
A Procedural Formalism for

Quantum Computing

Bernhard Ömer

23th July 1998

Department of Theoretical Physics

Technical University of Vienna

E-mail: oemer@tph.tuwien.ac.at

Homepage: http://tph.tuwien.ac.at/~oemer

Abstract

Despite many common concepts with classical computer science, quan-
tum computing is still widely considered as a special discipline within the
broad field of theoretical physics. One reason for the slow adoption of QC
by the computer science community is the confusing variety of formalisms
(Dirac notation, matrices, gates, operators, etc.), none of which has any sim-
ilarity with classical programming languages, as well as the rather “physical”
terminology in most of the available literature.

QCL (Quantum Computation Language) tries to fill this gap: QCL is
a hight level, architecture independent programming language for quantum
computers, with a syntax derived from classical procedural languages like
C or Pascal. This allows for the complete implementation and simulation
of quantum algorithms (including classical components) in one consistent
formalism.

Chapter 1 is an introduction into the basic concepts of quantum program-
ming, a complete language reference of QCL can be found in chapter 2 and
chapter 3 gives some examples including the QCL implementation of Shor’s
factorisation algorithm. The sourcecode of the QCL interpreter is available
at http://tph.tuwien.ac.at/~oemer/qcl.html.

Contents

1 Introduction 4
1.1 Models of Quantum Computation 4

1.1.1 The Mathematical Model of QC 4
1.1.2 The Machine Model of QC 5
1.1.3 The Gate Model of QC 6
1.1.4 Programming Languages 7

1.2 Principles of Quantum Computing 7
1.2.1 Qubits . 7
1.2.2 Entanglement of States 8
1.2.3 Reversibility . 8
1.2.4 Initialisation . 9
1.2.5 Measuring States . 9

1.3 Quantum Programming . 10
1.3.1 Quantum Parallelism 10
1.3.2 Quantum Registers . 10
1.3.3 Functions . 12
1.3.4 Scratch Space Management 13
1.3.5 Conditional Operators 14

2 QCL 16
2.1 Introducing QCL . 16

2.1.1 Features . 16
2.1.2 Example: Discrete Fourier Transform in QCL 17
2.1.3 The QCL Interpreter 18
2.1.4 Structure of a QCL Program 20

2.2 Classic Expressions and Variables 22
2.2.1 Constant Expressions 22
2.2.2 Operators . 23
2.2.3 Functions . 25
2.2.4 Symbols . 27

2.3 Quantum Registers and Expressions 30

1

CONTENTS 2

2.3.1 Registers and States 30
2.3.2 Quantum Variables . 31
2.3.3 Quantum Expressions 35

2.4 Statements . 36
2.4.1 Elementary Commands 36
2.4.2 Quantum Statements 39
2.4.3 Flow Control . 41

2.5 Subroutines . 43
2.5.1 Introduction . 43
2.5.2 Functions . 44
2.5.3 Procedures . 45
2.5.4 General Operators . 46
2.5.5 Pseudo-classic Operators 49
2.5.6 Quantum Functions . 50

3 Operators and Algorithms 56
3.1 Elementary Operators . 56

3.1.1 General Unitary Operators 56
3.1.2 Pseudo-classic Operators 58

3.2 Composed Operators . 60
3.2.1 Pseudo-classic Operators 60
3.2.2 Modular Arithmetic 62
3.2.3 Quantum Fourier Transform 64

3.3 Shor’s Algorithm for Quantum Factorisation 65
3.3.1 Motivation . 65
3.3.2 The Algorithm . 66
3.3.3 QCL Implementation 69

A QCL Programs and Include Files 75
A.1 default.qcl . 75
A.2 functions.qcl . 77
A.3 qufunct.qcl . 79
A.4 modarith.qcl . 81
A.5 dft.qcl . 82
A.6 shor.qcl . 83

B QCL Charts 85
B.1 Syntax . 85

B.1.1 Expressions . 85
B.1.2 Statements . 86
B.1.3 Definitions . 86

CONTENTS 3

B.2 Error Messages . 87
B.2.1 Typecheck Errors . 87
B.2.2 Evaluation Errors . 89
B.2.3 Execution Errors . 90

Chapter 1

Introduction

1.1 Models of Quantum Computation

In classical information theory, the concept of the universal computer can be
represented by several equivalent models, corresponding to different scientific
approaches. From a mathematical point of view, a universal computer is a
machine capable of calculating partial recursive functions, computer scientists
often use the Turing machine as their favourite model, an electro-engineer
would possibly speak of logic circuits while a programmer certainly will prefer
a universal programming language.

