉∈B1

∑

|j〉∈B2

cij|i, j〉
∣∣∣ cij ∈ C

}
(1.5)

is also a Hilbert space with the basis B = B1 ×B2 and the inner product

〈i, j|i′, j′〉 = 〈i|i′〉〈j|j′〉 = δii′δjj′ with |i〉, |i′〉 ∈ B1 and |i〉, |i′〉 ∈ B2

.

1.2.2.3 Linear Operators

Definition 6 Let V be a vector space and A be function A : V → V. A is
called linear operator on V iff

A(λ|ψ〉+ µ|φ〉) = λA(|ψ〉) + µA(|φ〉) = λA|ψ〉+ µA|φ〉. (1.6)

In Cn, a linear operator A can be written as a n × n matrix with the
matrix elements aij = 〈i|A|j〉

A =




a0,0 · · · a0,n−1
...

. . .
...

an−1,0 · · · an−1,n−1


 =

∑

i,j

aij|i〉〈j| (1.7)
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Because of (1.6), a linear operator on a vector space V with the basis B
is completely defined by its effect on the basis vectors, so the above operator
A could also be written as

A : |n〉 →∑

k

akn|k〉 with |k〉 ∈ B (1.8)

Definition 7 The operator A† = (AT )
∗

=
∑
i,j aji

∗|i〉〈j| is called adjoint
operator of A.

Definition 8 A linear operator A is called

(i) normal iff A†A = AA†,

(ii) self-adjoint or Hermitian iff A† = A,

(iii) positive iff 〈ψ|A|ψ〉 ∈ R+
0 ∀ |ψ〉 ∈ H,

(iv) unitary iff A†A = I, with I being the identity operator,

(v) idempotent iff A2 = A,

(vi) self-inverse iff A2 = I,

(vii) an (orthogonal) projection iff A is self-adjoint and idempotent.

SU(n) is the group of unitary operators on Cn with determinant 1. Since
for each unitary U on Cn there exists a physically equivalent U ′ = eiϕU ∈
SU(n) (see 1.2.3.1), we will also use SU(n) to denote any set of operators
physically equivalent to SU(n).

Definition 9 An a ∈ C with at least one non-zero solution |a〉 of the equa-
tion A|a〉 = a|a〉 is called eigenvalue of A, with |a〉 being an eigenvector for
a. The set {|ψ〉 ∈ H|A|ψ〉 = a|ψ〉} is known as the eigenspace of A for the
eigenvalue a.

Any linear operator A can be written in terms of its eigenvectors as

A =
∑

i

ai |̃ı〉〈̃ı| with 〈̃ı|̃〉 = δij. (1.9)

This form is called spectral decomposition of A.

Definition 10 Let A be a linear operator on H1 and B a linear operator on
H2, then the tensor product

A⊗B =
∑

i,j

∑

i′,j′
|i, j〉〈i|A|i′〉〈j|B|j′〉〈i′, j′| (1.10)

is a linear operator on H1 ⊗H2.

Definition 11 Let A and B be linear operators on H. The operator [A,B] =
AB − BA is called commutator and {A,B} = AB + BA is called anti-
commutator of A and B.
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1.2.3 The Postulates of Quantum Mechanics

1.2.3.1 Quantum States

Postulate 1 Associated to any physical system S is a complex Hilbert space
H known as the state space of S. The state of S is completely described by a
unit vector |ψ〉 ∈ H with ‖ψ‖ = 1, which is called the state vector of S. Two
state vectors |ψ〉 and |ψ′〉 are equivalent (|ψ〉 ' |ψ′〉) iff |ψ′〉 = eiϕ|ψ〉 with
real ϕ.

How exactly the state space of for a given physical system is constructed,
is beyond the scope of this postulate.

Qubits The simplest non-trivial quantum mechanical system is the quan-
tum bit or qubit with a state space B = C2. The state |ψ〉 of a qubit can
be described by a linear combination (also called superposition) of just two
basis states labeled |0〉 and |1〉

|ψ〉 = α|0〉+ β|1〉 with α, β ∈ C and |α|2 + |β|2 = 1 (1.11)

1.2.3.2 Evolution

Postulate 2 The temporal evolution of the state of a closed quantum system
is described by the Schrödinger equation

ih̄
∂

∂t
|ψ〉 = H|ψ〉 (1.12)

with the (experimental) Planck constant h̄ ≈ 1.05457 · 10−34Js and a fixed
self-adjoint operator H on the state space H known as the Hamiltonian of
the system.

In quantum physics, it is common to use a system of measurement where
h̄ = 1, so that (1.12) can be written in the dimensionless form i|ψ̇〉 = H|ψ〉.

The Hamiltonian H completely describes the dynamics of a closed quan-
tum system. As with the state space, the concrete form of H (or an approxi-
mation thereof) must be determined by the physical theory used to describe
the system.

Unitary Evolution If we know the system to be in some initial state |ψ0〉
at the time t = 0, we can define an operator U(t) such that

HU(t) |ψ0〉 = i
∂

∂t
U(t) |ψ0〉 and U(0)|ψ〉 = |ψ〉 (1.13)
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and get the operator equation

H U(t) = i
∂

∂t
U(t) (1.14)

with the solution

U(t) = e−iHt =
∞∑

n=0

1

n!
(−i)ntnHn (1.15)

U(t) is the operator of temporal evolution and satisfies the criterion

U(t) |ψ(t0)〉 = |ψ(t0 + t)〉 (1.16)

U(t) is unitary because H = H† and therefore

U(t)U †(t) = e−iHte+iHt = I, (1.17)

In fact, U(t) and the Hamiltonian are equivalent descriptions of a system’s
dynamics. Since any unitary operator U can be expressed as the exponential
of a self-adjoint operator H such that U = e−iH , we can reformulate the 2nd

postulate in a non-continuous, discrete-time version:

The temporal evolution of a closed quantum system from the state |ψ〉
at time t1 to state |ψ′〉 at time t2 can be described by a unitary operator
U = U(t2 − t1) such that |ψ′〉 = U |ψ〉.

In either formulation, the postulate only applies to closed systems, so
H or U(t) are fixed operators. It is however often possible to interact with
a quantum system in such a manner that it can still be treated as isolated,
while the effect of the interaction can mathematically be described by a time-
varying Hamiltonian. Even in that case, the discrete evolution of the system
between two points in time t1 and t2 can still be described by a unitary
operator U = U(t1, t2). In this context, we would speak of applying the
operator U to a quantum state |ψ〉.

1.2.3.3 Measurements

Postulate 3 A (projective) measurement2 is described by a self-adjoint op-
erator M , called observable, with the spectral decomposition M =

∑
mmPm,

where Pm is the projector onto the eigenspace of the eigenvalue m.
The eigenvalues m of M correspond to the possible outcomes of the mea-

surement. Measuring |ψ〉 will give the result m with probability p(m) =

2There is also a more general formulation of quantum measurement allowing non-
projective measurement operators. See [43] for details.
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〈ψ|Pm|ψ〉, thereby reducing |ψ〉 to the post-measurement state

|ψ′〉 =
1√
p(m)

Pm|ψ〉 (1.18)

For a qubit state, the self-adjoint operator N

N =

(
0 0
0 1

)
= 0 · |0〉〈0|+ 1 · |1〉〈1| (1.19)

is known as the standard observable. Generally, for a system with the state
space H = Cn, the standard observable N can be defined as N =

∑
i i|i〉〈i|.

Definition 12 The weighted average 〈M〉 over all possible outcomes of a
measurement of M is called expectation value and is defined as

〈M〉 =
∑
m

p(m)m =
∑
m

〈ψ|mPm|ψ〉 = 〈ψ|M |ψ〉 (1.20)

Definition 13 The standard deviation ∆M of all possible outcomes of a
measurement is defined as

∆M =
√
〈(M − 〈M〉)2〉 =

√
〈M2〉 − 〈M〉2 (1.21)

The Heisenberg Uncertainty Principle The destructive nature of mea-
surement raises the question whether 2 observables A and B can be measured
simultaneously. This can only be the case if the post-measurement state |ψ′〉
is an eigenvector of A and B

A|ψ′〉 = a|ψ′〉 and B|ψ′〉 = b|ψ′〉 (1.22)

This is equivalent to the condition [A,B] = 0. If A and B do not commute,
then the uncertainty product (∆A)(∆B) > 0.

To find a lower limit for (∆A)(∆B) we introduce the operators δA =
A−〈A〉 and δB = B−〈B〉 and can express the squared uncertainty product
as

(∆A)2(∆B)2 = 〈(δA)2〉〈(δB)2〉 = 〈ψ|(δA)(δA)|ψ〉〈ψ|(δB)(δB)|ψ〉 (1.23)

Since δA and δB are self adjoint, we can express the above as

(∆A)2(∆B)2 = ‖δA|ψ〉‖2‖δB|ψ〉‖2. (1.24)

Using (1.1) and [A,B] = [δA, δB] we get

(∆A)(∆B) ≥ 1

2

∣∣∣〈[A,B]〉
∣∣∣ (1.25)
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1.2.3.4 Composite Systems

Postulate 4 The state space H of a composite physical system is the tensor
product of the state spaces Hi of its components. Moreover, if the subsystems
are in the states |ψi〉 ∈ Hi, then the joint state |Ψ〉 ∈ H of the composite
system is |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ . . .⊗ |ψn〉.

Let S be a composite system of S1 and S2 with the state space H =
H1⊗H2. A measurement of the observable M : H1 → H1 in S1, is equivalent
to measuring the observable M (1) = M ⊗ I in S with I being the identity
operator on H2. Equivalently, a unitary transformation U : H1 → H1 of S1

is described by the padded operator U (1) = U ⊗ I on H.
A joint state of the form |Ψ〉 = |ψ1〉 ⊗ |ψ2〉 is called product state, which

can be expanded to

|Ψ〉 =
∑

i

∑

j

aibj|i, j〉 with
∑

i

|ai|2 = 1 and
∑

j

|bj|2 = 1 (1.26)

In product states, unitary transformations or measurements performed on
one system, do not affect the state of the other system.

Entanglement Not any joint state is a product state. A state

|Ψ〉 =
∑

i

∑

j

cij|i, j〉 with
∑

i,j

|cij|2 = 1 (1.27)

where the coefficients cij cannot be written as cij = aibj is called entangled.
Consider the following joint states of two qubits

|ΨA〉 =
1

2
|0, 0〉+ 1

2
|1, 0〉+ 1

2
|0, 1〉+ 1

2
|1, 1〉 and (1.28)

|ΨB〉 =
1√
2
|0, 0〉+ 1√

2
|1, 1〉 (1.29)

A single measurement of either qubit (using the standard observable as
defined in (1.19)) will give 0 or 1 with equal probability p = 1/2. Assuming
that a measurement of the first qubit gave the result m, the respective post
measurement states are

|Ψ′
A〉 =

1√
2
|m, 0〉+ 1√

2
|m, 1〉 and (1.30)

|Ψ′
B〉 = |m,m〉 (1.31)

A measurement of the second qubit of |Ψ′
A〉 will still give a random re-

sult, while in the case of |Ψ′
B〉, the outcome is correlated to the previous

measurement and will always produce m. |ΨB〉 is also known as Bell state.
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1.3 Classical Computing

1.3.1 The Church-Turing Thesis

As already mentioned in 1.1.3, computing science is based on the paradigm
of computation being a mechanical, rather than a purely mental process. A
method, or procedure P for achieving some desired result is called effective
or mechanical if [21]

1. P is set out in terms of a finite number of exact instructions (each
instruction being expressed by means of a finite number of symbols);

2. P will, if carried out without error, always produce the desired result
in a finite number of steps;

3. P can (in practice or in principle) be carried out by a human being
unaided by any machinery save paper and pencil;

4. P demands no insight or ingenuity on the part of the human being
carrying it out.

Alan Turing and Alonzo Church both formalized the above definition by
introducing the concept of computability by Turing machine and the math-
ematically equivalent concept of recursive functions with the following con-
clusions:

Turing’s Thesis LCMs [logical computing machines i.e. Turing machines]
can do anything that could be described as “rule of thumb” or “purely me-
chanical”. [58]

Church’s Thesis A function of positive integers is effectively calculable
only if recursive. [50]

As the above statements are equivalent, they are commonly referred to as
the Church-Turing Thesis which defines the scope of classical computing.

1.3.1.1 Partial Recursive Functions

The class P of partial recursive functions mathematically captures the con-
cept of “effective” functions f : Nn → Nm. P can be constructed from
simpler classes in the following way: [39]
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1. A basic function f : Nn → Nm is a function f : x → y where yi is
either a constant yi = ci, ci ∈ N or an element of the input vector
yi = xσ(i). The class BF of basic function is closed under the basic
operators BO = {◦,×}, where “◦” denotes function composition and
“×” the usual cross-product.

2. The class PR of primitive recursive functions is generated from BF∪{S}
by closure under BO ∪ {Pr} where

(i) S : N→ N is the successor function S(n) = n+ 1 and

(ii) Pr denotes the primitive recursion h = Pr[f, g]

h(x, 0) = f(x), h(x, n+ 1) = g(x, n, h(x, n)) (1.32)

3. P is generated from PR by closure under BO ∪ {µ0}. The operator µ0

is called µ0-recursion (minimization) and defined as

µ0[f ] : x→ min
k∈N

[f(x, k) = 0] with f ∈ PR (1.33)

As µ0[f ](x) is only defined if ∃k ∈ N, f(x, k) = 0, P is a class of par-
tial functions. The class R ⊂ P of total functions in P is called recursive
functions.

1.3.2 Machines

1.3.2.1 General Machines

Definition 14 A machine M is a 5-tuple (S, O, T, δ, β) where [39]

(i) S is a set of of computational states

(ii) O = {fi : S → S} is an enumerable set of operations on S (memory
commands)

(iii) T = {ti : S → B} is an enumerable set of predicates on S (test com-
mands)

(iv) δ : I → S is an input function for the enumerable input set I
(v) β : S→ O is an output function for the enumerable output set O

By providing a set of (simple) elementary operations and predicates, a
machine defines a framework for the description of effective procedures. The
enumerability of O and T guarantees that such a description, called program,
can be finite and represented as a string over a finite set of symbols.
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1.3.2.2 Discrete Machines

A more rigid interpretation of effectivity also requires S to be enumerable, so
that not only the program but also the computational state can be expressed
“by finite means” and the whole computation can in fact be carried out by
manipulating symbols “on paper”. Such machines are known as discrete.
For any machineM = (S, O, T, δ, β) with O = {f1, f2, . . .} and the input set
I = {x1, x2, . . .} an equivalent discrete machine M′ = (S′, O, T, δ, β) can be
constructed by the diagonalization

S′ =
∞⋃

n=1

{(g1 ◦ g2 ◦ . . . ◦ gn)(δ(x)) | g ∈ On
n, x ∈ In} (1.34)

where O0 = {I}, On+1 = On ∪ {fn} and In = {x0, . . . xn}.

Turing Machines A Turing Machine (TM) consists of a head operating
on an infinite tape of memory cells. In the simplest case, each cell can only
adopt one of two possible states labeled 0 (also called blank) and 1.

If we index the cells by their relative position to the head, we can describe
the content of the tape content as a function s : Z→ B and write

s = (. . . s−2s−1|s0s1s2 . . .). (1.35)

The state space T is the set of all tapes containing only a finite number
of 1s.3

T =
{
s : Z→ B

∣∣∣
∞∑

i=−∞
si <∞

}
(1.36)

We can now define a TM as a machine M = (T, {S,E,L,R}, {T}, δ, β)
with the commands

(i) S(. . . s−1|s0s1s2 . . .) = (. . . s−1|1s1s2 . . .) (set)

(ii) E(. . . s−1|s0s1s2 . . .) = (. . . s−1|0s1s2 . . .) (erase)

(iii) L(s) = s′ where s′i = si+1 (move left)

(iv) R(s) = s′ where s′i = si−1 (move right)

(v) T(s) = s0 (test)

For I = Nm and O = Nn we can define a Turing machine TMm
n =

(T, {S,E,L,R}, {T}, δm, βn) with the unary encoding

δm(x1, x2, . . . xn) = (0ω|1x101x20 . . . 01xm0ω) and (1.37)

βn(. . . |1y101y20 . . . 01yn0 . . .) = (y1, y2, . . . yn) (1.38)

3This zero tails state condition is necessary as the set T′ = {s : Z→ B} would not be
enumerable.
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1.3.2.3 Finite Machines

For a discrete machineM with an infinite S, the number of symbols to rep-
resent a computational state s ∈ S can get arbitrarily large so any realization
ofM would require unlimited memory. If the amount of memory is limited,
so is the number of computational states. A discrete machineM with limited
memory is called finite.

The memory capacity of a finite machineM with the finite state space S
is S = log2 |S| bit.

1.3.2.4 Oracles

If a machine M1 = (S1, O1, T1, δ1, β2) is extended to allow computations
on another machine M2 = (S2, O2, T2, δ2, β2), then the resulting machine
M =M1 ./M2 is referred to as anM1-machine with anM2-oracle.

The interaction between M1 and M2 is described by oracle commands
of the form

fO : S1 × S2 → S1 × S2 or tO : S1 × S2 → B (1.39)

andM can be written as

M = (S1 × S2, O1 × {I1} ∪ {fO}, T1 ∪ {tO}, δ, β) (1.40)

with I2 being the identity on S2.
Depending on the definition of fO and tO, oracle calls can correspond to

single M2-commands up to the execution of complete finite programs (see
1.3.3.2) on M2. Still, with regard to time complexity, an oracle-call counts
as a single computational step.

1.3.2.5 Probabilistic Machines

A machine M = (S, O, T, δ, β) is probabilistic if it provides at least one
random test command c ∈ T . A random predicate c : S 7→ B can be
mathematically described by the probability distribution p(c|s) where s ∈ S,
so

c : s 7→
{

true with p = p(c|s)
false with p = 1− p(c|s) (1.41)

We can generalize this definition by also allowing for random memory
commands f : S 7→ S

f : s 7→ s′ with p = pf (s
′|s) where ∀s ∈ S,

∑

s′∈S

pf (s
′|s) = 1 (1.42)
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and output functions β : S 7→ O. In the latter case, pβ(y|s) with y ∈ O is
also called (probability) spectrum of s.

For any probabilistic machine M it is possible to formally construct a
corresponding deterministic machine M̂ operating on the distribution space

Ŝ =
{
pŝ : S→ [0, 1]

∣∣∣
∑

s∈S

pŝ(s) = 1
}

(1.43)

A state ŝ ∈ Ŝ has the (Shannon) entropy

H(ŝ) = −∑

s∈S

p(s|ŝ) log2 p(s|ŝ), p(s|ŝ) = pŝ(s). (1.44)

Probabilistic Turing Machine A probabilistic Turing Machine (PTM)
can be constructed from a deterministic TM by adding a stateless random
oracle which provides a “fair coin toss” test command C with p(C) = p(¬C) =
1/2.

1.3.3 Programs

A program π for some machine M = (S, O, T, δ, β) is a finite set of instruc-
tions (also called statements) that determines how to iteratively transform
an input state s0 = δ(x) using the machine’s memory and test commands
until some halting condition is met. If the program halts, the resulting state
sh is called output state.

π

δ

β

input

output

test commands

memory commands

S

Figure 1.1: A program π controlling a machine M = (S, O, T, δ, β)

The transfer function τπ : s0
π−→ sh is a partial function on S defined

for all input states s0 ∈ S for which π halts. F (π,M) denotes the partial
function x→ β(τπ(δ(x))) implemented by π onM = (S, O, T, δ, β).
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The interpretation of a program π of a program class Π is specified by
a step function ρ : Π × P × S → P × S. P = P(π) is the set of possible
control-states with a unique p0 ∈ P called initial state and a subset Ph ⊆ P
called halting states.

A pair (p, s) ∈ P× S is called a configuration. ρ has the general form

ρπ(p, s) =





(
ν(π, p), fµ(π,p)(s)

)
if p ∈ Pf(

ν(π, p, tµ(π,p)(s)), s
)

if p ∈ Pt

(p, s) if p ∈ Ph

(1.45)

where P = Pf ∪Pt ∪Ph, fµ(π,p) ∈ O and tµ(π,p) ∈ T .
For an input state s0 = δ(x), (p0, s0) = (p0, δ(x)) is called initial configu-

ration. The transfer function τ is defined as

(ph, τπ(s0)) = ρn(p0, s0) with n = min
k
ρk(p0, s0) ∈ Ph × S (1.46)

If π halts for a given input x ∈ I, n is called the (time) complexity of the
computation.

1.3.3.1 Sequences

Definition 15 A program σ ∈ On for a machine M = (S, O, T, δ, β) con-
sisting of a static list of n memory commands is called a sequence. The
transfer function τσ : s→ (σ1 ◦ σ2 ◦ . . . ◦ σn)(s) is a total function.

Definition 16 Let S be composed of identical indexed memory cells Mi with
the state space S, such that S = S1 ⊕ S2 ⊕ . . . for some suitable composition
⊕ and g a function g : Sn → Sn. The class of functions Γ(g) = {gi1i2...in :
S → S} where gi1i2...in denotes the application of g to a permutation of n
mutually different cells Mi1 ,Mi2 . . .Min is called an n-ary gate.

If O is a union of gates, then a sequence σ ∈ O? can be interpreted as a
feed forward network and is also called a circuit.

A set of operations O is universal if for any function f : I ′ → O defined
for a finite subset I ′ ⊆ I there exists a sequence σ ∈ O? such that f(x) =
β(τσ(δ(x))) for all x ∈ I ′.

While generally, more powerful programming concepts are required to
fully exploit the computational potential of a machine M = (S, O, T, δ, β),
sequences are sufficient to implement any function that can possibly be im-
plemented if either

(i) O is universal and (a)M is finite or (b) I is a finite set

(ii) M provides no test-commands, i.e. T = ∅
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1.3.3.2 Finite Programs

Definition 17 LetM be a machine (S, O, T, δ, β) and L an enumerable set
of labels with an element l0 ∈ L called start-label.

(i) A triple (l, f, p) ∈ L×O × L is called function-statement

(ii) A 4-tuple (l, t, p, q) ∈ L× T × L× L is called test-statement

The labels l are called statement-, p and q are called jump-labels. A finite
program π ∈ Π for M is a finite set of statements with unique labels l.

Function- and test-statements are also written as

l: f then p

l: if t then p else q

A program π ∈ Π describes a finite automaton operating onM with the
step function

ρπ(l, s) =





(p, f(s)) if πl = (l, f, p)
(p, s) if πl = (l, t, p, q) ∧ t(s)
(q, s) if πl = (l, t, p, q) ∧ ¬t(s)
(l, s) if l /∈ Lπ

(1.47)

where Lπ denotes the set of statement-labels in π and πl : Lπ → π the
statement with the label l.

According to the Church-Turing thesis, any effective function f : Nn →
Nm can be implemented as a finite program π for TMm

n and the set of Turing-
computable functions

F (TM) = {F (π, TMm
n ) |π ∈ Π, n,m ∈ N} (1.48)

is identical to P.

Definition 18 (Universal Computer) A machineM = (S, O, T, δ, β) with
the encodings δ : N? → S and β : S → N? is a universal computer iff for
any f ∈ P, there exists a finite program π for M such that f = F (π,M).

