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Chapter 1

Quantum Physics in a Nutshell

While it is possible, to introduce quantum computation in a strictly algebraic
manner without ever mentioning “real world” things like electrons, parti-
cle states or charge densities1, some basic knowledge about general quantum
physics can vastly improve the understanding of why certain quantum algo-
rithms or programming techniques actually work and are a good precaution
against common misconceptions.

1.1 A Brief History of Quantum Physics

1.1.1 Particles and Waves

An important problem in physics before the adoption of the quantum theory,
has been the distinction between particle and wave phenomena.

At first glance, both concepts have very little in common: Nobody would
treat a flying bullet as a wave packet or the propagation of sound as a particle
stream, but when particles and wave-lengths get smaller, things aren’t so
clear:

In the 17th century, Newton used both theories to cover the different
aspects of light [23], explaining its periodicy and interference as wave, and
it’s linear propagation as particle phenomenon. Later, the wave-theory of
light has been generally accepted, as scientists like Young and Fresnel could
explain most particulate behavior within the realm of the wave-formalism.
Except, that is, for one fundamental requirement: The obvious lack of a
physical medium which lead to the somewhat far-fetched and unsatisfying
“Ether” hypothesis.

1which should still be at a safe distance from most peoples’ notion of “real”
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CHAPTER 1. QUANTUM PHYSICS IN A NUTSHELL 5

On the particle front, Dalton’s Law of Multiple Proportions suggested,
that chemical substances consist of atoms of different masses. In the 19th

century, Boltzmann developed his gas-theory based on atomistic concepts
and experiments with cathode rays showed that the electric charges always
come in multiples of the elementary charge e which is about 1.6 × 10−19

Coulomb.

1.1.2 Plank’s Constant

In the year 1900, Max Plank explained the energy spectrum of black body
radiation with the ad-hoc assumption, that the possible energy states are
restricted to E = nhν, where n is an integer, ν the frequency and h the
Plank constant, the fundamental constant of quantum physics, with a value
of

h = 2πh̄ = 6.626075 · 10−34Js

In 1888, Hertz demonstrated, that a negatively charged plate would dis-
charge, if exposed to ultraviolet light. Lenard later discovered the kinetic
energy of the electrons is independent of the light’s intensity but correlated
to its frequency, such that

eU = Cν − P

with some material dependent constant P . In 1905 Einstein reformulated
this relation to

E = e(U + P ) = hν = h̄ω

interpreting E as the energy of a light particle, later called a photon.

1.1.3 Bohr’s Atom Model

By analyzing the visible spectrum of Hydrogen, it was found that the light
intensity shows very distinct peaks at certain wavelengths. In 1885, Balmer
showed that the wavelength l is very accurately given by

l = 364.56
a2

a2 − 4
nm (1.1)
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This can be generalized to the Rydberg equation, which also accounts for the
non-visible parts of the spectrum

1

l
= RH

(
1

k2
− 1

a2

)
(1.2)

This suggests, that the electron in the Hydrogen atom is confined to certain
energy levels, which is in contradiction with classical mechanics.

The Bohr-Sommerfeld model accounted for this by introducing a quantum
condition: While the electrons are still assumed to circulate the nucleus on
their classical orbits, their angular momentum has to be a multiple of h̄. This
restriction could be justified by attributing wave properties to the electron
and demanding that their corresponding wave functions form a standing
wave; however this kind of hybrid theory remained unsatisfactory.

A complete solution for the problem came in 1923 from Heisenberg who
used a matrices-based formalism. In 1925, Schrödinger published an alter-
native solution using complex wave functions. It took two years until Dirac
showed that both formalisms were in fact equivalent.

1.1.4 Wave-Particle Dualism

In 1924, de Broglie assumed that — in analogy to photons — every particle of
energy E and momentum ~p can in fact be treated as a wave, whose frequency
ω and wave-vector ~k are given by

ω =
E

h̄
and ~k =

~p

h̄
(1.3)

This relation was verified in 1927 in diffraction experiments with electrons
by Davison and Germer. The inverse effect — particle behavior of photons
— has been demonstrated 1933 in electron-photon dispersion experiments by
Compton.

1.2 Wave Mechanics

1.2.1 Classical States

In classical physics, the momentary state of a particle is given by it’s location
~r and it’s velocity ~v.

When we talk about the temporal behavior of dynamic systems, how-
ever, this notion of “state” is somewhat cumbersome to deal with, since by
definition, the momentary state of the system changes constantly. This is
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especially true when it comes to periodic movement, so it is often more ade-
quate to talk about the current orbit of a satellite (which remains constant
until it is actively altered by outside intervention) than to give the actual
coordinates (which permanently change).

So in a more abstract definition, the states of an isolated classical system
are the positions ~r1, ~r2, . . . of all included particles as a function of time t.2

1.2.1.1 State Changes

The above definition implies that the state of a system can only change when
an interaction with another system occurs.

Typically, the duration of the interaction (e.g. the collision of 2 billiard-
balls) is very small compared to the duration of the isolated states, so for
practical purposes the interaction can often be assumed as instantaneous.

1.2.1.2 Conservation Laws

Isolated systems preserve their total energy E and momentum3 ~p, which are
given as4

E = V (~r1, ~r2, . . .) +
∑

i

miv
2
i and ~p =

∑

i

mi~vi (1.4)

Thus, states can be characterized by these quantities and often the total
energy of a state is much more interesting than the state itself.

1.2.1.3 Movement Laws

Legal physical states must obey a movement law which characterizes the
dynamics of a system. For classic one-particle systems, the dynamic equation
is known as Newton’s Second Law

m
∂2~r

∂t2
= ~F (~r, t) (1.5)

For conservative fields such as non relativistic gravitational and static electric
fields, the force ~F is the negative gradient of a scalar potential V (~r), thus
the equation above can be written as

m
∂2~r

∂t2
= −gradV (~r) (1.6)

2Note, that since ~v = ~̇r = ∂~r/∂t, this also includes the velocities.
3There are several other conservation laws for angular momentum, electric charge,

baryon count, etc. which are not mentioned here
4The form of the potential energy V actually defines the physical problem and can also

depend on particle velocities, time, spins, etc.
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Any momentary state of the system can be used as an initial value for the
above equation to determine its temporal behavior.

1.2.2 The Wave Function

In quantum physics, the state of a one-particle system is characterized by a
complex distribution function ψ(~r, t) with the normalization

∫
|ψ(~r, t)|2 d3~r = 1 (1.7)

Two states differing by a constant phase factor eiφ are considered equiv-
alent.

1.2.2.1 Particle Location

The classical notion of particle location is replaced by a spatial probability
distribution ρ = ψ∗ψ, which can be characterized by its expectation value
〈~r〉 and its uncertainty ∆r, which are defined as

〈~r〉 =
∫
ψ∗(~r, t)~rψ(~r, t) d3~r and ∆r =

√
〈r2〉 − 〈~r〉2 (1.8)

1.2.2.2 Time Dependency

When a classical system involves moving particles, the location of the parti-
cles is time dependent. This is not necessarily the case with quantum systems
and the describing probability distribution ρ: If the quantum state ψ is of
the form ψ(~r, t) = ψ(~r)φ(t) with |φ(t)| = 1, then ρ = ψ∗(~r)ψ(~r) is time
independent.

Figure 1.1 shows a particle that is trapped between two reflecting “mir-
rors”.5 A classical particle will move periodically from on end to another at a
constant speed, it’s location can be described by a periodic triangle-function
of the time. An undisturbed quantum particle in a similar trap, however,
doesn’t have a defined location; the probability to “meet” (i.e. measure)
the particle at a certain location remains constant over time6 but changes
throughout space, or in more physical terms, the particle forms a standing
wave just as a vibrating piano-string between 2 fixed ends.

5Mathematically, such ideal “mirrors” are described by infinitely deep potential-wells.
6This is only the case with eigenstates; in mixed states, the local probability can

oscillate due to the different periods of the involved phase functions φi(t)
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ψ

Figure 1.1: A ball trapped between two mirrors as classical and as quantum
particle

A constant probability distribution is typical for bound states of defined
energy, i.e. for particles trapped in a constant potential well, e.g. an electron
in the electric field of a proton.

1.2.2.3 Expectation Values

It has been shown above how the classical concept of a well defined particle
location has been replaced by the quantum concept of a statistical expecta-
tion value. This correspondence, however, is not just restricted to space. In
fact, all classical physical quantities of a system can be described as the ex-
pectation value of an appropriate operator (see table 1.1 for some examples).

Observable classical value Operator

Location ~r ~R = ~r, Ri = ri
Momentum ~p = m∂~r

∂t
~P = −ih̄∇, Pi = −ih̄ ∂

∂ri

Angular Momentum ~L = ~p× ~r ~L = ~R× ~P , Li = −ih̄εijkrj ∂
∂rk

Energy E = p2

2m
+ V (~r) H = − h̄2

2m
∆ + V

Table 1.1: Some observables and their corresponding operators

In analogy to equation 1.2.2.1, the expectation value 〈O〉 and the uncer-
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tainty for an observable O are defined as

〈O〉 =
∫
ψ∗(~r, t)Oψ(~r, t) d3~r and ∆O =

√
〈O2〉 − 〈O〉2 (1.9)

1.2.3 The Schrödinger Equation

The quantum analogy to Newton’s Third Law (see equation 1.6) is the
Schrödinger Equation

H ψ = ih̄
∂

∂t
ψ (1.10)

which determines the dynamics of a particle system. The Hamilton operator
H describes the total energy of the system at a given time and can be very
complicated.

1.2.3.1 The Time-Independent Schrödinger Equation

If we take the simple case of a particle in a static potential field V , equa-
tion 1.10 can be written as

(
− h̄2

2m
∇2 + V (~r)

)
ψ(~r, t) = ih̄

∂

∂t
ψ(~r, t) (1.11)

If we split off the time dependent part, using the ansatz ψ(~r, t) = ψ(~r)φ(t)
from 1.2.2.2 and the separation parameter E, we get

E φ(t) = ih̄
∂

∂t
φ(t) and H ψ(~r) = E ψ(~r) (1.12)

The time part is solved by φ = e−iωt with ω = E/h̄. E is the energy of the
state, since

〈H〉 =
∫
ψ∗(~r) (H ψ(~r)) d3~r = E

∫
ψ∗(~r)ψ(~r) d3~r = E (1.13)

The remaining eigenvalue problem E ψ = H ψ is also called the time-
independent Schrödinger Equation.7

1.2.3.2 Energy Spectra

Depending on the imposed boundary conditions, the Schrödinger Equation
is often only solvable for particular values of E, i.e. it has a discrete energy

7Note that this requires the Hamilton operator to be time-independent, which is not
necessarily the case
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spectrum and the possible eigenvalues En (also called energy terms) can be
enumerated. The solution for the lowest eigenvalue E0 is called the ground-
state ψ0 of the system.

Since for most physical applications, only the value of the energy terms is
of importance, it is hardly ever necessary to actually compute the eigenstates.

It has been the discovery of discrete energy states, which gave quantum
physics its name, as any state change from eigenstate ψn to ψm involves the
exchange of an energy quantum ∆E = Em − En.

1.2.3.3 Electron in a Capacitor

As an example, let’s consider an electron in a capacitor. To keep things sim-
ple, the capacitor should be modeled by an infinitely deep, one-dimensional
potential well (see also 1.2.2.2), thus

V (~r) = V (x) =

{
0 if 0 < x < l
∞ otherwise

(1.14)

This leads us the the time-independent Schrödinger Equation

− h̄2

2me

ψ′′(x) = E ψ(x) (1.15)

and the boundary conditions

ψ(0) = 0 and ψ(l) = 0 (1.16)

The ansatz ψ(x) = N sin(kx) automatically satisfies the first BC and leads
to k =

√
2meE/h̄. To satisfy the second BC, we have to introduce the

quantization-condition kl = nπ. The normalization constant N has to be
chosen such that

∫ |ψ(x)|2dx = 1, thus the final result is

ψn(x) =

√
2

l
sin(knx) with kn =

π

l
n (1.17)

and the corresponding energies

En =
h̄2k2

n

2me

=
π2h̄2

2mel2
n2, n = 1, 2, . . .∞ (1.18)

The general time dependent solution is

ψ(x, t) =
∞∑

n=1

cnψn(x, t) with
∞∑

n=1

|cn|2 = 1 and (1.19)

ψn(x, t) =

√
2

l
e−iωnt sin(knx), kn =

π

l
n, ωn =

En
h̄

(1.20)

Figure 1.2 shows the first 3 eigenstates ψ1, ψ2 and ψ3 and their corre-
sponding spatial probability distributions ρn = |ψn|2.
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ψ1(x) ρ1(x)

ψ2(x) ρ2(x)

ψ3(x) ρ3(x)

Figure 1.2: The first three eigenstates for an electron in a potential well
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1.2.3.4 3-dimensional Trap

The above example can easily be extended to 3 dimensions, using the poten-
tial

V (~r) = V



x
y
z


 =

{
0 if 0 < x < l and 0 < y < l and 0 < z < l
∞ otherwise

(1.21)
This leads to the eigenfunctions

ψn1,n2,n3(~r) =
(

2

l

) 3
2

sin(
π

l
n1x) sin(

π

l
n2y) sin(

π

l
n3z) (1.22)

and the energies

En1,n2,n3 = En1+n2+n3 =
π2h̄2

2mel2
(n2

1 + n2
2 + n2

3) (1.23)

Since the different states can have the same energy (e.g. E211 = E121 = E112)
i.e. the eigenvalues of the Hamilton operator H are degenerated, measuring
the energy is not sufficient for determining the actual electron distribution.

1.3 Algebraic Quantum Physics

While the Schrödinger Equation, in principle, allows to compute all details
of the particle distribution and the exact energy terms, having to deal with
partial differential equations, boundary conditions and normalization factors,
is usually very cumbersome and often can’t be done analytically, anyway.

Just a nobody would try to develop a color TV set by solving Maxwell
equations, the discussion of complex quantum systems requires a more ab-
stract formalism.

1.3.1 The Hilbert Space

1.3.1.1 States as Vectors

The solutions ψn(x) from the examples in section 1.2.3.3 and 1.2.3.4 are
complex functions over the intervals I = [0, l] or I = [0, l]3, respectively.
Let’s introduce the following abbreviations8

|n〉 ≡ |ψn〉 ≡ ψn(x) and 〈n| ≡ 〈ψn| ≡ ψ∗n(x) (1.24)

8This formalism is called Braket notation and has been introduced by Dirac: The 〈·|
terms are referred to as “bra”- and the |·〉 terms as “ket”-vectors.
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or, for the case of k indices

|n1, n2, . . . nk〉 ≡ ψ∗n1...nk
(~r) and 〈n1, n2, . . . nk| ≡ ψn1...nk

(~r) (1.25)

and also introduce a scalar Product 〈φ|χ〉 defined as

〈φ|χ〉 ≡
∫

I
φ∗(~r)χ(~r)d~r (1.26)

The scalar product 〈i|j〉 of the eigenfunctions ψi and ψj from the on dimen-
sional capacitor example (1.2.3.3) gives

〈i|j〉 =
∫

I
ψi
∗(x)ψj(x)dx =

2

l

∫ l

0
sin(

π

l
ix) sin(

π

l
jx)dx (1.27)

The substitution ξ = π
l
x leads to

〈i|j〉 =
2

π

∫ π

0
sin(iξ) sin(jξ)dξ = δij (1.28)

So the eigenfunctions of the Hamilton operator H are orthonormal according
to the scalar product (1.26) and therefor form the base of the orthonormal
vector space H consisting of all possible linear combinations of {ψ1, ψ2, . . .}.
This space is the Hilbert space for this particular problem and it can be shown
that the eigenvalues of any operator describing a physical observable form
an orthogonal base.9

1.3.1.2 Completeness

Since the Schrödinger Equation is a linear differential equation, any linear
combination of solutions is also a solution and thus a valid physical state.
To calculate the expectation value 〈H〉 of the energy for a given state ψ(x, t)
we have to solve the integral

〈H〉 = 〈ψ|H|ψ〉 =
∫
ψ∗(x, t)Hψ(x, t)dx (1.29)

If ψ(x, t) is given as a sum of eigenfunctions as in equation 1.19, integration
can be avoided, as

〈H〉 =

〈ψ|︷ ︸︸ ︷∑

i

ci
∗〈i|H

|ψ〉︷ ︸︸ ︷∑

j

cj|j〉 =
∑

ij

ci
∗cj〈i|H|j〉 (1.30)

9As physical observables are real values, their corresponding operators O have to be
self-adjoint i.e. O† = O
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Since H |i〉 = Ei|i〉 and 〈i|j〉 = δij, 〈H〉 can be expressed as a weighted sum
of eigenvalues:

〈H〉 =
∑

i

|ci|2Ei (1.31)

Using the eigenfunctions for the one-dimensional capacitor (1.2.3.3) the com-
plex amplitudes ci for an arbitrary continuous function f(x) over [0, l] are
given by

ci = 〈i|f〉 =

√
2

l

∫ l

0
sin(

π

l
ix)f(x)dx (1.32)

This describes a standard sine-Fourier Transform. The original function can
be reconstructed by a composition of eigenfunctions ψn(x) with the Fourier
components ci

f(x) =
∑

i

ciψi(x) =

√
2

l

∞∑

i=1

ci sin(
π

l
ix) (1.33)

As before, it can be shown that the eigenvalues of any Hamilton operator
always form a complete orthonormal base, thus

I =
∑

i

|i〉〈i| with I|ψ〉 = |ψ〉 (1.34)

1.3.1.3 Definitions

A Hilbert space H is a linear vector space over the scalar body C. Let
|f〉, |g〉, |h〉 ∈ H and α, β ∈ C, then the following operations are defined [23]:

|f〉+ |g〉 ∈ H linear combination (1.35)

α|f〉 ∈ H scalar multiplication (1.36)

|f〉+ |0〉 = |f〉 zero-element (1.37)

|f〉+ | − f〉 = |0〉 inverse element (1.38)

The inner product 〈·|·〉 meets the following conditions:

〈f |g + h〉 = 〈f |g〉+ 〈f |h〉 (1.39)

〈f |αg〉 = α〈f |g〉 (1.40)

〈f |g〉 = (〈g|f〉)∗ (1.41)

〈f |f〉 = 0 ⇐⇒ |f〉 = |0〉 (1.42)

||f || ≡
√
〈f |f〉 ≥ 0 (1.43)
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1.3.2 Operators

1.3.2.1 Operators as Matrices

As we have shown in 1.3.1.2, all valid states ψ can be expressed as a sum of
eigenfunctions, i.e.

ψ(~r, t) =
∞∑

i=0

ciψi(~r, t) (1.44)

If we use {ψ0, ψ1, . . .} as unit vectors, we can write the bra- and ket-vectors
of ψ as infinitely dimensional row- and column-vectors

〈ψ| ≡ (c0
∗, c1∗, . . .) and |ψ〉 ≡



c0
c1
...


 (1.45)

The time independent Schrödinger equation can then be written as




E0 0 0 · · ·
0 E1 0
0 0 E2
...

. . .



|ψ〉 = E |ψ〉 (1.46)

The Hamilton Operator is the diagonal matrix H = diag(E0, E1, . . .). In
the case of multiple indices as in 1.2.3.4, a diagonalization such as e.g.
{ψ000, ψ100, ψ010, ψ001, ψ110, . . .}, can be used to order the eigenfunctions. If
such an diagonalization exists for a Hilbert space H, then every linear op-
erator O of H can be written in matrix form with the matrix elements
Oij = 〈i|O|j〉.

O =



O00 O01 · · ·
O10 O11 · · ·
...

. . .


 with Oij = 〈i|O|j〉 (1.47)

1.3.2.2 Physical Observables

As has been mentioned in 1.2.2.3, in quantum physics, a physical observable
O is expressed as a linear operator O (see table 1.1) while the classical value
of O is the expectation value 〈O〉. Obviously, the value of an observable such
as position or momentum must be real, as a length of (1 + i) meter would
have no physical meaning, so we require 〈O〉 ∈ R.