As for quantum computation, each of these classical concepts has a quan-
tum counterpart:

Model classical quantum
Mathematical partial recursive funct. unitary operators

Machine Turing Machine QTM
Circuit logical circuit quantum gates

Algorithmic univ. programming language QCL

Table 1.1: classical and quantum computational models

1.1.1 The Mathematical Model of QC

The moral equivalent in QC to partial recursive functions are unitary op-
erators. As every classically computable problem can be reformulated as
calculating the value of a partial recursive function, each quantum computa-
tion must have a corresponding unitary operator.

4

CHAPTER 1. INTRODUCTION 5

1.1.1.1 Unitary Operators

A unitary operator U over the Hilbert space H is a linear operator which
matches the following condition:

U(α |ψ〉+ β |φ〉) = α U |ψ〉+ β U |φ〉
and U † = U−1 with |ψ〉, φ ∈ H (1.1)

While unitary operators fully describe the quantum computation itself, this
would be of no use, since quantum states cannot be directly observed.

According to the Copenhagen interpretation of quantum physics, the
setup and outcome of any quantum mechanical experiment must be formu-
lated in classical terms. We thus need 2 additional Operations for setting up
a defined initial state |ψ0〉 and for measuring the output.

1.1.1.2 Initialisation

The reset operator R is a constant operator over H which resets a general
|ψ〉 to |ψ0〉. Usually the base of H is chosen such that |ψ0〉 = |0〉.

1.1.1.3 Measurement

The measurement operator M (O) of the observable O = {E0, E1, . . . Ek},
where Ei is a mutually orthogonal decomposition of H, randomly applies
a projection operator P (Em) to the measured state |ψ〉 biased by the proba-
bility pm = 〈P (Em)〉 and renormalises the result.

The classical outcome of the measurement is µ(m) where µ is a mapping
{0, 1, . . . k} → R× {physical unit ofO}. 1

Since the mathematical model treats unitary operators as black boxes,
no complexity measure is provided.

1.1.2 The Machine Model of QC

In analogy to the classic Turing Machine (TM) several propositions of Quan-
tum Turing Machines (QTM), as a model of a universal quantum computer
have been made [3, 1].

The complete machine-state |Ψ〉 is thereby given by a superposition of
base-states |l, j, s〉, where l is the inner state of the head, j the head position
and s the binary representation of the tape-content. To keep H separable,

1Since we are not interested in physical values, and O normally corresponds to a register
of qubits, we can use the standard observable, so µ(i) = i.

CHAPTER 1. INTRODUCTION 6

the (infinite) bit-string s has to meet the zero tail state condition i.e. only a
finite number of bits with sm 6= 0 are allowed.

The quantum analogon to the transition function of a classic probabilistic
TM is the step operator T , which has to be unitary to allow for the existence
of a corresponding Hamiltonian2 and meet locality conditions for the effected
tape-qubit, as well as for head movement.

QTMs provide a measure for execution times, but – as with the classical
TM – finding an appropriate step operator can be very hard and runtime-
complexity (i.e. the number of applications of T in relation to the problem
size) remains an issue. Outside quantum complexity theory, QTMs are of
minor importance.

1.1.3 The Gate Model of QC

Quantum circuits are the QC equivalent to classical boolean feed-forward
networks, with one major difference: since all quantum computations have
to be unitary, all quantum circuits can be evaluated in both directions (as
with classical reversible logic). Quantum circuits are composed of elementary
gates and operate on qubits, thus dim(H) = 2n where n is the (fixed) number
of qubits.

The actual unitary transformation performed by a m-qubit gate depends
on the 2m-dimensional subspace H′ ⊆ H corresponding to the particular
positions of the input qubits. Let G be the 2 dimensional operator (m = 1)
of a gate operating on the k-th qubit of the state |ψ〉 ∈ H = C2n

and I(l)
the l-qubit identity operator, then the resulting operator Gk(n) is

Gk(n) = I(k−1)×G×I(n−k−1) with I(l) |ψ〉 = |ψ〉, |ψ〉 ∈ C2l

. (1.2)

A quantum m-qubit gate in an n-qubit Hilbert space therefore represents a
class of n!

(n−m)!
unitary operators.

To allow for implementation of all possible unitary transformations, a
universal set of elementary gates must be available, out of which composed
gates can be constructed. One possible set (as proposed by Deutsch) [4] is
e.g. {θ ∈ [0, 2π) |D(θ)} with

D(θ) : |i, j, k〉 →
{

i cos θ |i, j, k〉+ sin θ |i, j, 1− k〉 for i = j = 1
|i, j, k〉 otherwise

(1.3)

2In continuous-time quantum mechanics, the operator U of temporal propagation is
given by U(t) = e−iH(t−t0)/h̄. Since H has only real eigenvalues, U must be unitary.