1.3.3.3 Programming Languages

Definition 19 A programming language L ⊆ Σ? for a machine M is a
class of algorithm descriptions p ∈ Σ? over some alphabet Σ, which can be
efficiently translated into a finite program π ∈ Π for M by another program
πL for a machine

ML = (S, O, T, δ : Σ? → S, β : S→ Π) (1.49)
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The pair (πL,ML) is called a compiler for L. It is usually required that
the compilation is efficient, i.e. has polynomial time and space complexity.

A programming language L is universal, if M is a universal computer
and for any f ∈ P there exists a program p ∈ L such that f = F (p,M) =
F (F (πL,ML),M).

1.4 Elements of Quantum Computing

Just like a classical machine, a quantum computer, essentially consists of
three parts: a memory, which holds the current machine state, a processor,
which performs elementary operations on the machine state, and some sort
of input/output which allows to set the initial state and extract the final
state of the computation.

Formally, we can describe a quantum computer as a probabilistic machine
M = (H, O, T, δ, β) where

• H is the state space of the quantum system operated on,

• O a set of (deterministic) unitary transformations,

• T a set of (probabilistic) measurement commands,

• δ is the initialization operator and

• β describes the final measurement.

1.4.1 Quantum Memory

1.4.1.1 Qubits

The quantum analogue to the classical bit is the quantum bit or qubit (see
1.2.3.1).

Definition 20 A qubit or quantum bit is a quantum system whose state can
be fully described by a superposition of two orthonormal basis states labeled
|0〉 and |1〉.

The state space of a qubit is the Hilbert space B = C2. The orthonormal
system {|0〉, |1〉} is called computational basis.

The classical value of a qubit is described by the standard observable
N = |1〉〈1| (1.19). 〈N〉 gives the probability to find the system in state |1〉 if
a measurement is performed on the qubit.
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The Bloch Sphere Ignoring an irrelevant overall phase factor, the general
state of a qubit can be written as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (1.50)

By interpreting θ and ϕ as polar coordinates

r̂ = (cosϕ sin θ, sinϕ sin θ, cos θ), (1.51)

every qubit state has a unique representation as a point on the three-dimensional
unit sphere, also known as Bloch sphere.

ϕ

|0〉

|1〉

|ψ〉

y

z

x

θ

Figure 1.2: Bloch sphere representation of the qubit state |ψ〉

The unit-vector r̂ = r̂ψ is called Bloch vector of |ψ〉. Bloch vectors have
the property that

r̂φ = −r̂χ ⇐⇒ 〈φ|χ〉 = 0. (1.52)

1.4.1.2 Machine State

Definition 21 The state space of a quantum computer is a separable complex
Hilbert space H with a designated enumerable orthonormal system B = {|i〉}
called computational basis. The state of a quantum computer is a unit-vector
|Ψ〉 ∈ H known as machine state.
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Classically, the common state space S of a composite system consisting
of n memory cells with the state spaces Si is given by the cross-product
S = S1× S2× . . .× Sn. In quantum mechanics, this is only true for product
states (see 1.2.3.4).

The state space H of a quantum computer composed of n identical sub-
systems with the state space S is given as the tensor product

H = S⊗n =

n times︷ ︸︸ ︷
S ⊗ . . .⊗ S (1.53)

The machine state |Ψ〉 of an n-qubit quantum computer is therefore a
unit vector in H = B⊗n = C2n

|Ψ〉 =
∑

(d0...dn−1)∈Bn

cd0...dn−1|d0 . . . dn−1〉 with
∑ |cd0...dn−1|2 = 1 (1.54)

The basis vectors |d0 . . . dn−1〉 can be interpreted as binary numbers and
relabeled as |k〉 with k =

∑n−1
i=0 2idi so B can be written as B = {|k〉|k ∈ Z2n}.

A quantum computer M = (H, O, T, δ, β) is finite if dimH < ∞. The
memory capacity of a finite quantum computer is log2 dimH qubit.

Unlimited Memory As the state space of a quantum computer is a sep-
arable Hilbert space, it is isomorphic to either Cn or l2 (see 1.2.2.2).

The Hilbert space B⊗ω resulting from a composition of an infinite number
of qubits is non-separable. We can however construct a separable subspace
B? ⊂ B⊗ω which is isomorphic to l2 by introducing a zero tail state condition.

B? =
{
|ψ〉 ⊗ |0〉⊗ω

∣∣∣ |ψ〉 ∈ B⊗n, n ∈ N
}

(1.55)

1.4.1.3 Quantum Registers

Definition 22 Let H be the state space of a quantum computerM with the
computational basis B = {|i〉}. A quantum register s is a sub-system of M
with a finite dimensional state space Hs and a basis Bs = {|i〉s} such that
H = Hs ⊗ Hs̄ and B = Bs × Bs̄. If M is finite, then s̄ is known as the
complimentary register to s.

A register s defines a decomposition for the computational basis B, so
any basis vector |k〉 ∈ B can be written as the product state |k〉 = |ik〉s|jk〉s̄
with |ik〉s ∈ Bs and |jk〉s̄ ∈ Bs̄.

In H the classical value of a register s is described by the register observ-
able N(s)

N(s) ≡ Ns ⊗ Is̄ =
∑

i,j

i |i〉s|j〉s̄〈i|s〈j|s̄ (1.56)
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whereNs is the standard observable onHs and Is̄ the identity operator onHs̄.
Likewise, a unitary transformation U on Hs can be expressed as a register
operator U(s) on H

U(s) ≡ U ⊗ Is̄ =
∑

i,i′,j
ui,i′ |i〉s|j〉s̄〈i′|s〈j|s̄ (1.57)

where ui,i′ is the matrix element ui,i′ = 〈i|U |i′〉.

Qubit Registers When H is the state space of a composition of the qubits
qi, i.e. H = B⊗m or H = B?, then any qi defines a register qi with the
decomposition

|d0 . . . di−1didi+1 . . .〉 = |di〉qi
|d0 . . . di−1di+1 . . .〉q̄i

(1.58)

Likewise, any permutation (s0s1 . . . sn−1) = (qk0qk1 . . . qkn−1) of mutually
different qubits sj ∈ {qi} defines an n-qubit register s = qk0 ◦qk1 ◦ . . . ◦qkn−1

with the decomposition

|d0d1 . . .〉 =

(
n−1⊗

i=0

|dki
〉qki

)
⊗ | . . .〉s̄ = |dk0dk1 . . . dkn−1〉s| . . .〉s̄ (1.59)

The order of qubits is important, so while a ◦ b and b ◦ a refer to the
same 2-qubit subsystem, they are two different registers.

If s is a n-qubit register and U an operator on B⊗n, then the register
operator U(s) is also referred to as a quantum gate.

Register States Strictly speaking, the state of a register s is only defined
if the machine state |Ψ〉 is of the form |Ψ〉 = |ψ〉s|χ〉s̄. In that case, we say
that s is in the pure state |ψ〉 ∈ Hs. Alternatively, the state of s can be
described by the (reduced) density operator ρs.

Definition 23 Let H = Ha ⊗ Hb be the state space of a composite system
a ◦ b. For a machine state

|Ψ〉 =
∑

i,j

cij|i〉a|j〉b with
∑

i,j

|cij|2 = 1 (1.60)

the reduced density operator ρa : Ha → Ha is defined as

ρa = trb (|Ψ〉〈Ψ|) =
∑

i,i′
|i〉a〈i′|a

∑

j

cijc
∗
i′j (1.61)



CHAPTER 1. QUANTUM COMPUTING 24

If a register s is in a pure state then ρs = |ψ〉〈ψ| and tr(ρ2
s) = trρs = 1. If

s is entangled then ρs is a positive operator with the spectral decomposition

ρs =
∑

k

pk|ψk〉〈ψk| with pk ∈ [0, 1) and
∑

k

pk = 1 (1.62)

and tr(ρ2
s) < 1. In that case, s is also said to be in the mixed state ρs.

4

The density operator allows to treat s as an isolated system with re-
gard to unitary evolution and measurements as long as no operation on s̄ is
performed:

(i) Let U be a unitary operator on Hs, then

|Ψ′〉 = U(s)|Ψ〉 =⇒ ρ′s = UρsU
†. (1.63)

(ii) Let M be a Hermitian operator on Hs with the spectral decomposition
M =

∑
mmPm, then p(m) = 〈Ψ|Pm(s)|Ψ〉 = tr(Pmρs) and

|Ψ′〉 =
Pm|Ψ〉√
p(m)

=⇒ ρ′s =
PmρsP

†
m

p(m)
. (1.64)

Schmidt Decomposition If s and s̄ are entangled, the machine state can
always be written as

|Ψ〉 =
∑

i

λi|ψi〉s|χi〉s̄ with λi ∈ R+ and
∑

i

λ2 = 1 (1.65)

such that |ψi〉 ∈ Hs and |χi〉 ∈ Hs̄ are orthonormal states i.e. 〈ψi|ψj〉 = δij
and 〈χi|χj〉 = δij. This representation is known as Schmidt decomposition.

1.4.2 Quantum Operations

1.4.2.1 Unitary Operators

According to the 2nd postulate of quantum mechanics (see 1.2.3.2), the evo-
lution of a closed quantum system is unitary and can be described by the
operator U(t) = e−iHt. Therefore, the memory commands O of a quantum
computerM = (H, O, T, δ, β) are unitary transformations on the state space
H.

A unitary transformations U is a linear operator of the form UU † =

I and describes a basis transformation B
U−→ B̃. From a computational

point of view, these mathematical properties account for three fundamental
differences between classical and quantum computing:

4The term “mixed state” refers to the fact that ρ exhibits the same measurement
statistics as a system which is known to be in the state |ψk〉 with probability pk.
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• Reversibility: Since unitary operators, by definition, match the con-
dition UU † = I, for every transformation U there exists the inverse
transformation U (−1) = U †. As a consequence, quantum computation
is restricted to reversible functions.5

• Superposition: A “classical” state |Ψ〉 = |k〉 ∈ B can be transformed
into a superposition of several basis vectors

|Ψ′〉 = U |k〉 = |k̃〉 =
∑

k′
uk′k|k′〉 (1.66)

and vice versa.

• Parallelism: If the machine state |Ψ〉 already is a superposition of
several basis vectors, then a transformation U is applied to all basis
states simultaneously.

U
∑

k

ck|k〉 =
∑

k

ckU |k〉 (1.67)

This feature of quantum computing is called quantum parallelism and
is a consequence of the linearity of unitary transformations.

1.4.2.2 Qubit Operators

The simplest case of unitary transformations are operators which work on a
single qubit. A general 2-dimensional complex unitary matrix U ∈ SU(2)
can be written as

U = eiϕ

(
e

i
2
(−α−β) cos θ

2
−e

i
2
(−α+β) sin θ

2

e
i
2
(α−β) sin θ

2
e

i
2
(α+β) cos θ

2

)
(1.68)

As we have shown in 1.4.1.1, every qubit state |ψ〉 ∈ B can be represented
by a Bloch vector r̂ψ. Rotations about the x̂, ŷ and ẑ-axes in the Bloch sphere
correspond to the operators

Rx(θ) =

(
cos θ

2
−i sin θ

2

−i sin θ
2

cos θ
2

)
(1.69)

Ry(θ) =

(
cos θ

2
− sin θ

2

sin θ
2

cos θ
2

)
(1.70)

Rz(θ) =

(
e−iθ/2 0

0 eiθ/2

)
(1.71)

5A classical analogue would be the class of bijective functions on Bn.
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on B. It is easy to verify that R†i (θ) = Ri(−θ), so all Ri are unitary operators.
Using the self-inverse Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.72)

a general rotation6 about a unit vector n̂ can be written as

Rn̂(θ) = e−
i
2
θn̂·~σ = cos

θ

2
I − i sin

θ

2
(nxσx + nyσy + nzσz) (1.73)

Let U ∈ SU(2) have the orthonormal eigenvectors |u〉 and |v〉 and the
eigenvalues u and v, then U can be written as

U = u|u〉〈u|+ v|v〉〈v| = eiϕRn̂(δ) (1.74)

where n̂ is the Bloch vector of |u〉 and δ is the phase difference between u
and v, i.e. v = eiδu.

1.4.2.3 Universal Qubit Operations

As qubit operators correspond to rotations in the Bloch sphere, any unitary
U on B can implemented as a composition of three rotations about two
orthogonal axes and a (physically irrelevant) overall phase factor.7 e.g.

U = eiϕRz(α)Ry(β)Rz(γ) (Z-Y decomposition) or (1.75)

U = eiϕRx(α)Ry(β)Rx(γ) (X-Y decomposition) (1.76)

This means, for symmetry reasons, that for any two orthogonal unit vec-
tors û and v̂, the operator set Ouv = {Rû(θ) | θ ∈ R} ∪ {Rv̂(θ) | θ ∈ R} is
universal for single qubit operations.

Definition 24 (Universality of operator sets) LetH be a separable Hilbert
space and O a set of unitary operators on H. O is universal on H if for any
unitary operator U : H → H and for any ε ∈ R+, there exists a composition
σ = U1 ◦ U2 ◦ . . . ◦ Uk with Ui ∈ O and an overall phase eiϕ such that

∣∣∣〈φ|(U − eiϕσ)|χ〉
∣∣∣ < ε ∀ |φ〉, |χ〉 ∈ H. (1.77)

6Note that despite the mathematical period of 4π, Rn̂(θ) and Rn̂(θ + 2π) = −Rn̂(θ)
describe the same physical operation.

7Note that expanding (1.75) directly leads to (1.68).
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Let O = {Rn̂(θ) | θ ∈ R} be the class of rotations about some axis vector
n̂. Since

Rn̂(α+ β) = Rn̂(α)Rn̂(β) and Rn̂(θ + 2kπ) = (−1)kRn̂(θ), (1.78)

the set {Rk
n̂(ξ) | k ∈ N} ⊂ O is dense in O iff ξ 6= 0 and ξ/π is irrational.

So any pair {Rû(qπ), Rv̂(pπ)} of orthogonal qubit rotations where û ⊥ v̂ and
p, q ∈ I+ already constitutes a universal set of qubit operators.

The above result can be generalized to non-orthogonal rotations: Let
V = Rv̂(β) andW = Rŵ(γ) be unitary qubit operators where 0 < |(v̂, ŵ)| < 1
and let û be an axis vector orthonormal to v̂. Since W can be written as
W = Rv̂(β1)Rû(α)Rv̂(β2), we can construct a qubit rotation

U = Rû(α) = Rv̂(−β1)W Rv̂(−β2) (1.79)

orthogonal to V . Provided that β/π, γ/π ∈ I+, there exist k1, k2 ∈ N such
that Rv̂(−βi) ≈ V ki to arbitrary precision and the operator pair {V,W} is
universal.

1.4.2.4 Quantum Gates

Definition 25 Let H = B⊗n or H = B? be the state space of a composite
system of the qubits S = {qi} and Rk(S) = {s ⊆ S | |s| = k} denote the
ordered k-qubit subsets of S i.e. the set of k-qubit registers. The class

Γ(U) = {U(s) | s ∈ Rk(S)} (1.80)

of register operators on H for some unitary k-qubit operator on B⊗k is called
a k-qubit quantum gate.

Informally, we can describe a k-qubit gate as a unitary operator which
can be equally applied to any k-qubit register of a quantum computer. In
that case, the term “gate” is also used to refer to a single register operator
U(s) ∈ Γ(U) as well as to the operator U itself.

Common Elementary Gates

Single Qubit Gates

• Pauli gates

X ≡ σx =

(
0 1
1 0

)
, Y ≡ σy =

(
0 −i
i 0

)
, Z ≡ σz =

(
1 0
0 −1

)

(1.81)
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• Hadamard gate

H ≡ 1√
2

(
1 1
1 −1

)
(1.82)

• Phase- and π/8-gate8

S ≡
√
Z =

(
1 0
0 i

)
, T ≡

√
S =

(
1 0
0 eiπ/4

)
(1.83)

Two Qubit Gates

• controlled-not gate

CNot : |x, y〉 → |x⊕ y, y〉 (1.84)

• swap-gate
Swap : |x, y〉 → |y, x〉 (1.85)

• controlled-phase-gate

CPhase : |x, y〉 → ixy|x, y〉 (1.86)

Three Qubit Gates

• Toffoli-gate (controlled-controlled-not)

CCNot : |x, y, z〉 → |x⊕ (y ∧ z), y, z〉 (1.87)

• Fredkin-gate (controlled-swap)

CSwap : |x, y, z〉 →
{
|y, x, z〉 if z = 1
|x, y, z〉 if z = 0

(1.88)

1.4.2.5 Controlled Gates

The single most important 2-qubit gate is the controlled-not-gate. The CNot-
gate operates on a target qubit t and a control (or enable) qubit e and can be
defined using the X-gate, as matrix

CNot = C[X] =

(
I 0
0 X

)
=




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (1.89)

8T is named π/8-gate as T ' eiπσx/8.
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or as the register operator

CNot(t, e) : |d〉t|c〉e → (Xc|d〉t)⊗ |c〉e (1.90)

Informally, we can describe the CNot-gate as conditionally applying the
operator X (single bit not) to the target qubit t in dependence of the control
qubit e. This can be generalized to arbitrary gates and multiple control-bits:

Definition 26 (Controlled Gate) Let U be a unitary m-qubit gate. A
controlled U-gate with n control qubits is defined as

Cn[U ] =




I · · · 0 0
...

. . . 0 0
0 0 I 0
0 0 0 U




(1.91)

on B⊗n+m or in register notation

U[[e]](t) ≡ Cn[U ](t, e) : |k〉t|c〉e →
{

(U |k〉t)|c〉e if c = 111 . . .
|k〉t|c〉e otherwise

(1.92)

For any single qubit gate U , C[U ] can be implemented using single qubit
operations and CNot: Let U = eiϕRz(α)Ry(β)Rz(γ) be the ZY-decomposition
(1.75) of U , A = Rz(α)Ry(β/2), B = Ry(−β/2)Rz(−(γ + α)/2) and C =
Rz((γ − α)/2), then

U[[e]](t) = eiϕRz(ϕ)(e)A(t)CNot(t, e)B(t)CNot(t, e)C(t) (1.93)

Phase Gates Operators of the form V (ϕ) = Cn[eiϕ] are referred to as
(controlled) phase gates, and are an interesting special case as the operator
U = eiϕ is a physically irrelevant overall phase and can technically be consid-
ered as a zero-qubit gate, so only controlled versions of U have a non-trivial
physical effect.

Examples for controlled phase gates are Rz(θ) ' C[eiθ] (see 1.4.2.2), Z =
C[−1], S = C[i], T = C[eiπ/4] and CPhase = C2[i] (see 1.4.2.4).

1.4.2.6 Universal Gates

A well known result from classical boolean logic is that any possible function
f : Bn → Bm can be constructed as a composition from a small universal
set of operators if we can “wire” the inputs and outputs to arbitrary bits
in a feed-forward network. Examples for universal sets of logical gates are
{∨,¬}, {→,¬} or {∧̄}.
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In 1.4.2.3 we have already demonstrated how almost any pair of single
qubit rotations can be used to approximate an arbitrary unitary operator on
B.

It can be shown that any n-dimensional unitary matrix can be decom-
posed into a product of at most

(
n
2

)
= n(n− 1)/2 two-layer unitary matrices

[42, 52],9 i.e.

U =
n−1∏

j=1

j−1∏

i=0

Uij where Uij : |k〉 →




aij|i〉+ bij|j〉 if k = i
cij|i〉+ dij|j〉 if k = j

|k〉 otherwise
(1.94)

If H = B⊗n is a composition of qubits, then for any single qubit gate
U , Cn−1[U ] is also a two-layer matrix. Using suitable basis permutations
Πij : |k〉 → |πk〉 with πi = 2n − 2 and πj = 2n−1 the two-layer matrices Uij
from (1.94) can be written as

Uij = Π†
ij C

n−1[Vij] Πij, Vij =

(
aij bij
cij dij

)
(1.95)

Since basis permutations essentially implement bijective functions over
Bn (see 2.5.3), any quantum gate which implements a universal reversible
boolean gate, together with controlled single qubit operations, is enough to
implement arbitrary unitary operators on B⊗n.

An example for a universal reversible boolean gate is the classical Toffoli
gate T : (x, y, z) → (x ⊕ (y ∧ z)) [57]. Unlike T , its quantum counterpart
(1.87) can be factorized into 2-qubit operators, e.g.

CCNot(x,y, z) = V[[z]](x)CNot(y, z)V †
[[y]](x)CNot(y, z)V[[y]](x)

with V =
√
X = eiπ/4Rx(

π

2
) (1.96)

By choosing V such that U = V 2 the above factorization can be used to
construct C2[U ] for arbitrary arbitrary single qubit-gates. Moreover, similar
decompositions can be found for any number of control qubits, so CNot and
single qubit operations are universal [28].

Further examples for universal sets of quantum gates are

• the standard set [43, 13]10

{H,S, T, CNot} (1.97)

9This is similar to the fact that a general rotation in Rn can be decomposed into
(
n
2

)
simple rotations in the coordinate planes.

10Since S = T 2, the phase gate (1.83) is merely included for convenience.
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The standard set is universal despiteH and T being π and π/4 rotations
in the Bloch sphere, because the rotation angle θ of Rn̂(θ) = TH and
Rm̂(θ) = HT , which is given by cos θ = cos2 π

8
, can be shown to be an

irrational multiple of π [13].

• the Deutsch gate [25]

D = C2[iRx(θ)] for
θ

π
∈ I (1.98)

The universality proof involves the construction of the Toffoli gate
which can be used to implement arbitrary basis-permutations Π : |i〉 →
|πi〉. Those can then be used to construct 3-qubit two-layer rotations
between any two basis-vectors, which can be shown to be sufficient to
construct arbitrary unitary transformations [41].

1.4.3 Input and Output

1.4.3.1 Quantum Computing and Information Processing

As already mentioned in 1.2.1, the ultimate claim of quantum computing is
that the interpretation of computing as a physical process, rather than the
abstract manipulation of symbols, leads to an extended notion of computabil-
ity. In accordance with the postulates of quantum mechanics (see 1.2.3), we
also identified the concept of unitary transformations as the most general
paradigm for “physical computability”.

Unitary transformations describe the transition between machine states
and thereby the temporal evolution of a quantum system. The very notion of
a (quantum) computer as a “computing machine” requires, however, that the
evolution of the physical system corresponds to a processing of information.

Classical information theory requires that any “reasonable” information
can be expressed as a series of answers to yes-no questions, i.e. a string of
bits. But unlike classical symbolic computation, where every single step of a
computation can be mapped onto a bit-string, physical computation requires
such a labeling only for the initial and the final machine state, the labels of
which make up the input and output of the computation.11

If we regard a quantum computer as a probabilistic machine M (see
1.3.2.5 and 1.4), the above requirements are equivalent to the enumerability
of the input and output sets I and O.

11This is in accordance with the Copenhagen interpretation of quantum physics, which
states that the setup and the outcome of any experiment has to be described in classical
terms.
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1.4.3.2 Measurement Operators

In the classical machine definition (see 1.3.2), a test command t ∈ T is a
function t : S→ B. In the case of a quantum computerM = (H, O, T, δ, β),
however, the machine state |Ψ〉 ∈ H is not directly accessible and any phys-
ically realizable test-command will have to amount to the measurement of
some observable M .