O† is called adjoint operator to O if

〈f̂ |g〉 = 〈f |O|g〉 with |f̂〉 = O†|f〉 (1.48)
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If O is given in matrix form, the O† is the conjugated transposition of O, i.e.
O† = (OT)

∗
. An operator O with O† = O is called self adjoint or Hermitian.

All quantum observables are represented by Hermitian operators as we
can reformulate the requirement 〈O〉 ∈ R as 〈O〉 = 〈O〉∗ or

〈ψ|O|ψ〉 = (〈ψ|O|ψ〉)∗ = 〈ψ|O†|ψ〉 (1.49)

1.3.2.3 Measurement

In classical physics, the observables of a system such as particle location, mo-
mentum, Energy, etc. where thought to be well defined entities which change
their values over time according to certain dynamic laws and which could —
technical difficulties aside — in principle be observed without disturbing the
system itself. It is a fundamental finding of quantum physics that this is not
the case.

• Measured Values: Measured values oi are always eigenvalues of their
according operator O.

• Probability Spectrum: If the eigenvalue oi isn’t degenerated and has
the eigenvector ψi, then the probability to measure oi is pi = |〈ψi|ψ〉|2.
If the eigenvalue oi is di-fold degenerated and {ψi,1, ψi,2, . . . ψi,di

} is an
orthonormal base of the according eigenspace, then

pi =
di∑

j=1

|〈ψij|ψ〉|2 (1.50)

• Reduction of the Wave Function: If the eigenvalue oi isn’t degen-
erated, the post-measurement state |ψ′〉 = |ψi〉, otherwise

|ψ′〉 =
1√
pi

di∑

j=1

|ψij〉〈ψij|ψ〉 (1.51)

Consider a state |ψ〉 which is a composition of two eigenstates |ψ1〉 and
|ψ2〉 of the time-independent Schrödinger equation with the assorted energy-
eigenvalues E1 and E2

|ψ〉 = c1|ψ1〉+ c2|ψ2〉 with |c1|2 + |c2|2 = 1 (1.52)

The expectation value of energy 〈H〉 = |c1|2E1 + |c2|2E2, but if we actually
perform the measurement, we will measure either E1 or E2 with the prob-
abilities |c1|2 and |c2|2. However, if we measure the resulting state again,
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we will always get the same energy as in the first measurement as the wave
function has collapsed to either ψ1 or ψ2.

|ψ〉 →
{
|ψ1〉 with probability |c1|2
|ψ2〉 with probability |c2|2 (1.53)

The fact that 〈H〉 is only a statistical value, brings up the question when
it is reasonable to speak about the energy of a state (or any other observable,
for the matter) or, with other words, whether a physical quality of a system
exists for itself or is invariably tied to the process of measuring.

The Copenhagen interpretation of quantum physics argues that an observ-
able O only exists if the system in question happens to be in an eigenstate
of the according operator O [22].

1.3.2.4 The Uncertainty Principle

The destructive nature of measurement raises the question whether 2 observ-
ables A and B can be measured simultaneously. This can only be the case if
the post-measurement state ψ′ is an eigenfunction of A and B

A|ψ′〉 = a|ψ′〉 and B|ψ′〉 = b|ψ′〉 (1.54)

Using the commutator [A,B] = AB−BA, this is equivalent to the condition
[A,B] = 0. If A and B don’t commute, then the uncertainty product (see
1.2.2.3) (∆A)(∆B) > 0. To find a lower limit for (∆A)(∆B) we introduce
the operators δA = A− 〈A〉 and δB = B − 〈B〉 and can express the squared
uncertainty product as

(∆A)2(∆B)2 = 〈(δA)2〉〈(δB)2〉 = 〈ψ|(δA)(δA)|ψ〉〈ψ|(δB)(δB)|ψ〉 (1.55)

Since δA and δB are self adjoint, we express the above as (∆A)2(∆B)2 =
||δAψ||2||δBψ||2. Using Schwarz’s Inequality ||f ||2||g||2 ≥ ||fg||2 and the fact
that [A,B] = [δA, δB] we get

(∆A)(∆B) ≥ 1

2
||[A,B]|| (1.56)

Observables with a nonzero commutator [A,B] of the dimension of action
(i.e. a product of energy and time) are canonically conjugated. If we take
e.g. the location and momentum operators from 1.2.2.3, we find that

(∆Ri)(∆Pj) ≥ 1

2
||[ri,−ih̄ ∂

∂rj
]|| = 1

2
h̄δij (1.57)

This means that it is impossible to define the location and the impulse for the
same coordinate to arbitrary precision; it is, however, possible the measure
the location in x-direction together with the impulse in y-direction.
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1.3.2.5 Temporal Evolution

In 1.2.3.1 we have shown how the Schrödinger equation can be separated if
the Hamilton operator is time independent.

If we have the initial value problem with ψ(t = 0) = ψ0 we can define an
operator U(t) such that

HU(t) |ψ0〉 = ih̄
∂

∂t
U(t) |ψ0〉 and U(0)|ψ〉 = |ψ〉 (1.58)

We get the operator equation HU = ih̄ ∂
∂t
U with the solution

U(t) = e−
i
h̄
Ht =

∞∑

n=0

1

n!

(−i)ntn
h̄n

Hn (1.59)

U is the operator of temporal evolution and satisfies the criterion

U(t) |ψ(t0)〉 = |ψ(t0 + t)〉 (1.60)

If |ψ〉 =
∑
i ci|i〉 is a solution of the time-independent Schrödinger equation,

then

|ψ(t)〉 = U(t) |ψ〉 =
∑

i

cie
−iωit|i〉 with ωi =

Ei
h̄

(1.61)

is the corresponding time dependent solution (see 1.2.3.1).

1.3.2.6 Unitary Operators

The operator of temporal evolution satisfies the condition

U †(t)U(t) = e
i
h̄
Hte−

i
h̄
Ht = 1 (1.62)

Operators U with U † = U (−1) are called unitary. Since the temporal evolution
of a quantum system is described by a unitary operator and U †(t) = U(−t)
it follows that the temporal behavior of a quantum system is reversible, as
long a no measurement is performed.10

Unitary operators can also be used to describe abstract operations like
rotations

Rz(α) |n1, n2, n3〉 = cos(α)|n1, n2, n3〉+ i sin(α)|n2, n1, n3〉 (1.63)

10since a measurement can result in a reduction of the wave-function (see 1.3.2.3), it is
generally impossible to reconstruct |ψ〉 from the post-measurement state |ψ′〉



CHAPTER 1. QUANTUM PHYSICS IN A NUTSHELL 20

or the flipping of eigenstates

Not |n〉 =





|1〉 if n = 0
|0〉 if n = 1
|n〉 otherwise

(1.64)

without the need to specify how this transformations are actually performed
or having to deal with time-dependent Hamilton operators.

Mathematically, unitary operations can be described as base-transform-
ations between 2 orthonormal bases (just like rotations in R3). Let A and B
be Hermitian operators with the orthonormal eigenfunctions ψn and ψ̃n and
|ψ〉 =

∑
i ci|ψi〉 =

∑
i c̃i|ψ̃i〉, then the Fourier coefficients c̃i are given by



c̃0
c̃1
...


 = U



c0
c1
...


 with U =

∑

i,j

|ψ̃i〉〈ψ̃i|ψj〉〈ψj| (1.65)

1.3.3 Composed systems

1.3.3.1 Spin

In section 1.2.3.4 we have calculated the eigenstates ψn1,n2,n3 for an electron in
a 3 dimensional trap. Real electrons are also characterized by the orientation
of their spin which can be either “up” (↑) or “down” (↓). The spin-state |χ〉
of an electron can therefor be written as

|χ〉 =

(
α
β

)
= α| ↑〉+ β| ↓〉 with |α|2 + |β|2 = 1 (1.66)

The spins also form a finite Hilbert space HS = C2 with the orthonormal
base {| ↑〉, | ↓〉}. If we combineHS with the solution spaceHR for the spinless
problem (equation 1.22), we get a combined Hilbert space H = HR × HB

with the base-vectors

|n1, n2, n3, s〉 = |ψn1,n2,n3〉|s〉 with n1, n2, n3 ∈ N, s ∈ {↑, ↓} (1.67)

1.3.3.2 Product States

If we have two independent quantum systems A and B described by the
Hamilton operators HA and Hb with the orthonormal eigenvectors ψAi and
ψBj , which are in the states

|ψA〉 =
∑

i

ai|ψAi 〉 and |ψB〉 =
∑

j

bj|ψBj 〉 (1.68)
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then the common state |Ψ〉 is given by

|Ψ〉 = |ψA〉|ψB〉 =
∑

i,j

aibj|ψAi 〉|ψBj 〉 =
∑

i,j

aibj|i, j〉 (1.69)

Such states are called product states. Unitary transformations and measure-
ments applied to only one subsystem don’t affect the other as

UA|Ψ〉 = (U × I)|ψA〉|ψB〉 =
∑

i,j,k,l

Uikakδjlbl|i, j〉 =
(
U |ψA〉

)
|ψB〉 (1.70)

and the probability pAi to measure the energy EA
i in system A is given by11

pAi =
∣∣∣
(
〈ψAi |〈ψB|

)
|Ψ〉

∣∣∣
2

=

∣∣∣∣∣∣
∑

j,k,l

b∗jakbl〈i, j|k, l〉
∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
ai

∑

j

b∗jbj

∣∣∣∣∣∣

2

= |ai|2

(1.71)

1.3.3.3 Entanglement

If |Ψ〉 is not a product state, then operations on one subsystem can affect
the other. Consider two electrons with the common spin state

|Ψ〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) (1.72)

If we measure the spin of the first electron, we get either | ↑〉 or | ↓〉 with the
equal probability p = 1/2 which the resulting post-measurement states | ↑↓〉
or | ↓↑〉. Consequently, if we measure the spin of the second electron, we will
always find it to be anti-parallel to the first.

Two systems whose common wave-function |Ψ〉 is not a product state are
entangled.

11We assume here that the eigenvalue EAi isn’t degenerated, otherwise the solution is
analog to equation 1.50.



Chapter 2

Quantum Computers

The application of quantum physical principles to the field of computing leads
to the concept of the quantum computer, in which data isn’t stored as bits in
conventional memory, but as the combined quantum state of many 2-state
systems of qubits.

This chapter introduces the theoretical foundations, components and basic
operations of a quantum computer as well several models of quantum compu-
tation.

2.1 Introduction

2.1.1 The Church-Turing Thesis

The basic idea of modern computing science is the view of computation as
a mechanical, rather than a purely mental process. A method, or procedure
M for achieving some desired result is called effective or mechanical just in
case [17]

1. M is set out in terms of a finite number of exact instructions (each
instruction being expressed by means of a finite number of symbols);

2. M will, if carried out without error, always produce the desired result
in a finite number of steps;

3. M can (in practice or in principle) be carried out by a human being
unaided by any machinery save paper and pencil;

4. M demands no insight or ingenuity on the part of the human being
carrying it out.

22
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Alan Turing and Alonzo Church both formalized the above definition by
introducing the concept of computability by Turing machine and the math-
ematically equivalent concept of recursive functions with the following con-
clusions:

Turing’s thesis LCMs [logical computing machines i.e. Turing machines]
can do anything that could be described as ”rule of thumb” or ”purely me-
chanical”. [19]

Church’s thesis A function of positive integers is effectively calculable
only if recursive. [18]

As the above statements are equivalent, they are commonly referred to
as the Church-Turing Thesis which defines the scope of classical computing
science.

2.1.2 Computing Machines

Despite its operationalistic approach, the above computability concept doesn’t
have much in common with the continuous nature of physics, so in order to
build a computing machine M, we have to introduce a labeling function m
which maps the analog physical states S(t) (e.g. the tension of a capacitor)
to digital computational states s = (S(t)) (e.g. the value of a bit) The digital
states have to be strings over some finite alphabet Σ.

Since the above definition of computability requires a finite number of
both, symbols and instructions, the labeling function only needs to apply on
discrete intermediate machine states S(t0), S(t1), . . . so the temporal evolu-
tion of the machine state S(t) is mapped onto a sequence of computational
states {s0, s1, . . . sn} where each transition si → si+1 corresponds to one func-
tion Ii : Σ∗ → Σ∗ from a enumerable set I of (simple) instructions.1 The
sequence π = {I0, I1, . . . In−1} is called program.

1For hypothetical machines with unlimited memory, the instruction set I might also be
infinitely which is not in accordance with Turing’s original definition of computability.

The Turing Machine avoids this problem by extending the computational states si with
an integer p and using this “head position” as an additional parameter to the generated
instructions. As p (which can get arbitrarily large) would be “stored” in the physical
position of the head and not in the state of the head itself, it can still be claimed that the
TM operates “by finite means”.

Even with our simpler model, we could avoid an infinite instruction set, e.g. by inter-
preting a state s = 1p0t with t ∈ Σ∗ as the pair s = (p, t), and define the instructions as
Ii(p, t) : N0 × Σ∗ → N0 × Σ∗.

As we are discussing physical computers, which usually don’t have unlimited memory,
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The states s0 and sn are called the input- and the output-state. The
machineM = (S,m,Σ, π) thus implements the function

f(s0) = (I0 ◦ I1 ◦ . . . ◦ In−1)(s0) with s0 = m(S(0)) ∈ Σ∗ (2.1)

2.1.3 Computation as a Physical Process

The above definition of a computing machine poses severe restrictions on the
interpretation of physical states. If we consider computation as a physical
process, rather than a “mechanical” manipulation of symbols as defined in
2.1.1, we can drop all restrictions in the above definition which don’t have a
physical equivalent.

2.1.3.1 Indeterminism

As we have showed in 1.3.2.3, the measurement of an observable O with the
according operator O is only deterministic, if a system is in an eigenstate of
O. To account for the stochastic nature of quantum measurement, we have
to replace the labeling function m by a probabilistic operator M : H → Σ∗

which randomly chooses a string s according to some probability distribution
δΨ : s→ [0, 1] with

∑
s δΨ(s) = 1.

2.1.3.2 Temporal Evolution

Since it is not possible to non-destructively measure a quantum system and
we are only interested in the result of a computation, anyway, it is not nec-
essary that a labeling is defined for the intermediate steps Ψ(t1) to Ψ(tn−1)
of a computation i.e. it is not required to “watch” the temporal evolution of
the system, as long as a labeling for the input- and output-state Ψ0 and Ψn

is given.
While the transitions Ψ(ti)→ Ψ(ti+1) still have to correspond to (simple)

operations Ui from a enumerable instruction set of quantum transformations,
the operators Ui, don’t have to directly correspond to functions in Σ∗.2

In 1.3.2.6 we have shown that the temporal evolution of a quantum system
is mathematically described by unitary operators, so a quantum program π =
{U0, U1, . . . Un−1} is a composition of elementary unitary transformations.

we can ignore this problem, and use the simpler and more general computer definition
given above.

2Because of the reversibility of unitary operators, a direct correspondence would only
be possible for bijective functions f : Σ∗ → Σ∗
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2.2 Components of a Quantum Computer

A classical, as well as a quantum computer, essentially consists of 3 parts: a
memory, which holds the current machine state, a processor, which performs
elementary operations on the machine state, and some sort of input/output
which allows to set the initial state and extract the final state of the compu-
tation.

2.2.1 Quantum Memory

2.2.1.1 The Qubit

The quantum analogy to the classical bit is the quantum bit or qubit. Just as
a classical bit is represented by a system which can adopt one of two distinct
states “0” and “1” we can define a quantum bit as follows:

Definition 1 (Qubit) A qubit or quantum bit is a quantum system whose
state can be fully described by a superposition of two orthonormal eigenstates
labeled |0〉 and |1〉.

The general state |ψ〉 ∈ H of a qubit is given by

|ψ〉 = α|0〉+ β|1〉 with |α|2 + |β|2 = 1 (2.2)

The value of a qubit is the observable N with the Hermitian operator N |i〉 =
i |i〉 over the Hilbert space H = C2, or in matrix representation

N =

(
0 0
0 1

)
(2.3)

The expectation value of N is given by

〈N〉 = 〈ψ|N |ψ〉 =
(
α∗ β∗

) (
0 0
0 1

) (
α
β

)
= |β|2 (2.4)

thus, 〈N〉 gives the probability to find the system in state |1〉 if a measurement
is performed on the qubit.

2.2.1.2 Combination of Qubits

If we combine 2 qubits, the general state of the resulting system is

|Ψ〉 = α|00〉+β|10〉+γ|01〉+ δ|11〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1 (2.5)
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While we still can define distinct observables N (1) and N (2) for the value of
each qubit with the operators N (1) |ij〉 = i |ij〉 and N (2) |ij〉 = j |ij〉, their
expectation values

〈N (1)〉 = |β|2 + |δ|2 and 〈N (2)〉 = |γ|2 + |δ|2 (2.6)

don’t allow us to reconstruct the actual probability distribution among the
eigenvalues. To illustrate this, consider the states

|ΨA〉 =
1√
2
(|00〉+ |11〉), |ΨB〉 =

1√
2
(|10〉+ |01〉) (2.7)

and |ΨC〉 =
1

2
(|00〉+ |10〉+ |01〉+ |11〉)

All of these states have the expectation values 〈N (1)〉 = 〈N (2)〉 = 1/2, i.e. if
we measure a single qubit, we get either |0〉 or |1〉 with equal probability; we
get, however, totally different post-measurement states.

If we measure |1〉 in the first qubit, the resulting post-measurement states
are

|Ψ′
A〉 = |11〉, |Ψ′

B〉 = |10〉 and |Ψ′
C〉 =

1√
2
(|10〉+ |11〉) (2.8)

and the expectation values for the second qubit are now given by

〈N (2)
A 〉 = 1, 〈N (2)

B 〉 = 0 and 〈N (2)
C 〉 =

1

2
(2.9)

2.2.1.3 Machine State

While the state of a classical computer can be given as the distinct states
of all bits in memory and processor registers, the “state of a qubit” is a
meaningless term, if the machine state is the combined state of more than
one system.3

Definition 2 (Machine State) The machine state Ψ of an n-qubit quan-
tum computer is the current state of a combined system of n identical qubit
subsystems.

Generally, the machine state Ψ of an n-qubit quantum computer is given
by

|Ψ〉 =
∑

(d0...dn−1)∈Bn

cd0...dn−1|d0 . . . dn−1〉 with
∑ |cd0...dn−1|2 = 1 (2.10)

3Unless the machine state happens to be a product state, that is (see 1.3.3.2).
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The combined Hilbert space H is thus a composition of n 1-qubit-Hilbert
spaces Hi = C2, i.e.

H = H1 ×H2 × . . .×Hn = C2n

(2.11)

If we interpret the eigenvectors |d0 . . . dn−1〉 as binary digits, with d0 as least
significant bit, we can write this as

|Ψ〉 =
2n−1∑

i=0

ci|i〉 with |d0 + 2d1 + . . .+ 2n−1dn−1〉 ≡ |d0 . . . dn−1〉 (2.12)

The operator Ni for value Ni of the i-th qubit is given by

Ni |d0 . . . dn−1〉 = di |d0 . . . dn−1〉 (2.13)

and has the expectation value

〈Ni〉 =
∑

(d0...dn−1)∈Bn

di|cd0...dn−1|2 (2.14)

2.2.1.4 Subsystems

As we have shown above, the memory of an n-qubit quantum computer is
a combined system of n identical qubit-subsystems. Since the partition into
subsystems is merely methodical, we can consider the first m qubits (m < n)
as a single subsystem and write Ψ as

|Ψ〉 =
2m−1∑

i=0

2n−m−1∑

j=0

cij|i, j〉 with |Ψ〉 ∈ H = C2n

(2.15)

As the base vectors |i, j〉 are product states |i, j〉 = |i〉|j〉, the Hilbert space
H can be written as a combination of

H = H′ ×H′′ with H′ = C2m

and H′′ = C2n−m

(2.16)

Let U ′ and U ′′ be unitary operators over H′ and H′′, then the commutator
[U ′, U ′′] = 0 as

[U ′, U ′′] |Ψ〉 =
∑

i,j

cij [U ′|i〉(U ′′|j〉)− U ′′(U ′|i〉)|j〉] = 0 (2.17)

This means that unitary transformations applied to distinct subsets of qubits
are independent.