According to the 3rd postulate of quantum mechanics (see 1.2.3.3), the
measurement of M on |Ψ〉 is only deterministic and invariant to |Ψ〉 iff |Ψ〉
happens to be an eigenstate ofM , so the test commands are no longer boolean
predicates on S but probabilistic measurement operators, i.e.

T = {µi : H 7→ H×B} (1.99)

Definition 27 Let M be a self-adjoint operator on H with the spectral de-
composition M =

∑
m λmPm, then the measurement operator µ[M ] is a prob-

abilistic mapping µ[M ] : H 7→ H×R defined as

µ[M ] : |Ψ〉 7→
(

1√
pm
Pm|Ψ〉, λm

)
with probability pm = 〈Ψ|Pm|Ψ〉

(1.100)

Since test commands are supposed to deliver boolean results, each µi
corresponds to a projection operator Pi i.e. a Hermitian with the eigen-
values 0 and 1. So µi = µi[Pi] and

µ[P ] : |Ψ〉 7→




( 1√
p
P |Ψ〉, 1) with p = 〈Ψ|P |Ψ〉

( 1√
p
(I − P )|Ψ〉, 0) with p = 〈Ψ|I − P |Ψ〉 (1.101)

If P = N(s) we also write µ(s) ≡ µ[N(s)]. Also, we will occasionally
ignore one of the function values if this is convenient and can be done without
ambiguity.

Single Qubit Measurements If H = B⊗n, then a natural choice for Pi
are the standard observable

N(qi) = I⊗i ⊗ |1〉〈1| ⊗ I⊗n−i−1 (1.102)

for each qubit qi. IfM provides a universal set O of unitary operators, single
qubit measurements in the computational basis are sufficient to measure an
arbitrary P :
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A general projection P has the form

P =
∑
n

λn|ñ〉〈ñ| with λn ∈ B and |ñ〉 ∈ B̃ (1.103)

where B̃ is an arbitrary orthonormal basis of H. If O is universal, then it
is possible to implement the unitary operator U =

∑
n |n〉〈ñ| and P can be

expressed as P = U †P ′U with P ′ =
∑
n λ

′
n|n〉〈n|.

To measure P ′, we can use an additional scratch qubit s in state |0〉s and
use the unitary operator

U ′ : |k〉s|n〉s̄ → |k ⊕ λ′n〉s|n〉s̄ (1.104)

to prepare the entangled machine state

|Ψ′〉 =
∑
n

cn|λ′n〉s|n〉s̄ where cn = 〈n|Ψ〉 (1.105)

A measurement of N(s) on |Ψ′〉 is now equivalent to to measuring P ′ on
|Ψ〉. If the result is 1 and therefore s is left in the state |1〉s, the previous
state can be restored by applying X(s).

Output Function To retrieve the classical result of the computation, a
final measurement is required. Using the standard observable N on H, we
can define the probabilistic output function β : H 7→ N as β = µ[N ].12

1.4.3.3 State Preparation

To set or reset a quantum computer M to desired initial state |Ψ0〉, no
additional operations besides unitary transformations and measurements are
necessary. Assuming H = B⊗n, it suffices to measure all qubits to bring
M into a known state |Ψ〉 = |m〉 and then to apply an arbitrary unitary
operator Um which satisfies the condition 〈Ψ0|Um|m〉 = 1.

If |Ψ0〉 = |d0d1 . . . dn−1〉 then at most n X-gates are required for the
preparation.13 It is also convenient to include a special non-unitary memory
command

reset : |Ψ〉 → |0〉 (1.106)

for the initialization of the machine state.

12This notation is actually a shorthand for β(|Ψ〉) = m ⇐⇒ µ[N ]|Ψ〉 = (|Ψm〉,m).
13For arbitrary |Ψ0〉, the number of necessary gates generally increases exponentially.
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Input Function To allow the preparation of “classical” input states we
can define the input function δ(s) : N → H as δ(s) = |s〉. For quantum
algorithms which take their input in the form of oracle operators14 and con-
sequently do not require any classical input, it is common to assume an initial
state |Ψ0〉 = δ(s) = |0〉.

1.5 Concepts of Quantum Computation

1.5.1 Models and Formalisms

As we demonstrated in 1.3 the concept of the universal computer can be
represented by several equivalent models, corresponding to different scientific
approaches. From a mathematical point of view, a universal computer is a
machine capable of calculating partial recursive functions (1.3.1.1), computer
scientists often use the Turing machine (1.3.2.2) as their favorite model, an
electronic engineer would possibly speak of logic circuits while a programmer
probably will prefer a universal programming language (1.3.3.2).

As for quantum computation, each of these classical concepts has a quan-
tum counterpart: [47, 48]

Model classical quantum
Mathematical partial recursive funct. unitary operators

Machine Turing Machine QTM
Circuit logical circuit quantum gates

Algorithmic univ. programming language QPLs

Table 1.2: Classical and quantum computational models

1.5.1.1 The Mathematical Model

The paradigm of computation as a physical process requires that algorithms
can — in principle — be described by the same means as any other physical
system, which, for the field of quantum physics, is the mathematical formal-
ism of Hilbert space algebra. The basics of this formalism, were introduced
in 1.2.

The quantum equivalent of partial recursive functions is unitary opera-
tors. Just as every classically computable problem can be reformulated as

14An oracle function or operator is a special “black-box” memory or test command which
can be used either as problem description or to extend the functionality of a machine.
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calculating the value of a partial recursive function, every quantum compu-
tation can be described by a unitary operator.15

The mathematical description of an operator is inherently declarative;
the actual implementation for a certain quantum architecture i.e. the al-
gorithmic decomposition into elementary operations, is beyond the scope of
this formalism. Also, since the mathematical model treats unitary operators
as black boxes, no complexity measure is provided.

Register Notation To simplify the discussion of operators applied to per-
mutations of qubits on H = B⊗n and H = B? we introduced the concept of
quantum registers (see 1.4.1.3). Table 1.3 summarizes all important register
expressions.

Notation Description
s general register i.e. an ordered set of qubits
s̄ complementary register to s
| . . .〉s ket-vector of register s
|s| length of s i.e. number of qubits in s
Hs |s|-qubit sub-space {|ψ〉s} of H, Hs ⊗Hs̄ = H

a ◦ b concatenation of registers a and b, a ◦ b 6= b ◦ a
U(s) register operator U ⊗ I on Hs ⊗Hs̄

µ(s) stochastic measurement operator µ[N(s)] : H 7→ H×B|s|

ρs register density operator ρs = trs̄ (|Ψ〉〈Ψ|)
U(a,b) multi-register operator U(a ◦ b)
U[[b]](a) conditional register operator C |b|[U ](a ◦ b)

Table 1.3: Register Notation

1.5.1.2 Quantum Turing Machines

In analogy to the classical Turing Machine (TM) several types of Quantum
Turing Machines (QTM) have been proposed as a model of a universal quan-
tum computer [5, 24, 6, 9].

The complete machine-state |Ψ〉 ∈ H of a QTM is given by a superposi-
tion of basis states |l, j, s〉, where l ∈ Zn is the state of the head, j ∈ N the
head position and

s = (. . . s−2s−1|s0s1s2 . . .) (1.107)

15This assumes that any measurements are performed at the end of the computation.
There are however algorithms, which take advantage of the state-reduction inherent to
quantum measurement so the analogy is not universal.
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the binary representation of the tape-content. To keep H separable, s has
to meet the zero tail state condition (see 1.3.2.2) i.e. only a finite number of
bits with sm 6= 0 are allowed, so s ∈ B? and H = Cn ⊗ l2 ⊗ B?

The quantum analogue of the transition function of a classical probabilis-
tic TM is the unitary step operator T , which has to meet locality conditions
for the affected tape-qubit, as well as for head movement.16

QTMs provide a measure for execution times, but — as with the classical
TM — finding an appropriate step operator can be very hard.

1.5.1.3 Quantum Circuits

Quantum circuits are the quantum equivalent to classical boolean feed-forward
networks, with one major difference: since all quantum computations have to
be unitary, quantum circuits can be evaluated in both directions (as in clas-
sical reversible logic). Quantum circuits are composed of elementary gates
and operate on qubits.17 The “wiring” between the gates defines the register
on which the gates operate, so an m-qubit gate U in an n-qubit circuit can
describe up to n!

(n−m)!
different unitary transformations U(s).

As opposed to the mathematical formalism, the gate-notation is an in-
herently constructive method and the complexity of the problem is directly
reflected in the number of gates necessary to implement it. However, since
quantum circuits describe static sequences, the size of the input as well as
the number of qubits is fixed, so without additional assumptions, quantum
circuits cannot be used to analyze the complexity depending on the size of
the problem. For the same reason, quantum circuits are also inadequate for
machines with unlimited memory.

Restrictions In comparison with classical boolean feed-forward networks,
this imposes the following restrictions:

• Only n-to-n networks are allowed i.e. the total number of inputs has
to match the total number of outputs.

• Only n-to-n gates are allowed.

16Instead of a unitary step-operator T , it is also possible to directly construct a (local)
Hamiltonian H (see 1.2.3.2) [5, 6]. In this case, the computation does not need to be
discrete and T ′ = U(t0) = e−iHt0 is not required to conform to locality conditions.

17There also exist extentions to cover measurements and classical bits [43]. In that case,
quantum circuits can also be used to describe irreversible computations.
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• No forking of inputs is allowed. This is directly related to the fact that
qubits cannot be copied, i.e. that there exists no unitary operation

Copy |ψ〉|0〉 → |ψ〉|ψ〉 with |ψ〉 ∈ C2 (1.108)

which can turn a general qubit-state into a product state of itself.

• No “dead ends” are allowed. Again, this is because the erasure of a
qubit

Erase |ψ〉 → |0〉 with |ψ〉 ∈ C2 (1.109)

is not a unitary operation.

Notation Some common gates (see 1.4.2.4) have special symbols. The
circuit in fig. 1.3 implements the operator18

C[eiθ](a) CSwap(a,b, c) Swap(a,b) CCNot(a,b, c) CNot(a,b)U[[b]](a)U(a)
(1.110)

a

b

c

a

b

c

U θU

Figure 1.3: Circuit notation for common gates

1.5.1.4 Quantum Programming Languages

A possible way to generalize quantum circuits for arbitrary input sizes is to
use a classical computer with unlimited memory (such as a TM) to generate
the circuits depending on the size of the input. So instead of directly spec-
ifying a single circuit in terms of wires and gates, a whole class of quantum
circuits is specified by means of a classical program.

Quantum programming languages (QPLs) take this abstraction even fur-
ther by directly using a quantum computer Mq as a oracle (see 1.3.2.4) for
a classical machine Mc. This not only avoids the need for an intermediate
circuit-description, but also allows the computation to depend on previous
measurements so quantum programs can describe complete algorithms and
not merely unitary transformations.

18Note that the order of the operators is inverted.
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1.5.2 Quantum Algorithms

1.5.2.1 Classical and Quantum Computability

If we consider a finite quantum computer with the Toffoli gate (see 1.4.2.4) as
the only available instruction, then any transformation of the machine state
has to be of the form

|Ψ〉 = |i〉 −→ |g(i)〉 = |Ψ′〉 with g : Bn → Bn (1.111)

Since the Toffoli gate is universal for reversible boolean logic, any bijective
binary function g can directly be implemented on a quantum computer.

A general binary function f on Bn, can be implemented by an arbitrary
unitary operator F which satisfies the condition F |i, 0〉 = |i, f(i)〉.

So any function f computable on a (finite) classical machine can also be
implemented on a quantum computer with a universal set of gates. Moreover,
C. H. Bennet has shown that a reversible implementation of f can be made
with a maximal overhead of O(2) in time and O(

√
n) in space complexity

[7].
On the other hand, a general n-qubit quantum state consists of maximally

2n basis-vectors with a non-zero amplitude and can consequently be described
by an array of 2n complex numbers. Also, any m-qubit quantum gate can be
described by a complex 2n × 2n matrix with the elements uij = 〈i|U |j〉.

By encoding the complex amplitudes as a pair of floating point binary
numbers a classical computer can simulate any unitary operator to arbitrary
precision.19 This will generally require an overhead of O(en) in time as well as
in space complexity. Due to the stochastic nature of quantum measurements,
the emulating computer will also need a source of true randomness (like e.g.
the probabilistic Turing machine).

So classical and quantum computers are computationally equivalent, but
while it is possible to efficiently simulate a classical computer on a quantum
computer, the opposite case can involve an exponential overhead. Therefore,
while not extending our notion of computability, for certain tasks quantum
algorithms might provide a more efficient solutions than classical implemen-
tations.

1.5.2.2 Deutsch’s Algorithm

In 1985, Deutsch proposed a probabilistic algorithm [24] which for some
oracle function g : B→ B allows to compute g(0)⊕ g(1) with a probability
of 1/2 using only 1 application of G:

19The linearity of unitary transformations assures that small errors will not escalate.



CHAPTER 1. QUANTUM COMPUTING 39

Let G : |x, y〉 → |x, y ⊕ g(x)〉 be a 2-qubit oracle-operator implementing
the boolean oracle function g : B→ B.

1. Prepare an empty initial state |Ψ0〉 = |0〉x|0〉y.

2. Apply H(x)

|Ψ1〉 = (H |0〉x) |0〉y =
1√
2

(
|0〉x|0〉y + |1〉x|0〉y

)
(1.112)

3. Apply the oracle operator G, giving

|Ψ2〉 =
1√
2

(
|0〉x|g(0)〉y + |1〉x|g(1)〉y

)
(1.113)

4. Apply H(x ◦ y), resulting in

|Ψ3〉 =
1

2
√

2

∑

x∈B

∑

y∈B

(
(−1)yg(0) + (−1)x+yg(1)

)
|x〉x|y〉y (1.114)

5. Measure x and y.

As (1.114) can be simplified to

|Ψ3〉 =
1√
2

(
|0〉x|0〉y + (−1)g(0)|g(0)⊕ g(1)〉x|1〉y

)
(1.115)

the register x will contain the value g(0)⊕g(1) whenever 1 has been measured
in y which will happen in 50% of the cases.

While strictly speaking, this does not provide any speedup over the clas-
sical case, if we take into account that, on average, two tries are required to
actually measure g(0) ⊕ g(1), Deutsch’s algorithm was the first proof that
quantum computers are capable of performing computations in ways that
are impossible on a classical computer.20

Generally, in order to achieve any speedup over classical algorithms, it is
necessary to take advantage of the unique features of quantum computing,
namely

• Superposition (step 2)

• Quantum Parallelism (step 3)

• Interference (step 4)

20There exist several improvements and generalizations to the original version of
Deutsch’s algorithm [26, 20], one of which — the Deutsch-Jozsa Algorithm — is described
in 1.5.2.6.
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1.5.2.3 Superposition

A key element in any universal programming language is conditional branch-
ing. Any classical program (see 1.3.3) can be modeled as a decision tree where
each node corresponds to a binary state sn and leads to one or more succes-
sor states s

(i)
n+1. On a deterministic Turing machine (TM), only one of those

transitions sn → s
(k)
n+1 is possible, so the computational path 〈s0, s1, . . . sn〉 is

predetermined.
On a probabilistic TM (see 1.3.2.5), the transitions are characterized by

probabilities pi with
∑
i pi = 1 and one of the possible successor states s

(i)
n+1

is chosen accordingly at random.
Since the basis-vectors |i〉 directly correspond to classical binary states,

we might interpret a unitary transformation

U : |s〉 →∑

s′
uss′|s′〉 with s, s′ ∈ Bn and uss′ ∈ C (1.116)

as a probabilistic transition form the classical state s to the successor states
s′ with the transition probabilities ps′ = |uss′|2, but unless we perform a
measurement, the resulting machine state remains in a superposition of all
possible classical successor states

|Ψ〉 = |sn〉 U−→ |Ψ′〉 =
∑

i

u
sns

(i)
n+1
|s(i)
n+1〉 (1.117)

So from a classical point of view, we can consider a unitary operator which
transforms an eigenstate into a superposition of n eigenstates with nonzero
amplitudes as a 1–n fork-operation, which enables a quantum computer to
follow several classical computational paths at once.

Hadamard-Transform Most non-classical algorithms take advantage of
this feature by bringing a register into a even superposition of all basis-states
to serve as search space. In Deutsch’s algorithm, this is achieved by applying
the Hadamard-gate on the first qubit-register.

The H-gate can be generalized to n-qubit registers, by applying H to
each individual qubit. The resulting unitary operator is called Hadamard
transform and defined as:

H : |x〉 → 2
n
2

∑

y∈Bn

(−1)x·y|y〉 (1.118)

where x · y =
∑
i xiyi denotes the binary inner product. The transformed

basis

B̃ = {H|x〉 | x ∈ Bn} = {|+〉, |−〉}n with |±〉 =
1√
2

(|0〉 ± |1〉) (1.119)
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is sometimes referred to as the dual basis.
Classically, the Hadamard transform of |Ψ〉 = |0〉 can be viewed as a

binary decision tree with a 50% chance for each bit to flip. For an n-qubit
register, this leads to 2n classical computational paths all of which are fol-
lowed simultaneously resulting in a superposition of 2n eigenvectors.

1.5.2.4 Quantum Parallelism

If we restrict unitary transformations to basis-permutations (i.e. operators
of the form |i〉 → |πi〉 then the classical decision tree degenerates into a list
and we end up with the functionality of a classical deterministic reversible
computer i.e. for any bijective binary function f : Bn → Bn there is a
corresponding unitary operator

F : |s〉 → |f(s)〉 with s ∈ Bn. (1.120)

The restriction to bijective functions is not a severe as it seems, since for
any general binary function g : Bn → Bm a corresponding quantum function

G : |s, 0〉 → |s, g(s)〉 with s ∈ Bn (1.121)

can be constructed, which implements g with a maximum overhead of O(
√
n)

in space- and O(2) time-complexity.
However, if we use a quantum function on an superposition of eigenstates,

the same classical computation is performed on all bit-strings simultaneously.

G
∑
s

cs|s, 0〉 =
∑
s

csG|s, 0〉 =
∑
s

cs|s, g(s)〉 (1.122)

In classical terms, this can be described as a SIMD (single instruction,
multiple data) vector operation, in quantum terms this feature is referred to
as quantum parallelism.

In Deutsch’s algorithms, quantum parallelism is exploited by applying G
on the superposition |Ψ1〉 = (|00〉+ |10〉)/√2.

1.5.2.5 Interference

While superpositions and quantum parallelism allow us to perform an expo-
nentially large number of classical computations in parallel, the only way to
read out any results is by performing a measurement whereby all but one of
the superpositioned eigenstates get discarded. Since it does not make any
difference if the computational path is determined during the calculation (as
with the probabilistic TM) or a-posteriori (by quantum measurement), the
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use of quantum computers would not provide any advantage over probabilis-
tic classical computers.

Quantum states, however, are not merely a probability distribution of
binary values but complex vectors i.e. each basis-state in a superposition is
not characterized by a real probability, but a complex amplitude, so

|ψ1〉 =
1√
2
(|0〉+ |1〉) and |ψ2〉 =

1√
2
(|0〉 − |1〉) (1.123)

describe different states, even if they have the same probability spectrum.
So, while on a probabilistic TM, the probabilities of two different com-

putational paths leading to the same final state s simply add up, this is not
necessarily the case on a quantum computer since generally

|α + β|2 6= |α|2 + |β|2 for α, β ∈ C. (1.124)

To illustrate this concept, consider the three states

|ψ1〉 = |0〉, |ψ2〉 = |1〉 and |ψ3〉 =
1√
2
(|0〉+ |1〉). (1.125)

If we apply the Hadamard-transform H to the basis states |ψ1〉 and |ψ2〉 we
get

|ψ′1〉 = H |ψ1〉 =
1√
2
(|0〉+ |1〉) and |ψ′2〉 = H |ψ2〉 =

1√
2
(|0〉 − |1〉).

(1.126)
Since |ψ′1〉 and |ψ′2〉 have the same probability distribution and |ψ3〉 is

merely a superposition of |ψ1〉 and |ψ2〉, classically we would assume that
|ψ′3〉 also shows the same probability spectrum, however

|ψ′3〉 = H |ψ3〉 =
1√
2
(|ψ′1〉+ |ψ′2〉) = |0〉 (1.127)

so in case of |0〉 the probabilities added up while in case of |1〉, the complex
amplitudes had opposing signs leading to a partial probability of 0. This
phenomenon is referred to as positive or negative interference.

So while the computational paths on a probabilistic TM are independent,
interference allows computations on superposition states to interact and it is
this interaction which allows a quantum computer to solve certain problems
more efficiently than classical computers. The foremost design principle for
any quantum algorithm therefore is to use interference to increase the prob-
ability of “interesting” basis states while trying to reduce the probability of
“uninteresting” states, in order to improve the chance that a measurement
will pick one of the former.
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Basis Transformations Since any unitary operator U can also be re-
garded as a basis transformation, the above problem can also be reformulated
as finding an appropriate observable for the measurement, thereby effectively
replacing the standard observable N by the Hermitian operator

M = Ñ = U N U † =
∑
n

n|ñ〉〈ñ|. (1.128)

This view is especially useful, if global properties of classical functions
such as periodicy are of interest for the problem.

In Deutsch’s algorithms, the final measurement is performed in the dual
basis (1.119), which allows g(0) ⊕ g(1) to be extracted in a single measure-
ment.

1.5.2.6 Deutsch-Jozsa Algorithm

The Deutsch-Jozsa algorithm [26] is an improved and generalized version
of the original algorithm described in (see 1.5.2.2). For n = 1 it gives a
deterministic solution to Deutsch’s problem:

Let F : |x, y〉 → |x, y ⊕ f(x)〉 be an (n + 1)-qubit oracle-operator im-
plementing a boolean function f : Bn → B. Let us further assume that
we know that f is either constant ((∀x)f(x) = b where b ∈ B) or balanced
(
∑
f(x) = 2n−1). Classically, 2n−1 +1 evaluations of f would be necessary to

find out which of the possibilities applies. The following quantum algorithm
can solve this decision problem with a single application of F :

1. Prepare initial state |Ψ0〉 = |0〉x|1〉y.

2. Apply H(x ◦ y) to set up the search space superposition

|Ψ1〉 = 2−
n+1

2

∑

x∈Bn

|x〉x
(
|0〉y − |1〉y

)
. (1.129)

3. Apply the oracle operator, giving quantum parallelism

|Ψ2〉 = 2−
n+1

2

∑

x∈Bn

(−1)f(x)|x〉x
(
|0〉y − |1〉y

)
. (1.130)

4. Apply H(x), which results in interference

|Ψ3〉 =
∑

z∈Bn

cz|z〉x ⊗
1√
2

(
|0〉y − |1〉y

)
, cz = 2−n

∑

x∈Bn

(−1)x·z+f(x)

(1.131)
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5. Measure x.

The probability to measure 0 in x is |c0|2 where

c0 = 2−n
∑

x∈Bn

(−1)f(x) (1.132)

If f is constant c0 = ±1, if f is balanced, the summands cancel out and
c0 = 0, so µ(x)|Ψ3〉 = 0 ⇐⇒ f is constant.



Chapter 2

Structured Quantum
Programming

2.1 Introduction

2.1.1 Motivation

As quantum computing is on its way to becoming an established discipline
of computing science, much effort is being put into the development of new
quantum algorithms. This research has usually not got much in common with
the experimental work on quantum computers and is rarely tied to a specific
hardware, but instead employs an abstract notion of a quantum computer
with qubits, registers, and a small set of suitable elementary operations [3],
which allows one to concentrate on the problem at hand.

A programming language which integrates these abstractions by design
should be a useful tool in situations where the much more general physical
formalism of Hilbert space algebra gets unnecessarily complex.

The possibility to formulate and simulate an algorithm in a program-
ming language should also make it easier to optimize the implementation
with regard to different quantum architectures and allow for more accurate
estimates of time and memory complexity.

2.1.2 Quantum Programming Languages

From a software engineering point of view, we can regard the algebraic for-
malism as a specification language, as the mathematical description of a
quantum algorithm is inherently declarative and provides no means to de-
rive a unique decomposition into elementary operations for a given quantum
hardware.

45
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Low level formalisms as e.g. quantum circuits [25], on the other hand,
are usually restricted to specific tasks, such as the description of unitary
transformations, and thus lack the generality to express all aspects of non-
classical algorithms.

The purpose of programming languages is therefore twofold, as they allow
the expression of a computation’s semantics in an abstract manner, as well as
the automated generation of a sequence of elementary operations to control
the computing device. Any useful quantum programming language (QPL)
therefore needs to be

• constructive

• hardware independent

• provide arbitrary levels of abstraction

• integrate non-classical features at a semantic level

While the first three requirements equally apply to classical and quan-
tum programming languages, QPLs also have to reflect the peculiarities of
quantum computing, as e.g.

• reversibility of unitary operations

• non-locality of qubits

• non-observability of states

• destructive nature of measurement

• lack of an erase operation

at a design level and consequently have to provide the means to take advan-
tage of these features (e.g. by allowing to run code “in reverse”).1

2.1.3 Classification of Programming Languages

In traditional CS, programming languages can be categorized as either logical
(e.g. Prolog), functional (e.g. LISP) or imperative (e.g. Assembler, Fortran,
Pascal, C), the latter being the most widely used, for the description of
algorithms, as well as for the actual implementation of real world programs.

1Classical languages with additional quantum directives (like e.g.. a C++ simulation
or device driver API) are therefore not considered to be QPLs, as they do not generically
support these non-classical concepts [61].
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2.1.3.1 Imperative Programming Languages

Imperative programming is centered around the concept of a computational
state, and commands modifying the state [1]. The state is an abstraction for
the modifiable storage of the underlying machine model and is semantically
expressed in terms of symbolic variables of various data types and the current
state of control (instruction counter, stack pointer, etc.), which may or may
not have a direct representation within the language.

During its execution, a program generates a sequence of states. The
transition from one state to the next is determined by

• assignment commands, which modify the state of variables, and

• sequencing commands, which modify the state of control.

The direct correspondence between state chances and program statements
leads to the concept of flow of control, i.e. a computation can be characterized
by the actual sequence of commands. This allows an imperative program to
be traced by following the current state of control and introduces a notion
of locality of execution.

Examples of imperative programming languages are assembly language
or BASIC. Concepts of imperative programming are reflected in the hybrid
quantum architecture (2.2.3) and the concept of symbolic quantum registers
(2.4.1).

2.1.3.2 Procedural Programming Languages

Imperative programming combined with parameterized subroutines (proce-
dures, functions) it is called procedural programming. The availability of
subroutines allows for

• Functional Abstraction: Code of similar or identical functionality
can be generalized to reusable parameterized procedures.

• Hierarchical Program Structure: Subroutines can contain calls to
other subroutines which provides arbitrary levels of abstraction and
supports a top-down approach in software design.

• Recursion: Subroutines can also contain calls to themselves which
allows for an elegant and efficient implementation of otherwise compli-
cated control structures and directly supports the classical “divide and
conquer” approach in software design.
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• Private Scopes: Subroutines provide their own namespace which re-
duces interdependencies within the program.

• Local Variables: Local namespaces also allow the use of temporary
variables of limited lifetime which leads to more efficient usage of the
available storage and allows details of the implementation to be hidden
from the procedure’s calling interface.

Examples of procedural programming languages are Fortran and C. Con-
cepts of procedural programming are reflected in quantum data types (2.4.1.3,
2.5.2.2), quantum subroutines (2.5.1) and scratch space management (2.5.3.5)
[47].

2.1.3.3 Structured Programming Languages

An mentioned in 2.1.3.1, imperative programs consist of assignment and
sequencing commands. A simple way to provide flow-control is by means of
a goto command which explicitly transfers control to a labeled command
which is to be executed next.

goto label;

if condition then goto label;

This approach is problematic as it implies a flat control structure where any
labeled command can be jumped to from anywhere within the program (or,
in the case of procedural languages, the current subroutine). This tends to
make larger programs unreadable (“spaghetti code”).

In 1966, Corrado Bohm and Guiseppe Jacopini showed [11] that the goto
command can be replaced by the nesting and stacking (sequencing) of three
basic control statements

• sequence (block-statements),

• selection (if-statements) and

• iteration (conditional loops),

with well defined entry- and exit-points. This approach, called structured
programming [27, 23], implies a strictly hierarchical control-structure which
not only makes programs easier to understand, but also provides useful meta-
information for the compiler.

Examples of structured programming languages are Pascal and Modula,
but almost any procedural language supports the necessary control state-
ments, even if their exclusive use is not enforced. Concepts of structured
programming are reflected in quantum conditions (2.6.3), conditional opera-
tors (2.6.1) and quantum if-statements (2.6.2.1).
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2.1.4 Goals

Functional abstraction and hierarchical control-structure, together with the
very intuitive notion of a flow of control, absent in merely declarative for-
malisms, seem to fit most people’s way of reasoning about computational
tasks. This makes structured programming a powerful formalism, not only
for the actual task of coding, but also for the description of algorithms in
general (flow-charts, pseudo-code).

In the remainder of this chapter we will show how familiar concepts of
classical structured programming can be adopted to the field of quantum
computing. The programming language QCL [45, 49] will serve as an example
to illustrate the principles of structured quantum programming.

Table 2.1 gives an overview of quantum language elements along with
their classical semantic counterparts.

Classical concept Quantum analogue

classical machine model hybrid quantum architecture
variables quantum registers

variable assignments elementary gates
classical input quantum measurement
subroutines operators

argument and return types quantum data types
local variables scratch registers

dynamic memory scratch space management
boolean expressions quantum conditions

conditional execution conditional operators
selection quantum if-statement

conditional loops quantum forking

Table 2.1: Classical and quantum programming concepts

2.1.5 State-of-the-Art

2.1.5.1 QC Software and Simulators

As the general interest in quantum computing increased during the last few
years, so did the number of available simulators and computational tools. J.
Wallace ran a detailed survey [61] on 21 quantum computer simulators. A
more recent list naming 36 projects can be found online [62].
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The available software can be roughly categorized as

• class libraries for existing classical languages

• packages for computer algebra systems

• quantum circuit simulators

• simulations of specific quantum hardware

• simulations of specific algorithms

• other quantum simulations (QTMs, quantum Bayesian nets, etc.)

2.1.5.2 Quantum Programming Languages

Besides QCL [49], there have been at least 3 attempts to design a quantum
programming language

• 1996 Q-gol by Greg Baker [2]

• 2000 qGCL by Paolo Zuliani [63]

• 2002 Quantum C Language by Stephen Blaha [10]

From those, the most evolved project is probably Zuliani’s qGCL. In his
thesis [63] Zuliani proposes an abstract formalism with rigorous semantics
and an associated refinement calculus which allows for program derivation
and strict proof of correctness. There is, however, no interpreter or compiler
available.

2.2 The Computational Model of Quantum

Programming

In this section we will demonstrate why quantum circuits and finite programs
are insufficient for universal quantum computation and introduce the hybrid
quantum architecture as the computational model of quantum programming.
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2.2.1 Quantum Circuits

2.2.1.1 Deterministic Sequential Algorithms

In its simplest form, a quantum algorithm P merely consists of a unitary
transformation and a subsequent measurement of the resulting state |Ψ′〉 in
the computational basis B. If |Ψ′〉 = |y〉 is a basis-state, then the outcome of
the measurement is predetermined and the algorithm P is deterministic. An
example for this class is the Deutsch-Jozsa algorithm presented in 1.5.2.6.

For fixed problem sizes2, deterministic sequential algorithms can be com-
pletely described as quantum circuits (see 1.5.1.3) or, equivalently, as se-
quences (see 1.3.3.1) for a quantum computer M. The Deutsch-Jozsa al-
gorithm e.g. can be implemented by the following commands (assuming an
initial state of |0, 0〉).

σDJ = X(y) ◦H(x) ◦H(y) ◦ F (x,y) ◦H(x) ◦ µ(x) (2.1)

2.2.1.2 General Probabilistic Algorithms

For many computational problems, efficient quantum implementations have
the form of probabilistic algorithms. Fig. 2.1 shows the basic outline of a
probabilistic quantum algorithm with a single evaluation loop.

An example for this simple case is Deutsch’s algorithm presented in
1.5.2.2. More complex quantum algorithms, as e.g. Shor’s algorithm for
quantum factoring [54, 30], can also include classical random numbers, par-
tial measurements, nested evaluation loops and multiple termination con-
ditions; thus the actual quantum operations are embedded into a classical
control structure

As quantum circuits are feed-forward networks and lack internal flow-
control, they cannot provide a complete description of probabilistic algo-
rithms. Even in the simple case depicted in fig. 2.1, the decision whether a
measurement value is “good” i.e. provides a solution of the computational
problem, is outside the scope of the formalism and requires additional as-
sumptions.

2.2.2 Finite Quantum Programs

In 1.3.3.2 we introduced the concept of finite programs which define finite
automata to determine the flow of control of a classical machine M. The
same concept can also be used to describe probabilistic quantum algorithms.

2This not only refers to the number of classical input bits, but, in the case of “black-
box” algorithms, also to the number of qubit-parameters for any oracle-operators.
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Figure 2.1: A simple probabilistic quantum algorithm

For a quantum computer

M =
(
B⊗2, {H(s), G(s), reset}, {µ(q)}, |0〉, µ[N ]

)
, (2.2)

Deutsch’s algorithm (see 1.5.2.2) can e.g. be implemented by the following
finite program:

1: reset then 2

2: H(q0) then 3

3: G(q0,q1) then 4

4: H(q0) then 5

5: H(q1) then 6

6: if µ(q1) then 7 else 1

7: µ(q0) then 0

Generally, for fixed problem sizes, any probabilistic quantum algorithm
can be implemented as a finite program for a quantum computer with a
universal set of gates.3

3This is possible as for fixed problem sizes, there always exists an upper bound for the
number of scratch qubits required to implement the classical control structure.
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2.2.2.1 Unlimited Memory Machines

In classical computing, a machine M in universal, if for any partial recur-
sive function f ∈ P , there exists a finite π which implements f on M (see
1.3.3.2). Since there exists no upper bound in input size, any classical uni-
versal machine must have unlimited memory.

Definition 28 Let O ⊂ SU(2) be an enumerable set of single qubit gates
which is dense in SU(2). A quantum computer

UGM = (B?, {U(q) |U ∈ O} ∪ {CNot(q,p)}, {µ(q)}, n→ |n〉, µ[N ]) (2.3)

is called unlimited gate machine.

Since SU(2) and CNot are a universal set of gates (see 1.4.2.6), any n-qubit
unitary operator can be implemented as a sequence for a UGM. However,
the UGM is not a universal computer in the classical sense. While this might
seem surprising at first glance, the non-universality of the UGM (and any
other quantum computer operating by means of finite gates) becomes obvious
if we consider the following simple decision problem:

The parity of a bit-string s ∈ B? is odd if
⊕

i si = 1 and even if
⊕
i si = 0.

If the length of s is known to be at most n bits, then the parity of s can be
computed by an n-qubit quantum circuit using n − 1 CNot-gates. Fig. 2.2
shows the circuit for n = 4.

s0

s2

s1

s3

s0

s2

s1

s3

Figure 2.2: Parity of a bit string of length 4

Assume that π is a finite quantum program for UGM to compute the
parity of arbitrary bit-strings. If π contains n = |π| instructions, then — no
matter how complex the computation turns out to be for any given input
— the transfer function τπ can only result in a composition of at most n
different gates or measurements. Since any memory or test command affects
at most 2 qubits, τπ can only affect a 2n-qubit register of UGM. Therefore
only 2n qubits can contribute to the result and there exist at least 22n pairs
of bit-strings a, b ∈ B2n+1 which differ in a single bit and therefore have
opposite parities, for which F (π,UGM)(a) = F (π,UGM)(b).
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2.2.2.2 Universal Quantum Computers

The above results shows that for finite programs to be universal, a quantum
computer M = (H, O, T, δ, β) has to provide at least one global operator
U ∈ O which acts non-trivially on l2 subspaces of H.4

Let H = T = B? ⊗B? be the Hilbert space of a double infinite “tape” of
qubits with zero tail states i.e.

T =
{
|0〉⊗ω ⊗ |ψ〉 ⊗ |0〉⊗ω

∣∣∣ |ψ〉 ∈ B⊗n, n ∈ N
}

(2.4)

and B be the computational basis of T with the single qubit registers l,h
and r

B =
{
| . . . s−3s−2〉|s−1〉l|s0〉h|s1〉r|s2s3 . . .〉

∣∣∣ s : Z→ B,
∞∑

i=−∞
si <∞

}
(2.5)

We can now define a unitary shift operator S on T as

S : | . . . s−2s−1〉|s0〉h|s1s2s3 . . .〉 → | . . . s−2s−1s0〉|s1〉h|s2s3 . . .〉 (2.6)

Classical Quantum Turing Machine Let’s consider the following quan-
tum computer

M =
(
T , {X(h), S, S†}, {µ(h)}, s→ |0〉|s〉, µ[N ]

)
. (2.7)

It is obvious thatM does not provide a complete set of unitary operators as
each of the three memory commands operates within B, so no superposition
can be created. However,M is a universal computer; in factM is a Turing
Machine (see 1.3.2.2) in disguise. Table 2.2 gives the homomorphisms to
translate finite programs betweenM and a TM.

Because of this equivalence, we call M a classical quantum Turing ma-
chine or CQTM.

Semi-classical Quantum Turing Machine The CQTM can be extended
by adding a universal set of unitary transformations. Because of the avail-
ability of the shift operator, those operations can be localized and may be
restricted to a small number of fixed qubit positions.5

4An example would be the step-operator of a QTM (see 1.5.1.2).
5This is an important feature and several proposed ion-trap based hardware architec-

tures for quantum computers take advantage of this [37, 53].
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TM CQTM

L (left) S
R (right) S†

T (test) µ(h)
S (set) 1: if µ(h) then 0 else 2

2: X(h) then 0

E (erase) 1: if µ(h) then 2 else 0

2: X(h) then 0

1: if T then 2 else 3 X(h)
2: E then 0

3: S then 0

Table 2.2: Equivalent TM and CQTM commands

Definition 29 The quantum computer

SQTM = (T , O, {µ(h)}, s→ |0〉|s〉, µ[N ]) (2.8)

with the memory commands

O = {H(h), T (h), CNot(h, l), CNot(h, r), S, S†} (2.9)

is called semi-classical (or simple) quantum Turing machine.

Since X = HT 4H, the SQTM is capable of emulating a CQTM and is
also a universal computer.

Let qk denote the kth qubit relative to h and let U be an arbitrary single
qubit operator U ∈ SU(2). Since H and T are universal for single qubit
operations (see 1.4.2.6), there exists a composition U ′ = H

∏
i T

niH to ap-
proximate U to arbitrary precision. 6 The register operator U(qk) can then
be realized by

U(qk) ≈ (S†)kH(h)

(∏

i

T ni(h)H(h)

)
Sk. (2.10)

Moreover, since

Swap(qk,qk+1) = (S†)kCNot(h, r)CNot(r,h)CNot(h, r)Sk and (2.11)

Swap(qk,qk+l+1) = Swap(qk,qk+l)Swap(qk + l,qk+l+1)Swap(qk,qk+l) (2.12)

any permutation of qubits can be realized and the controlled-not can be
applied to arbitrary registers. This means that a SQTM can emulate a UGM
and allows to implement arbitrary unitary transformations.

6Note, that H is self-inverse, so the factorization of U ′ does not contain higher powers
of H as Hk+2 = Hk. By the same reasoning ni < 8 as T k+8 = T k.
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General Quantum Algorithms Non-classical algorithms usually require
the creation of quantum circuits depending on classical parameters such as
the problem-size. In the most general case, this description is given by a
recursive function (see 1.3.1.1), so the actual gate-sequence can be determined
by a finite-program on a universal computer.

To demonstrate that the SQTM is able to run general quantum algo-
rithms, we need to show how tape-qubits can be addressed as the result of
a classical computation. A possible way to achieve this, is to treat all even
tape-qubits as classical bit and use them to emulate a TM while using all odd
qubits to carry out the actual quantum computation (memory interleaving).

The example below shows how to apply a Hadamard gate to the kth odd
qubit (q2k+1), whose position k is unary encoded (see 1.3.2.2) into the even
qubits which are used classically.

1: if µ(h) then 2 else 4 end mark (0) reached?
2: S then 3 move to the next classical bit
3: S then 1 and reiterate
4: S then 5 move head over qubit
5: H(h) then 6 apply Hadamard gate
6: S† then 7 move back to end mark
7: S† then 8 move to the previous
8: S† then 9 classical bit
9: if µ(h) then 7 else 10 begin mark (0) reached?

10: S then 11 move head to original
11: S then 0 position

2.2.3 Hybrid Architecture

In 2.2.2.1 we showed that gate-based quantum computers are not universal.
On the other hand, global unitary operations like the shift operator (see
2.2.2.2) cannot be expressed within the circuit model, cannot be equally ap-
plied to machines with unlimited and limited memory and cannot be assumed
to be equally available on different quantum hardware architectures.

To overcome the above restrictions, quantum programming uses a classi-
cal universal language to define the actual sequence of elementary instructions
for a quantum computer, so a program is not intended to run on a quantum
computer itself, but on a (probabilistic) classical computer, which in turn
controls a quantum computer and processes the results of measurements.

From the perspective of the user, a quantum program behaves exactly like
any other classical program, in the sense that it takes classical input, such
as startup parameters or interactive data, and produces classical output.
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Figure 2.3: Hybrid quantum architecture

The state of the controlling computer (i.e. variable values, execution
stack, but also the mapping of quantum registers) is referred to as program
state. The quantum computer itself does not require any control logic, its
computational state can therefore be fully described by the common quantum
state |Ψ〉 of its qubits (machine state).

2.2.3.1 Machine Model

Formally, the above architecture can be described as a universal computer
with a quantum oracle (see 1.3.2.4):

Let Mc = (S, Oc, Tc, δ, β) be a universal classical computer with an en-
coding β : S → N? and Mq = (H, Oq, Tq, |0〉, µ[N ]) a quantum computer
with unlimited memory H = B?, a universal set of finite gates

Oq =
⋃

k

Γ(Gk) =
⋃

k

{Gk(s)} = {U0, U1, . . .} (2.13)

and single qubit-measurements

Tq = {µ(qi)} = {µ0, µ1, . . .}. (2.14)

As the number of qubits in Mq is unlimited, Oc and Tc are infinite sets.
Since any Ui ∈ Oc and µi ∈ Tc only operates on a finite number of qubits, we
need a method to allow Mc to address arbitrary commands of Mq. Using
the encoding

β0(s) =

{
y0 if β(s) = (y0, . . .)
0 if β(s) = ( )

with s ∈ S (2.15)
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we define the oracle commands

U : (s, |Ψ〉)→ (s, Uβ0(s)|Ψ〉) and (2.16)

M : (s, |Ψ〉)→ µβ0(s)|Ψ〉 (2.17)

With U and M as interface, we can now define the hybrid machineM =
Mc ./Mq as

M = (S×H, Oc × {I} ∪ {U}, Oc × {I} ∪ {M}, δ, β) (2.18)

M M

µ
O

δ

β

I
U

i

i

c q

S H

π

Figure 2.4: Classical computer with quantum oracle

2.2.3.2 The Quantum Oracle

For our formal machine model, we assumed Mq to have unlimited memory.
However, the restriction to finite gates and single qubit measurements also
allows for quantum oracles with a finite number of qubits.

The concept of quantum programming is intended to be hardware in-
dependent and applicable to any qubit-based quantum architecture, so we
will not assume a specific set of elementary gates, as long as the following
requirements are met:

• The set of gates is universal.

• Each gate can be equally applied to arbitrary qubits.

• For any non self-inverse gate U , the gate U † is also available.
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Elementary gates may take any number of classical parameters and may
or may not be restricted in the number of qubits they operate on.

Some concepts of structured quantum programming will require certain
operators to be available either as elementary gates or as user-defined op-
erators i.e. procedural compositions of gates which can be defined in the
programming language itself. Those operators are

• a Fanout operation i.e. an arbitrary unitary operator which matches
the condition

Fanout : |n〉x|0〉y → |n〉x|n〉y where |x| = |y| (2.19)

Fanout is usually implemented as |a, b〉 → |a, a⊕ b〉 using CNot-gates
and is required for the transparent use of local scratch registers (see
2.5.3.5).

• the Not- (or X-) gate and the controlled-not gate Cn[X] with an arbi-
trary number of control qubits. The implementation of Cn[X] may use
scratch qubits. X and Cn[X] are required for quantum conditions (see
2.6.3) and the quantum if-statement (see 2.6.2.1).

2.3 Structured Programming

Since the computational model of QPLs is that of a classical computer with a
quantum oracle, any QPL is also a universal classical programming language.
In this section, we will summarize the key elements of classical structured
programming languages.

2.3.1 Program Structure

A structured program is a sequence (block) of statements and definitions,
which are processed top-down and may contain blocks themselves (control-
statements, subroutine-definitions).

2.3.1.1 Statements

Statements range from simple commands, through subroutine calls to nested
control-statements and are executed when they are encountered.

qcl> if random()>=0.5 { print "red"; } else { print "black"; }
: red
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2.3.1.2 Definitions

Definitions are not executed but bind a value (variable- or constant-definition)
or a block of code (subroutine-definition) to a symbol (identifier).

qcl> int counter=5;
qcl> int fac(int n) { if n<=0 {return 1;} else {return n*fac(n-1);} }

Each symbol has an associated type, which can either be a data type or a
subroutine type.

2.3.1.3 Expressions

Statements and subroutine-calls can take arguments of certain data types.
Expressions can be composed of literals, variables and constants combined
by operators and function calls.

qcl> print "5 out of 10:",fac(10)/fac(5)^2,"combinations."
: 5 out of 10: 252 combinations.

2.3.2 Expressions and Variables

Unlike untyped formalisms like finite programs or circuits, in programming
languages, an expression is usually associated with a data type T . A value
v ∈ T is called an instance of T .

2.3.2.1 Atomic Expressions

The direct symbolic representation of an instance v ∈ T is called a literal.