A unitary transformation U ′ over the first m qubits also doesn’t affect a
measurement of the remaining qubits since the probability p′′j to measure j
in the remaining n −m qubits, i.e. to get a post-measurement state of the
form |Ψ′〉 = |ψj〉|j〉, is invariant to U ′, as

p′′j =
∑

i

c∗ijcij〈i|i〉〈j|j〉 =
∑

i

c∗ijcij〈i|U ′†U ′|i〉〈j|j〉 (2.18)
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2.2.1.5 Quantum Registers

The above notion of m-qubit subsystems can easily be extended to arbitrary
sequences of qubits.

Definition 3 (Quantum Register) An m qubit quantum Register s is a
sequence of mutually different zero-based qubit positions 〈s0, s1 . . . sm−1〉 of
some machine state |Ψ〉 ∈ C2m

with n ≥ m.

Reordering Operators Let s be an m qubit register of the n qubit state
|Ψ〉. Using an arbitrary permutation π over n elements with πi = si for
i < m, we can construct a unitary reordering operator Πs by permutating
the qubits.

Πs |d0, d1 . . . dn−1〉 = |dπ0 , dπ1 . . . dπn−1〉 (2.19)

Note that there exist (n − m)! permutations Π(k)
s which fit into the above

definition, since πi is only defined for i < m.
Unitary operators correspond to base transformations (see 1.3.2.6), so we

can write |Ψ̃〉 = Πs|Ψ〉 as

|Ψ̃〉 =
2m−1∑

i=0

2n−m−1∑

j=0

c̃ij|i, j〉 with c̃ij = cı̃̃ and |̃ı, ̃〉 = Πs|i, j〉 (2.20)

As above, the transformed Hilbert space H̃ can be written as a combination

H̃ = H̃′ × H̃′′ with H̃′ = C2m

and H̃′′ = C2n−m

(2.21)

Unitary Operators Let Ũ ′ be a m-qubit unitary operator over H̃′ and
Ũ = Ũ ′ × I(n−m) with I(k) being the k-qubit identity operator.

Ũ |Ψ̃〉 =
∑

i,j

c̃ij(Ũ
′|i〉)|j〉 (2.22)

For each permutation Π(k)
s , we can define a back-transformed operator

U (k) = Π(k)
s

†
Ũ Π(k)

s =
∑

i′,j′,i,j
|i′, j′〉u(k)

i′j′ij 〈i, j| (2.23)

with the matrix elements

u
(k)
i′j′ij = 〈̃ı′(k)|Ũ ′ |̃ı(k)〉〈̃′(k)|̃(k)〉 and |̃ı(k), ̃(k)〉 = Π(k)

s |i, j〉 (2.24)

Since the transformed base vectors ı̃(k) are identical for all permutations Π(k)
s

and 〈̃′(k)|̃(k)〉 = δj′j, it follows that the back-transformation Ũ ′ × I → U is
independent from the chosen permutation Π(k)

s .
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Register Observables Just as with single qubits, we can define an ob-
servable S for a given m-qubit register s with the operator

S = (Nπ0 , Nπ1 , . . . Nπm−1) and Ni |d0 . . . dn−1〉 = di |d0 . . . dn−1〉 (2.25)

or, if we interpret the binary vectors as integers,

S =
∑

i,j

Πs
† |i, j〉i〈i, j|Πs =

∑

i,j

|i, j〉̃ı〈i, j| (2.26)

2.2.2 Processing Units

2.2.2.1 Unitary Operators

In a classical n-bit computer, every computational step can be described by
a transition function I : Bn → Bn which takes the current state S of all bits
as input and returns the appropriate post-instruction state S ′.

As we have shown in 1.3.2.6, the temporal evolution of a quantum system
can be described by unitary operators. The general form of a n-qubit unitary
operator U over the Hilbert space H = C2n

is

U =
2n−1∑

i=0

2n−1∑

j=0

|i〉uij 〈j| with
2n−1∑

k=0

u∗kiukj = δij (2.27)

If we compare boolean functions to unitary operators from a strictly func-
tional point of view we can identify three major differences between classical
and quantum operations:

• Reversibility: Since unitary operators, by definition, match the con-
dition U †U = I, for every transformation U there exists the inverse
transformation U †. As a consequence, quantum computation is re-
stricted to reversible functions.4

• Superposition: An eigenstate |Ψ〉 = |k〉 can be transformed into a
superposition of eigenstates.

|Ψ′〉 = U |k〉 =
∑

k′
Uk′k|k〉 (2.28)

The mathematical explanation of this feature lies in the fact that the
requirement 〈i|U †U |j〉 = δij is weaker than the pseudo-classical (see
2.2.2.4) condition

〈i|U †|πi〉〈πi|πj〉〈πj|U |j〉 = δij (2.29)

4A classical analogon would be the class of reversible boolean functions
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which requires transformed eigenstates not only to be orthonormal, but
also to be of the form U |k〉 = |πk〉 with some appropriate permutation
(i.e. reversible function) π over Z2n .

• Parallelism: If the machine state |Ψ〉 already is a superposition of
several eigenstates, then a transformation U is applied to all eigenstates
simultaneously.

U
∑

i

ci|i〉 =
∑

i

ciU |i〉 (2.30)

This feature of quantum computing is called quantum parallelism and
is a consequence of the linearity of unitary transformations.

2.2.2.2 Register Operators

The basic instructions of a classical computer usually operate only on a very
small number of bits and are typically independent from the total amount of
available memory. Therefor it is more useful to describe those instructions not
as boolean functions F over the whole state space Bn (in the case of an n bit
machine), but as parameterized functions fx over Bm, where the vector x ∈
Zn only holds the bit-positions of the relevant arguments. Consequently we
refer to the resulting instruction F as “applying f to the bits x0, x1 . . . xn−1”.

While it is clear what we mean by e.g. “swapping the bits 3 and 5”
on a classical computer, we cannot blindly adopt this concept to quantum
computing, because unitary operators operate on states and a single qubit
doesn’t have a state.5

In 2.2.1.5 we have defined a quantum register as a sequence of (mutually
different) qubit-positions s = 〈s0, s1 . . . sm−1〉, which is the quantum analogon
to the above argument vector v, and a class of (n−m)! reordering operators
Π(k)

s which meet the condition

Π(k)
s |d0, d1 . . . dn−1〉 = |ds0 , ds1 . . . dsm−1〉|̃(k)〉 (2.31)

Definition 4 (Register Operator) The register operator U(s) for an m-
qubit unitary operator U : C2m → C2m

and a m-qubit quantum register s on
an n-qubit quantum computer is the n-qubit operator

U(s) = Π†
s (U × I(n−m)) Πs (2.32)

with an arbitrary reordering operator Πs

5unless it’s the only qubit in the quantum computer at which point the whole question
of addressed instructions becomes moot, anyway.
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So U(s) |Ψ〉 is what we actually mean, by “application of operator U to
quantum register s”. Since there are n!

(n−m)!
possible m-qubit registers on an

n-qubit machine, a given m-qubit operator U can describe n!
(n−m)!

different

transformations U(s).
In analogy to boolean networks, unitary operators which can be applied

to arbitrary sets of qubits are also referred to as quantum gates.

2.2.2.3 Universal Quantum Gates

A well known result from classical boolean logic, is that any possible function
f : Bn → Bm can be constructed as a composition from a small universal
set of operators if we can “wire” the inputs and outputs to arbitrary bits
in a feed-forward network. Examples for universal sets of logical gates are
{∨,¬}, {→,¬} or {∧̄}.

As mentioned in 1.3.2.6, unitary operations can be described as abstract
“rotations” in the Hilbert space. A complex rotation of a single qubit has
the general form

U2(ω, α, β, φ) = e−iφ

(
eiα cosω −e−iφ sinω
eiφ sinω e−iα cosω

)
(2.33)

If this operator could be applied to arbitrary 2-dimensional subspaces H′ =
C2 of H = H′×H′′, then any unitary transformation could be constructed by
composition in at most

(
dimH

2

)
steps [14], very much like a general rotation

in Rn can be decomposed into
(
n
2

)
simple rotations in the coordinate planes.

In our definition of quantum gates, however, we are restricted to sub-
spaces corresponding to quantum registers (see 2.2.1.5), so in the case of an
n-qubit quantum computer (dimH = 2n), this leaves us with merely n pos-
sible 1-qubit subspaces H′ and the corresponding sets of register operators
U2(i)(ω, α, β, φ). Since [U2(i), U2(j)] = 0, any composition U of U2 gates,
would result in a transformation of the form

U |d0, d1, . . . dn−1〉 = (U1|d0〉)(U2|d2〉) . . . (Un−1|dn−1〉) (2.34)

So just as the NOT gate itself is not universal for boolean logic, to con-
struct a universal set of quantum gates, we require an additional 2-qubit
operation, to create entangled multi-qubit states.

One possibility for a nontrivial 2-qubit operator is XOR which is defined
as XOR : |x, y〉 → |x, x⊕ y〉 or in matrix notation:

XOR =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (2.35)
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Deutsch [6] has shown that the set {U2(ω, α, β, φ),XOR} is in fact uni-
versal for unitary transformation. Furthermore, since {U2(ω′, α′, β′, φ′)n} is
dense in {U2(ω, α, β, φ)} for almost any6 set of parameters, {U2,XOR} is
universal for most U2 in the sense that any unitary transformation U can be
approximated to arbitrary precision.

Deutsch also proposed a 3-qubit gate D(θ) which is universal, while only
requiring one parameter:

D(θ) : |i, j, k〉 →
{
i cos θ |i, j, k〉+ sin θ |i, j, 1− k〉 for i = j = 1

|i, j, k〉 otherwise
(2.36)

2.2.2.4 Pseudo-classical Operators

The general form of a unitary operator U over n qubits is

U =
2n−1∑

i=0

2n−1∑

j=0

|i〉uij 〈j| with
2n−1∑

k=0

u∗kiukj = δij (2.37)

If the matrix elements uij are of the form uij = δiπj
with some permutation

π, then their effect on basis states can be described in terms of classical
reversible boolean logic.

Definition 5 (Pseudo-classical Operator) A n-qubit pseudo-classical op-
erator is a unitary operator of the form U : |i〉 → |πi〉 with some permutation
π over Z2n

.

For θ = π/2 the universal Deutsch gate D(θ) (2.36) degenerates into the
pseudo-classical operator

T = D(
π

2
) = |i, j, (i ∧ j)⊕ k〉〈i, j, k| with i, j, k ∈ B (2.38)

T is the 3-bit controlled-not or Toffoli gate, which is a universal gate for
reversible boolean logic.

Let f : Z2n → Z2n be a bijective function, then the corresponding pseudo-
classical operator F is given as

F =
2n−1∑

i=0

|f(i)〉〈i| and F−1 = F † =
2n−1∑

i=0

|i〉〈f(i)| (2.39)

6basically, it is just required that the quotients between ω′, α′, β′, φ′ and π are irrational.
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2.2.2.5 Quantum Functions

One obvious problem of quantum computing is its restriction to reversible
computations. Consider a simple arithmetical operation like integer division
by 2 (DIV2 ′|i〉 = |i/2〉 for even i and |(i− 1)/2〉 for odd i). Clearly, this
operation is non-reversible since DIV2 ′|0〉 = DIV2 ′|1〉, so no corresponding
pseudo-classical operator exists.

However, if we use a second register with the initial value |0〉, then we can
define an operator DIV2 which matches the condition DIV2 |x, 0〉 = |x, x/2〉
or |x, (x− 1)/2〉 respectively. The behavior of DIV2 |x, y 6= 0〉 is undefined
and can be set arbitrarily as long as DIV2 remains pseudo-classical.7.

Definition 6 (Quantum Functions) For any function f : Bn → Bm (or
equivalently f : Z2n → Z2m) there exists a class of pseudo-classical operators
F : C2n+m → C2n+m

working on an n-qubits input and an m-qubits output
register with F |x, 0〉 = |x, f(x)〉. Operators of that kind are referred to as
quantum functions.

For any boolean function f : Bn → Bm there exist (2n+m − 2n)! different
quantum functions F .

2.2.2.6 Conditional Operators

Classical programs allow the conditional execution of code in dependence on
the content of a boolean variable (conditional branching).

A unitary operator, on the other hand, is static and has no internal flow-
control. Nevertheless, we can conditionally apply an n qubit operator U to a
quantum register by using an enable qubit and define an n+1 qubit operator
U ′

U ′ =

(
I(n) 0

0 U

)
(2.40)

So U is only applied to base-vectors where the enable bit is set. This can be
easily extended to enable-registers of arbitrary length.

Definition 7 (Conditional Operator) A conditional operator U[[e]] with
the enable register e is a unitary operator of the form

U[[e]] : |i, ε〉 = |i〉|ε〉e →
{

(U |i〉) |ε〉e if ε = 111 . . .
|i〉|ε〉e otherwise

(2.41)

7In this special case, just one additional qubit to hold the lowest bit of the argument
would suffice to extend DIV2 ′ to a unitary operator.
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Conditional operators a frequently used in arithmetic quantum functions
and other pseudo-classical operators.

If the architecture allows the efficient implementation of the controlled-
not gate C : |x, y1, y2 . . .〉 → |(x⊕ ∧

i yi), y1, y2 . . .〉, then conditional pseudo-
classical operators can be realized by simply adding the enable string to the
control register of all controlled-not operations.

2.2.3 Input and Output

2.2.3.1 Quantum Computing and Information Processing

In 2.1.3 we have shown that the interpretation of computing as a physical pro-
cess, rather than the abstract manipulation of symbols, leads to an extended
notion of computability. We have also identified the the concept of unitary
transformations as an adequate paradigm for “physical computability”.

Unitary transformations describe the transition between machine states
and thereby the temporal evolution of a quantum system. The very notion of
a (quantum) computer as a “computing machine” requires, however, that the
evolution of the physical system corresponds to a processing of information.

Classical information theory requires that any “reasonable” information
can be expressed as a series of answers to yes-no questions, i.e. a string of
bits. But unlike classical symbolic computation, where every single step of a
computation can be mapped onto a bit-string, physical computation requires
such a labeling only for the initial and the final machine state (see 2.1.3.2),
the labels of which make up the input and output of the computation.

This requirement is in full accordance with the Copenhagen interpretation
of quantum physics, which states that the setup and the outcome of any
experiment has to be described in classical terms.

2.2.3.2 Labeling of States

As the machine state Ψ is not directly accessible, any physically realizable
labeling has to correspond to an observable O. As has been shown in 1.3.2.2,
in quantum physics, an observable O is expressed by a Hermitian operator
O.

A natural choice for O on an n-qubit quantum computer would be the
classical valuesN = (N0,N1, . . .Nn−1) of the singe qubits with the Hermitian
operators

N = (N0, N1, . . . Nn1) = N0 + 2N1 + . . .+ 2n−1Nn−1 (2.42)

Ni |d0 . . . dn−1〉 = di |d0 . . . dn−1〉
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As N is only defined for eigenstates of N (see 1.3.2.3), the labeling m : H →
Bn is only defined for states Ψ ∈ H of the form

|Ψ〉 = eiφ|d0 . . . dn−1〉 (2.43)

2.2.3.3 Initialization

To set a quantum computer to a desired initial state |Ψ0〉 = |s0〉 correspond-
ing to the boolean input string s0, it suffices to provide means to initially
“cool” all qubits to |0〉 and then apply any unitary transformation U which
matches the condition U |0〉 = |s0〉.

Definition 8 The reset operator R is a constant operator over H and defined
as R|Ψ〉 = |0〉.

2.2.3.4 Measurement

As has been described in 1.3.2.3, it is impossible to observe a quantum state
ψ without, at the same time, forcing the system to adopt a state ψ′ which
is an eigenstate of the Hermitian operator O corresponding to the observed
quantity O. The transition probability is thereby given as

pψ→ψ′ = |〈ψ′|ψ〉|2 (2.44)

If we measure the binary values N of an n-qubit quantum computer in
the state

|Ψ〉 =
2n−1∑

i=0

ci|i〉 (2.45)

the probabilities to measure i and the assorted post measurement states are
consequently

pi = |ci|2 and |ψ′i〉 = |i〉 (2.46)

2.2.3.5 Partial Measurement

Measurements don’t have to cover the whole machine state, but can also be
restricted to single qubits or quantum registers.

Consider two quantum registers with n and m qubits in the state

|ψ〉 =
2n−1∑

i=0

2m−1∑

j=0

ci,j|i, j〉 with
∑

i,j

c∗i,jci,j = 1 (2.47)
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The probability pi to measure the number i in the first register and the
according post measurement state |ψ′i〉 are given by

pi =
2m−1∑

j=0

c∗i,jci,j, and |ψ′i〉 =
1√
pi

2m−1∑

j=0

ci,j|i, j〉 (2.48)

The measurement of qubits is the only non unitary operation, a quantum
computer must be able to perform during calculation.

2.3 Models of Quantum Computation

In classical information theory, the concept of the universal computer can be
represented by several equivalent models, corresponding to different scientific
approaches. From a mathematical point of view, a universal computer is a
machine capable of calculating partial recursive functions, computer scientists
often use the Turing machine as their favorite model, an electro-engineer
would possibly speak of logic circuits while a programmer certainly will prefer
a universal programming language.

As for quantum computation, each of these classical concepts has a quan-
tum counterpart: [25]

Model classical quantum
Mathematical partial recursive funct. unitary operators

Machine Turing Machine QTM
Circuit logical circuit quantum gates

Algorithmic univ. programming language QPLs

Table 2.1: classical and quantum computational models

2.3.1 The Mathematical Model of QC

The paradigm of computation as a physical process requires that QC can —
in principle — be described by the same means as any other physical reality,
which, for the field of quantum physics, is the mathematical formalism of
Hilbert space operator algebra. The basics of this formalism, as far as they
are relevant to QC, have been the topic of 1.3 and chapter 2.

The moral equivalent in QC to partial recursive functions, the mathe-
matical concept of classical computability, are unitary operators. As every
classically computable problem can be reformulated as calculating the value
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of a partial recursive function, each quantum computation must have a cor-
responding unitary operator.

The mathematical description of an operator is inherently declarative;
the actual implementation for a certain quantum architecture i.e. the al-
gorithmic decomposition into elementary operations, is beyond the scope of
this formalism. Also, since the mathematical model treats unitary operators
as black boxes, no complexity measure is provided.

2.3.2 Quantum Turing Machines

In analogy to the classic Turing Machine (TM) several propositions of Quan-
tum Turing Machines (QTM), as a model of a universal quantum computer
have been made [3, 1].

The complete machine-state |Ψ〉 is thereby given by a superposition of
base-states |l, j, s〉, where l is the inner state of the head, j the head position
and s the binary representation of the tape-content. To keep H separable,
the (infinite) bit-string s has to meet the zero tail state condition i.e. only a
finite number of bits with sm 6= 0 are allowed.

The quantum analogon to the transition function of a classic probabilistic
TM is the step operator T , which has to be unitary to allow for the existence
of a corresponding Hamiltonian (see 1.3.2.5) and meet locality conditions for
the effected tape-qubit, as well as for head movement.

QTMs provide a measure for execution times, but — as with the classical
TM — finding an appropriate step operator can be very hard and runtime-
complexity (i.e. the number of applications of T in relation to the problem
size) remains an issue. Outside quantum complexity theory, QTMs are of
minor importance.

2.3.3 Quantum Circuits

Quantum circuits are the QC equivalent to classical boolean feed-forward
networks, with one major difference: since all quantum computations have
to be unitary, all quantum circuits can be evaluated in both directions (as
with classical reversible logic). Quantum circuits are composed of elementary
gates and operate on qubits, thus dim(H) = 2n where n is the (fixed) number
of qubits. The “wiring” between the gates thereby corresponds to unitary
reordering operators Πs (see 2.2.1.5).

In comparison with classical boolean feed-forward networks, this imposes
the following restrictions:
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• Only n-to-n networks are allowed i.e. the total number of inputs has
to match the total number of outputs.

• Only n-to-n gates are allowed.

• No forking of inputs is allowed. This is directly related to the fact that
qubits can’t be copied, i.e. that there exists no unitary operation

Copy |ψ〉|0〉 → |ψ〉|ψ〉 with |ψ〉 ∈ C2 (2.49)

which can turn a general qubit-state into a product state of itself.