Type Description Examples
int integer 1234, -1

real real number 3.14, -0.001

complex complex number (0,-1), (0.5, 0.866)

Table 2.3: Scalar arithmetic types and literals in QCL

A symbol which is permanently bound to a value v ∈ T is called a (sym-
bolic) constant of type T . A symbol which can be bound to arbitrary in-
stances of T is called a variable of type T .
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2.3.2.2 Definitions

Constants and variables have to be defined (i.e. declared and initialized)
before they can be used. To assure deterministic behaviour (see 2.5.1.2) we
require that a variable is bound to a type dependent default value if no initial
value is provided.

qcl> const pi = 3.141592653589793238462643383279502884197;
qcl> const I = (0,1);
qcl> complex z=exp(I*pi/4);
qcl> string msg="Hello World";
qcl> real vector v[3]; // v is initialized with [0,0,0]

After its definition, a constant or variable is visible and can be used in any
subsequent statements and definitions until the end of the current subroutine
(local symbol) or the end of the program (global symbol).7

2.3.2.3 Composite Expressions

Literals, constants and variables are atomic expressions. General expressions
can be recursively constructed from atomic expression by operators and func-
tion calls.

expr ← atomic-expression

← function ( expr , . . .)

← unary-operator expr

← expr binary-operator expr

← n-ary-operator ( expr , . . .)

So general expressions can be described as trees with literals, constants
and variables as leaf-nodes and operators and functions as inner nodes.

qcl> print (3^2+4^2)*sin(log(z)/I);
: 17.6777

2.3.3 Subroutines

A subroutine S is a named block (also referred to as body of S) preceded by
a list of parameter-declarations. The body of a subroutine may contain calls
to itself (recursion).

Classical procedural languages usually provide two types of subroutines:

7There also exist languages with finer grained scoping rules, e.g. C++, where variables
can be local to a block.
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2.3.3.1 Procedures

A procedure is a general subroutine with arbitrary dependencies and side-
effects on the program state. This means that besides its declared arguments,
a procedure can also depend on hidden parameters, external input and ran-
dom events. Moreover, procedures can also change the binding of global
variables.

int cash;
procedure roulette(int bet) {
int n;
input "pick a number:",n;
cash=cash-bet;
if n==floor(37*random()) { cash=cash+36*bet; };

}

In procedural quantum programming, procedures, being the most gen-
eral subroutine type (see 2.5), are used to implement the classical control
structure of quantum algorithms (see 2.2.1.2).

2.3.3.2 Functions

A function is a subroutine which returns a value v ∈ T of a certain data-type
T .

In procedural quantum programming, functions have strict mathematical
semantics, which means that v must exclusively and deterministically depend
on the declared arguments and that the computation of v must not exhibit
any side-effects on the program state.8 This implies that neither global vari-
ables nor calls of less restricted subroutine types may appear within the body
of a function.

int fibonacci(int n) {
if n<2 {

return 1;
} else {

return fibonacci(n-1)+fibonacci(n-2);
}

}

2.3.4 Statements

2.3.4.1 Assignment

An assignment binds a variable (or an element of a data structure such as
an array) of type T to a value specified by an expression of the same type.

8Many classical procedural languages (e.g. C) are less strict and treat functions as
procedures with a return value.
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qcl> z=z^2;
qcl> v=vector(cos(pi/6),sin(pi/6),0);
qcl> v[2]=1;
qcl> print z,v;
: (0,1) [0.866025,0.5,1]

Assignments and atomic expressions are sufficient to implement the class
BF of basic functions (see 1.3.1.1).

2.3.4.2 Control-Statements

According to the principles of structured programming, flow-control is exe-
cuted in terms of control-statements which execute blocks according to the
value of a boolean expression and have well defined entry- and exit-points.

The two basic control-structures are if-statements and (conditional) loops.9

Conditional loops differ in whether they evaluate the loop condition before
(while-loop) or after (until-loop) the body. In the latter case, the body is
executed at least once.

true

true

false

falsetrue false

if−statement while−loop until−loop

bodycondcond

if−block else−block body cond

Figure 2.5: Basic control structures

As conditional-loops allow the implementation of µ0-recursion, a pro-
gramming language with while-loops, assignments, atomic expressions and
the operators “+” and “=” is universal (see 1.3.1.1).

Most structured languages also provide a special statement for counting
loops over a known range of integers (for-loops).

9Conceptually, a single block (sequence) can be regarded as a third control-structure
[11].
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qcl> for i=a to b { body(i); }; // for-loop and equivalent
qcl> i=a; while i<=b { body(i); i=i+1; } // while-loop

As counting loops allow the implementation of primitive recursion, a pro-
gramming language with for-loops, assignments, atomic expressions and ad-
dition is sufficient to implement the class PR of primitive recursive functions
(see 1.3.1.1).

Break Statements A break-statement allows the innermost loop to be
immediately exited, regardless of the loop condition. While the possibility to
exit a loop from any point within the body can be considered to be against
the spirit of structured programming as it compromises the concept of well
defined exit points, most structured languages do provide a break-statement
(as does QCL).

2.3.4.3 Calls

A call of a procedure S binds a list of arguments to the parameters of S
and executes the body of S. The parameter bindings as well as any symbol
definitions within S are local.

2.3.4.4 Input and Output

Any programming language has to provide means to communicate with the
outside world. This can be realized by designated input- and output-variables
at the start and termination of the program or at runtime via I/O-commands.

qcl> input "length in cm:",x;
? length in cm: 192
qcl> print x,"cm =",x/2.54,"inches";
: 192 cm = 75.5906 inches

2.4 Elementary Quantum Operations

As introduced in 2.2.3, the computational model of quantum programming is
a universal computer with a quantum oracle. Formally, the interface between
the classical front-end and the quantum backend can be described by oracle
commands which allow elementary gates to be applied to and measurements
to be performed on arbitrary target qubits.

In this section, we will show how this interface can be represented within
the scope of an imperative (see 2.1.3.1) programming language (imperative
quantum programming).10

10Even if the classical language provides subroutines and structured flow-control, the
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2.4.1 Quantum Registers

In 1.4.1.3, we defined a quantum register s as an arbitrary sub-system with
a finite dimensional state space Hs and a well-defined computational basis
Bs. We will also make the following assumptions about the quantum oracle
Mq (see 2.2.3.2):

• The state spaceH ofMq is a composition of identical qubit subsystems,
i.e. H = B⊗n or H = B?.
• Elementary gates and measurements operate on a finite number of

qubits.11

• All operations ofMq can be equally applied to arbitrary qubits.

• The qubits ofMq are numbered in ascending order starting with zero.

The restriction to qubits implies that any register s is either a single qubit
(s = qi), a composition of single qubit registers (s = qk0 ◦ qk1 ◦ . . . ◦ qkn−1)
or the null-register (s = o). An n-qubit quantum computer thus allows for

n∑

k=0

n!

(n− k)! = n!
n∑

k=0

1

k!
= ben!c (2.20)

different registers.

Notation We write Rn
k to denote the set of k-qubit registers for an n-qubit

quantum computer. As Rn
k is equivalent to the set of possible k-permutations

of n elements,

|Rk
n| = P n

k =
n!

(n− k)! . (2.21)

Further, we define

Rk =
⋃∞
n=1R

n
k (set of k-qubit registers) (2.22)

Rn =
⋃n
k=0R

n
k (set of registers over n qubits) (2.23)

R =
⋃∞
n=1R

n (set of general registers) (2.24)

resulting QPL would still be regarded as imperative as it lacks semantic support for op-
erators and quantum if-statements.

11For convenience, QCL also supports a (global) reset-command (see 1.4.3.3).
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2.4.1.1 Language Representation of Registers

Within a structured QPL, quantum registers are instances of a quantum
data type (see 2.4.1.3) Q.12 Semantically, an n-qubit register s ∈ Q is a finite
sequence of mutually different qubit positions s = (s0, s1 . . . sn−1), so s does
not denote the physical register itself, but serves as a pointer (logical register)
to the actual n-qubit sub-system qs0 ◦ . . . ◦ qsn−1 ofMq (physical register).

This distinction allows registers to be treated just like any other classical
data type, so register variables can be declared, printed and combined to
expressions, just like classical variables.13

qcl> qureg q[1]; // allocate single qubit register
qcl> qureg p[4]; // allocate 4-qubit register
qcl> qureg qp = q & p; // declare combined register qp
qcl> print q,p,qp; // print register mappings
: <0> <1,2,3,4> <0,1,2,3,4>
qcl> print p[0..2] & q; // registers can be combined to expressions
: <1,2,3,0>

Registers are the formal interface between the classical front-end and the
quantum oracle. All operations on the machine state take quantum registers
as operands14 and are restricted to their corresponding sub-spaces.

qcl> H(q); // apply Hadamard gate to register q
[5/32] 0.70711 |0,0> + 0.70711 |1,0>
qcl> Not(p); // invert qubits in register p
[5/32] 0.70711 |0,15> + 0.70711 |1,15>
qcl> measure q; // measure register q
[5/32] 1 |1,15>

2.4.1.2 The Quantum Heap

The mapping between logical registers and physical qubits is handled trans-
parently by allocation and deallocation of registers from the set of all available
qubits, also referred to as the quantum heap [46].15 Quantum registers are
explicitely allocated, when a register variable is defined, but also implicitly

12Since quantum data types are only used to restrict the possible operations on registers,
mathematically, any quantum data type Q denotes the same set of qubit permutations,
i.e. Q = R.

13To allow for the static allocation of qubits, QCL does not allow register assignments,
so in QCL, registers variables are treated as symbolic constants.

14Depending on our point of view, registers can be thought of being passed by value
(logical registers) or reference (physical registers).

15In classical programming, the section of memory reserved for dynamic variables is
called the heap.
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for scratch space management (see 2.5.3.5) and for the evaluation of quantum
conditions (see 2.6.3).

Just as classical variables are initialized with type-dependent default val-
ues, newly allocated registers and consequently all free (i.e. unallocated)
quantum memory has to be empty.

Definition 30 (Empty Registers) A quantum register e is empty iff the
machine state |Ψ〉 is of the form |Ψ〉 = |0〉e|ψ〉ē or, equivalently, ρe = |0〉〈0|.

Also, temporary registers must be emptied before deallocation, which, in
the case of local register variables, takes place when the symbol leaves scope.
This can be achieved either by measurement or by uncomputing (see 2.5.3.5).

At startup, the whole machine state is empty, thus |Ψ〉 = |0〉.
qcl> dump;
: STATE: 0 / 32 qubits allocated, 32 / 32 qubits free
1 |0>

The concept of the quantum heap allows for two important abstractions:

• Since the allocation of registers is transparent, no qubit positions need
to be specified and no register literals need to be defined. This also
leaves room for architecture-dependent optimizations.

• Since allocated and unallocated qubits are in a product state, the def-
inition of quantum algorithms is independent of the total number of
qubits.

2.4.1.3 Quantum Data Types

Different quantum data-types can be used to restrict the way unitary oper-
ators may affect quantum registers. This is not only done to prevent pro-
gramming errors and to make the code more readable, but also to provide
information to the compiler or interpreter to allow for more efficient opti-
mizations and to designate the argument-, target- and scratch-registers of
quantum functions (see 2.5.3.3), to allow for transparent scratch space man-
agement.

General Registers impose no restrictions and can be used as arguments
to arbitrary operators.
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Type Restriction
qureg none
quconst invariant to all suboperators
quvoid has to be empty when the uninverted operator is called
quscratch has to be empty before and after the call

Table 2.4: Quantum data types in QCL

Constant Registers must be invariant to all operators. They are used to
designate argument registers of quantum functions (see 2.5.3.3). The enable
registers of controlled gates (see 1.4.2.5) and conditional operators (see 2.6.1)
are also of this data type.

Definition 31 (Invariance of Registers) A quantum register c is invari-
ant to a register operator U(s, c) iff

U |i〉s|j〉c = (Uj |i〉s) |j〉c (2.25)

where Uj are arbitrary |s|-qubit unitary operators, so U can be written as

U =




U0 0 · · · 0

0 U1
. . .

...
...

. . . . . . 0
0 · · · 0 Un−1




with n = 2|c|. (2.26)

An operator U of the above form is also called selection operator (see
2.5.2.2).

Target Registers are used to designate the result register t for quantum
functions (see 2.5.3.3) of the form

F : |n〉c|0〉t → |n〉c|f(n)〉t. (2.27)

Since F |x, y〉 is undefined16 for y 6= 0, target registers need to be empty
when F is called or else the effect of the operator is undefined.

16This is done in order to allow for different ways to accumulate the result, so F :
|x, y〉 → |x, y ⊕ f(x)〉 and F : |x, y〉 → |x, (y + f(x))mod 2n〉 are merely considered to be
different implementations of the same quantum function.
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Scratch Registers are temporary registers which can be used within the
implementation of an operator but are required to be empty before and after
the call.17

2.4.1.4 Register Expressions

On an n-qubit quantum computer, a single k-qubit gate U can be used to
implement up to n!

(n−k)! different unitary transformation U(s) by applying U
to different registers. In order to realize all possible qubit permutations, a
QPL has to provide means to extract subregisters and to combine disjoint
registers.

Definition 32 A register a = (a0 . . . an−1) ∈ Rn is a subregister a ⊆ b of
b = (b0 . . . bm−1) ∈ Rm iff

n−1∧

i=0

m−1∨

j=0

ai = bj. (2.28)

Definition 33 Two registers a = (a0 . . . an−1) ∈ Rn and b = (b0 . . . bm−1) ∈
Rm are disjoint iff

n−1∧

i=0

m−1∧

j=0

ai 6= bj. (2.29)

Table 2.5 shows the available operators in QCL to manipulate quantum
registers.

Expr. Description Register
a reference 〈a0, a1 . . . an〉

a[i] qubit 〈ai〉
a[i..j] sub-register 〈ai, ai+1 . . . aj〉
a[i::l] sub-register 〈ai, ai+1 . . . ai+l−1〉
a & b concatenation 〈a0, a1 . . . an, b0, b1 . . . bm〉

Table 2.5: Register expressions in QCL

2.4.2 Elementary Gates

Just as assignments (see 2.3.4.1) represent atomic changes of the program
state, elementary gates are the fundamental primitives to manipulate the
quantum machine state.

17In QCL, the type quscratch, when used for a local register, denotes managed scratch
registers (see 2.5.3.5) which are uncomputed automatically, while a local qureg is an
unmanaged scratch (see 2.5.2.4) register which has to be emptied by the operator itself.



CHAPTER 2. STRUCTURED QUANTUM PROGRAMMING 70

2.4.2.1 Register Operators

A k-qubit (elementary) gate (see 1.4.2.4) is an atomic unitary transformation
U which can be applied to arbitrary k-qubit registers s ∈ Rk of the quantum
oracle (see 2.2.3.2). The resulting transformation of the machine state is
formally described by the register operator (see 1.4.1.3)

U(s) = U ⊗ Is̄ =
∑

i,j,k

uij |i〉s|k〉s̄〈j|s〈k|s̄ with uij = 〈i|U |j〉. (2.30)

In the circuit model, a register operator describes a gate which is wired
to operate on certain qubits. In (2.30), the “wiring” is hidden in the ba-
sis decomposition | . . .〉s ⊗ | . . .〉s̄, however it can be made explicit, by the
introduction of a register-dependent reordering operator.

Definition 34 (Reordering Operator) Let H = B⊗n (or H = B?) and
s = (s0 . . . sk−1) ∈ Rn

k (or Rk) be a k-qubit register of H. A qubit permutation

Πs |d0, d1 . . . dn−1〉 = |dπ0 , dπ1 . . . dπn−1〉 (2.31)

on H with π being a bijective function on Zn (or N) and πi = si for i < k is
called reordering operator for s.

The definition of Πs is not unique; for H = B⊗n, there exist (n − k)!
different Π(i)

s and infinitely many for H = B?.
Functionally, the reordering operator can be compared to the shift- and

swap-operations used to address arbitrary tape-qubits on the SQTM (see
2.2.2.2).

Definition 35 (Register Operator) The register operator U(s) for a k-
qubit operator U and a k-qubit quantum register s ∈ Rn

k of H = B⊗n (or
s ∈ Rk of H = B?) is defined as

U(s) = Π†
s (U ⊗ I) Πs on H. (2.32)

Fig. 2.6 shows a quantum circuit for U(s) on a 5-qubit machine with U
being a 3-qubit gate and s = (0, 2, 3).

2.4.2.2 Language Representation of Gates

Since quantum programming is supposed to be a hardware independent for-
malism, besides the three basic requirements named in 2.2.3.2 (universality,
functional equivalence of qubits, availability of adjoint gates), no assump-
tions can be made on the operators provided by the quantum oracle and
there is no specific set of elementary gates.
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Figure 2.6: Register operator U(s)

Consequently, any QPL has to allow the declaration of arbitrary elemen-
tary gates and the transparent replacement of gates by user-defined operators
i.e. non-classical subroutines (see 2.5). Therefore, within a procedural QPL
(see 2.5), elementary gates are treated as external subroutines with at least
one parameter of a quantum data-type to indicate the register to operate
upon.

extern operator H(qureg q); // Hadamard gate
extern operator RotX(real theta,qureg q); // X-Rotation
extern qufunct CNOT(qureg q,quconst c); // controlled-not

The calling syntax of gates is identical to procedures, except that calls
can be inverted as for any gate U there also exists the gate U †. In QCL, this
is done by preceding the name of the gate the with the adjungation prefix
“!”.

qcl> qureg a[1]; qureg b[1]; // allocate 2 qubits
qcl> H(a); // apply H to 1st qubit
[2/32] 0.7071 |0,0> + 0.7071 |1,0>
qcl> CNOT(b,a); // controlled-not
[2/32] 0.7071 |0,0> + 0.7071 |1,1>
qcl> RotX(pi/3,b); // rotate 2nd qubit by pi/3
[2/32] 0.6123 |0,0> - 0.3535i |1,0> - 0.3535i |0,1> + 0.6137 |1,1>
qcl> !RotX(pi/3,b); // undo last operation
[2/32] 0.7071 |0,0> + 0.7071 |1,1> // equiv. to RotX(-pi/3,b)

2.4.2.3 Operator Types

Besides quantum data types, procedural QPLs also provide different operator
types which can be used for gates as well as non-classical subroutines (see
2.5). Generally, for any given gate U , the most restrictive operator type and
the most restrictive register types which match the definition of U should be
used, as restricted gates can be called by less restricted subroutines but not
the other way around (see 2.5.1.1).
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General Operators allow arbitrary unitary transformations on the argu-
ment registers.

extern operator RotX(real theta,qureg q); // X-Rotation

Basis Permutations are operators of the form F : |n〉 → |f(n)〉 with f
being a bijective boolean function.

extern qufunct CNOT(qureg q,quconst c); // controlled-not

Conditional Operators are a generalization of controlled gates (see 1.4.2.5)
for enable registers of arbitrary size (including the null-register i.e. the un-
controlled operator).

Definition 36 Let s, e ∈ R be disjoint registers and U(s) be a register oper-
ator, then the operator

U[[e]](s) : |k〉s|c〉e →
{

(U |k〉s)|c〉e if c = 111 . . .
|k〉s|c〉e otherwise

(2.33)

is called conditional operator with the enable (or control) register e

General operators as well as basis permutations can be declared condi-
tional.

extern cond operator Phase(real phi); // conditional phase gate
extern cond qufunct Not(qureg q); // conditional not gate

The enable register is passed as an implicit parameter if the operator is
used within the body of a quantum if-statement (see 2.6.2.1), so operators
without an explicit argument register can be useful (conditional phase gates).

qcl> qureg s[1]; qureg e[2]; // allocate 2 registers
qcl> H(e); // create test state in e
[3/32] 0.5 |0,0> + 0.5 |0,1> + 0.5 |0,2> + 0.5 |0,3>
qcl> if e[0] { Phase(pi); } // flip sign if LSB of e is set
[3/32] 0.5 |0,0> - 0.5 |0,1> + 0.5 |0,2> - 0.5 |0,3>
qcl> if e { Not(s); } // invert target qubit s for e=11
[3/32] 0.5 |0,0> - 0.5 |0,1> + 0.5 |0,2> - 0.5 |1,3>
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2.4.3 Measurements

2.4.3.1 Register Observable

In quantum mechanics, classical physical quantities (observables) are de-
scribed by Hermitian operators (see 1.2.3.3). In quantum programming, we
restrict measurements to the computational basis B = {|n〉}, expressed by
the standard observable N =

∑
n n|n〉〈n|. Using the register basis Bs = {|k〉s}

the register observable N(s) can be defined as (see 1.4.1.3)

N(s) = Ns ⊗ Is̄ =
∑

i,j

i |i〉s|j〉s̄〈i|s〈j|s̄. (2.34)

Again, we can avoid the use of the register basis Bs by defining N(s) by
means of a reordering operator Πs (see 2.4.2.1).

Definition 37 (Register Observable) The register observable N(s) for a
k-qubit quantum register s ∈ Rn

k on H = B⊗n (or s ∈ Rk on H = B?) is
defined as

N(s) = Π†
s (N ⊗ I) Πs with N =

2k−1∑

i=0

i|i〉〈i|. (2.35)

Further, we assume the basis-vectors are labeled as little-endian binary
numbers (i.e. LSB first), so for two disjoint registers a ∈ Rn and b ∈ Rm

N(a ◦ b) = N(a) + 2nN(b). (2.36)

2.4.3.2 Language Representation of Measurements

Since QPLs are intended to control a classical computer which serves as
a front-end between the user and the quantum oracle (see 2.2.3), quantum
measurements are treated analogously to external classical input (see 2.3.4.4)
and are implemented as a quantum input command with the side effect that
the machine state gets reduced (see 1.2.3.3).

qcl> qureg q[8]; // allocate an 8-qubit register q
qcl> int m; // declare a classical input variable
qcl> H(q); // prepare an even superposition in q
[8/32] 0.0625 |0> + ... + 0.0625 |255> (256 terms)
qcl> measure q[0..5],m; // measure the first 6 qubits of q
[8/32] 0.5 |50> + 0.5 |114> + 0.5 |178> + 0.5 |242>
qcl> print m; // print measurement result
: 50
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2.4.3.3 Initialization

Since many quantum algorithms are probabilistic (see 2.2.1.2) and involve
iterating over the same computation until a solution is found, it is convenient
to provide a command to reset the machine state |Ψ〉 to the initial state |0〉
and empty all allocated registers, while not affecting the program state, so
that variable bindings and register mappings remain valid.

[8/32] 0.5 |50> + 0.5 |114> + 0.5 |178> + 0.5 |242>
qcl> reset; // reset quantum state as generated above
[8/32] 1 |0>
qcl> print q,m; // variables q and m are not affected
: <0,1,2,3,4,5,6,7> 50

Since the initialization of |Ψ〉 can be implemented by measuring all allo-
cated registers and inverting qubits qi found in state ρqi

= |1〉〈1| to zero by
applying the not-gate X(qi), it is not necessary for the quantum oracle to
provide a generic reset-command (see 1.4.3.3).

procedure resetregister(qureg q) {
int i;
int m;
for i=0 to #q-1 { // iterate over qubits

measure q[i],m; // measure i-th qubit
if m==1 { Not(q[i]); } // invert if measured 1

}
}

2.5 Operators

While registers, elementary gates and measurements are already sufficient to
implement arbitrary quantum algorithms, a programming language restricted
to those concepts would not be much different from a classical language with
a quantum device driver as it would lack a semantic representation for unitary
operators, which are the essence of all quantum algorithms.

In this section, we will demonstrate how unitary operators can be inte-
grated into the framework of a procedural programming language (procedural
quantum programming).

2.5.1 Quantum Subroutines

Procedural programming languages provide arbitrary levels of abstraction by
allowing to group simple computational tasks into parameterized subroutines
which can be used recursively as primitives for the definition of more complex
subroutines.
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Within a procedural QPL, unitary operators are represented as quan-
tum subroutines which allow the recursive construction of complex quantum
circuits from elementary gates.

2.5.1.1 Hierarchy of Subroutines

In addition to classical procedures and functions (see 2.3.3), we provide two
quantum subroutine types (see 2.4.2.3) for general unitary operators and
basis permutations.

Both quantum subroutine types (which together we will refer to as op-
erators) have mathematical semantics (see 2.5.1.2) and can be inverted to
produce the adjoint operator. Quantum functions additionally allow the
transparent use of (managed) scratch registers (see 2.5.3.5).

Subroutine QCL S H inv. scratch
procedure procedure all all no no
general unitarian operator none unitary yes no
basis permutation qufunct none rev. boolean yes yes
functions return type none none no no

Table 2.6: Hierarchy of subroutines

The 4 subroutine types form a call hierarchy, which means that a routine
may only invoke subroutines of the same or a lower level. Table 2.6 lists the
subroutines together with their QCL type, their allowed classical (S) and
quantum (H) side effects, their invertibility and support for scratch space
management.

Deutsch’s Algorithm To illustrate the above concept, the following QCL
implementation of Deutsch’s algorithm (see 1.5.2.2) uses all 4 subroutine
types:

/* Define Oracle */

const coin1=(random()>=0.5); // Define two random boolean
const coin2=(random()>=0.5); // constants

boolean g(boolean x) { // Oracle function g
if coin1 { // coin1=true -> g is constant

return coin2;
} else { // coin1=false -> g is balanced

return x xor coin2;
}

}
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qufunct G(quconst x,quvoid y) { // Construct oracle op. G from g
if g(false) xor g(true) { CNot(y,x); }
if g(false) { Not(y); }

}

/* Deutsch’s Algorithm */

operator U(qureg x,qureg y) { // Bundle all unitary operations
H(x); // of the algorithm into one
G(x,y); // operator U
H(x & y);

}

procedure deutsch() { // Classical control structure
qureg x[1]; // allocate 2 qubits
qureg y[1];
int m;
{ // evaluation loop

reset; // initialize machine state
U(x,y); // do unitary computation
measure y,m; // measure 2nd register

} until m==1; // value in 1st register valid?
measure x,m; // measure 1st register which
print "g(0) xor g(1) =",m; // contains g(0) xor g(1)
reset; // clean up

}

2.5.1.2 Mathematical Semantics

In classical routines, subroutines are executed when they are called (lin-
ear execution) i.e. when control reaches the corresponding call-statement
(see 2.3.4.3). Operators, however, support non-classical concepts like invert-
ibility (see 2.5.2.3), scratch space management (see 2.5.3.5) and quantum
if-statements (see 2.6.2.1) with the result that neither the number nor the
execution order of suboperators necessarily corresponds to the classical flow
of control (non-linear execution).

Therefore operators have mathematical semantics i.e. their effect is com-
pletely described by the unitary transformation they implement as a func-
tion of their declared parameters; so they must be reproduceable and neither
depend on nor exhibit side-effects on the program state. This specifically
excludes

• the use of global variables

• user input and classical random numbers

• measurements and resetting of the machine state

• calls of procedures
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2.5.1.3 Language Representation of Operators

Formally, just like a classical procedure, an operator is a named block (see
2.3.1) with a list of symbolic parameters of classical or quantum types. The
latter are used to indicate the registers the operator is applied to.

The QCL operator below implements the basis permutation

xregb(a) : |x〉a → |x⊕ b〉a (2.37)

qufunct xreg(qureg a,int b) { // xor reg. a with binary number b
int i;
for i=0 to #a-1 { // iterate over qubits of a

if bit(b,i) { Not(a[i]); } // invert i-th qubit of a if
} // i-th bit of b is set

}

The calling syntax of operators is identical to gates, including the ability
to call the adjoint operator. Since operators have mathematical semantics,
an operator is completely equivalent to an elementary gate with the same
declaration and functionality. So it makes e.g. no difference whether the
Z-gate (see 1.4.2.4) is provided by the quantum oracle

extern operator Z(qureg q); // pi-rotation about the Z-axis

or implemented as the sequence Z = HXH by the operator

operator Z(qureg q) { H(q); Not(q); H(q); }

2.5.1.4 Polymorphism

On an n-qubit quantum computer, an k-qubit gate can implement up to
n!

(n−k)! unitary transformations U(s) with s ∈ Rn
k . In procedural quantum

programming, this polymorphism is further extended by additional abstrac-
tions:

• Register Size: Argument registers can be of different sizes, so for
every quantum parameter s, the register size |s| is passed as an implicit
classical parameter. In QCL, the size of a register is given by the size-
operator “#”, so #s = |s|. An operator with a single argument register
s ∈ Rn can implement up to ben!c different unitary transformations.

• Multiple Registers: Operators can take multiple argument regis-
ters. Since for any s ∈ Rk, there exist

(
k+q−1
q−1

)
possible decompositions

s = s1 ◦ . . . ◦ sq (including null-registers), an operator with p register
arguments si with the total size k =

∑q
i=1 |si| can implement up to(

k+q−1
q−1

)
different unitary gates.
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• Classical Parameters: Besides argument registers, operators can also
take an arbitrary number of classical parameters. Any classical param-
eter of type T increases the number of possible unitary operations by
the factor |T |.

Generally, on an n-qubit quantum computer, an operator with q register
arguments and p classical parameters of the datatypes Ti can implement up
to

1 +
n∑

k=1

n!

(n− k)!

(
k + q − 1

q − 1

) p∏

i=1

|Ti| (2.38)

different unitary transformations.

2.5.2 General Operators

2.5.2.1 Quantum Circuits

General operators can be regarded as procedural descriptions of quantum
circuits depending on the size of their argument registers as well as classical
parameters.

Fig. 2.7 shows the 4-qubit quantum circuit which is generated by the
following QCL implementation of the discrete Fourier transform

DFT : |x〉q →
1√
N

N−1∑

y=0

e
2πi
N
xy |y〉q with N = 2|q| (2.39)

using an FFT-like algorithm suggested by Coppersmith [22].

operator dft(qureg q) { // Discrete Fourier transform
const n=#q; // set n to length of input
int i; int j;
for i=1 to n {

for j=1 to i-1 { // apply conditional phase gates
V(pi/2^(i-j),q[n-i] & q[n-j]);

}
H(q[n-i]); // Hadamard gate

}
flip(q); // swap qubit order of the output

}

Since an operator may call other suboperators, this descriptions can be
nested. The above implementation of the DFT e.g. uses the suboperator

flip : |d0d1 . . . dn−1〉 → |dn−1 . . . d1d0〉 (2.40)

to generate the last two Swap-gates in fig. 2.7.
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Figure 2.7: Quantum Fourier Transform for a 4-qubit register

qufunct flip(qureg q) { // Invert order of qubits
int i;
for i=0 to #q/2-1 {

Swap(q[i],q[#q-i-1]); // swap 2 opposite qubits
}

}

The implementation of an operator may also contain calls to itself, which
results in a recursive definition of the resulting circuit. The QCL operator
below is a recursive implementation of the phase transformation

Pφ(s) : |k〉s → eiφk|k〉s. (2.41)

using the conditional phase gate V (φ) = Cn[eiφ], which for n = 1 is equivalent
to Rz(φ) = e−iφ/2|0〉〈0|+ eiφ/2|1〉〈1|.

operator P(qureg q,real phi) { // Phase transformation
V(phi,q[0]); // rotate LSB
if #q>1 { // if there are higher qubits

P(q[1..#q-1],2*phi); // call P with phase 2*phi
}

}

Fig. 2.8 shows how the resulting circuit is constructed recursively for a
4-qubit register q = q0 ◦ q1 ◦ q2 ◦ q3.

2.5.2.2 Parameter Types

Besides general registers (QCL type qureg) which allow arbitrary quantum
circuits, more restrictive quantum data types (see 2.4.1.3) can be used as
parameter registers to indicate that an operator U belongs to a certain class
of unitary transformations.
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Figure 2.8: Recursive phase transformation

Constant Parameters A constant register c (QCL type quconst) indi-
cates that c is invariant to the operator, i.e. that U is a selection operator of
the form

U =
∑

k

(|k〉c〈k|c)⊗
∑

ij

ukij|i〉〈j|. (2.42)

Definition 38 An (n+m)-qubit operator U of the form

U = diag (U0, U1 . . . U2m−1) (2.43)

with Uk ∈ SU(2n) and m > 0 is called selection operator.

To enforce that restriction, within the implementation of U , c may only
be used as constant argument to any suboperators. So the following imple-
mentation of the Z-gate is illegal, despite the fact that

Z = HXH = |0〉c〈0|c − |1〉c〈1|c (2.44)

is of the form (2.42).

qcl> operator z(quconst c) { H(c); X(c); H(c); }
! in operator z(quconst c) at "H(c); ":
! parameter mismatch: quconst used as non-const argument to H

In order to allow the declaration of a constant parameter register c even
when c is used as general register argument to suboperators, in QCL, the
above restriction can be circumvented by redeclaring c as qureg. It is then
in the responsibility of the programmer to ensure proper quconst-semantics
(see also 2.5.3.2).

operator z(quconst c) { // Correct implementation of the Z-gate
qureg q = c; // redeclare c as qureg
H(q); // transform into dual basis
X(q); // X-rotation in dual basis
H(q); // transform back into

} // computational basis
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Target Parameters A target register t (QCL type quvoid) is expected to
be empty when the un-inverted operator is called, so U |k〉t|ψ〉 is undefined
for k 6= 0.18 Therefore, two operators U (1) and U (2) with a target register t
are considered to be equivalent iff

U (1)|0〉t|ψ〉t̄ = U (2)|0〉t|ψ〉t̄ for all |ψ〉 ∈ Ht̄. (2.45)

While target registers are usually used as result registers for quantum
functions (see 2.5.3.3), they can also be used for general operators:

operator prepare(quvoid t) { // Prepare test state for empty t
H(t); // produce even superposition
P(t,2*pi/2^#t); // phase transformation

}

The QCL operator above expects an empty register t to prepare a test
state of the form

|Ψ〉 =


2−|t|/2

2|t|−1∑

k=0

e21−|t|iπk|k〉t

⊗ |ψ〉t̄ (2.46)

using the phase transformation P (ϕ) (2.41) from 2.5.2.1.

qcl> qureg q[5]; // allocate empty 5-qubit register
qcl> prepare(q); // prepare test state
[5/32] 0.17678 |0> + ... + (0.17338-0.034487i) |31> (32 terms)
qcl> plot; // plot simulated state

Fig. 2.9 shows the 5-qubit test state

|Ψ〉 =
31∑

k=0

ck|k〉 with ck =
1√
32

eiπk/16 (2.47)

as prepared above. Dots (“•”) and crosses (“×”) denote the real and imagi-
nary parts (<(ck) and =(ck)) and the length of the vertical lines the absolute
value (|ck|) of the complex amplitudes ck.

18Of course, U(t, s) does have a deterministic effect for ρt 6= |0〉〈0|, just that this effect
is not part of the operator’s declared semantics and is considered to be an implementation
detail.
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5 used qubits, 32 basevectors

Figure 2.9: 5-qubit test state

Scratch Parameters A scratch register s (QCL type quscratch) is ex-
pected to be empty before and after the operator is called, so U has has to
be of the form

U = (|0〉s〈0|s)⊗
∑

ij

uij|i〉〈j|+
2|s|−1∑

k,l=1

∑

ij

uklij|k〉s|i〉〈l|s〈j| (2.48)

Scratch parameters (also called explicit scratch registers), have the same
semantics as unmanaged (see 2.5.2.4) local scratch variables (QCL-type qureg),
except that they are provided as parameters instead of getting allocated from
the quantum heap (see 2.4.1.2). Explicit scratch parameters can be useful
for suboperators as they allow to temporarily use target registers, or other
registers that are known to be empty at some point during a computation,
as scratch to save quantum memory.

2.5.2.3 Inverse Operators

Unlike procedures, operator calls can be inverted. In QCL, this is done by
preceding the operator name with the adjungation prefix “!”. The adjoint
operator of a composition of unitary operators is19

(
n∏

i=1

Ui

)†
=

n∏

i=1

U †n+1−i (2.49)

19To avoid ambiguities with non-commutative matrix products, we use the convention∏n
i=1 fi = fnfn−1 . . . f1
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In the circuit model, the inverse operator is simply the execution of the
circuit from right to left, whereby gates are replaced by their adjoint gates.

qcl> qureg q[3]; // allocate 3-qubit register
qcl> H(q[1]); // prepare test state
[3/32] 0.70711 |0> + 0.70711 |2>
qcl> set log 1; // show gate sequence
qcl> dft(q); // quantum Fourier transform

@ H(qureg q=<2>)

@ V(real phi=1.5708,quconst q=<1,2>)

@ H(qureg q=<1>)

@ V(real phi=0.785398,quconst q=<0,2>)

@ V(real phi=1.5708,quconst q=<0,1>)

@ H(qureg q=<0>)

@ Swap(qureg a=<0>,qureg b=<2>)

0

11

0

22 H

Hπ/2

π/4 Hπ/2

[3/32] 0.5 |0> + (0.25+0.25i) |1> + (0.25-0.25i) |3> +
0.5 |4> + (0.25+0.25i) |5> + (0.25-0.25i) |7>

qcl> !dft(q); // inverse transform

@ !Swap(qureg a=<0>,qureg b=<2>)

@ !H(qureg q=<0>)

@ !V(real phi=1.5708,quconst q=<0,1>)

@ !V(real phi=0.785398,quconst q=<0,2>)

@ !H(qureg q=<1>)

@ !V(real phi=1.5708,quconst q=<1,2>)

@ !H(qureg q=<2>)

0

11

0

22

H

H

H −π/2

−π/2

−π/4

[3/32] 0.70711 |0> + 0.70711 |2>

Delayed Execution Since the sequence of applied suboperators is spec-
ified using a procedural language which cannot be executed in reverse, the
adjungation is is achieved by the delayed execution of suboperator calls.

Whenever a suboperator call is encountered during the execution of an
inverted operator, the name of the suboperator and its evaluated arguments
are pushed on the execution stack. Afterwards, the stacked suboperator calls
are processed in reverse order. Thereby, normal calls are replaced by inverted
calls and vice-versa.

2.5.2.4 Scratch Registers

Let U be an arbitrary k-qubit unitary operator on B⊗k. While any universal
set of gates G = {G1, G2 . . .} allows the direct implementation of U as

U (1) =
∏

i

Gni
(si) = U with si ∈ Rk, (2.50)

the implementation of a (k + s)-qubit operator

U (2) =
∏

j

Gnj
(sj) with sj ∈ Rk+s (2.51)
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such that
U (2) |ψ〉|0〉 = (U |ψ〉) |0〉 for all |ψ〉 ∈ B⊗k (2.52)

may be considerably more efficient.
In quantum programming, we consider U (1) and U (2) as equivalent and

refer to U (2) as an implementation of U with s scratch qubits.
Formally, a scratch register is a local quantum variable defined within the

body of an operator definition. As all other quantum variables, local registers
are empty on allocation (see 2.4.1.2). While, in contrast to quantum functions
(see 2.5.3.3), for general operators there is no way to automatically “clean-
up” scratch registers, the implementation itself has to assure that a local
register s is empty (i.e. in the state ρs = |0〉〈0|) after the call (unmanaged
scratch space).

In QCL, unmanaged scratch registers are local variables of type qureg.
The operator below uses a scratch qubit to implement the conditional phase
gate

V (ϕ) : |k〉q →
{

eiφ|k〉q if k = 2|q| − 1

|k〉q otherwise
(2.53)

using the single qubit Z-rotation Rz (see 1.4.2.2) and the generalized CNot-
gate

CNot(q,p) = Not[[p]](q) = C |p|[X⊗|q|](q,p) (2.54)

operator cphase(real phi,quconst q) { // Conditional phase gate
qureg s[1]; // single scratch qubit
CNot(s,q); // s=1 if q=111...
RotZ(phi,s); // add phase if s=1
CNot(s,q); // restore scratch qubit

}

For an n-qubit argument register cphase(ϕ) can be written as the (n+1)-
qubit matrix

cphase(ϕ) =

(
e−iϕ

2 Cn[eiϕ] 0

0 eiϕ
2 Cn[e−iϕ]

)
(2.55)

on B⊗n+1 and implements V (ϕ,q) up to an irrelevant global phase as

cphase(ϕ) |ψ〉q|0〉s =
(
e−iϕ/2 V (ϕ)|ψ〉q

)
|0〉s. (2.56)

qcl> qureg q[2]; // allocate 2 qubits
qcl> H(q); // prepare test state
[2/32] 0.5 |0> + 0.5 |1> + 0.5 |2> + 0.5 |3>
qcl> cphase(pi,q); // rotate phase for |3>
[2/32] -0.5i |0> - 0.5i |1> - 0.5i |2> + 0.5i |3>
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2.5.3 Basis Permutations

Because of the linearity of unitary transformations, an operator applied to
a superposition state |Ψ〉 is simultaneously applied to all basis vectors that
constitute |Ψ〉 since

U
∑

i

ci|i〉 =
∑

i

ci(U |i〉). (2.57)

This feature is called quantum parallelism and is exploited in most non-
classical algorithms (see 1.5.2.4).

Often U implements a reversible boolean, or, equivalently, a bijective
integer function, by treating the basis vectors merely as bitstrings or binary
numbers.

Definition 39 An n-qubit basis permutation is a unitary operator of the
form F : |k〉 → |f(k)〉 with f being a bijective function (i.e. a permutation)
on Z2n (or Bn).

2.5.3.1 Reversible Boolean Networks

While general operators implement quantum circuits, basis permutations are
procedural descriptions of reversible boolean networks operating on qubits.
This allows us to discuss computations on qubits analogously to classical bits,
so we can e.g. describe the effect of the controlled-not operation C[X](a,b)
as “if qubit b is set then invert qubit a”.

The set L = {X,C[X], C2[X]} is universal for basis permutations.20 The
gates in L can be generalized to the CNot-gate (2.54) which operates on
argument and target registers of arbitrary sizes.

In QCL, basis permutations are represented by the subroutine type qufunct.
Fig. 2.10 shows the 4-qubit circuit generated by the operator

qufunct inc(qureg x) { // Increment register
int i;
for i = #x-1 to 0 step -1 {

CNot(x[i],x[0::i]); // apply controlled-not
} // from MSB to LSB

}

which implements the basis vector incrementation

inc : |k〉x → |(k + 1) mod 2|x|〉x. (2.58)

20In fact, the Toffoli gate T = C2[X] alone would be universal if two additional constant
qubits in the state |1〉 are available.
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Figure 2.10: Increment operator

qcl> qureg q[8]; // allocate quantum byte
qcl> H(q[2]&q[5]); CNot(q[0],q[2]); // prepare test state
[6/32] 0.5 |0> + 0.5 |5> + 0.5 |32> + 0.5 |37>
qcl> inc(q); // increment basis vectors
[6/32] 0.5 |1> + 0.5 |6> + 0.5 |33> + 0.5 |38>
qcl> inc(q);
[6/32] 0.5 |2> + 0.5 |7> + 0.5 |34> + 0.5 |39>
qcl> !inc(q); // decrement basis vectors
[6/32] 0.5 |1> + 0.5 |6> + 0.5 |33> + 0.5 |38>

2.5.3.2 Non-Boolean Factorizations

According to the hierarchy of subroutines (see 2.5.1.1), any routine can only
call subroutines of the same or a more restricted type. This especially means
that basis permutations may not call general operators or gates within their
definition. However, there are universal sets of gates G where L 6⊆ G. One
example would be the standard set (see 1.4.2.6) {H,S, T, C[X]} which lacks
the Not- and the Toffoli-gate.

A procedural QPL therefore has to provide a way to circumvent the hi-
erarchy of subroutines in order to define non-boolean implementations for
elementary basis permutations. In QCL this can be achieved by a double
declaration, e.g.

qufunct operator Not(qureg q) { // Standard set implementation
int i; // of the generalized Not-gate
for i=0 to #q-1 { // for all qubits:

H(q[i]); // transform into dual basis
S(q[i]); S(q[i]); // S^2 = Z = |0><0|-|1><1|
H(q[i]); // transform back into

} // computational basis
}

2.5.3.3 Quantum Functions

One obvious problem in quantum computing is its restriction to reversible
computations. Consider a simple operation like counting the number of set
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qubits in a register q

bitcount′ : |k〉q → |b(k)〉q with (2.59)

b(n) = nmod 2 + b(bn/2c) and b(0) = 0. (2.60)

Clearly, this operation is non-reversible since bitcount′ |2n〉 = 1 for all
n < |q|, so bitcount′ is not an unitary operator. However, if we use an
additional register p with 2|p| > |q|, then we can always find a unitary
operator bitcount such that

bitcount : |k〉q|0〉p → |k〉q|b(k)〉p (2.61)

Definition 40 Let c ∈ Rn and t ∈ Rm be disjoint registers and f be an
arbitrary function f : Z2n → Z2m (or f : Bn → Bm). A unitary operator F
of the form

F : |x〉c|y〉t → |x〉c|g(f(x), y)〉t with g(z, 0) = z (2.62)

is referred to as quantum function implementing f with the accumulation
function g.

Since F is required to be unitary, each hz : y → g(z, y) must be a 2m-
permutation with hz(0) = z. So for any given function f : Z2n → Z2m there
exist 2n(2m − 1)! different quantum functions F (k) which implement f .

In procedural quantum programming, two quantum functions F (1) and
F (2) are considered equivalent when they implement the same function, so
F |x〉t|y〉t is undefined for y 6= 0 which makes the actual definition of g an
irrelevant implementation detail.21

The above notion of equivalence implies that t is a target register (see
2.5.2.2). Also, from the form of (2.62) it follows that c is a constant regis-
ter. Using the QCL register types quconst and quvoid, we can implement
bitcount as the quantum function

qufunct bitcount(quconst q,quvoid p) { // count set bits in q
int i; int j;
if #q>=2^#p { // make sure that p is wide

exit "target register too small"; // enough
}
for i=0 to #q-1 { // iterate over qubits in q

for j=#p-1 to 0 step -1 { // increment p if q[i]
CNot(p[j],p[0::j] & q[i]); // is set

}
}

}

21This abstraction is necessary as the use of scratch registers (see 2.5.3.5) can affect g.
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with the accumulation function g(z, y) = (z + y) mod 2|p|, so

bitcount : |x〉q|y〉p → |x〉q|(y + b(k)) mod 2|p|〉p. (2.63)

qcl> qureg q[3]; qureg p[2]; // allocate argument and target reg.
qcl> H(q); // prepare superposition
[5/32] 0.3535 |0,0> + 0.3535 |1,0> + 0.3535 |2,0> + 0.3535 |3,0> +

0.3535 |4,0> + 0.3535 |5,0> + 0.3535 |6,0> + 0.3535 |7,0>
qcl> bitcount(q,p); // count set qubits
[5/32] 0.3535 |0,0> + 0.3535 |1,1> + 0.3535 |2,1> + 0.3535 |4,1> +

0.3535 |3,2> + 0.3535 |5,2> + 0.3535 |6,2> + 0.3535 |7,3>

2.5.3.4 Junk Registers

While quantum functions can be used to work around the reversible nature
of quantum computing, the necessity to keep a copy of the argument is a
problem, as longer computations will leave registers filled with intermediate
results.