• No “dead ends” are allowed. Again, this is because the erasure of a
qubit

Erase |ψ〉 → |0〉 with |ψ〉 ∈ C2 (2.50)

is not a unitary operation.

To allow for implementation of all possible unitary transformations, a
universal set of elementary gates must be available, out of which composed
gates can be constructed (see 2.2.2.3). Eachm-qubit gate U thereby describes
up to n!

(n−m)!
different unitary transformations U(s), depending on the wiring

of the inputs (see 2.2.2.2).
As opposed to the operator formalism, the gate-notation is an inherently

constructive method and — other than QTMs — the complexity of the prob-
lem is directly reflected in the number of gates necessary to implement it.

2.3.4 Quantum Programming Languages

When it comes to programming and the design of non-classic algorithms, we
can look at the mathematical description as the specification and quantum
circuits as the assembly language of QC.

Just as classical programming languages, quantum programming lan-
guages (QPLs) provide a constructive means to specify the sequence of ele-
mentary operators, while allowing nested levels of abstraction.

2.3.4.1 Flow Control

In it’s simplest form, a quantum algorithm merely consists of a unitary trans-
formation and a subsequent measurement of the resulting state. This would
e.g. be the case, if a quantum computer is used to emulate the behavior of
another quantum system.
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Figure 2.1: A simple non-classical algorithm

For more “traditional” computational tasks, as e.g. searching or mathe-
matical calculations, efficient quantum implementations often have the form
of probabilistic algorithms. Figure 2.1 shows the basic outline of a proba-
bilistic non-classical algorithm with a simple evaluation loop.

More complex quantum algorithms, as e.g. Shor’s algorithm for quan-
tum factoring (see 4.2), can also include classical random numbers, partial
measurements, nested evaluation loops and multiple termination conditions:
The actual quantum operations as resetting of the machine state, unitary
transformations and measurements are embedded into a classical flow-control
framework.

A formal way to describe the classical control structure, is to consider
quantum operations as special statements within a classical procedural lan-
guage. Therefor any QPL also has to be a universal programming language.

2.3.4.2 Operator Specification

Classical procedural languages provide different levels of abstraction by allow-
ing the grouping of primitives into reusable subroutines (procedures) which
can operate on different data (parameters, references) and use temporally
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allocated memory (local variables).
If this concept is to be used for the definition of unitary operators, then

language elements have to be provided which account for the reversibility of
unitary transformation and the non-local nature of entangled quantum bits.

• Mathematical Semantics: The effect of an operator has to be uni-
form and has to be restricted to the quantum machine state i.e. the
use of an operator must not interfere with the classical state of the
machine.

This means that the implementation of an operator must only depend
on its parameters and must not produce any side-effects. This esp.
excludes the use of global variables and the use of non-deterministic
functions (such as a random numbers).

• Unitarity: It has to be assured that operators are restricted to unitary
transformation. This excludes non-unitary quantum operations such as
measurement.

• Reversibility: Since for any unitary operator, there exists an inverse
adjoint operator, a QPL should provide means to execute operators in
reverse.

• Symbolic Registers: An operator must be able to operate on any
set of qubits. This requires the ability to define symbolic quantum
registers.



Chapter 3

Quantum Programming

This chapter discusses the programming of quantum computers and the design
of quantum algorithms in the experimental quantum programming language
QCL.

3.1 Introduction

3.1.1 Computers and Programming

As has been illustrated in 2.1.2, a computer is basically a device which

1. holds a physical machine state S

2. is capable of performing a set of well defined instructions I to transform
between machine states

3. provides means to initialize and measure the machine state while in-
terpreting S as discrete symbolic computational states s

The sequence of instructions π = 〈I1, I2, . . . In〉 to transform the initial state
S into the final state Sn is called a program.

The way π is actually specified, depends on the computational model;
possibilities vary from explicit enumeration, over feed forward networks (as
in logical circuits) and decision trees up to finite automatons (as in the Turing
machine).

A general requirement of any specification method is, that the mechanism
used to produce π must not be more powerful or complex than the machine
it is executed on, which would defy the purpose of using a computer in the
first place.

41
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3.1.2 Complexity Requirements

As has been pointed out in 2.3.4, QPLs use a classical universal program-
ming language to define the actual sequence π of instructions for a quantum
computer. According to the above criterion, this approach is useful, only if
quantum computers are at least as powerful as universal classical computers.

If we consider a quantum computer with the Toffoli gate (see 2.2.2.4) as
the only available instruction, then any transformation of the machine state
has to be of the form

|Ψ〉 = |i〉 −→ |g(i)〉 = |Ψ〉 with g : Bn → Bn (3.1)

Since the Toffoli gate is universal for reversible boolean logic, any bijective
boolean function g can directly be implemented on a quantum computer.

A general boolean function f over Bn, can be implemented by using a
pseudo-classical operator F

F |i, 0〉 = |i, f(i)〉 with F †F = I (3.2)

So any classically computable function f can also be implemented on a
quantum computer. Moreover, C. H. Bennet has shown that a reversible
implementation of f can be done with a maximal overhead of O(2) in time
and O(

√
n) in space complexity (see 3.5.2). [8]

On the other hand, as a general n-qubit quantum state consists of maxi-
mally 2n eigenstates with a non-zero amplitude and unitary transformations
take the form of linear operators and consequently can be described as

U : |i〉 →
2n−1∑

j=0

uij|j〉 with i, j ∈ Z2n

, (3.3)

a classical computer can simulate any unitary operator with arbitrary preci-
sion by encoding the complex amplitudes as fixed point binary numbers. In
the general case, however, this will require an exponential overhead in time
as well as in space complexity.

Due to the stochastic nature of quantum measurements, the emulating
computer will also need a source of true randomness (like e.g. the probabilis-
tic Turing machine).

3.1.3 Hybrid Architecture

So QPLs can be regarded as a meta-programming languages, as a program
isn’t intended to run on a quantum computer itself, but on a (probabilis-
tic) classical computer which in turn controls a quantum computer. In the
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Figure 3.1: The hybrid architecture of QCL

terms of classical computer science, you can describe this setting as a uni-
versal computer with a quantum oracle. Figure 3.1 illustrates this hybrid
architecture.

From the perspective of the user, quantum programs behave exactly like
any other classical program, in the sense that it takes classical input such as
startup parameters or interactive data, and produces classical output. The
state of the controlling computer (i.e. program counter, variable values, but
also the mapping of quantum registers) is also strictly classical and referred
to as program state.

The actual program π, i.e. the sequence of quantum instructions con-
sisting of elementary gates, measurement- and initialization-instructions is
passed over a well defined interface to the quantum computer, while the
returned output of is restricted to binary measurements values. The quan-
tum computer doesn’t require any control logic, it’s computational state can
therefor be fully described by the common quantum state Ψ of its qubits,
also referred to as machine state.

3.2 QCL as a Classical Language

Since the computational model of QPLs is that of a classical computer with
a quantum oracle, QCL contains all features of a classical universal pro-
gramming language, such as variables, loops, subroutines and conditional
branching.
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3.2.1 Structure of a QCL Program

The syntactic structure of a QCL program is described by a context free
LALR(1) grammar (see appendix A) with statements and definitions as top
symbols:

qcl-input ← { stmt | def }

3.2.1.1 Statements

Statements range from simple commands, over procedure-calls to complex
control-structures and are executed when they are encountered.

qcl> if random()>=0.5 { print "red"; } else { print "black"; }
: red

3.2.1.2 Definitions

Definitions are not executed but bind a value (variable- or constant-definition)
or a block of code (routine-definition) to a symbol (identifier).

qcl> int counter=5;
qcl> int fac(int n) { if n<=0 {return 1;} else {return n*fac(n-1);} }

Consequently, each symbol has an associated type, which can either be a data
type or a routine type and defines whether the symbol is accessed by reference
or call.

3.2.1.3 Expressions

Many statements and routines take arguments of certain data types. These
expressions can be composed of literals, variable references and sub-expressions
combined by operators and function calls.

qcl> print "5 out of 10:",fac(10)/fac(5)^2,"combinations."
: 5 out of 10: 252 combinations.

3.2.2 Data Types and Variables

The classic data-types of QCL are the arithmetic types int, real and
complex and the general types boolean and string.
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Type Description Examples
int integer 1234, -1

real real number 3.14, -0.001

complex complex number (0,-1), (0.5, 0.866)

boolean logic value true, false

string character string "hello world", ""

Table 3.1: classic types and literals

3.2.2.1 Constants

Frequently used values can be defined as symbolic constants. The syntax of
a constant declaration is

const-def ← const identifier = expr ;

The definition of pi in the standard include file is e.g.

const pi=3.141592653589793238462643383279502884197;

3.2.2.2 Variables

The definition of variables in QCL is analogous to C:

var-def ← type identifier [ = expr ] ;

If no initial value is given, the new variable is initialized with zero, false or
"", respectively. The value of a variable can be changed by an assignment,
user input (see 3.2.4.3) and quantum measurement (see 3.4.1):

qcl> complex z; // declare complex variable z
qcl> print z; // z was initialized with 0
: (0.000000,0.000000)
qcl> z=(0,1); // setting z to i
qcl> print z;
: (0.000000,1.000000)
qcl> z=exp(z*pi); // assignment to z may contain z
qcl> print z;
: (-1.000000,0.000000)
qcl> input z; // ask for user input
? complex z [(Re,Im)] ? (0.8,0.6)
qcl> print z;
: (0.800000,0.600000)
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3.2.3 Expressions

3.2.3.1 Operators

Table 3.2 shows all QCL operators ordered from high to low precedence.1

All binary operators are left associative, thus a ◦ b ◦ c = (a ◦ b) ◦ c. Explicit
grouping can be achieved by using parentheses.

Op Description Argument type
# register size quantum types
^ power all arithmetic

integer power int

- unary minus all arithmetic
* multiplication all arithmetic
/ division all arithmetic

integer division int

mod integer modulus int

+ addition all arithmetic
- subtraction all arithmetic
& concatenation string, quantum types
== equal all arithmetic, string
!= unequal all arithmetic, string
< less integer, real
<= less or equal int, real
> greater int, real
>= greater or equal int, real
not logic not boolean

and logic and boolean

or logic inclusive or boolean

xor logic exclusive or boolean

Table 3.2: QCL operators

Arithmetic operators generally work on all arithmetic data types and
return the most general type (operator overloading), e.g.

1For the sake of completeness, table 3.2 also includes the operators # and &, which take
quantum registers as arguments, see 3.4.3.1 and 3.3.3.2
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qcl> print 2+2; // evaluates to int
: 4
qcl> print 2+2.0; // evaluates to real
: 4.000000
qcl> print 2+(2,0); // evaluates to complex
: (4.000000,0.000000)

To allow for clean integer arithmetic there are two exceptions to avoid type-
casts:

• The division operator / does integer division if both arguments are
integer.

• The power operator ^ for integer bases is only defined for non-negative,
integer exponents. For real exponents, the base must be non-negative.

3.2.3.2 Functions

QCL expressions may also contain calls to built-in or user defined functions.
Table 3.3 shown all built-in unary arithmetic functions.

Trigonometric Funct. Hyperbolic Funct.
sin(x) sine of x sinh(x) hyperbolic sine of x
cos(x) cosine of x cosh(x) hyperbolic cosine of x
tan(x) tangent of x tanh(x) hyperbolic tangent of x
cot(x) cotangent of x coth(x) hyperbolic cotangent of x

Complex Funct. Exponential an related Funct.
Re(z) real part of z exp(x) e raised to the power of x
Im(z) imaginary part of z log(x) natural logarithm of x
abs(z) magnitude of z log(x,n) base-n logarithm of x
conj(z) conjugate of z sqrt(x) square root of x

Table 3.3: QCL arithmetic functions

In addition to the above, QCL also contains n-ary functions such as min-
imum or gcd, conversion functions and the the pseudo function random()

(table 3.4). As the latter is no function in the mathematical sense, it may
not be used within the definition of user-functions and quantum operators.

3.2.4 Simple Statements

3.2.4.1 Assignment

The value of any classic variable can be set by the assignment operator =.
The right-hand value must be of the same type as the variable. In con-
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Funct. Description
ceil(x) nearest integer to x (rounded upwards)
floor(x) nearest integer to x (rounded downward)
max(x,...) maximum
min(x,...) minimum
gcd(n,...) greatest common divisor
lcm(n,...) least common multiple
random() random value from [0, 1)

Table 3.4: other QCL functions

trast to arithmetic operators and built-in functions, no implicit typecasting
is performed.

qcl> complex z;
qcl> z=pi; // no typecast
! type mismatch: invalid assignment
qcl> z=conj(pi); // implicit typecast

3.2.4.2 Call

The call of a procedure has the syntax

stmt ← identifier ( [ expr { , expr }] ) ;

As with assignments, no typecasting is performed for classical argument
types.

Due to the potential side-effects on the program state, procedure-call may
not occur within the definition of functions or operators.

3.2.4.3 Input

The input command prompts for user input and assigns the value to the
variable identifier . Optionally a prompt string expr can be given instead of
the standard prompt which indicates the type and the name of the variable.

qcl> real n;
qcl> input "Enter Number of iterations:",n;
? Enter Number of iterations: 1000

3.2.4.4 Output

The print command takes a comma separated list of expressions and prints
them to the console. Each output is prepended by a colon and terminated
with newline.
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qcl> int i=3; real x=pi; complex z=(0,1); boolean b;
qcl> print i,x,z,b;
: 3 3.141593 (0.000000,1.000000) false

3.2.5 Flow Control

3.2.5.1 Blocks

All flow control statements operate on blocks of code. A block is a list of
statements enclosed in braces:

block ← { stmt { stmt } }
Blocks may only contain executable statements, no definitions. Unlike C, a
block is not a compound statement and always part of a control structure.
To avoid ambiguities with nesting, the braces are obligatory, even for single
commands.

3.2.5.2 Conditional Branching

The if and if-else statements allow for the conditional execution of blocks,
depending on the value of a boolean expression.

stmt ← if expr block [ else block ]

If expr evaluates to true, the if-block is executed. If expr evaluates to false,
the else-block is executed if defined.

3.2.5.3 Counting Loops

for-loops take a counter identifier of type integer which is incremented from
expr from to expr to . The loop body is executed for each value of identifier .

stmt ← for identifier = expr from to expr to [ step expr step ] block

Inside the body, the counter is treated as a constant.

qcl> int i;
qcl> for i=10 to 2 step -2 { print i^2; }
: 100
: 64
: 36
: 16
: 4
qcl> for i=1 to 10 { i=i^2; } // i is constant in body
! unknown symbol: Unknown variable i

When the loop is finished, identifier is set to expr to .
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3.2.5.4 Conditional Loops

QCL supports two types of conditional loops:

stmt ← while expr block

← block until expr ;

A while-loop is iterated as long as a the condition expr is satisfied. When
expr evaluates to false, the loop terminates. An until-loop is executed at
least once and iterated until the condition expr is satisfied.

3.2.6 Classical Subroutines

3.2.6.1 Functions

User defined functions may be of any classical type and may take an arbitrary
number of classical parameters. The value of the function is passed to the
invoking expression by the return statement. Local variables can be defined
at the top of the function body.

int Fibonacci(int n) { // calculate the n-th
int i; // Fibonacci number
int f; // by iteration
for i = 1 to n {

f = 2*f+i;
}
return f;

}

QCL requires functions to have mathematical semantics, so their value
has to be deterministic and their execution must not have any side-effects on
the program state.

qcl> int randint(int n) { return floor(n*random()); }
! in function randint: illegal scope: function random is not allowed
in this scope
qcl> int foo=4711;
qcl> int bar(int n) { foo=foo+n; return foo; }
! in function bar: unknown symbol: Unknown local variable foo

Functions can call other functions within their body. Recursive calls are
also allowed.

int fac(int n) { // calculate n!
if n<2 { // by recursion

return 1;
} else {

return n*fac(n-1);
}

}
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3.2.6.2 Procedures

Procedures are the most general routine type and used to implement the
classical control structures of quantum algorithms which generally involve
evaluation loops, the choice of applied operators, the interpretation of mea-
surements and classical probabilistic elements.

With the exception of routine declarations, procedures allow the same
operations as are available in global scope (e.g. at the shell prompt) allowing
arbitrary changes to both the program and the machine state. Operations
exclusive to procedures are

• Access to global variables

• (Pseudo) Random numbers by using the pseudo-function random()

• Non-unitary operations on the machine state by using the reset and
measure commands (see 3.4.1)

• User input by using the input command (see 3.2.4.3)

Procedures can take any number of classical or quantum arguments and may
call all types of subroutines.

3.3 Quantum States and Variables

3.3.1 Quantum Memory Management

3.3.1.1 Machine State and Program State

The memory of a quantum computer is usually a combination of 2-state
subsystems, referred to as quantum bits (qubits). As pointed out in 2.2.1.3
the “memory content” is the combined state |Ψ〉 of all qubits. This state is
referred to as the (quantum) machine state as opposed to the program state
which is the current state of the controlling (classic) algorithm (e.g. contents
of variable, execution stack, etc.) described by the QCL program.

The machine state |Ψ〉 of an n qubit quantum computer is a vector in the
Hilbert space H = C2n

, however — due to the destructive nature of mea-
surement (see 1.3.2.3) — |Ψ〉 cannot be directly observed and consequently
isn’t accessible from within QCL.

Due to the current lack of real-live quantum computers, the interpreter
qcl contains the emulation library libqc which can simulate a quantum
computer with an arbitrary number of qubits. It also provides an interface to
access the simulated machine state via the load, save and dump commands
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(see 3.3.1.6). These commands, however don’t interfere with the program
state.

3.3.1.2 Quantum Registers

QCL uses the concept of quantum registers (see 2.2.1.5) as an interface be-
tween the machine state and the controlling classical computer. A quantum
register is a pointer to a sequence of (mutually different) qubits and thus,
while referring to a quantum subsystem, is still a classical variable.

All operations on the machine state (except for the reset command,
see 3.4.1) take quantum registers as operands. Since an n qubit quantum
computer allows for n!

(n−m)!
different m qubit registers s ∈ Zm

n , any unitary or

measurement operation on a m qubit register, can result in n!
(n−m)!

different
operations on the machine state: This requires that all elementary unitary
operations of the quantum computer to be applicable to arbitrary qubits and
requires the physical architecture to allow the measurement of single qubits.2

3.3.1.3 The Quantum Heap

In QCL, the relation between registers and qubits is handled transparently by
allocation and deallocation of qubits from the quantum heap, which allows the
use of local quantum variables. All free (i.e. unallocated) quantum memory
has to be empty.

Definition 9 (Empty Registers) A quantum register s is empty iff

P0(s) |Ψ〉 = |Ψ〉 with P0 = |0〉〈0| (3.4)

At startup or after the reset command, the whole machine state is empty,
thus |Ψ〉 = |0〉.

The machine state of an n-qubit quantum computer with m allocated
qubits therefor is a product state of the form

|Ψ〉 = |ψ〉s|0〉s⊥ with s ∈ Zm
n and s⊥ ∈ Zn−m

n (3.5)

As has been pointed out in 1.3.3.2, two quantum systems whose common
wave function is a product state are physically independent. This esp. means
that neither measurements nor unitary transformations on the allocated bits
s will affect s⊥ being in substate |0〉.

The concept of the quantum heap allows two important abstractions:

2Since the operators Ni for the value of the qubits commute (i.e [Ni, nj ] = 0), the
number of physically different measurement operations is merely

(
n
m

)
as the additional

bit-permutations are in fact classical operations.
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• Since the allocation of registers is transparent, no qubit positions need
to be specified.

• Since allocated and unallocated qubits are in a product state, the defi-
nition of quantum algorithms is independent from the total number of
qubits.

3.3.1.4 Register allocation

Quantum registers are allocated, when a quantum variable is defined. The
qubit positions for each register can be inspected using the print statement.

$ qcl -b10 # start qcl-interpreter with 10 qubits
qcl> qureg a[4]; // allocate a 4-qubit register
qcl> qureg b[3]; // allocate another 3-qubit register
qcl> print a,b; // show actual qubit mappings
: |......3210> |...210....>
qcl> qureg c[5]; // try to allocate another 5 qubits
! memory error: not enough quantum memory

In QCL, the quantum heap is organized as a stack: qubits are pushed on
allocation and poped on deallocation. A quantum register is deallocated,
when the scope of the variable is left.

qcl> qureg a[3]; // allocate 3 qubits
qcl> procedure foo() { qureg b[2]; print a,b; }
qcl> foo(); // temp. register b gets allocated
: |.......210> |.....10...>
qcl> qureg c[3]; // allocate another 3 qubits
qcl> print a,c; // qubits from b have been reclaimed
: |.......210> |....210...>

3.3.1.5 Scratch Space Management

If temporary registers are used, then, in order to avoid the corruption of
the quantum heap, it has to be assured that the register is empty befor
it is deallocated. Quantum functions (see 2.2.2.5) allow the declaration of
local quantum variables as scratch space (see 3.3.1.5), in which case the
“uncomputing” of the temporary registers is transparently taken care of by
using the following procedure suggested by Bennet: [8]

Let F be a quantum function with the argument register x (type quconst,
see 3.3.2.2), the target register y (type quvoid, see 3.3.2.3) and the scratch
register s (type quscratch, see 3.3.2.4)

F (x,y, s) : |i〉x|0〉y|0〉s → |i〉x|f(i)〉y|j(i)〉s (3.6)
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During the application of F , the register s is filled with the temporary junk
bits j(i). To reclaim s, QCL allocates an auxiliary register t and translates
F into an operator F ′ which is defined as

F ′(x,y, s, t) = F †(x, t, s)Fanout(t,y)F (x, t, s) (3.7)

The fanout operator is a quantum function defined as

Fanout : |i〉|0〉 → |i〉|i〉 (3.8)

The application of F ′ restores the scratch register s and the auxiliary register
a to |0〉 while preserving the function value in the target register t:

|i, 0, 0, 0〉 → |i, 0, j(i), f(i)〉 → |i, f(i), j(i), f(i)〉 → |i, f(i), 0, 0〉 (3.9)

3.3.1.6 Simulation

The interpreter qcl can simulate quantum computers with arbitrary numbers
of qubits. According to the hybrid architecture as introduced in 3.1.3, the
numerical simulations are handled by a library (libqc) to separate the clas-
sical program state from the quantum machine state. QCL provides special
commands for inspecting the simulated machine state.

The dump command prints the current machine state in Braket notation.
When a quantum expression is given, it prints the probability spectrum in-
stead.

qcl> qureg q[2];
qcl> Mix(q);
qcl> dump;
: STATE: 2 / 4 qubits allocated, 2 / 4 qubits free
0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>
qcl> dump q[0];
: SPECTRUM q[0]: |...0>
0.5 |0> + 0.5 |1>

The current machine-state can be loaded and saved with the load and save

command.

3.3.2 Quantum Variables

Quantum registers bound to a symbolic name are referred to as quantum
variables.
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3.3.2.1 General Registers

A general quantum Register with n = expr qubits can be declared with

var-def ← qureg identifier [ expr ] ;

Empty quantum memory is allocated from the heap and bound to the symbol
identifier .

A global declaration defines a permanent quantum register which is not
to prone to scratch space management. This means that — as with classic
global variables — there is no way to reclaim allocated qubits within the
same scope.

The reseting of the machine state with the reset command has no effect
on register bindings.

[0/4] 1 |0000>
qcl> qureg q[1]; // allocate a qubit
qcl> reset; // reset: |Psi> -> |0>
[1/4] 1 |0000>
qcl> list q; // register q still exists
: global symbol q = |...0>:
qureg q[1];

The quantum types quvoid and quscratch are restricted to pseudo-classical
operators (qufunct) and are equivalent to qureg, except that they are treated
differently by memory management (see 3.3.1.5 for details).

3.3.2.2 Quantum Constants

Registers can be declared constant, by using the register type quconst. A
quantum constant has to be invariant to all applied operators.

Definition 10 (Invariance of Registers) A quantum register c is consid-
ered invariant to a register operator U(s, c) if U meets the condition

U : |i, j〉 = |i〉s|j〉c → (Uj |i〉s) |j〉c (3.10)

Quantum constants have a fixed probability spectrum: Let |Ψ〉 =
∑
aij|i, j〉

be the machine state and |Ψ′〉 = U(s, c) |Ψ〉 and p(J) and p′(J) the proba-
bilities to measure J in register c before and after the operator is applied,
then

p(J) = 〈Ψ|PJ |Ψ〉 =
∑

i

a∗iJaiJ with PJ =
∑

k

|k, J〉〈k, J | (3.11)

p′(J) = 〈Ψ′|PJ |Ψ′〉 = 〈Ψ|U †PJU |Ψ〉 = (3.12)

=
∑

i′,j′,i,j
a∗i′j′aij (〈i′|sU †j′ 〈j′|c) PJ (Uj |i〉s |j〉c) =

=
∑

i′,i
a∗i′JaiJ 〈i|U †JUJ |i〉 = p(J)
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If an argument to an operator is declared as quconst, the register has to be
invariant to all subsequent operator calls within the operator definition.

qcl> operator foo(quconst c) { Rot(pi,c); }
! in operator foo: parameter mismatch: quconst used as non-const
argument to Rot

When used as an argument type to a quantum function, constant registers
aren’t swapped out when local scratch registers are uncomputed (see 3.3.1.5).

3.3.2.3 Empty Registers

If an argument v to an operator is declared quvoid, the quantum register
is expected to be empty when the operator is called normally, or to be un-
computed if the operator is called inverted (see 3.4.3.2). So, depending on
the adjungation flag of the operator, the machine state |Ψ〉 has to conform
to either

U(v, . . .) : |Ψ〉 = |0〉v|ψ〉 → |Ψ′〉 or U †(v, . . .) : |Ψ〉 → |0〉v|ψ′〉 (3.13)

This can be checked at runtime with simulator the option --check.

qcl> qureg q[4];
qcl> qureg p[4];
qcl> set check 1; // turn on consistency checking
qcl> Rot(pi/100,p[2]); // slightly rotate one target qubit
[8/8] 0.999877 |00000000> + -0.0157073 |01000000>
qcl> Fanout(q,p); // p is assumed void
! in qufunct Fanout: memory error: void or scratch register not empty

When used as an argument type to a quantum function, void registers are
swapped out to a temporary register if local scratch registers are uncomputed.

3.3.2.4 Scratch Registers

As an argument s to an operator, registers of type quscratch are considered
to be explicit scratch registers which have to be empty when the operator
is called and have to get uncomputed before the operator terminates, so
operator and machine state have to satisfy the condition

U(s, . . .) : |Ψ〉 = |0〉s|ψ〉 → |0〉s|ψ′〉 = |Ψ′〉 (3.14)

If a scratch register is defined within the body of a quantum function, Ben-
net’s method of “uncomputing” temporary registers (see 3.3.1.5) is used to
free the register again.

Quantum functions using local scratch registers may not take general
(qureg) registers as arguments.
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qcl> qufunct nop(qureg q) { quscratch s[1]; }
! invalid type: local scratch registers can’t be used with
qureg arguments

3.3.2.5 Register References

To conveniently address subregisters or combined registers (see below), quan-
tum expressions can be named by declaring a register reference.

def ← type identifier [ = expr ] ;

The quantum expression expr is bound to the register identifier of the quan-
tum type type which can be qureg or quconst.

qcl> qureg q[8];
qcl> qureg oddbits=q[1]&q[3]&q[5]&q[7];
qcl> qureg lowbits=q[0:3];
qcl> list q,oddbits,lowbits;
: global symbol q = |........76543210>:
qureg q[8];
: global symbol oddbits = |........3.2.1.0.>:
qureg oddbits;
: global symbol lowbits = |............3210>:
qureg lowbits;

References can also be used to override type-checking by redeclaring a quconst
as qureg, which can be useful if a constant argument should be temporarily
used as scratch space but is restored later.

3.3.3 Quantum Expressions

A quantum expression is an anonymous register reference, which can be used
as an operator argument or to declare named references (see above).

Expr. Description Register
a reference 〈a0, a1 . . . an〉

a[i] qubit 〈ai〉
a[i:j] substring 〈ai, ai+1 . . . aj〉
a[i\l] substring 〈ai, ai+1 . . . ai+l−1〉
a&b concatenation 〈a0, a1 . . . an, b0, b1 . . . bm〉

Table 3.5: quantum expressions
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3.3.3.1 Subregisters

Subregisters can be addressed with the subscript operator [. . .]. Depending
on the syntax (see table 3.5), single qubits are specified by their zero-based
offset and substrings are specified by the offset of the first qubit and either
the offset of the last qubit (syntax [·:·]) or the total length of the subregister
(syntax [·\·]).

qcl> qureg q[8];
qcl> print q[3],q[3:4],q[3\4];
: |....0...> |...10...> |.3210...>

Indices can be arbitrary expressions of type int. Invalid subscripts trigger
an error.

qcl> int i=255;
qcl> print q[floor(log(i,2))];
: |0.......>
qcl> print q[floor(log(i,2))\2];
! range error: invalid quantum subregister

3.3.3.2 Combined Registers

Registers can be combined with the concatenation operator &. If the registers
overlap, an error is triggered.

qcl> print q[4:7]&q[0:3];
: |32107654>
qcl> print q[2]&q[0:3];
! range error: quantum registers overlap

3.4 Quantum Operations

3.4.1 Non-unitary Operations

As pointed out in 3.1.3, any quantum computation must be a composition of
initializations, unitary operators and measurements. A typical probabilistic
quantum algorithm usually runs an evaluation loop like this:

{
reset; // R: |Psi> -> |0>
myoperator(q); // U: |0> -> |Psi’>
measure q,m; // M: |Psi’> -> |m>

} until ok(m); // picked the right m ?

The reset command resets the machine-state |Ψ〉 to |0〉, which is also
the initial state when qcl is started. The quantum heap and the binding of
quantum variables are unaffected.

stmt ← measure expr [ , identifier ] ;
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The measure command measures the quantum register expr and assigns the
measured bit-string to the int variable identifier . If no variable is given,
the value is discarded.

The outcome of the measurement is determined by a random number
generator, which — by default — is initialized with the current system time.
For reproducible behavior of the simulation, a seed value can be given with
the option --seed.

Since reset and measure operations are irreversible, they must not occur
within operator definitions.

3.4.2 Subroutines

3.4.2.1 Hierarchy of Subroutines

Besides the classical subroutine type procedure and function, QCL pro-
vides two quantum routine types for general unitary operators (operator)
and pseudo-classical operators (qufunct). QCL allows to invert operators
and can perform scratch-space management for quantum functions, thus al-
lowed side effects on the classical program state as well as on the quantum
machine state have to be strictly specified.

routine type program state machine state recursion
procedure all all yes
operator none unitary no
qufunct none pseudo-classical no
functions none none yes

Table 3.6: hierarchy of QCL Subroutines and allowed side-effects

The 4 QCL routine types form a call hierarchy, which means that a routine
may invoke only subroutines of the same or a lower level (see table 3.6).

The mathematical semantic of QCL operators and functions requires that
every call is reproducible. This means, that not only the program state must
not be changed by these routines, but also that their execution may in no way
depend on the global program state which includes global variables, options
and the state of the internal random number generator.

3.4.2.2 External Routines

While QCL incorporates a classical programming language, to provides all
the necessary means to change the program state, there is no hardwired set
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of elementary operators to manipulate the quantum machine state, since this
would require assumptions about the architecture of the simulated quantum
computer.

An elementary operator or qufunct can be incorporated by declaring it
as extern.

def ← extern operator identifier arg-list ;

← extern qufunct identifier arg-list ;

External operators have no body since they are not executed within QCL,
but merely serve as a hook for a binary function which implements the de-
sired operation directly by using the numeric QC-library and is linked to the
interpreter.

Section 3.4.4 and 3.4.7 describe the elementary unitary and pseudo classic
gates which are provided by the integrated simulator of qcl.

3.4.3 General Operators

The routine type operator is used for general unitary operators. Conforming
to the mathematical notion of an operator, a call with the same parameters
has to result in exactly the same transformation, so no global variable refer-
ences, random elements or dependencies on input are allowed.

Since the type operator is restricted to reversible transformations of the
machine state, reset and measure commands are also forbidden.

3.4.3.1 Operator Arguments

Operators work on one or more quantum registers so a call of an m qubit
operator with a total quantum heap of n qubits can result in n!

(n−m)!
different

unitary transformations.
In QCL, this polymorphism is even further extended by the fact, that

quantum registers can be of different sizes, so for every quantum parameter
s, the register size #s = |s| is an implicit extra parameter of type int. An
addition to that, operators can take an arbitrary number of explicit classical
arguments.

If more than one argument register is given, their qubits may not overlap.

qcl> qureg q[4];
qcl> qureg p=q[2:3];
qcl> CNot(q[1\2],p);
! runtime error: quantum arguments overlapping
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3.4.3.2 Inverse Operators

Operator calls can be inverted by the adjungation prefix ‘!’. The adjoint
operator to a composition of unitary operators is3

(
n∏

i=1

Ui

)†
=

1∏

i=n

U †i (3.15)

Since the sequence of applied suboperators is specified using a procedural
classical language which cannot be executed in reverse, the inversion of the
composition, is is achieved by the delayed execution of operator calls.

When the adjungation flag is set, the operator body is executed and all
calls of suboperators are pushed on a stack which is then processed in reverse
order with inverted adjungation flags.

3.4.3.3 Local Registers

As opposed to pseudo-classical operators, it is in general impossible to un-
compute a unitary operator in order to free a local register again without
also destroying the intended result of the computation. This is a fundamen-
tal limitation of QC known as the non cloning theorem which results from the
fact that a cloning operation i.e. a transformation with meets the condition

U : |ψ〉|0〉 → |ψ〉|ψ〉 (3.16)

for an arbitrary4 |ψ〉 cannot be unitary if |ψ〉 is a composed state because

U (a|0, 0〉+ b|1, 0〉) = a2|0, 0〉+ ab |0, 1〉+ ba |1, 0〉) + b2|1, 1〉 (3.17)

6= aU |0, 0〉+ b U |1, 0〉 = a2|0, 0〉+ b2|1, 1〉 (3.18)

U can only be unitary if |ψ〉 is a basis state, i.e. |ψ〉 = |i〉, in which case
U = Fanout .

Due to the lack of a unitary copy operation for quantum states, Bennet-
style scratch space management is impossible for general operators since it
is based on cloning the result register.

Despite this limitation, it is possible in QCL to allocate temporary quan-
tum registers but it is up to the programmer to properly uncompute them
again. If the option --check is set, proper cleanup is verified by the simula-
tor.

3To avoid ambiguities with non-commutative matrix products, we use the convention∏n
i=1 fi = fnfn−1 . . . f1
4For any particular |ψ〉 an infinite number of unitary “cloning” operators trivially exists,

as e.g. Uψ =
∑
i,j,k |i, j ⊕ k〉〈k|ψ〉〈i, j|
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qcl> set check 1
qcl> operator foo(qureg q) { qureg p[1]; CNot(p,q); }
qcl> qureg q[1];
qcl> Mix(q);
[1/4] 0.707107 |0000> + 0.707107 |0001>
qcl> foo(q);
! in operator foo: memory error: quantum heap is corrupted
[1/4] 0.707107 |0000> + 0.707107 |0011>

Local registers are useful if an operator contains some intermediary pseudo-
classical operations which require scratch space.

3.4.4 Unitary Gates

3.4.4.1 Unitary Matrices

The most general form for specifying a unitary operator (or any other linear
transformation) is by defining it’s matrix elements: An n qubit unitary oper-
ator U describes a transformation U : C2n → C2n

and therefore corresponds
to a 2n × 2n matrix in C

U =
2n∑

i,j=0

|i〉uij〈j| =




u0,0 · · · u0,2n−1
...

. . .
...

u2n−1,0 · · · u2n−1,2n−1


 (3.19)

Since for a unitary transformation U †U = (U∗)TU = I(n), the Matrix U
unitary if and only if

2n−1∧

i,j=0

2n−1∑

k=0

u∗kiukj = δij (3.20)

QCL provides external operators for general unitary 2 × 2, 4 × 4 and 8 × 8
matrices, which the programmer can use to directly implement a custom set
of 1, 2 and 3 qubit gates.

extern operator Matrix2x2(
complex u00,complex u01,
complex u10,complex u11,

qureg q);
extern operator Matrix4x4(...,qureg q);
extern operator Matrix8x8(...,qureg q);

Matrix operators are checked for unitarity before they are applied:

qcl> const i=(0,1);
qcl> qureg q[1];
qcl> Matrix2x2(i*cos(pi/6),i*sin(pi/6),(0,0),(1,0),q);
! external error: matrix operator is not unitary
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3.4.4.2 Qubit Rotation

The rotation of a single qubit is defined by the transformation matrix U(θ)

U(θ) =

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
(3.21)

The factor −1
2

to θ is set in analogy to spin rotations, which can be shown

to be of the form D = e−
i
2
δjσj and thus have a period of 4π.

extern operator Rot(real theta,qureg q);

In contrast to most other external Operators, Rot is not generalized to work
with arbitrary register sizes.

qcl> Rot(pi/2,q);
! external error: Only single qubits can be rotated

3.4.4.3 Hadamard Gate

The Hadamard Gate is a special case of a generalized qubit Rotation and
defined by the transformation matrix H

H =
1√
2

(
1 1
1 −1

)
(3.22)

For the case of n-qubit registers, H can be generalized to

H : |i〉 → 2−
n
2

∑

j∈Bn

(−1)(i,j) |j〉 (3.23)

The vectors B′ = {i ∈ Bn | |i′〉 = H |i〉} form the Hadamard base or dual base
or parity base to B = {i ∈ Bn | |i〉}.

The Hadamard Transformation is self adjoint (i.e. H† = H), which, for
unitary operators, implies that H2 = I.

Since B′ only contains uniform superpositions that just differ by the signs
of the base-vectors, the external implementation of H is called Mix.

extern operator Mix(qureg q);

3.4.4.4 Conditional Phase Gate

The conditional phase gate is a pathological case of a conditional operator
(see 2.2.2.6), for the zero-qubit phase operator eiφ.

V (φ) : |ε〉 →
{

eiφ |ε〉 if ε = 111 . . .
|ε〉 otherwise

(3.24)

The conditional phase gate is used in the quantum Fourier transform (see
4.2.3).

extern operator CPhase(real phi,qureg q);
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3.4.5 Pseudo-classical Operators

The routine type qufunct is used for pseudo-classical operators and quantum
functions, so all transformations have to be of the form

|Ψ〉 =
∑

i

ci|i〉 →
∑

i,j

ciδjπi
|j〉 = |Ψ′〉 (3.25)

with some permutation π. All n-qubit pseudo-classical operators F therefore
have the common eigenstate

|Ψ〉 = 2−
n
2

2n−1∑

i=0

|i〉 ⇐⇒ F |Ψ〉 = |Ψ〉 (3.26)

3.4.5.1 Bijective Functions

The most straightforward application for pseudo-classical operators is the
direct implementation of bijective functions (see 2.2.2.4)

qufunct inc(qureg x) {
int i;
for i = #x-1 to 1 {

CNot(x[i],x[0:i-1]);
}
Not(x[0]);

}

The operator inc shifts the base-vectors of it’s argument. In analogy to boson
states, where the increment of the eigenstate corresponds to the generation
of a particle, inc is a creation operator.5

qcl> qureg q[4];
qcl> inc(q);
[4/4] 1 |0001>
qcl> inc(q);
[4/4] 1 |0010>
qcl> inc(q);
[4/4] 1 |0011>
qcl> inc(q);
[4/4] 1 |0100>

3.4.5.2 Conditional Operators

When it comes to more complicated arithmetic operations, it is often required
to apply a transformation to a register a in dependence on the content of
another register e.

5In fact, this is not quite correct, since other than bosons, an n qubit register is limited
to 2n states, so inc |2n − 1〉 = |0〉 whereas a† |2n − 1〉 = |2n〉
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If all qubits of e are required to be set, for the transformation to take
place, the operator is a conditional operator with the invariant (quconst)
enable register e (see 2.2.2.6).