Suppose we want to compare the number of set qubits in two registers a
and b, i.e. find a quantum function to implement the predicate

c(x, y) =

{
1 if b(x) = b(y)
0 otherwise .

(2.64)

Using an auxiliary register s and B = bitcount from (2.63), the operator

bitcmp0(a,b, t, s) = CNot(t, s) Not(s)B†(b, s)B(a, s) (2.65)

implements c but leaves the register s in a “dirty” state:

|x, y, 0, 0〉 B(a,s)−→ |x, y, b(x), 0〉 B
†(b,s)−→ |x, y, b(x)− b(y), 0〉 Not(s)−→ (2.66)

|x, y, 11...1⊕ (b(x)− b(y)), 0〉 CNot(t,s)−→ |x, y, 11...1⊕ (b(x)− b(y)), c(x, y)〉
qufunct bitcmp0(quconst a,quconst b,quvoid t,quvoid s) {
bitcount(a,s); // write #bits(a) to s
!bitcount(b,s); // subtract b(b) from s
Not(s); // invert s
CNot(t,s); // t=1 if #bits(a)-#bits(b)=0

}

Since s does not contain useful information and is usually entangled (i.e.
tr(ρ2

s) < 1) so that it cannot be reset by measurement (see 2.4.3.3) without
affecting other registers, s is called a junk register. A quantum function

F : |x, 0〉|0〉s → |x, f(x)〉|j(x)〉s (2.67)

with a junk parameter s is called a dirty implementation of f .
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qcl> qureg a[3];qureg b[3]; // allocate registers a,b,s,t
qcl> qureg s[2];qureg t[1];
qcl> H(a[0]); Not(a[2]); // prepare test state for a
[9/32] 0.70711 |4,0,0,0> + 0.70711 |5,0,0,0>
qcl> H(b[1]); Not(b[0]); // prepare test state for b
[9/32] 0.5 |4,1,0,0> + 0.5 |5,1,0,0> + 0.5 |4,3,0,0> + 0.5 |5,3,0,0>
qcl> bitcmp(a,b,t,s); // compare number of bits
[9/32] 0.5 |4,3,0,0> + 0.5 |5,1,2,0> + 0.5 |4,1,3,1> + 0.5 |5,3,3,1>

2.5.3.5 Scratch Space Management

Let F be a a dirty implementation of a classical function f with the argument
register x, the target register y and the junk register s

F : |k〉x|0〉y|0〉s → |k〉x|f(k)〉y|j(k)〉s (2.68)

While computing f(k), F also fills s with the temporary junk bits j(k).
To reclaim s, Bennett proposed the following method [7], which is known as
uncomputing:

1. Allocate an (empty) auxiliary register t of the same size as y.

2. Replace F (x,y, s) by the operator

F ′(x,y, s, t) = F †(x, t, s) Fanout(t,y)F (x, t, s). (2.69)

The above procedure restores both the junk and the auxiliary register so
s and t are scratch parameters (see 2.5.2.2) of F ′ so F ′ is a clean implemen-
tation of f with |s|+ |t| scratch qubits (see 2.5.2.4):

|k, 0, 0, 0〉 F (x,t,s)−→ |k, 0, j(k), f(k)〉 Fanout(t,y)−→

|k, f(k), j(k), f(k)〉 F
†(x,t,s)−→ |k, f(k), 0, 0〉 (2.70)

The Fanout Operator The Fanout operator is a quantum function im-
plementing the identity i.e.

Fanout : |x〉a|0〉b → |x〉a|x〉b with |a| = |b| (2.71)

and is usually realized using |x| controlled-not gates with the accumulation
function gF (x, y) = x⊕ y.

cond qufunct Fanout(quconst a,quvoid b) {
int i;
if #a!=#b { exit "fanout arguments must be of equal size"; }
for i=0 to #a-1 { CNot(b[i],a[i]); }

}
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Let F be a dirty implementation of f with the accumulation function g
and a junk register s, so

F : |x〉x|y〉y|0〉s → |x〉x|g(f(x), y)〉y|j(x, y)〉s. (2.72)

The clean version F ′ according to (2.69) with the scratch registers s and
t is given as

F ′ : |x〉x|y〉y|0〉s|0〉t → |x〉x|gF (f(x), y)〉y|0〉s|0〉t. (2.73)

So in F ′ the original accumulation function g is replaced by the accumu-
lation function gF of the Fanout operator.

Scratch Registers In procedural quantum programming, the method of
uncomputing (2.69) allows the automatically reclaiming of local registers
which are left in a non-empty state after the body of the operator has been
executed (managed scratch registers). In QCL managed scratch registers are
local variables of type quscratch.

Since the method of uncomputing only works for quantum functions,
managed scratch registers are restricted to basis permutations with constant
and target registers as quantum parameters.

For bitcmp0 from (see 2.5.3.4), a clean version can be constructed by
making s a managed local scratch register

qufunct bitcmp(quconst a,quconst b,quvoid t) {
quscratch s[ceil(log(max(#a,#b)+0.5,2))];
bitcmp0 (a,b,t,s);

}

which is not only equivalent to but also implements the same unitary trans-
formation22 as the following operator using two unmanaged scratch registers
(see 2.5.2.4).

qufunct bitcmp(quconst a,quconst b,quvoid t) {
qureg s[ceil(log(max(#a,#b)+0.5,2))];
qureg u[#t];
bitcmp0 (a,b,u,s);
CNot(t,u);
!bitcmp0 (a,b,u,s);

}

22Note that for single qubits, every possible implementation of the Fanout operator is
identical to a CNot gate.
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2.5.3.6 Calling Semantics

The potential use of managed scratch registers extends the calling seman-
tics of basis permutations as compared to general operators. Consider the
quantum functions

qufunct U1(quconst x,quvoid y,quvoid s) { // s is junk register
A(x,y,s);
B(x,y,s)

}

qufunct U2(quconst x,quvoid y) { // s is scratch register
quscratch s;
A(x,y,s);
B(x,y,s)

}

While the calls U1(x,y,s) and !U1(x,y,s) are analogous to general op-
erator calls i.e.

U1(x,y, s) = B(x,y, s)A(x,y, s) and U †1(x,y, s) = A†(x,y, s)B†(x,y, s)
(2.74)

the calls U2(x,y,s) and !U2(x,y,s) cause the transparent allocation of a
register t, with |t| = |y| and results in the transformations

U2(x,y, s, t) = U †1(x, t, s) Fanout(t,y)U1(x, t, s) and (2.75)

U †2(x,y, s, t) = U †1(x, t, s) Fanout
†(t,y)U1(x, t, s). (2.76)

Note that U2 and U †2 are almost identical and that U2 = U †2 if a Hermitian
implementation of the Fanout operator is used.

Double Execution When a general operator or basis permutation with-
out managed scratch registers is executed, calls of suboperators are either
processed immediately (linear execution) or pushed on the execution stack
(delayed execution), depending on whether the normal or the inverse opera-
tor has been called (see 2.5.2.3).

In the case of a quantum function with managed scratch registers, after
the initial remapping of the target registers, suboperator calls always get
executed and pushed on the execution stack (double execution). After the
body of the subroutine has been processed, the appropriate Fanout (normal
call) or Fanout† (inverted call) operation is executed and then the stacked
calls get executed again in reverse order with their adjungation flags inverted.
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2.6 Quantum Flow Control

All classical programming languages, in one way or another, allow the condi-
tional execution of code depending on a boolean variable or logical expression
(conditional branching). In structured languages conditional branching is re-
alized by if-statements with well defined entry and exit points.

While the unobservability of qubits forbids a direct implementation, we
will show how conditional operators can be used to emulate conditional
branching on qubits (quantum if-statement) as well as (bounded) conditional
loops with quantum termination conditions to the effect that, with regard
to flow-control, qubits can be treated almost equivalently to classical bits
(structured quantum programming).

We will further demonstrate how qubits and registers can be combined to
arbitrary boolean expressions and complex predicates (quantum conditions).

2.6.1 Conditional Operators

As already mentioned in 2.4.2.3, for a unitary register operator U(s) and
an enable (or control) register e ∈ R disjoint to s, the conditional operator
U[[e]](s) is defined as

U[[e]](s) : |k〉s|c〉e →
{

(U |k〉s)|c〉e if c = 111 . . .
|k〉s|c〉e otherwise .

(2.77)

If e is a qubit so |e| = 1, then informally, we can describe the effect of
U[[e]](s) as “if e is set then apply U(s)” which relates to the fact that

U[[e]]

2|s|−1∑

k=0

∑

b∈B

ckb|k〉s|b〉e =
2|s|−1∑

k=0

ckb|k〉s|0〉e +
2|s|−1∑

k=0

ckb (U |k〉s) |1〉e. (2.78)

2.6.1.1 Properties of Conditional Operators

Orthogonal Enable Registers Let U, V ∈ SU(2n) be n-qubit unitary
operators, s ∈ Rn a n-qubit register and q ∈ R1 a qubit disjoint to s (i.e.
q ⊆ s̄), then [

U[[q]](s)X(q), V[[q]](s)X(q)
]

= 0. (2.79)

For arbitrary register operators U(x) and V (y), (2.79) can be generalized
to [

U[[e]](x)Xn(c), V[[e]](y)Xn(c)
]

= 0 (2.80)

with c ∈ Rn being an non-empty subregister c ⊆ e and x,y ⊆ ē.
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Conditional Decomposition Its easy to verify that for an arbitrary U(s)
and a qubit q ∈ R1,q ⊆ s̄

U(s) = U[[q]](s)X(q)U[[q]](s)X(q). (2.81)

Definition 41 An n-qubit basis permutation P : |k〉 → |p(k)〉 is called cyclic
iff it generates the computational basis B such that for any |k〉 ∈ B

2n−1⋃

i=0

P i|k〉 = {|j〉 | j ∈ Z2n} = B (2.82)

p is therefore a permutation on Z2n with the cycle length 2n. If P is cyclic,
then A† P A is also cyclic for an arbitrary basis permutations A. An example
for a cyclic basis permutation is the operator inc (2.58) from 2.5.3.1.

We can now generalize the identity (2.81) for enable registers e ∈ Rn, e ⊆
s̄ to

U(s) =
(
U[[e]](s)P (e)

)2n

(2.83)

with P being an arbitrary n-qubit cyclic basis permutation.

Conditional Composition Let V,W ∈ SU(2n) be n-qubit unitary oper-
ators, then the selection operator

U =

(
V 0
0 W

)
(2.84)

can be implemented as

U(s, c) = X(c)V[[c]](s)X(c)W[[c]](s) (2.85)

Likewise, for any (n+m)-qubit selection operator

U = diag (U0, U1 . . . U2m−1) (2.86)

there exists an cyclic m-qubit basis permutation P such that

U(s, c) =
2m−1∏

i=0

Ui [[c]](s)P (c) (2.87)
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2.6.1.2 Conditional Subroutines

As conditional operators are just a special case of selection operators (see
2.5.2.2), they can be implemented as quantum subroutines with a constant
enable register.

The operator below implements a conditional version cinc of the register
increment operator (2.58) defined as

cinc : |k〉x|c〉e →
{
|(k + 1) mod 2|x|〉x|c〉e if c = 11...1

|(k〉x|c〉e otherwise
(2.88)

qufunct cinc(qureg x,quconst e) { // Conditional increment
int i; // as selection
for i = #x-1 to 0 step -1 { // operator

CNot(x[i],x[0::i] & e);
}

}

The above operator is a conditional version of (2.58)

cinc : |k〉x|c〉e →
{
|(k + 1) mod 2|x|〉x|c〉e if c = 11...1

|(k〉x|c〉e otherwise
(2.89)

Structured QPLs directly support conditional execution, i.e. the auto-
matic construction of U[[e]] from a given implementation of U , by allowing
the explicit declaration of conditional subroutines.

In QCL, conditional operators can be defined by prefixing the subroutine
declaration with the keyword cond.

cond qufunct inc(qureg x) { // Conditional increment register
int i; // as conditional
for i = #x-1 to 0 step -1 { // subroutine

CNot(x[i],x[0::i]);
}

}

Conditional Calls The enable register e is an implicit constant param-
eter and not part of the parameter declaration of a conditional subroutine.
Instead, e is set by a quantum if-statement (see 2.6.2.1) and transparently
passed on to all suboperators, which therefore are also required to be either
conditional operators or conditional elementary gates (see 2.4.2.3).
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qcl> qureg q[4];qureg e[1]; // allocate counting and control reg.
qcl> H(q[3] & e); // prepare test state
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |0,1> + 0.5 |8,1>
qcl> cinc(q,e); // conditional increment
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |1,1> + 0.5 |9,1>
qcl> if e { inc(q); } // equivalent to cinc(q,e)
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |2,1> + 0.5 |10,1>
qcl> !cinc(q,e); // conditional decrement
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |1,1> + 0.5 |9,1>
qcl> if e { !inc(q); } // equivalent to cinc(q,e);
[5/32] 0.5 |0,0> + 0.5 |8,0> + 0.5 |0,1> + 0.5 |8,1>

In the example above, the if-statement “if e { inc(q); }” causes the
control qubit e to be appended to the enable registers of the CNot-gates gen-
erated by the call inc(q), so “if e { inc(q); }” and cinc(q,e) describe
the same quantum circuit (fig. 2.11).

q0

q1

q2

q3

e

q0

q1

q2

q3

e

Figure 2.11: Conditional increment operator

Unconditional Calls If a conditional subroutine is called outside of a
quantum if-statement23 then e is empty (unconditional call) and call seman-
tics are identical to unconditional subroutines.

qcl> inc(q); // unconditional increment
[4/32] 0.5 |1,0> + 0.5 |9,0> + 0.5 |1,1> + 0.5 |9,1>

Since the declaration of an operator as conditional does not incur any
overhead on unconditional calls, it is reasonable to always declare routines
as conditional if all required suboperators are available as conditional sub-
routines or gates.

23In the case of a suboperator, this also includes all parent operators
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2.6.1.3 Call Graph of Subroutines

The hierarchy of subroutines (see 2.5.1.1) implies that routines may only call
subroutines of the same or a more restricted type. If, in addition to that, we
also take into account that conditional operators cannot call unconditional
suboperators, the hierarchy becomes a lattice, which can be represented by
the call graph depicted in fig. 2.12.

procedure

operator

cond qufunct

functions

cond operator qufunct

Figure 2.12: Call graph of QCL subroutines

2.6.1.4 Explicit Enable Registers

Conditional operators, by definition, must be able to handle enable registers
of arbitrary sizes. As structured quantum programming is supposed to be
a hardware independent formalism, it cannot be assumed that the quantum
oracle provides a universal set of conditional gates. In fact, most standard
gates do not operate on more than three qubits (see 1.4.2.4).

A structured QPL therefore has to allow for the implementation of basic
conditional operators using unconditional suboperators and gates and con-
sequently has to provide a means to make the enable register available as a
symbolic quantum constant (explicit enable register).

In QCL this is achieved by redeclaring the enable register as local register
of type quconst. The example below is the QCL default implementation of
the Not-gate:
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extern qufunct NOT(qureg q); // unconditional Not
extern qufunct CNOT(qureg q,quconst c); // unconditional CNot

cond qufunct Not(qureg q) { // conditional Not
quconst e = cond; // e=enable register
if #e>0 { CNOT(q,e); } else { NOT(q); } //

}

2.6.2 Conditional Branching

2.6.2.1 Quantum If-Statements

In classical structured programming languages, the conditional execution of
a statement sequence (block) σ depending on the value of a boolean variable
p is expressed by an if-statement S of the form

if p then σ1, σ2 . . . σn endif

or, if one of two blocks σ and τ should be executed,

if p then σ1, σ2 . . . σn else τ1, τ2 . . . τm endif

If the instead of a classical boolean variable, the if-condition is a qubit p

if p then σ1, σ2 . . . σn else τ1, τ2 . . . τm endif

then S is referred to as quantum if-statement (QIS). S is called

(i) invalid iff σ or τ contain24 procedure calls, measurements, reset or
input commands or use random numbers.

(ii) nested iff σ or τ contain other quantum if-statements.

(iii) dirty iff σ or τ contain assignments or break-statements.

(iv) clean iff S is valid and not dirty.

(v) simple iff S is clean and τ = () i.e. no else-branch is defined.

Block and Tail Operators Like the body of an operator subroutine,
the if- and else-branches σ and τ are basically procedural descriptions of
quantum circuits, or more precisely, of sequences of suboperators which get
generated by linear execution. However, unlike a subroutine, σ (τ) has no
declared interface, so its “parameters” are all classical and quantum variables
that are visible in the current scope. Also, σ (τ) is not guaranteed to have
mathematical semantics (dirty QIS).

24This also includes any sub-statements in control structures.
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We will write σ̄ (τ̄) to denote the composition of suboperators (blockoperator)
which would be generated if σ (τ) is executed in place of S25 and σ̂ (τ̂) to
denote the circuit that is generated when the execution is continued until the
end of the current subroutine (tail operator).26 In global scope σ̂ and τ̂ are
undefined.

In the following example σ̄, τ̄ , σ̂ and τ̂ would evaluate to

σ̄ = B(x), τ̄ = C(x), σ̂ = D(x,y)B(x) and τ̂ = D(x,y)C(x). (2.90)

operator U(qureg x,qureg y) {
A(x);
if y { B(x); } else { C(x); } // quantum if-statement
D(x,y);

}

2.6.2.2 Conditional Execution

A simple QIS S is of the form

if p then σ1, σ2 . . . σn endif

and implements the transformation US = σ̄[[p]]. So simple QISs can be used
to set the enable registers of conditional operators (conditional calls, see
2.6.1.2).

Since p is already passed as an implicit parameter σ̄ must not operate on
p i.e. σ̄ = σ̄(p̄), so the QIS below is not a miraculous implementation of a
unitary erase operation, but simply triggers an error

qcl> if q { Not(q); }
! at "Not(q); ":
! runtime error: arguments overlap with quantum condition

Global Control Register Internally, the passing of enable registers to
conditional subroutines is handled by a global control register g.

Whenever a simple QIS is encountered, the following happens:

1. The appropriate enable register p is appended to g.

2. The if-branch σ is executed.

3. p is removed from g.

Whenever a call to a conditional gate is encountered, the current value
of g is passed as enable register to the quantum oracle.

25i.e. the circuit that would be generated if S were a classical if-statement with p = true
(p = false)

26Note that therefore, even if no else-branch is defined and consequently τ = (), this
does not imply that τ̂ = I.
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2.6.2.3 Quantum Selection

A clean QIS S with τ 6= () is of the form

if p then σ1, σ2 . . . σn else τ1, τ2 . . . τm endif

The semantics of S (i.e. the corresponding unitary transformation) are
defined as the selection operator

US : |k〉|c〉p →
{

(σ̄|k〉)|c〉p if c = 1

(τ̄ |k〉)|c〉p if c = 0.
(2.91)

As US contains σ̄ and τ̄ as suboperators, this means that, unlike a classical
if-statement, both branches of S get executed. As we assumed that neither
σ nor τ contain assignments or other statements which would change the
program state, both branches cannot exhibit mutual side effects and this can
be done without being inconsistent with classical semantics.27

US is realized as the conditional composition (2.85)

US = Not(p) τ̄[[p]] Not(p) σ̄[[p]] =

(
τ̄ 0
0 σ̄

)
(2.92)

so the QIS on the left corresponds to the right sequence (see 2.6.1.2)

if p {
inc(x); // cinc(x,p); conditional increment

} else { // Not(p); invert enable qubit
!inc(x); // !cinc(x,p); conditional decrement

} // Not(p); restore enable qubit

2.6.2.4 Quantum Forking

If the body of a classical if-statement S contains changes to the program state
(e.g. assignments to local variables), then subsequent operator calls may
differ, depending on whether the if- or the else-branch has been executed. If
however, S is a (dirty) QIS, then both paths need to be executed in order
to determine the corresponding conditional operator US, which allows for
non-classical side-effects and can lead to classically inconsistent states.

To illustrate the problem, consider the operator

27An example for inconsistent code would be e.g.

boolean v := true
if p then v := ¬v else v := ¬v endif
if v then error “classically unreachable code” endif
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operator U(qureg s,quconst p) {
int n;
if p { n=1; } else { n=0; } // dirty QIS
V(n,s); // n=0 or n=1?

}

At first glance it seems impossible to come up with semantics U(s,p) that
are both, classically consistent and also provide a reasonable interpretation
as quantum control statement because there is no reason to prefer one of the
“obvious” candidates V0(s) and V1(s) over the other.

As a quantum analogy, we might say that the QIS brought p and the
classical variable n into a correlated state, which would suggest the interpre-
tation that V0(s) is applied to all basis vectors |k〉s|0〉e and V1(s) to all basis
vectors |k〉s|1〉e i.e.

U : |k〉s|n〉p → (Vn|k〉s)|n〉p (2.93)

While these semantics are symmetric28 and have a reasonable quantum
interpretation, they are not classically consistent as they leave the binding of
n undefined. But here, the mathematical semantics of operators (see 2.5.1.2)
come to the rescue, as they state that operators are defined by their unitary
effect and may not change the program state. Since n is a local variable
about to leave scope, we might as well leave it undefined. However, these
semantics also imply that dirty QISs cannot be used in global scope or within
procedures.

The above interpretation could also be described as extending the QIS to
include the remainder of the operator, so U is considered to be equivalent to

operator U(qureg s,quconst p) {
int n;
if p { n=1; V(n,s); } else { n=0; V(n,s); }

}

As this can only be done explicitly if the QIS in question is not part of
a control statement (like, e.g. a while-loop), a more general notion of what
exactly constitutes the “remainder of a subroutine” is necessary. This is
provided by the the tail operators σ̂ and τ̂ (see 2.6.2.1).

Using σ̂ and τ̂ , the above method can be formalized so that for a dirty
QIS S of the form

if p then σ1, σ2 . . . σn else τ1, τ2 . . . τm endif

the transformation US implemented by S can be defined as

US : |k〉|c〉p →
{

(σ̂|k〉)|c〉p if c = 11..1

(τ̂ |k〉)|c〉p otherwise .
(2.94)

28i.e. treat both branches of the QIS equally.
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and realized as

US = Not(p) τ̂[[p]] Not(p) σ̂[[p]] =

(
τ̂ 0
0 σ̂

)
(2.95)

Threaded Execution Since the evaluation of σ̂ and τ̂ involves not only
the execution of the corresponding block of S but of the complete subrou-
tine, a dirty QIS splits the classical flow of control into two separate threads
(quantum forking). Each thread is executed independently until the end of
the subroutine is reached (threaded execution). Because of (2.80), the gener-
ated quantum circuits σ̂ and τ̂ can then be recombined to

US = Not(p) τ̂[[p]] Not(p) σ̂[[p]] =

(
τ̂ 0
0 σ̂

)
(2.96)

Restrictions While the concept of threaded execution allows classical code
to be conditionally executed depending on qubits, dirty QISs also impose
several restrictions:

• Since different threads will generally result in different program states,
dirty QISs may only appear in subroutines with mathematical seman-
tics and are therefore restricted to operators.