A simple example for a conditional operator is the Toffoli gate

T : |x, y, z〉 → |x⊕ (y ∧ z), y, z〉 (3.27)

or it’s generalization, the controlled not gate (see 3.4.7.4). A conditional
version of the above increment operator is also easy to implement:

qufunct cinc(qureg x,quconst e) {
int i;
for i = #x-1 to 1 step -1 {

CNot(x[i],x[0:i-1] & e);
}
CNot(x[0],e);

}

Now, only base-vectors of the form |i〉|11 . . .〉s are incremented:

qcl> qureg q[4]; qureg e[2]; Mix(e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110000>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110001>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110010>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110011>

3.4.6 Quantum Functions

As defined in 2.2.2.5, a quantum function F is a pseudo-classical operator
with the characteristic

F : |x〉x|0〉y → |x〉x|f(x)〉y with f : Bn → Bm (3.28)

If we require the argument register x to be invariant to F by declaring x
as quconst, this leaves us with ((2m − 1)!)2n

possible pseudo-classical im-
plementations of F for any given f . To reflect the fact that F |x, y 6= 0〉 is
undefined, the target register has to be of type quvoid. (see 3.3.2.3).

Since, according to the above definition, quantum functions are merely or-
dinary pseudo-classical operators, whose specification is restricted to certain
types of input states, they also use the same QCL routine type qufunct.

The following example calculates the parity of x and stores it to y:
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qufunct parity(quconst x,quvoid y) {
int i;
for i = 0 to #x-1 {

CNot(y,x[i]);
}

}

qcl> qureg x[2]; qureg y[1]; Mix(x);
[3/3] 0.5 |000> + 0.5 |010> + 0.5 |001> + 0.5 |011>
qcl> parity(x,y);
[3/3] 0.5 |000> + 0.5 |110> + 0.5 |101> + 0.5 |011>

3.4.6.1 Scratch parameters

We can extend the notion of quantum functions, by also allowing an explicit
scratch register s (see 3.3.2.4) as an optional parameter to F , so we end up
with an operator F (x,y, s) with the characteristic

F : |x〉x|0〉y|0〉s → |x〉x|f(x)〉y|0〉s (3.29)

Using the parity and the cinc operator form the above examples, we can
implement an “add parity” function f(x) = x + parity(x) by providing a
scratch qubit:

qufunct addparity(quconst x,quvoid y,quscratch s) {
parity(x,s); // write parity to scratch
x -> y; // Fanout x to y
cinc(y,s); // increment y if parity is odd
parity(x,s); // clear scratch

}

qcl2> qureg x[2]; qureg y[2]; qureg s[1]; Mix(x);
[5/8] 0.5 |00000> + 0.5 |00010> + 0.5 |00001> + 0.5 |00011>
qcl2> addparity(x,y,s);
[5/8] 0.5 |00000> + 0.5 |01110> + 0.5 |01001> + 0.5 |01111>

Instead of providing a explicit scratch parameter, we can, of course, also use
a local register of type qureg, which is functionally equivalent:

qufunct addparity2(quconst x,quvoid y) {
qureg s[1];
parity(x,s);
x -> y;
cinc(y,s);
parity(x,s);

}

qcl2> qureg x[2]; qureg y[2]; Mix(x);
[4/8] 0.5 |00000> + 0.5 |00010> + 0.5 |00001> + 0.5 |00011>
qcl2> addparity2(x,y);
[4/8] 0.5 |00000> + 0.5 |01110> + 0.5 |01001> + 0.5 |01111>
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Explicit scratch parameters are useful to save memory, if a quantum function
F is to be used by another operator U , which still has empty scratch registers
at the moment, the suboperator is called, which would e.g. be the case if U
is of the form

U(x,y, s, . . .) =

(
l∏

i=2

Ui(x,y, s, . . .)

)
F (x,y, s)U1(x,y, . . .) (3.30)

Since both, explicit scratch parameters of type quscratch and local registers
of type qureg, have to be uncomputed manually, they are especially useful
for quantum functions U : |x, 0, 0〉 → |x, f(s(x), x), 0〉 of the form

U(x,y, s) = S(x, s)F (x, s,y)S†(x, s) (3.31)

if S is invariant to x and F is invariant to x and s, because the uncomputation
of s doesn’t require an additional register to temporarily save y (see 3.3.1.5)
as would be the case, if a managed local scratch register of type quscratch

would be used instead (see below).

3.4.7 Pseudo-classical Gates

3.4.7.1 Base Permutation

The most general form for specifying an n qubit pseudo-classical operator U ,
is by explicitly defining the underlying permutation π of base-vectors:

Upc. =
2n−1∑

i=0

|πi〉〈i| = 〈π0, π1 . . . π2n−1〉 (3.32)

QCL provides external operators for vector permutations for |π| = 2, 4, 8,
16, 32 and 64 which the programmer can use to directly implement a custom
set of 1 to 6 qubit pseudo-classical operators:

extern qufunct Perm2(int p0 ,int p1 ,qureg q);
extern qufunct Perm4(int p0 ,int p1 ,int p2 ,int p3 ,qureg q);
extern qufunct Perm8(...,qureg q);
extern qufunct Perm16(...,qureg q);
extern qufunct Perm32(...,qureg q);
extern qufunct Perm64(...,qureg q);

Base permutations are checked for unitarity before they are applied (i.e. it
is verified that the given integer sequence is in fact a permutation)

qcl> qureg q[3];
qcl> Perm8(0,0,1,2,3,4,5,6,q);
! external error: no permutation
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3.4.7.2 Fanout

The Fanout operation is a quantum function (see 2.2.2.5) and stands for a
class of transformations with the characteristic Fanout : |x, 0〉 → |x, x〉

The external fanout operator of QCL is defined as

Fanout : |x, y〉 → |x, x⊕ y〉, (3.33)

however, it is considered bad programming style to rely on this particular
implementation.

extern qufunct Fanout(quconst a,quvoid b);

QCL also provides the special syntax a->b and a<-b as abbreviations for
Fanout(a,b) and !Fanout(a,b).

3.4.7.3 Swap

The Swap operator exchanges the qubits of two equal sized registers (Swap :
|x, y〉 → |y, x〉). A one to one qubit Swap operator has the transformation
matrix

Swap =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (3.34)

extern qufunct Swap(qureg a,qureg b);

As with the fanout operator, a<->b is syntactic sugar for Swap(a,b).

3.4.7.4 Not and Controlled Not

The not operator C inverts a qubit. Its transformation matrix is

C =

(
0 1
1 0

)
(3.35)

The controlled-not operator C[[e]] is the conditional operator (see 2.2.2.6) to
C with the enable register e:

C[[e]] : |b〉|ε〉e →
{
|1− b〉 |ε〉e if ε = 111 . . .
|b〉|ε〉e otherwise

(3.36)

extern qufunct Not(qureg q);
extern qufunct CNot(qureg q,quconst c);
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The QCL versions of Not and CNot also work on target registers, in which
case C[[e]] is applied to all qubits:

qcl> qureg q[4]; qureg p[4];
qcl> Not(q);
[8/8] 1 |00001111>
qcl> CNot(p,q);
[8/8] 1 |11111111>

3.5 Programming Techniques

3.5.1 Design of Quantum Algorithms

As has been shown in 3.1.2, quantum computers and probabilistic classical
computers are computationally equivalent, but for certain tasks, quantum
algorithms can provide a more efficient solution than classical implementa-
tions.

In order to achieve any speedup over classical algorithms, it is necessary
to take advantage of the unique features of quantum computing namely

• Superpositioning

• Quantum Parallelism

• Interference

3.5.1.1 Superpositioning

A key element in any universal programming language is conditional branch-
ing. Any classical program can be modeled as a decision tree where each
node corresponds to a binary state sn and leads to one or more successor
states s

(i)
n+1. On a deterministic Turing machine (TM), only one of those

transitions sn → s
(k)
n+1 is possible, so the computational path 〈s0, s1, . . . sn〉 is

predetermined.
On a probabilistic TM, the transitions are characterized by probabilities

pi with
∑
i pi = 1 and one of the possible successor states s

(i)
n+1 is chosen

accordingly at random.
Since the eigenvectors |i〉 directly correspond to classical binary states,

we might interpret a unitary transformation

U : |s〉 →∑

s′
uss′|s′〉 with s, s′ ∈ Bn and uss′ ∈ C (3.37)

as a probabilistic transition form the classical state s to the successor states
s′ with the transition probabilities ps′ = |uss′|2, but unless we perform a
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measurement, the resulting machine state remains in a superposition of all
possible classical successor states

|Ψ〉 = |sn〉 U−→ |Ψ′〉 =
∑

i

u
sns

(i)
n+1
|s(i)
n+1〉 (3.38)

So from a classical point of view, we can consider a unitary operator which
transforms an eigenstate into a superposition of n eigenstates with nonzero
amplitudes as a 1–n fork-operation, which enables a quantum computer to
follow several classical computational paths at once.

Most non-classical algorithms take advantage of this feature by bringing
a register into a even superposition of eigenstates to serve as search space.
This can be achieved by applying the Hadamard transformation (see 3.4.4.3)
to each qubit

[0/4] 1 |0000>
qcl> qureg q[2]; // allocate 2-qubit register
qcl> Mix(q[0]); // rotate first qubit
[2/4] 0.707107 |0000> + 0.707107 |0001>
qcl> Mix(q[1]); // rotate second qubit
[2/4] 0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>

Classically, this can be viewed as a binary decision tree with a 50% chance
for each bit to flip. For an n-qubit register, this leads to 2n classical compu-
tational paths all of which are followed simultaneously resulting in a super-
position of 2n eigenvectors.

Since the Hadamard transforms for each single qubit commute, we can
a-posteriori emulate classic probabilistic behavior by performing a measure-
ment on the single qubits; thereby, the temporal order of the measurements is
unimportant so we can force a decision on the second qubit before we decide
on the the first and reconstruct the classical computational path in reverse

qcl> measure q[1]; // second qubits gives 0
[2/4] 0.707107 |0000> + 0.707107 |0001>
qcl> measure q[0]; // first qubit gives 1
[2/4] 1 |0001>

3.5.1.2 Quantum Parallelism

If we restrict unitary transformations to pseudo-classical operators (see 2.2.2.4)
then the classical decision tree degenerates into a list and we end up with the
functionality of a classical reversible computer i.e. for any bijective binary
function f there is a corresponding pseudo-classical operator

Uf : |s〉 → |f(s)〉 with s ∈ Bn and f : Bn → Bn (3.39)



CHAPTER 3. QUANTUM PROGRAMMING 71

The restriction to bijective functions is not a severe as it seems, since for any
general binary function g a corresponding quantum function

Ug : |s, 0〉 → |s, g(s)〉 with s ∈ Bn and f : Bn → Bn (3.40)

can be constructed, which implements g with a maximum overhead of O(
√
n)

in space- andO(2) time-complexity, so besides this minor performance penalty,
a quantum computer with only pseudo-classical operators is functionally
equivalent to a deterministic classical computer.

However, if we use a quantum function on an superposition of eigenstates,
the same classical computation is performed on all bit-strings simultaneously.

|Ψ〉 =
∑
s

|s, 0〉 Ug−→ |Ψ′〉 =
∑
s

|s, g(s)〉 (3.41)

In classical terms, this can be described as a SIMD (single instruction, mul-
tiple date) vector operation, in quantum terms this feature is referred to as
quantum parallelism.

As an example, lets consider a full binary adder

ADD(a,b, s) : |a〉a|b〉b|0〉s → |a〉a|b〉b|a+ b〉s (3.42)

Using the controlled-not operator C[[e]] (see 3.4.7.4), this can be implemented
as

ADD(a,b, s) = C[[ab]](s1)C[[b]](s0)C[[a]](s0) with s = s0s1 (3.43)

If we put the argument qubits a and b into an even superposition of |0〉 and
|1〉, then we can perform the addition on all possible combinations of inputs
simultaneously:

qcl> qureg a[1]; // argument a
qcl> qureg b[1]; // argument b
qcl> qureg s[2]; // target register s=a+b
qcl> Mix(a & b); // bring arguments into superposition
[4/4] 0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>
qcl> CNot(s[0],a); // calculate low bit of sum
[4/4] 0.5 |0000> + 0.5 |0010> + 0.5 |0101> + 0.5 |0111>
qcl> CNot(s[0],b);
[4/4] 0.5 |0000> + 0.5 |0110> + 0.5 |0101> + 0.5 |0011>
qcl> CNot(s[1],a & b); // calculate high bit of sum
[4/4] 0.5 |0000> + 0.5 |0110> + 0.5 |0101> + 0.5 |1011>
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3.5.1.3 Interference

While superpositioning and quantum parallelism allow us to perform an ex-
ponentially large number of classical computations in parallel, the only way
to read out any results is by performing a measurement whereby all but one
of the superpositioned eigenstates get discarded. Since it doesn’t make any
difference if the computational path is determined during the calculation (as
with the probabilistic TM) or a-posteriori (by quantum measurement), the
use of quantum computers wouldn’t provide any advantage over probabilistic
classical computers.

Quantum states, however, are not merely a probability distribution of
binary values but are vectors i.e. each eigenstate in a superposition isn’t
characterized by a real probability, but a complex amplitude, so

|ψ1〉 =
1√
2
(|0〉+ |1〉) and |ψ2〉 =

1√
2
(|0〉 − |1〉) (3.44)

describe different states, even if they have the same probability spectrum.
So, while on a probabilistic TM, the probabilities of two different com-

putational paths leading to the same final state s simply add up, this is not
necessarily the case on a quantum computer since generally

|α+ β|2 6= |α|2 + |β|2 for α, β ∈ C (3.45)

To illustrate this concept, consider the three states

|ψ1〉 = |0〉, |ψ2〉 = |1〉 and |ψ3〉 =
1√
2
(|0〉+ |1〉) (3.46)

If we apply the Hadamard-transform H (see 3.4.4.3) to the eigenstates |ψ1〉
and |ψ2〉 we get

|ψ′1〉 = H |ψ1〉 =
1√
2
(|0〉+ |1〉) and |ψ′2〉 = H |ψ2〉 =

1√
2
(|0〉− |1〉) (3.47)

Since |ψ′1〉 and |ψ′2〉 have the same probability distribution and |ψ3〉 is merely
a superposition of |ψ1〉 and |ψ2〉, classically we would assume that |ψ′3〉 also
shows the same probability spectrum, however

|ψ′3〉 = H |ψ3〉 =
1√
2
(|ψ′1〉+ |ψ′2〉) = |0〉 (3.48)

so in case of |0〉 the probabilities added up while in case of |1〉, the complex
amplitudes had opposing signs leading to a partial probability of 0. This
phenomenon is referred to as positive or negative interference.
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So while the computational paths on a probabilistic TM are independent,
interference allows computations on superpositioned states to interact and it
is this interaction which allows a quantum computer to solve certain problems
more efficiently than classical computers. The foremost design principle for
any quantum algorithm therefor is to use interference to increase the prob-
ability of “interesting” eigenstates while trying to reduce the probability of
“dull” states, in order to raise the chance that a measurement will pick one
of the former.

Since any unitary operator U can also be regarded as a base-transformation
(see 1.3.2.6), the above problem can also be reformulated as finding an ap-
propriate observable for the measurement, thereby effectively replacing the
register observable S (see 2.2.1.5) by an observable S̃ with the Hermitian
operator

S̃ = U(s)S U †(s) (3.49)

If the whole machine state is measured at once, then the eigenvalues |̃ı〉 of S̃
are the column vectors of U

S̃ |̃ı〉 = U S U † |̃ı〉 = i |̃ı〉 with |̃ı〉 = U |i〉 =
∑

j

uji|j〉 (3.50)

Fourier transformations are esp. useful, if global properties of classic
functions such as periodicy are of interest for the problem.

3.5.2 Dealing with Reversibility

In 2.2.2.5 we have shown that for any non-reversible boolean function f :
Bn → Bm there exists a set of unitary quantum functions

F : |x〉x|0〉y → |x〉x|f(x)〉y with |x| = n and |y| = m (3.51)

which can be used to circumvent the inherent restriction of quantum com-
puters to reversible operations.

3.5.2.1 Register Reuse

While keeping a copy of the argument will allow us to compute non reversible
functions, this also forces us to provide extra storage for intermediate results.
Since longer calculations usually involve the composition of many quantum
functions this would leave us with a steadily increasing amount of “junk” bits
which are of no concern for the final result. A straightforward implementation
of f(x) = l(k(h(g(x)))) already uses 3 additional registers (function values
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are in prefix notation, O stands for a quantum function O : |x, 0〉 → |x, o(x)〉,
indices indicate the registers operated on):

|x, 0, 0, 0, 0〉 G12−→ |x, gx, 0, 0, 0〉 H23−→ |x, gx, hgx, 0, 0〉 K34−→ (3.52)

|x, gx, hgx, khgx, 0〉 L45−→ |x, gx, hgx, khgx, lkhgx〉
Generally, a composition of n non-revertible functions would require n − 1

registers to store intermediary results.
A simple and elegant solution of this problem was proposed by Bennet

[8, 9]: If a composition of two non-reversible functions f(x) = h(g(x)) is to
be computed, the scratch space for the intermediate result can be “recycled”
using the following procedure:

|x, 0, 0〉 G12−→ |x, g(x), 0〉 H23−→ |x, g(x), h(g(x))〉 G†12−→ |x, 0, f(x)〉 (3.53)

The last step is merely the inversion of the first step and uncomputes the
intermediate result. The second register can then be reused for further com-
putations.

Without scratch-management, the evaluation of a composition of depth
d needs d operations and consumes d− 1 junk registers. Bennet’s method of
uncomputing can then be used to trade space against time: Totally uncom-
puting of all intermediate results needs 2d− 1 operations and d− 1 scratch
registers, which is useful, if the scratch can be reused in the further compu-
tation.

By a combined use of r registers as scratch and junk space, a composition
of depth d = (r + 2)(r + 1)/2 can be evaluated with 2d − r − 1 = (r +
1)2 operations. An calculation of f(x) = l(k(j(i(h(g(x)))))) on a 4-register
machine (1 input, 1 output and 2 scratch/junk registers) would run as follows
(function values are in prefix notation):

|x, 0, 0, 0〉 I34H23G12−→ |x, gx, hgx, ihgx〉 G
†
12H

†
23−→ |x, 0, 0, ihgx〉 J

†
42K23J42−→ (3.54)

|x, 0, kjihgx, ihgx〉 L32−→ |x, lkjihgx, kjihgx, ihgx〉 = |x, fx, kjihgx, ihgx〉
By using this method, we can reduce the needed space by O(1/

√
d) with a

computation overhead of O(2).

3.5.2.2 Junk Registers

If the computation of a function f(x) fills a scratch register with the junk
bits j(x) (i.e. |x, 0, 0〉 → |x, f(x), j(x)〉), a similar procedure can free the
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register again:

|x, 0, 0, 0〉 F123−→ |x, f(x), j(x), 0〉 Fanout24−→ |x, f(x), j(x), f(x)〉 F
†
123−→ |x, 0, 0, f(x)〉

(3.55)
Again, the last step is the inversion of the first. The intermediate step is
a Fanout operation (see 3.4.7.2) which copies the function result into an
additional empty register. Possible implementations are e.g.

Fanout : |x, y〉 → |x, x⊕ y〉 or |x, (x+ y) mod 2n〉 (3.56)

3.5.2.3 Overwriting Invertible Functions

As pointed out in 2.2.2.4, every invertible function f : Z2n → Z2n has a
corresponding pseudo classic operator F : |i〉 → |f(i)〉. While a direct im-
plementation of F is possible with any complete set of pseudo-classical oper-
ators6, the implementation as a quantum function can be substantially more
efficient.

If we have efficient implementations of the quantum functions Uf : |i, 0〉 →
|i, f(i)〉 and Uf−1 : |i, 0〉 → |i, f−1(i)〉, then an overwriting operator F ′ can
be constructed by using an n qubit scratch register.

F ′ : |i, 0〉 Uf−→ |i, f(i)〉 Swap−→ |f(i), i〉
U†

f−1−→ |f(i), 0〉 (3.57)

6One example would be the Toffoli gate T : |x, y, z〉 → |x⊕ (y ∧ z), y, z〉 which can be
used to implement any pseudo-classical operator for 3 or more qubits



Chapter 4

Quantum Algorithms

This chapter introduces two quantum “killer applications” — Grover’s fast
quantum search and Shor’s factorization algorithm — which both solve tra-
ditional problems in computing science and provide substantial speedup over
the fastest known classical solutions.

4.1 Grover’s Database Search

Many problems in classical computer science can be reformulated as search-
ing a list for a unique element which matches some predefined condition. If
no additional knowledge about the search-condition C is available, the best
classical algorithm is a brute-force search i.e. the elements are sequentially
tested against C and as soon as an element matches the condition, the al-
gorithm terminates. For a list of N elements, this requires an average of N

2

comparisons.
By taking advantage of quantum parallelism and interference, Grover

found a quantum algorithm which can find the matching element in only
O(
√
N) steps. [20]

4.1.1 Formulating a Query

The most straightforward way, albeit not the most convenient for the algo-
rithm, to implement the search condition is as a quantum function

query : |x, 0〉 → |x,C(x)〉 with x ∈ Bn and C : Bn → B (4.1)

as this allows us to formulate the problem within the realms of classical
boolean logic.

76



CHAPTER 4. QUANTUM ALGORITHMS 77

Grover’s algorithm can then be used to solve the equation C(x) = 1 while
besides the fact that a solution exists and that it is unique, no additional
knowledge about C(x) is required.

Usually, the implementation of query will be complicated enough as not
to allow an efficient algebraic solution, but since the inner structure of C(x)
doesn’t matter for the algorithm, we can easily implement a test query with
the solution n as

qufunct query(qureg x,quvoid f,int n) {
int i;

for i=0 to #x-1 { // x -> NOT (x XOR n)
if not bit(n,i) { Not(x[i]); }

}
CNot(f,x); // flip f if x=1111..
for i=0 to #x-1 { // x <- NOT (x XOR n)

if not bit(n,i) { !Not(x[i]); }
}

}

A more realistic application would be the search for an encryption key in a
known-plaintext attack. With p being the known plaintext to the ciphertext
c, a QCL implementation could look like this:

qufunct encrypt(int p,quconst key,quvoid c) { ... }

qufunct query(int c,int p,quconst key,quvoid f) {
int i;
quscratch s[blocklength];

encrypt(p,key,s);
for i=0 to #s-1 { // s -> NOT (s XOR p)

if not bit(p,i) { Not(x[i]); }
}
CNot(f,x); // flip f if s=1111..

}

Note that, unlike the example above, this query function uses a local scratch
register, so it isn’t necessary to explicitely uncompute s, as this will be taken
care of by QCL’s internal scratch space management (see 3.3.1.5).

4.1.2 The Algorithm

4.1.2.1 Setting up the Search Space

The solution space of a n bit query condition C is Bn. On a quantum
computer, this search space can be implemented as a superposition of all
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eigenstates of an n qubit register, i.e.

|Ψ〉 =
1√
N

N∑

i=0

|i〉 with N = 2n (4.2)

In 3.5.1.1 we have shown how such a state can be prepared by a n-qubit
Hadamard transform

H : |i〉 → 2−
n
2

∑

j∈Bn

(−1)(i,j)|j〉 (4.3)

(see 3.4.4.3) of the initial machine state |0〉.

4.1.2.2 The Main Loop

The main loop of the algorithm consists of two steps

1. Perform a conditional phase shift which rotates the phase of all eigen-
vectors which match the condition C by π radians.

Q : |i〉 →
{
−|i〉 if C(i)
|i〉 if ¬C(i)

(4.4)

2. Apply a diffusion operator

D =
∑

ij

|i〉dij〈j| with dij =

{
2
N
− 1 if i = j
2
N

if i 6= j
(4.5)

Since only one eigenvector |i0〉 is supposed to match the search condition
C, the conditional phase shift will turn the initial even superposition into

|Ψ′〉 = − 1√
N
|i0〉+ 1√

N

∑

i6=i0
|i〉 (4.6)

The effect of the diffusion operator on an arbitrary eigenvector |i〉 is

D |i〉 = −|i〉+ 2

N

N−1∑

j=0

|j〉 (4.7)

so one iteration on a state of the form

|Ψ(k, l)〉 = k|i0〉+
∑

i6=i0
l|i〉 (4.8)

amounts to

|Ψ(k, l)〉 Q−→ |Ψ(−k, l)〉 D−→ |Ψ(
N − 2

N
k +

2(N − 1)

N
l,
N − 2

N
l − 2

N
k)〉

(4.9)
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4.1.2.3 Number of Iterations

If the above loop operator DQ is repeatedly applied to the initial superposi-
tion

|Ψ〉 = |Ψ(
1√
N
,

1√
N

)〉 =
1√
N

N−1∑

i=0

|i〉 (4.10)

then the resulting states is still of the form |Ψ(k, l)〉 and the complex ampli-
tudes k and l are described by the following system of recursions: [21]

kj+1 =
N − 2

N
kj +

2(N − 1)

N
lj (4.11)

lj+1 =
N − 2

N
lj − 2

N
kj (4.12)

Using the substitution sin2 θ = 1
N

the solution of the above system can
be written in closed form.

kj = sin((2j + 1)θ) (4.13)

lj =
1√

N − 1
cos((2j + 1)θ) (4.14)

The probability p to measure i0 is given as p = k2 and has a maximum
at θ = π

2(2j+1)
. Since for large lists, 1√

N
¿ 1 we can assume that sin θ ≈ θ

and π À 2θ and the number of iterations m for a maximum p is about
m = bπ

4

√
Nc with p > N−1

N
(due to rounding errors). Alternatively, if we are

content with p > 1
2
, then m = dπ

8

√
Ne iterations will do.

4.1.3 Implementation

4.1.3.1 The Query Operator

If we choose to formulate the query as quantum function with a flag qubit
f to allow for a strictly classical implementation, as suggested in 4.1.1, then
the operator Q can be constructed as

Q = query†(x, f)V (π)(f) query(x, f) (4.15)

by using the conditional phase gate V (φ) (see 3.4.4.4) and considering the
flag register f as temporary scratch space.
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4.1.3.2 The Diffusion Operator

Using the Hadamard Transform H (see 3.4.4.3) and a conditional phase ro-
tation R : |i〉 = −(−1)δi0|i〉, the diffusion operator

D =
∑

i,j

|i〉
(

2

N
− δij

)
〈j| (4.16)

can also be written as D = HRH since

HRH = − 1

N

∑

i,k,j

|i〉 (−1)(i,k)(−1)δk0(−1)(k,j) 〈j| and (4.17)

N−1∑

k=0

(−1)(i,k)(−1)δk0(−1)(k,j) = −2 +
N−1∑

k=0

(−1)(i,k)(k,j) = Nδij − 2 (4.18)

Using the not operator from 3.4.7.4 and a conditional phase gate V (φ)
we can implement the diffusion operator as

operator diffuse(qureg q) {
Mix(q); // Hadamard Transform
Not(q); // Invert q
CPhase(pi,q); // Rotate if q=1111..
!Not(q); // undo inversion
!Mix(q); // undo Hadamard Transform

}

In fact, the above operator implements −D, but since overall phases make
no physical difference, this doesn’t matter.

4.1.3.3 The Procedure grover

By using the above, we can now give a QCL implementation of the complete
algorithm:
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procedure grover(int n) {
int l=floor(log(n,2))+1; // no. of qubits
int m=ceil(pi/8*sqrt(2^l)); // no. of iterations
int x;
int i;
qureg q[l];
qureg f[1];

{
reset;
Mix(q); // prepare superposition
for i= 1 to m { // main loop

query(q,f,n); // calculate C(q)
CPhase(pi,f); // negate |n>
!query(q,f,n); // undo C(q)
diffuse(q); // diffusion operator

}
measure q,x; // measurement
print "measured",x;

} until x==n;
}

The procedure argument n is the number to be found; the size of the quantum
registers as well as the numbers of iterations are set accordingly:

qcl> grover(500);
: 9 qubits, using 9 iterations
: measured 500
qcl> grover(123);
: 7 qubits, using 5 iterations
: measured 74
: measured 123
qcl> grover(1234);
: 11 qubits, using 18 iterations
: measured 1234

4.2 Shor’s Algorithm for Quantum Factoriza-

tion

4.2.1 Motivation

In contrast to finding and multiplying of large prime numbers, no efficient
classical algorithm for the factorization of large number is known. An algo-
rithm is called efficient if its execution time i.e. the number of elementary
operations is assymtotically polynomial in the length of its input measured in
bits. The best known (or at least published) classical algorithm (the quadratic
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sieve) needs O
(
exp

(
(64

9
)1/3N1/3(lnN)2/3

))
operations for factoring a binary

number of N bits [12] i.e. scales exponentially with the input size.
The multiplication of large prime numbers is therefore a one-way function

i.e. a function which can easily be evaluated in one direction, while its
inversion is practically impossible. One-way functions play a major roll in
cryptography and are essential to public key crypto-systems where the key
for encoding is public and only the key for decoding remains secret.

In 1978, Rivest, Shamir and Adleman developed a cryptographic algo-
rithm based on the one-way character of multiplying two large (typically
above 100 decimal digits) prime numbers. The RSA method (named after
the initials of their inventors) became the most popular public key system
and is implemented in many communication programs.

While it is generally believed (although not formally proved) that effi-
cient prime factorization on a classical computer is impossible, an efficient
algorithm for quantum computers has been proposed in 1994 by P.W. Shor
[11].

4.2.2 The Algorithm

This section describes Shor’s algorithm from a functional point of view which
means that it doesn’t deal with the implementation for a specific hardware
architecture. A detailed implementation for the Cirac-Zoller gate can be
found in [13], for a more rigid mathematical description, please refer to [15]
and for a more detailed dicussion of the QCL implementation, look at [25].

4.2.2.1 Modular Exponentiation

Let N = n1n2 with the greatest common divisor gcd(n1, n2) = 1 be the
number to be factorized, x a randomly selected number relatively prime to
N (i.e. gcd(x,N) = 1) and expn the modular exponentiation function with
the period r:

expn(k,N) = xk modN, expn(k + r,N) = expn(k,N), xr ≡ 1 modN
(4.19)

The period r is the order of xmodN . If r is even, we can define a y = xr/2,
which satisfies the condition y2 ≡ 1 modN and therefore is the solution of
one of the following systems of equations:

y1 ≡ 1 modn1 ≡ 1 modn2 (4.20)

y2 ≡ −1 modn1 ≡ −1 modn2

y3 ≡ 1 modn1 ≡ −1 modn2

y4 ≡ −1 modn1 ≡ 1 modn2
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The first two systems have the trivial solutions y1 = 1 and y2 = −1 which
don’t differ from those of the quadratic equation y2 = 1 in Z or a Galois
field GF(p) (i.e. Zp with prime p). The last two systems have the non-
trivial solutions y3 = a, y4 = −a, as postulated by the Chinese remainder
theorem stating that a system of k simultaneous congruences (i.e. a system
of equations of the form y ≡ ai modmi) with coprime moduli m1, . . . ,mk

(i.e. gcd(mi,mj) = 1 for all i 6= j) has a unique solution y with 0 ≤ x <
m1m2 . . .mk.

4.2.2.2 Finding a Factor

If r is even and y = ±a with a 6= 1 and a 6= N − 1, then (a + 1) or (a − 1)
must have a common divisor with N because a2 ≡ 1 modN which means
that a2 = cN + 1 with c ∈ N and therefore a2 − 1 = (a + 1)(a − 1) = cN .
A factor of N can then be found by using Euclid’s algorithm to determine
gcd(N, a+ 1) and gcd(N, a− 1) which is defined as

gcd(a, b) =

{
b if amod b = 0

gcd(b, amod b) if amod b 6= 0
with a > b (4.21)

It can be shown that a random x matches the above mentioned conditions
with a probability p > 1

2
if N is not of the form N = pα or N = 2pα. Since

there are efficient classical algorithms to factorize pure prime powers (and
of course to recognize a factor of 2), an efficient probabilistic algorithm for
factorization can be found if the period r of the modular exponentiation can
be determined in polynomial time.

4.2.2.3 Period of a Function

Let F be quantum function F : |x, 0〉 → |x, f(x)〉 of the integer function
f : Z→ Z2m with the unknown period r < 2n.

To determine r, we need two registers, with the sizes of 2n and m qubits,
which should be reset to |0, 0〉.

As a first step we produce a homogenous superposition of all base-vectors
in the first register by applying an operator U with

U |0, 0〉 =
N−1∑

i=0

ci|i, 0〉 with |ci| = 1√
N

and N = 22n (4.22)

This can e.g. be achieved by the Hadamard transform H. Applying F to
the resulting state gives

|ψ〉 = F H |0, 0〉 = F
1

2n

N−1∑

i=0

|i, 0〉 =
1

2n

N−1∑

i=0

|i, f(i)〉 (4.23)
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A measurement of the second register with the result k = f(s) with s < r
reduces the state to

|ψ′〉 =
dN/re−1∑

j=0

c′j|rj + s, k〉 with c′j =
⌈
N

r

⌉− 1
2

(4.24)

The post-measurement state |ψ′〉 of the first register consists only of base-
vectors of the form |rj + s〉 since f(rj + s) = f(s) for all j. It therefore has
a discrete, homogenous spectrum.

It is not possible to directly extract the period r or a multiple of it by mea-
surement of the first register because of the random offset s. This problem
can be solved by performing a discrete Fourier transform (see 4.2.3)

DFT : |x〉 → 1√
N

N−1∑

y=0

e
2πi
N
xy |y〉 (4.25)

on the register, as the probability spectrum of the transformed state is in-
variant to the offset (i.e. only the phases but not the absolute value of the
complex amplitudes are effected).

|ψ̃′〉 = DFT |ψ′〉 =
N−1∑

i=0

c̃′i|i, k〉 (4.26)

c̃′i =

√
r

N

p−1∑

j=0

exp
(

2πi

N
i(jr + s)

)
=

√
r

N
eφi

p−1∑

j=0

exp
(

2πi

N
ijr

)
(4.27)

with φi = 2πi
is

N
and p =

⌈
N

r

⌉

If N = 22n is a multiple of r then c̃′i = eφi/
√
r if i is a multiple of N/r and

0 otherwise. But even if r is not a power of 2, the spectrum of |ψ̃′〉 shows
distinct peaks with a period of N/r because

lim
n→∞

1

n

n−1∑

k=0

e2πikα =

{
1 if α ∈ Z
0 if α 6∈ Z

(4.28)

This is also the reason why we use a first register of 2n qubits when r < 2n

because it guarantees at least 2n elements in the above sum and thus a peak
width of order O(1).

If we now measure the first register, we will get a value c close to λN/r
with λ ∈ Zr. This can be written as c/N = c · 2−2n ≈ λ/r. We can think
of this as finding a rational approximation a/b with a, b < 2n for the fixed
point binary number c · 2−2n. An efficient classical algorithm for solving this
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problem using continued fractions is described in [16] and is implemented in
the denominator function (appendix B.2).

Since the form of a rational number is not unique, λ and r are only
determined by a/b = λ/r if gcd(λ, r) = 1. The probability that λ and r are
coprime is greater then 1/ln r, so only O(n) tries are necessary for a constant
probability of success as close at 1 as desired.1

4.2.3 Quantum Fourier Transform

For a N dimensional vector |ψ〉, the discrete Fourier transform is defined as

DFT : |x〉 → 1√
N

N−1∑

y=0

e
2πi
N
xy |y〉 (4.29)

Since |ψ〉 is a combined state of n qubits, N is always a power of 2. The
classical fast Fourier Transform (FFT ) uses a binary decomposition of the
exponent to perform the transformation in O(n2n) steps.

As suggested by Coppersmith [7], the same principle could adapted be to
quantum computers by using a combination of Hadamard transformations H
(see 3.4.4.3) and conditional phase gates V (see 3.4.4.4). The indices below
indicate the qubits operated on:

DFT ′ =
n−1∏

i=1


Hn−i−1(

π

2
)
i−1∏

j=0

Vn−i−1,n−j−1(
2π

2i−j+1
)


 Hn−1 (4.30)

DFT ′ iterates the qubits form the MSB to the LSB, “splits” the qubits
with the Hadamard transformation and then conditionally applies phases

according to their relative binary position (e
2πi

2i−j+1 ) to each already split qubit.
The base-vectors of the transformed state |ψ̃′〉 = DFT ′ |ψ〉 are given in

reverse bit order, so to get the actual DFT , the bits have to be flipped.

operator dft(qureg q) { // main operator
const n=#q; // set n to length of input
int i; int j; // declare loop counters
for i=0 to n-1 {

for j=0 to i-1 { // apply conditional phase gates
CPhase(2*pi/2^(i-j+1),q[n-i-1] & q[n-j-1]);

}
Mix(q[n-i-1]); // qubit rotation

}
flip(q); // swap bit order of the output

}

1If the supposed period r′ = b derived form the rational approximation a/b ≈ c 2−2m

is odd or gcd(xr
′/2 ± 1, N) = 1, then one could try to expand a/b by some integer factor

k in order to guess the actual period r = kb.
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4.2.4 Modular Arithmetic

The most difficult part in implementing Shor’s algorithm is the construction
of an efficient quantum function for modular exponentiation.

expna,n(b, e) : |b〉b|0〉e → |b〉b|ab modn〉e (4.31)

Assuming we already have an implementation for modular addition, we
could use it to construct modular multiplication and finally exponentiation
since

ab modn =
dld be∑

i=0

bi
(
2iamodn

)
with bi ∈ B (4.32)

ab modn =
dld be∏

i=0

(
a2i bi modn

)
with bi ∈ B (4.33)

4.2.4.1 Modular Addition

The addition modulo n of a classic integer a and a quantum register b can
result in either a+ b or (a−n) + b), depending on the particular base-vector
|b〉.

While for b < n the operation is revertible, this is not the case for b ≥ n,
so, if n doesn’t happen to be a power of 2, besides the target resister ys for
the sum, we need an additional flag-qubit yy to allow for a quantum function
addn which is both, unitary and invariant to b:

addna,n : |b〉b|0〉ys
|0〉yf

→
{ |b〉b|a+ b〉ys

|1〉yflag
if a+ b < n

|b〉b|a+ b− n〉ys
|0〉yflag

if a+ b ≥ n
(4.34)

The actual implementation of addn can be found in appendix B.5.
Since addnn−a,n is a quantum function for modular subtraction and thus

implements the inverse function f−1
a,n(b) = b− amodn to fa,n = a+ b modn,

we can construct an overwriting version oaddn of modular addition, by using
the method introduced in 3.5.2.3:

F ′ : |i, 0〉 Uf−→ |i, f(i)〉 Swap−→ |f(i), i〉
U†

f−1−→ |f(i), 0〉 (4.35)

addnn−a,n doesn’t invert the overflow flag yf , so we have to switch it manu-
ally:

U †f−1 = addnn−a,n(b,ys,yf ) (4.36)

The original target registers ys and yf can now be allocated as unmanaged
local scratch.
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qufunct oaddn(int a,int n,qureg sum,quconst e) {
qureg j[#sum];
qureg f[1];

addn(a,n,sum,f,j,e); // junk -> a+b mod n
Swap(sum,j); // swap junk and sum
CNot(f,e); // toggle flag
!addn(n-a,n,sum,f,j,e); // uncompute b to zero

}

The register e is an enable register (see 2.2.2.6), so addn and oaddn are in
fact conditional operators which only have an effect on eigenvectors of the
form |x〉|111 . . .〉e.

4.2.4.2 Modular Multiplication

Modular multiplication is merely a composition of conditional additions for
each qubit of b. The first summand can be slightly optimized, since the
accumulator (prod) is still empty.

qufunct muln(int a,int n,quconst b,qureg prod,quconst e) {
int i;

for i=0 to #prod-1 {
if bit(a,i) { CNot(prod[i],b[0] & e); }

}
for i=1 to #b-1 {

oaddn(2^i*a mod n,n,prod,b[i] & e);
}

}

As above, we can construct an overwriting version, if an implementation of
the inverse function exists. This is the case if gcd(a, n) = 1 so a and n are
relatively prime, because then the modular inverse a−1 with a−1amodn = 1
exists. Since we intend to use the operator for the Shor algorithm which
demands that gcd(ak, n) = 1, this is good enough for us.