• As the effect of a dirty QIS extends over the remainder of the routine, all
reachable suboperators have to be conditional, even when the routine
is not declared conditional and they are not part of a QIS.

• When a dirty QIS is part of a loop, then the enable registers have to
be disjoint for each iteration.

2.6.2.5 Pseudo Measurements

A possible use of QISs is to formally accumulate the content of (unobservable)
quantum registers into a classical variable (pseudo measurements).

The QCL operator below implements the selection operator

mux : |k〉q|i〉s →
(
Not(qi)|k〉q

)
|i〉s. (2.97)

by conditional composition (2.87).

cond qufunct mux(qureg q,quconst s) { // Quantum Multiplexer
int i;
int n = 0;
for i=0 to #s-1 { // accumulate content of

if s[i] { n=n+2^i; } // selection register in a
} // classical variable
Not(q[n]); // flip selected output qubit

}
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Figure 2.13 shows the quantum circuit generated by mux(s,q) in the case
of a 2-qubit selection register s.

q0

q1

q2

q3

s0

s1

q0

q1

q2

q3

s0

s1 X X

X

X X

X

Figure 2.13: A quantum multiplexer

2.6.2.6 Conditional Loops

By conditionally executing a break statement, QISs can be used to imple-
ment (bounded) conditional loops with quantum termination conditions.

The QCL operator below implements the phase transformation

pdlog(ϕ) = diag(1, δ, δ2, δ2, δ3, δ3, δ3, δ3, δ4 . . .) with δ = eiϕ (2.98)

which rotates basis vectors according to the highest set qubit.

operator pdlog(real phi,qureg q) {
int i;
for i=#q-1 to 0 step -1 { // iterate from MSB to LSB

if q[i] { break; } // exit if qubit is set
Phase(-phi); // rotate by -phi

}
}

Figure 2.14 shows the 4-qubit quantum circuit generated by pdlog.

2.6.3 Quantum Conditions

Definition 42 (Boolean Formulas) Let S be a set of symbols, then B0(S) =
S ∪ {true, false} is the set of atomic boolean formulas on S. The set B(S)
of boolean formulas on S is recursively constructed in the following way

(i) if a ∈ B0(S) then a, inB(S)

(ii) if a ∈ B(S) then ¬a ∈ B(S)
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Figure 2.14: Dual log phase transform

(iii) if a, b ∈ B(S) then a ∧ b, a ∨ b, a⊕ b ∈ B(S)

Definition 43 (Quantum Condition) A boolean formula C ∈ B(R1) of
qubits is called quantum condition. A quantum register e = e0◦. . .◦en−1 ∈ Rn

corresponds to the quantum condition e0 ∧ . . . ∧ en−1. Two registers p and
q are equivalent (p ≡ q) if they correspond to the same quantum condition
(i.e. consist of the same qubits)

2.6.3.1 Exclusive Disjunctive Normal Form

Definition 44 Let S be a set of symbols. A boolean formula f ∈ B(S) of
the form

f =
n⊕

i=1

mi∧

j=1

pij with pij ∈ S and {pkj} = {plj} ⇔ k = l (2.99)

is in exclusive disjunctive normal form (XNF). Also we declare

false ≡
0⊕

i=1

and true ≡
0∧

j=1

. (2.100)

Any boolean formula f can be transformed into the XFN by recursively
applying the following rules.

(i) a⊕ a→ false

(ii) a ∧ a→ a

(iii) ¬a→ true⊕ a
(iv) a ∨ b→ a⊕ a ∧ b⊕ b
(v) a ∧⊕

i bi →
⊕

i a ∧ bi
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From now on, we will assume that quantum conditions are provided in
XNF. Further, we will use the notation

C = {pi} ⇐⇒ C =
⊕

i

|pi|−1∧

j=0

pij. (2.101)

Definition 45 Let p,q ∈ R be registers and P = {pi}, Q = {qi} be the set
of qubits in p,q. The registers p ∪ q and p ∩ q are defined as

p ∪ q = r0 ◦ . . . ◦ rk−1, ri ∈ P ∪Q, ri < rj ⇔ i < j (2.102)

p ∩ q = s0 ◦ . . . ◦ sl−1, ri ∈ P ∩Q, ri < rj ⇔ i < j (2.103)

Definition 46 Let C = {pi} be a quantum condition. The register

c = reg C =
⋃

i

pi (2.104)

is called condition register of C.

2.6.3.2 Quantum Predicates

Definition 47 Let C = {pi} be a quantum condition with the condition
register c = reg C and t ∈ R1. The operator

PC(c, t) = X[[C]](t) =
∏

i

CNot(t,pi) (2.105)

is called quantum predicate of C with the target register t.

Definition 48 Let C = {pi} be a quantum condition with the condition
register c = reg C, c : B|c| → B such that PC|x〉c|0〉 = |x〉c|c(x)〉 and U be a
unitary operator. The (extended) conditional operator U[[C]] is defined as

U[[C]] : |k〉|x〉c →
{

(U |k〉)|x〉c if c(k)
|k〉|x〉c if ¬c(k) . (2.106)

By using an empty scratch qubit s, U[[C]] can be implemented as

U[[C]] = PC(c, s)U[[s]] PC(c, s) (2.107)

Boolean Operations Let p,q be qubits, s be an empty scratch qubit and
U a unitary operator. The extended conditional operators for the boolean
operations not, and, xor and or can be implemented as

U[[¬p]] = X(p)U[[p]]X(p) (2.108)

U[[p∧q]] = U[[p◦q]] (2.109)

U[[p⊕q]] = X[[p]](s)X[[q]](s)U[[s]]X[[q]](s)X[[p]](s) (2.110)

U[[p∨q]] = X[[p◦q]](s)U[[p⊕q]]X[[p◦q]](s) (2.111)
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2.6.3.3 Language Representation of Quantum Conditions

In structured quantum programming, quantum conditions are represented
as a special datatype (QCL type qucond) that represents a list of constant
quantum registers. Boolean operators can be used to combine registers,
quantum conditions and even classical boolean expressions:

qcl> qureg a[1]; qureg b[1]; // allocate 2 qubits
qcl> print a and b, a or b, a xor b; // basic boolean operators
: <0,1> <0; 1; 0,1> <0; 1>
qcl> qucond c; // qucond variable
qcl> c=not (a or b); // qucond assignment
qcl> print c, #c, c[3]; // print c, the number of
: <*; 0; 1; 0,1> 4 <0,1> // clauses, the last register
qcl> print c xor true, c and (1==2); // mixed quantum/boolean
: <0; 1; 0,1> <> // expressions
qcl> c=(pi > 3); // boolean expressions get
qcl> print c; // cast to qucond if
: <*> // necessary

QCL even defines a comparison operator to compare registers to other
registers or integers.

qcl> qureg q[4];
qcl> print q==15,q==7;
: <0,1,2,3> <0,1,2; 0,1,2,3>

2.6.3.4 Quantum Conditions and If-Statements

The main use of quantum conditions is as arguments to quantum if-statements.

if C then σ1, σ2 . . . σn else τ1, τ2 . . . τm endif

Depending on C, there are 5 possible cases:

1. If C = {} = false, the else-branch is executed.

2. If C = {o} = true, the if-branch is executed.

3. If C = {p} and |p| = 1 then the QIS is executed normally.

4. If C = {q} and |q| > 1 and the QIS is simple, then the QIS is executed
normally.

5. Otherwise,

(a) an empty scratch qubit s is allocated,
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(b) the quantum predicate PC(c, s) is applied to s,

(c) C is substituted by s and the QIS is executed,

(d) s is uncomputed by PC(c, s) and deallocated.

qcl> qureg q[3];
qcl> qureg a[1]; qureg b[1];
qcl> H(a & b);
[5/32] 0.5 |0,0,0> + 0.5 |0,1,0> + 0.5 |0,0,1> + 0.5 |0,1,1>
qcl> if a { inc(q); }
[5/32] 0.5 |0,0,0> + 0.5 |1,1,0> + 0.5 |0,0,1> + 0.5 |1,1,1>
qcl> if a and b { inc(q); }
[5/32] 0.5 |0,0,0> + 0.5 |1,1,0> + 0.5 |0,0,1> + 0.5 |2,1,1>
qcl> if a or b { inc(q); }
[5/32] 0.5 |0,0,0> + 0.5 |2,1,0> + 0.5 |1,0,1> + 0.5 |3,1,1>
qcl> if not a or b { inc(q); }
[5/32] 0.5 |1,0,0> + 0.5 |2,1,0> + 0.5 |2,0,1> + 0.5 |4,1,1>

2.6.3.5 Quantum Condition Functions

Auxiliary functions can be used to compute complex conditions. The follow-
ing function computes a quantum condition to test for primality:

qucond isprime(quconst q) { // Primality test for register q
int i;
qucond c; // qucond variable c={}=false
for i = 0 to 2^#q-1 { // iterate of possible numbers

if testprime(i) { // if prime then add qucond(q==i)
c = c or q==i; // to c

}
}
return c;

}

Fig. 2.15 shows the quantum circuit of the quantum predicate Pisprime(q,p)
for |q| = 4.

q0

q1

q2

q3

p

q0

q1

q2

q3

p

Figure 2.15: 4-qubit XNF primality test
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qcl> qureg q[4];
qcl> H(q);
[4/32] 0.25 |0> + 0.25 |1> + 0.25 |2> + 0.25 |3> + 0.25 |4> +
0.25 |5> + 0.25 |6> + 0.25 |7> + 0.25 |8> + 0.25 |9> + 0.25 |10> +
0.25 |11> + 0.25 |12> + 0.25 |13> + 0.25 |14> + 0.25 |15>

qcl> if isprime(q) { Phase(pi); } // swap sign if prime
[4/32] 0.25 |0> + 0.25 |1> - 0.25 |2> - 0.25 |3> + 0.25 |4> -
0.25 |5> + 0.25 |6> - 0.25 |7> + 0.25 |8> + 0.25 |9> + 0.25 |10> -
0.25 |11> + 0.25 |12> - 0.25 |13> + 0.25 |14> + 0.25 |15>



Appendix A

QCL Quick Reference

A.1 Syntax

The syntactic structure of a QCL program is described by a context free
LALR(1) grammar. For the formal syntax definition the following notation
is used:

expression-name ← expression-def 1

← expression-def 2

· · · · · ·

Within syntax definitions, the following conventions apply

• Keywords and other literal text is set in courier

• Subexpressions are set in italic

• Optional expressions are put in [ square brackets ]. Optional expres-
sions can be repeated 0 or 1 times.

• Multiple expressions are put in { braces }. Multiple expression can
be repeated 0, 1 or n times.

• Alternatives are written as alt 1| alt 2| . . . Exactly one alternative has
to be chosen.

• Grouping of expressions can be forced by ( round brackets ).

To simplify the notation of literals, the following character classes are
defined:

108
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• digit ← decimal digit from 0 to 9.

• letter ← alphabetic letter form a to z or A to Z. Case is significant.

• char ← printable character except ‘"’.

A QCL Program is a sequence of statements and definitions so

qcl-input ← { stmt | def }

Comments Like C++, QCL supports two ways of commenting code. All
comments are simply discarded by the scanner.

Line comments are started with // and last until the end of the current
line

C-style comments are started with /* and terminated with */ and may
continue over several lines. C-style comments may not be nested.

A.1.1 Expressions

complex-coord ← [ + | - ] digit { digit } [ . { digit }]
const ← digit { digit } [ . { digit }]

← ( complex-coord , complex-coord )

← true | false
← " { char } "

subscript ← identifier [ expr { , expr } ]
expr ← const | subscript

← identifier [ [ expr [( : | .. ) expr ] ] ]

← identifier ( [ expr { , expr }] )
← ( expr )

← # expr

← expr ^ expr

← - expr

← expr ( * | / ) expr

← expr mod expr

← expr ( + | - | & ) expr
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← expr ( == | != | < | <= | > | >= ) expr

← not expr

← expr and expr

← expr ( or | xor ) expr

A.1.2 Statements

block ← { stmt { stmt } }
option ← letter { letter | - }

stmt ← [ ! ] identifier ( [ expr { , expr }] ) ;

← ( identifier | subscript ) = expr ;

← expr ( -> | <- | <-> ) expr ;

← for identifier = expr to expr [ step expr ] block

← while expr block

← block until expr ;

← if expr block [ else block ]

← return expr ;

← input [ expr , ] identifier ;

← print expr [ , expr ] ;

← exit [ expr ] ;

← measure expr [ , identifier ] ;

← reset ;

← dump [ expr ] ;

← list [ identifier { , identifier }] ;
← ( load | save ) [ expr ] ;

← shell ;

← set option [ , expr ] ;

← stmt ;

A.1.3 Definitions

scalartype ← int | real | complex
quantumtype ← qureg | quvoid | quconst | quscratch

tensortype ← ( vector | matrix | tensor digit ) scalartype
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othertype ← ( qucond | boolean | string
type ← scalartype | tensortype | quantumtype | othertype

const-def ← const identifier = expr ;

var-def ← type identifier [ expr ] ;

← type identifier [ = expr ] ;

arg-def ← type identifier

arg-list ← ( [ arg-def { , arg-def }] )
body ← { { const-def | var-def } { stmt } }
def ← const-def | var-def

← type identifier arg-list body

← procedure identifier arg-list body

← [ cond ] operator identifier arg-list body

← [ cond ] qufunct [ operator ] identifier arg-list body

← extern operator identifier arg-list ;

← extern qufunct identifier arg-list ;

A.2 Expressions

A.2.1 Data Types

A.2.1.1 Classical Scalar Types

The classical scalar data-types of QCL are the arithmetic types int, real

and complex, as well as boolean and string.

Type Description Examples
int integer 1234, -1

real real number 3.14, -0.001

complex complex number (0,-1), (0.5, 0.866)

boolean logical value true, false

string character string "hello world", ""

A.2.1.2 Tensors

Since v0.5, QCL supports vectors, (square) matrices and higher tensors up
to order 9.
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Type Description Examples
vector vector vector(0,0.5,0.866)

matrix square matrix matrix(0,(0,-1),(0,1),0)

tensorn tensor of order n tensor3(1,0,0,0,0,0,0,1)

Tensors can be defined for the arithmetic scalar types int, real and
complex. A tensor variable v of order n and dimension dim is declared by
the syntax

scalartype tensorn v[dim];

For tensors of order 1 and 2 the keywords vector and matrix can be used.
The subscript operator v[coord] is used to access tensor elements with

coord being a comma separated list of n zero-based integer indices.
There are no tensor literals; instead a tensor object of order n and di-

mension d is created by the constructor function tensorn(elem), with elem

being a comma separated list of dn scalar expressions ordered in ascending
order of their indices with the leftmost index being the most significant.

Tensors of equal order and dimension can be added, subtracted and as-
signed to. Tensors can be multiplied by scalars or by tensors of equal dimen-
sion. In the latter case, multiplication is defined as generalized dot-product,
i.e. contraction by summing over the innermost indices

ai1...in−1in ∗ bj1j2...jm =
∑

k

ai1...in−1kbkj2...jm

A.2.1.3 Register Types

For local variables or parameters of the types quvoid and quscratch let U
be the corresponding unitary operator.

Type Function Restriction
qureg general register none
quconst quantum constant invariant to all operators
quvoid target register empty when U is called
quscratch scratch register empty when U or U † are called

A.2.1.4 Quantum Conditions

Boolean expressions of qubits are represented by the QCL type qucond. Let
C be a variable of type qucond and

C = {pi} =
n−1⊕

i=0

|pi|−1∧

j=0

pij
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the XNF of C . The size operator #C returns the number n of clauses in C
and C[k] gives the quconst register pk.

A.2.2 Operators

The following table lists all QCL operators ordered by precedence. arith

stands for all arithmetic scalar types, tensor for all tensor types and quantum

for all register types.

Op Description Argument type
[ ] qubit subregister quantum variable

XNF clause qucond variable
vector subscript vector variable

[ .. ] subregister by range quantum variable
[ :: ] subregister by offset and length quantum variable
[ , ] tensor subscript tensor variable

# register size quantum

number of XNF clauses qucond

dimension tensor

^ power arith

integer power int

- unary minus arith , tensor
* multiplication arith , tensor
/ division arith

integer division int

mod integer modulus int

+ addition arith , tensor
- subtraction arith , tensor
& concatenation string, quantum
== equal arith , string
!= unequal arith , string
< less int, real
<= less or equal int, real
> greater int, real
>= greater or equal int, real
not logical not boolean, qucond
and logical and boolean, qucond
or logical inclusive or boolean, qucond
xor logical exclusive or boolean, qucond
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A.2.3 Elementary Functions

Elementary functions are part of QCL and need not be declared. Unlike
function subroutines, elementary functions

• do not need to have a fixed number of arguments

• may take arguments of different types and

• may have varying return types depending on the types of the arguments

Function Description Arg.
sin, cos, tan, cot trigonometric functions arith

sinh, cosh, tanh, coth hyperbolic functions arith

exp(x) e raised to the power of x arith

log(x) natural logarithm of x arith

log(x,n) base-n logarithm of x arith

sqrt(x) square root of x arith

abs(x) absolute value of x arith

Re, Im real and imaginary part complex

conj(z) complex conjugate of z complex

floor, ceil next higher and lower integer real

gcd(n,...) greatest common divisor int

lcm(n,...) least common multiple int

min, max minimum and maximum arith

not, and, or, xor binary functions int

bit(n,k) logical value of the kth bit of n int

int, real, complex, string explicit typecasts scalar

vector, matrix, tensorn tensor constructors arith

random() random value from [0, 1) none

A.3 Statements

Unless otherwise stated, parameters in slanted courier denote expressions
(see A.1.1).

A.3.1 Simple Statements

A.3.1.1 Assignments

lvalue = rvalue;
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lvalue can either be a variable or a subscript expression. Quantum
variables (i.e. symbolic registers) cannot be assigned to.

Implicit typecasting is performed from int and real to real or complex
and from boolean and all register types to qucond. In all other cases, lvalue
and rvalue have to be of the same type.

A.3.1.2 Subroutine Calls

[!]sub(args);

args is a comma separated list of arguments and can be empty. The
number of expressions in args has to match the declaration of the subroutine
sub which can be a procedure, operator or qufunct.

If sub is a quantum subroutine, then the inverse operator can be called
by prefixing the name with “!”. Procedures cannot be inverted.

A.3.1.3 Input and Output

input [ prompt, ] var;

reads classical input from the user as assigns it to the scalar variable var .
An optional prompt of type string can be specified.

print list;

prints a comma separated list of expressions.

A.3.1.4 Measurement and Initialization

measure q [,var ];

measures the register q and assigns the measured value to the integer variable
var if specified.

reset;

initializes the machine state.

A.3.2 Flow Control

A.3.2.1 Loops

The body of a loop is a list of statements. Braces are obligatory even if body
is a single statement. The break statement

break;

can be used within the body to immediately exit the innermost loop.
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Conditional Loops

while cond { body }

{ body } until cond;

cond is a boolean expression. The body of an until-loop is executed at
least once.

Counting Loops

for i = a to b [ step s ] { body }

The range a , b and the optional step size s are integer expressions. The
loop variable i is also of type int and is redeclared as symbolic constant
within the body.

A.3.2.2 If-statement

if cond { sigma } [ else { tau }]

The if-branch sigma and the optional else-branch tau are list of state-
ments; braces are obligatory even for single statements.

The if-condition cond is either a boolean expression (classical if-statement)
or a quantum condition (quantum if-statement).

A.3.2.3 Abnormal Termination

exit msg;

prints out the error message msg and terminates the QCL program.

A.3.3 Interactive Commands

The QCL interpreter qcl defines additional commands which are mainly
intended for interactive use and debugging and not considered to be core-
parts of QCL.

A.3.3.1 Simulation Commands

The following commands are only available if QCL is used together with a
numerical simulator.

dump [ q ];



APPENDIX A. QCL QUICK REFERENCE 117

prints the probability spectrum of the register q . If no register is specified,
the current machine state is printed.

plot [ q ];

plots the probability spectrum of the register q . If no register is specified,
the current machine state is plotted.

plot q, p ;

plots the probability spectrum of q ◦ p as two-dimensional density graph.

save file;

saves the current machine state to file .

load file;

loads the current machine state from file .

A.3.3.2 Other Commands

set opt val;

sets the interpreter option opt (without the leading “--”) to the value val .
Please refer to appendix A.4 for a complete list of options.

list [sym ];

lists the definition of the symbol sym in the current scope. If no symbol is
specified, all currently defined symbols are listed.

shell;

opens a subshell which can be closed again with the exit command. Sub-
shells can also be opened in response to keyboard interrupts and runtime
errors (see A.4). Symbols defined in a subshell are local and leave scope
when the shell is left again.

exit;

closes the current shell. Closing the top-level shell terminates the session.
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A.4 Interpreter Options

The QCL interpreter qcl has the following options:

Startup Options Those can only be set on the command line.

-h, --help display this message
-V, --version display version information
-i, --interactive force interactive mode
-x, --exec<commands> execute ¡commands¿ on startup
-q, --quiet skip startup message
--color color xterm interface
--texmacs TeXmacs interface (experimental)
-n, --no-default-include don’t read default.qcl on startup
-o, --logfile specify a logfile
-b, --bits=n: set number of qubits (32)

Dynamic Options Those can be set on the command line or via the set

command (see above). Default values are given in brackets.

-s, --seed=<seed-value> set random seed value (system time)
-I, --include-path=<path> QCL include path (/usr/local/lib/qcl)
--library=<y|n> ignore redefinitions of existing symbols (n)
-d, --dump-file=<file> send output of dump-command to file (none)
-p, --plot-file=<file> Postscript file created by plot-command (none)
-f, --dump-format=x,d,b list base vectors as hex, decimal or binary (d)
-r, --show-regs=<y|n> show global registers in dumped states (y)
-D, --dump-precision=<d> shown d digits in dumped states (5)
-P, --precision=<digits> shown digits for real and complex values (6)
-Z, --trunc-zeros=<y|n> truncate zeros for real and complex values (y)
-T, --truc-states=<y|n> truncate non-allocated qubits (y)
--plot-paper=<format> Set paper-format for Postscript output (b5)
--plot-size=<pixel> Set maximum window size for X11 plots (600)
-Q, --qureg-mask=<y|n> list registers as masks instead of lists (n)
-g, --debug=<y|n> open debug-shell on error (n)
-a, --auto-dump=<max> dump states up to max terms in shell mode (8)
-l, --log==<y|n> log external operator calls (n)
-L, --log-state==<y|n> log state after each transformation (n)
-c, --check==<y|n> check consistency of quantum heap (n)
--trace==<y|n> trace mode (very verbose) (n)
-S, --syntax=<y|n> check only the syntax, no interpretation (n)
-E, --echo=<y|n> echo parsed input (n)
-t, --test=<y|n> test program, ignore quantum operations (n)
-e, --shell-escape=<y|n> honor shell-escapes (y)
--irq=<y|n> allow user interrupts if supported (y)
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