By using two conditional XOR gates defined as

cxor : |a〉a|b〉b|ε〉e →
{
|a〉a|a⊕ b〉b|ε〉e if ε = 111 . . .
|a〉a|b〉b|ε〉e otherwise

(4.37)

for swapping the registers2 we can implement a conditional overwriting ver-
sion of muln defined as

omuln[[e]],a,n|b〉 → |ab modn〉 (4.38)

2normally, 3 XOR operations are necessary to swap a register, but since one register is
empty, 2 XORs suffice.
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qufunct omuln(int a,int n,qureg b,quconst e) {
qureg j[#b];

muln(a,n,b,j,e);
!muln(invmod(a,n),n,j,b,e);
cxor(j,b,e);
cxor(b,j,e);

}

4.2.4.3 Modular Exponentiation

As with muln, we can construct modular exponentiation by conditionally
applying omuln with the qubits of the exponents as enable string. Before we
can start the iteration, the accumulator (ex) has to be initialized by 1.

qufunct expn(int a,int n,quconst b,quvoid ex) {
int i;

Not(ex[0]); // start with 1
for i=0 to #b-1 {

omuln(powmod(a,2^i,n),n,ex,b[i]); // ex -> ex*a^2^i mod n
}

}

4.2.5 Implementation

4.2.5.1 Auxiliary Functions

The implementation of the Shor algorithm uses the following functions:

• boolean testprime(int n)

Tests whether n is a prime number

• boolean testprimepower(int n)

Tests whether n is a prime power3

• int powmod(int x,int a,int n)

Calculates xa modn

• int denominator(real x,int qmax)

Returns the denominator q of the best rational approximation p
q
≈ x

with p, q < qmax

For the actual implementations of these functions, please refer to appendix B.2.

3Since both testfunctions are not part of the algorithm itself, short but inefficient
implementations with O(

√
n) have been used
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4.2.5.2 The Procedure shor

The procedure shor checks whether the integer number is suitable for quan-
tum factorization, and then repeats Shor’s algorithm until a factor has been
found.

procedure shor(int number) {
int width=ceil(log(number,2)); // size of number in bits
qureg reg1[2*width]; // first register
qureg reg2[width]; // second register
int qmax=2^width;
int factor; // found factor
int m; real c; // measured value
int x; // base of exponentiation
int p; int q; // rational approximation p/q
int a; int b; // possible factors of number
int e; // e=x^(q/2) mod number

if number mod 2 == 0 { exit "number must be odd"; }
if testprime(number) { exit "prime number"; }
if testprimepower(number) { exit "prime power"; };

{
{ // generate random base

x=floor(random()*(number-3))+2;
} until gcd(x,number)==1;
print "chosen random x =",x;
Mix(reg1); // Hadamard transform
expn(x,number,reg1,reg2); // modular exponentiation
measure reg2; // measure 2nd register
dft(reg1); // Fourier transform
measure reg1,m; // measure 1st register
reset; // clear local registers
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if m==0 { // failed if measured 0
print "measured zero in 1st register. trying again ...";

} else {
c=m*0.5^(2*width); // fixed point form of m
q=denominator(c,qmax); // find rational approximation
p=floor(q*m*c+0.5);
print "measured",m,", approximation for",c,"is",p,"/",q;
if q mod 2==1 and 2*q<qmax { // odd q ? try expanding p/q

print "odd denominator, expanding by 2";
p=2*p; q=2*q;

}
if q mod 2==1 { // failed if odd q

print "odd period. trying again ...";
} else {

print "possible period is",q;
e=powmod(x,q/2,number); // calculate candidates for
a=(e+1) mod number; // possible common factors
b=(e+number-1) mod number; // with number
print x,"^",q/2,"+ 1 mod",number,"=",a,",",

x,"^",q/2,"- 1 mod",number,"=",b;
factor=max(gcd(number,a),gcd(number,b));

}
}

} until factor>1 and factor<number;
print number,"=",factor,"*",number/factor;

}

4.2.5.3 Factoring 15

15 is the smallest number that can be factorized with Shor’s algorithm, as it’s
the product of the smallest odd prime numbers 3 and 5. Our implementation
of the modular exponentiation needs 2l + 1 qubits scratch space with l =
dld(15+1)e = 4. The algorithm itself needs 3l qubits, so a total of 21 qubits
must be provided.

$ qcl -b21 -i shor.qcl
qcl> shor(15)
: chosen random x = 4
: measured zero in 1st register. trying again ...
: chosen random x = 11
: measured 128 , approximation for 0.500000 is 1 / 2
: possible period is 2
: 11 ^ 1 + 1 mod 15 = 12 , 11 ^ 1 - 1 mod 15 = 10
: 15 = 5 * 3

The first try failed because 0 was measured in the first register of |ψ′〉 and
λ/r = 0 gives no information about the period r.

One might argue that this is not likely to happen, since the first register
has 8 qubits and 256 possible base-vectors, however, if a number n is to be
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factored, one might expect a period about
√
n assuming that the prime fac-

tors of n are of the same order of magnitude. This would lead to a period q√
n

after the DFT and the probability p = 1√
n

to accidentally pick the basevector

|0〉, would be p = 25.8%.
In the special case of a start value x = 4 the period of the modular

exponentiation is 2 since 42 mod 15 = 1, consequently the Fourier spectrum
shows 2 peaks at |0〉 and |128〉 and p = 1/2.

The second try also had the same probability of failure since 112 mod 15 =
1, but this time, the measurement picked the second peak in the spectrum
at |128〉. With 128/28 = 1/2 = λ/r, the period r = 2 was correctly identified
and the factors gcd(112/2 ± 1 , 15) = {3, 5} to 15 have been found.
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Appendix A

QCL Syntax

A.1 Expressions

complex-coord ← [ + | - ] digit { digit } [ . { digit }]
const ← digit { digit } [ . { digit }]

← ( complex-coord , complex-coord )

← true | false
← " { char } "

expr ← const
← identifier [ [ expr [( : | .. ) expr ] ] ]
← identifier ( [ expr { , expr }] )
← ( expr )

← # expr
← expr ^ expr
← - expr
← expr ( * | / ) expr
← expr mod expr
← expr ( + | - | & ) expr
← expr ( == | != | < | <= | > | >= ) expr
← not expr
← expr and expr
← expr ( or | xor ) expr
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A.2 Statements

block ← { stmt { stmt } }
option ← letter { letter | - }

stmt ← [ ! ] identifier ( [ expr { , expr }] ) ;

← identifier = expr ;

← expr ( -> | <- | <-> ) expr ;

← for identifier = expr to expr [ step expr ] block
← while expr block
← block until expr ;

← if expr block [ else block ]
← return expr ;

← input [ expr ] , identifier ;

← print expr [ , expr ] ;
← exit [ expr ] ;
← measure expr [ , identifier ] ;
← reset ;

← dump [ expr ] ;
← list [ identifier { , identifier }] ;
← ( load | save ) [ expr ] ;
← shell ;

← set option [ , expr ] ;
← stmt ;

A.3 Definitions

type ← int | real | complex | string
← qureg | quvoid | quconst | quscratch

const-def ← const identifier = expr ;

var-def ← type identifier [ expr ] ;

← type identifier [ = expr ] ;
arg-def ← type identifier
arg-list ← ( [ arg-def { , arg-def }] )

body ← { { const-def | var-def } { stmt } }
def ← const-def | var-def
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← type identifier arg-list body
← procedure identifier arg-list body
← operator identifier arg-list body
← qufunct identifier arg-list body
← extern operator identifier arg-list ;
← extern qufunct identifier arg-list ;



Appendix B

The Shor Algorithm in QCL

B.1 default.qcl

extern qufunct Fanout(quconst a,quvoid b);

extern qufunct Swap(qureg a,qureg b);

extern operator Matrix2x2(
complex u00,complex u01,
complex u10,complex u11,

qureg q);

extern operator Matrix4x4(
complex u00,complex u01,complex u02,complex u03,
complex u10,complex u11,complex u12,complex u13,
complex u20,complex u21,complex u22,complex u23,
complex u30,complex u31,complex u32,complex u33,

qureg q);

extern operator Matrix8x8(
complex u00,complex u01,complex u02,complex u03,
complex u04,complex u05,complex u06,complex u07,
complex u10,complex u11,complex u12,complex u13,
complex u14,complex u15,complex u16,complex u17,
complex u20,complex u21,complex u22,complex u23,
complex u24,complex u25,complex u26,complex u27,
complex u30,complex u31,complex u32,complex u33,
complex u34,complex u35,complex u36,complex u37,
complex u40,complex u41,complex u42,complex u43,
complex u44,complex u45,complex u46,complex u47,
complex u50,complex u51,complex u52,complex u53,
complex u54,complex u55,complex u56,complex u57,
complex u60,complex u61,complex u62,complex u63,
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complex u64,complex u65,complex u66,complex u67,
complex u70,complex u71,complex u72,complex u73,
complex u74,complex u75,complex u76,complex u77,

qureg q);

extern qufunct Perm2(int p0 ,int p1 ,qureg q);

extern qufunct Perm4(int p0 ,int p1 ,int p2 ,int p3 ,qureg q);

extern qufunct Perm8(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,

qureg q);

extern qufunct Perm16(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,

qureg q);

extern qufunct Perm32(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,
int p16,int p17,int p18,int p19,int p20,int p21,int p22,int p23,
int p24,int p25,int p26,int p27,int p28,int p29,int p30,int p31,

qureg q);

extern qufunct Perm64(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,
int p16,int p17,int p18,int p19,int p20,int p21,int p22,int p23,
int p24,int p25,int p26,int p27,int p28,int p29,int p30,int p31,
int p32,int p33,int p34,int p35,int p36,int p37,int p38,int p39,
int p40,int p41,int p42,int p43,int p44,int p45,int p46,int p47,
int p48,int p49,int p50,int p51,int p52,int p53,int p54,int p55,
int p56,int p57,int p58,int p59,int p60,int p61,int p62,int p63,

qureg q);

extern qufunct Not(qureg q);

extern qufunct CNot(qureg q,quconst c);

extern operator CPhase(real phi,qureg q);

extern operator Rot(real theta,qureg q);

extern operator Mix(qureg q);

extern qufunct ModExp(int n,int x,quconst a,quvoid b);

boolean bit(int n,int b) {
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return n/2^b mod 2 == 1;
}

qufunct set(int n,qureg q) {
int i;
for i=0 to #q-1 {

if bit(n,i) { Not(q[i]); }
}

}

const pi=3.141592653589793238462643383279502884197;

B.2 functions.qcl

set allow-redefines 1;

// returns the smallest factor > 1 of n or 1 if n is prime

int findfactor(int n) {
int i;
if n<=0 { exit "findfactor takes only positive args"; }
for i=2 to floor(sqrt(n)) {

if n mod i == 0 { return i; }
}
return 1;

}

// test if n is a prime number

boolean testprime(int n) {
int i;
if n<=1 { return false; }
for i=2 to floor(sqrt(n)) {

if n mod i == 0 { return false; }
}
return true;

}

// test if n is a prime power

boolean testprimepower(int n) {
int i;
int f;
i=2;
while i<=floor(sqrt(n)) and f==0 {

if n mod i == 0 { f=i; }
i=i+1;

}
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for i=2 to floor(log(n,f)) {
if f^i==n { return true; }

}
return false;

}

// returns x^a mod n

int powmod(int x,int a,int n) {
int u=x;
int y=1;
int i;

for i=0 to 30 {
if a/2^i mod 2 == 1 { y=y*u mod n; }
u=u^2 mod n;

}
return y;

}

// return the modular inverse to a mod n or 0 if gcd(a,n)>1

int invmod(int a,int n) {
int b=a;
int i;

if gcd(a,n)>1 { return 0; }
for i=1 to n {

if b*a mod n == 1 { return b; }
b=b*a mod n;

}
return 0;

}

// finds the denominator q of the best rational approximation p/q
// for x with q<qmax

int denominator(real x,int qmax) {
real y=x;
real z;
int q0;
int q1=1;
int q2;

while true {
z=y-floor(y);
if z<0.5/qmax^2 { return q1; }
y=1/z;
q2=floor(y)*q1+q0;
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if q2>=qmax { return q1; }
q0=q1; q1=q2;

}
}

set allow-redefines 0;

B.3 qufunct.qcl

set allow-redefines 1;

// pseudo classic operator to swap bit order

qufunct flip(qureg q) {
int i; // declare loop counter
for i=0 to #q/2-1 { // swap 2 symmetric bits

Swap(q[i],q[#q-i-1]);
}

}

// Conditional Xor

qufunct cxor(quconst a,qureg b,quconst e) {
int i;
for i=0 to #a-1 {

CNot(b[i],a[i] & e);
}

}

// Conditional multiplexed binary adder for one of 2 classical
// bits and 1 qubit.
// Full adder if #sum=2, half adder if #sum=1.

qufunct muxaddbit(boolean a0,boolean a1,quconst sel,
quconst b,qureg sum,quconst e) {

qureg s=sel; // redeclare sel as qureg

if (a0 xor a1) { // a0 and a1 differ?
if a0 { Not(s); } // write a into sect qubit
if #sum>1 { // set carry if available

CNot(sum[1],sum[0] & s & e);
}
CNot(sum[0],s & e); // add a
if a0 { Not(s); } // restore sect qubit

} else {
if a0 and a1 {

if #sum>1 { // set carry if available
CNot(sum[1],sum[0] & e);
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}
CNot(sum[0],e); // add a

}
};

// Add qubit b
if #sum>1 { // set carry if available

CNot(sum[1],b & sum[0]);
}
CNot(sum[0],b); // add b

}

// conditional multiplexed binary adder for one of 2 integers
// and 1 qureg. No output carry.

qufunct muxadd(int a0,int a1,qureg sel,quconst b,quvoid sum,quconst e) {
int i;
for i=0 to #b-2 { // fulladd first #b-1 bits

muxaddbit(bit(a0,i),bit(a1,i),sel,b[i],sum[i:i+1],e);
}

// half add last bit
muxaddbit(bit(a0,#b-1),bit(a1,#b-1),sel,b[#b-1],sum[#b-1],e);

}

// Comparison operator. flag is toggled if b<a.
// b gets overwritten. Needs a #b-1 qubit junk register j
// as argument which is left dirty.

qufunct lt(int a,qureg b,qureg flag,quvoid j) {
int i;
if bit(a,#b-1) { // disable further comparison

CNot(j[#b-2],b[#b-1]); // and set result flag if
Not(b[#b-1]); // MSB(a)>MSB(b)
CNot(flag,b[#b-1]);

} else {
Not(b[#b-1]); // disable further comparison
CNot(j[#b-2],b[#b-1]); // if MSB(a)<MSB(b)

}
for i=#b-2 to 1 step -1 { // continue for lower bits

if bit(a,i) { // set new junk bit if undecided
CNot(j[i-1],j[i] & b[i]);
Not(b[i]); // honor last junk bit and
CNot(flag,j[i] & b[i]); // set result flag if a[i]>b[i]

} else {
Not(b[i]);
CNot(j[i-1],j[i] & b[i]);

}
}
if bit(a,0) {

Not(b[0]); // if still undecided (j[0]=1)



APPENDIX B. THE SHOR ALGORITHM IN QCL 105

CNot(flag,j[0] & b[0]); // result is LSB(a)>LSB(b)
}

}

set allow-redefines 0;

B.4 dft.qcl

operator dft(qureg q) { // main operator
const n=#q; // set n to length of input
int i; int j; // declare loop counters
for i=0 to n-1 {

for j=0 to i-1 { // apply conditional phase gates
CPhase(2*pi/2^(i-j+1),q[n-i-1] & q[n-j-1]);

}
Mix(q[n-i-1]); // qubit rotation

}
flip(q); // swap bit order of the output

}

B.5 modarith.qcl

set allow-redefines 1;

include "functions.qcl";
include "qufunct.qcl";

// conditional addition mod n for 1 integer and 1 qureg
// flag is set if a+b<n for invertability

qufunct addn(int a,int n,quconst b,quvoid flag,quvoid sum,quconst e) {
qureg s=sum[0\#b-1];
qureg f=sum[#b-1];
qureg bb=b; // "abuse" sum and b as scratch
lt(n-a,bb,f,s); // for the less-than operator
CNot(flag,f & e); // save result of comparison
!lt(n-a,bb,f,s); // restore sum and b
muxadd(2^#b+a-n,a,flag,b,sum,e); // add either a or a-n

}

// Conditional overwriting addition mod n: sum -> (a+sum) mod n

qufunct oaddn(int a,int n,qureg sum,quconst e) {
qureg j[#sum];
qureg f[1];

addn(a,n,sum,f,j,e); // junk -> a+b mod n
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Swap(sum,j); // swap junk and sum
CNot(f,e); // toggle flag
!addn(n-a,n,sum,f,j,e); // uncompute b to zero

}

// Conditional Multiplication mod n of an integer a by the qureg b,
// prod <- ab mod n.

qufunct muln(int a,int n,quconst b,qureg prod,quconst e) {
int i;

for i=0 to #prod-1 {
if bit(a,i) { CNot(prod[i],b[0] & e); }

}
for i=1 to #b-1 {

oaddn(2^i*a mod n,n,prod,b[i] & e);
}

}

// Conditional Overwriting multiplication mod n: b-> ab mod n

qufunct omuln(int a,int n,qureg b,quconst e) {
qureg j[#b];

if gcd(a,n)>1 {
exit "omuln: a and n have to be relativly prime";

}
muln(a,n,b,j,e);
!muln(invmod(a,n),n,j,b,e);
cxor(j,b,e);
cxor(b,j,e);

}

// Modular exponentiation: b -> x^a mod n

qufunct expn(int a,int n,quconst b,quvoid ex) {
int i;

Not(ex[0]); // start with 1
for i=0 to #b-1 {

omuln(powmod(a,2^i,n),n,ex,b[i]); // ex -> ex*a^2^i mod n
}

}

set allow-redefines 0;
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B.6 shor.qcl

include "modarith.qcl";
include "dft.qcl";

procedure shor(int number) {
int width=ceil(log(number,2)); // size of number in bits
qureg reg1[2*width]; // first register
qureg reg2[width]; // second register
int qmax=2^width;
int factor; // found factor
int m; real c; // measured value
int x; // base of exponentiation
int p; int q; // rational approximation p/q
int a; int b; // possible factors of number
int e; // e=x^(q/2) mod number

if number mod 2 == 0 { exit "number must be odd"; }
if testprime(number) { exit "prime number"; }
if testprimepower(number) { exit "prime power"; };

{
{ // generate random base

x=floor(random()*(number-3))+2;
} until gcd(x,number)==1;
print "chosen random x =",x;
Mix(reg1); // Hadamard transform
expn(x,number,reg1,reg2); // modular exponentiation
measure reg2; // measure 2nd register
dft(reg1); // Fourier transform
measure reg1,m; // measure 2st register
reset; // clear local registers
if m==0 { // failed if measured 0

print "measured zero in 1st register. trying again ...";
} else {

c=m*0.5^(2*width); // fixed point form of m
q=denominator(c,qmax); // find rational approximation
p=floor(q*c+0.5);
print "measured",m,", approximation for",c,"is",p,"/",q;
if q mod 2==1 and 2*q<qmax { // odd q ? try expanding p/q

print "odd denominator, expanding by 2";
p=2*p; q=2*q;

}
if q mod 2==1 { // failed if odd q

print "odd period. trying again ...";
} else {

print "possible period is",q;
e=powmod(x,q/2,number); // calculate candidates for
a=(e+1) mod number; // possible common factors
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b=(e+number-1) mod number; // with number
print x,"^",q/2,"+ 1 mod",number,"=",a,",",

x,"^",q/2,"- 1 mod",number,"=",b;
factor=max(gcd(number,a),gcd(number,b));

}
}

} until factor>1 and factor<number;
print number,"=",factor,"*",number/factor;

}