CHAPTER 1. INTRODUCTION 7

However, even one D(θ) with irrational θ/π is sufficient, to approximate any
unitary operator to arbitrary precision.3

As opposed to the operator formalism, the gate-notation is an inherently
constructive method and – other than QTMs – the complexity of the problem
is directly reflected in the number of gates necessary to implement it.

1.1.4 Programming Languages

When it comes to programming and the design of non-classic algorithms, we
can look at operator-algebra as the specification and quantum gates as the
assembly language of QC.

The lack of typical programming techniques as local quantum variables,
scratch space management and dynamic register lengths as generic features in
either formalism makes the the actual implementation4 of non–trivial quan-
tum algorithms very complex and difficult (see [13] for an example) since the
classical “divide and conquer” approach is only of limited use.

Another problem is the classical control structure: Due to their proba-
bilistic nature, evaluation of measurements and conditional retries are part
of almost any quantum algorithm, however they cannot be described within
the traditional formalism.

The purpose of QCL is, to fill this gap and serve as a high-level program-
ming language for quantum computing.

1.2 Principles of Quantum Computing

1.2.1 Qubits

To implement a computational model as a physical device, the computer
must be able to adept different internal states, provide means to perform the
necessary transformations on them and to extract the output information.
The correlation between the physical and the logical state of the machine
is arbitrary (as long it is consistent with the desired transformations) and
requires interpretation.

In an ordinary RAM module, the common quantum state of thousands
of electrons is interpreted as only one bit. The logical state is determined
by the expectation value of its register contents (e.g. tension of a capacitor)

3Note that D(π/2) defines the Toffoli gate, which is universal for classical reversible
logic.

4This means the constructive specification of the elementary gate sequence, not its
experimental realisation.

CHAPTER 1. INTRODUCTION 8

The interpretation as (classical) bits is performed by comparing the measured
value to a defined threshold, while the great number of particles guarantees
that the uncertainty of the measurement is small enough (O(1/

√
n)) to make

errors practically impossible.
In a quantum computer, information is represented directly as the com-

mon quantum state of many subsystems. Each subsystem is described by a
combination of two “pure” states interpreted as |0〉 and |1〉 (quantum bit,
qubit). This can e.g. be realised by the spin of a particle, the polarisation of
a photon or by the ground state and an excited state of an ion.

1.2.2 Entanglement of States

Due to the one-to-one relation between logical and physical state in a quan-
tum computer, a quantum register containing more than one qubit can not
be described by simply listing the states of each qubit. In fact, the “state of
a qubit” becomes a meaningless term5

Given an isolated system of two qubits, its state can be described by
four complex amplitudes a|0, 0〉 + b|1, 0〉 + c|0, 1〉 + d|1, 1〉. You can define
the expectation value for the first qubit, which is

√
bb∗ + dd∗ but there is no

isolated state for the first qubit anymore like e.g. (a+ c)|0〉+(b+ d)|1〉 since
|a|2 + |b|2 + |c|2 + |d|2 = 1 does not implicate that |a + c|2 + |b + d|2 = 1.

Therefore, manipulations on a single qubit effect the complex amplitudes
of the overall state and have a global character. To describe the combined
state |ψ〉 of n entangled qubits, 2n complex numbers are necessary.

|ψ〉 =
2n−1∑

i=0

ci |i〉 with
2n−1∑

i=0

c∗i ci = 1 and ci ∈ C (1.4)

1.2.3 Reversibility

To keep the computation coherent, quantum registers must be kept isolated,
to avoid entanglement with the environment. The entropy of such a sys-
tem has to remain constant since no heat dissipation is possible, therefore
state changes have to be adiabatic, which requires all computations to be
reversible.

Every reversible operation can be described by a unitary operator U which
matches the condition U−1 = U †. Compositions of unitary operators are also
unitary since (UV)−1 = V †U †. The restriction to unitary operators can also

5The occasionally found notation |ψ〉|φ〉 for multiple quantum registers instead of mere
product states is somewhat misleading in this respect. In this paper, |ψ〉|φ〉 always denotes
a vector product and registers are labelled with subscripts like |·〉s if necessary.

CHAPTER 1. INTRODUCTION 9

be directly derived for the operator of temporal propagation U = e−iHt/h̄.
Since the Hamilton operator H is an observable it has only real eigenvalues
and (†U) = U−1 = eiHt/h̄.

A general unitary transformation in the two dimensional Hilbert space
C2 can be defined as follows:

U(θ, δ, σ, τ) =

(
ei(δ+σ+τ) cos θ

2
e−i(δ+σ−τ) sin θ

2

−ei(δ−σ+τ) sin θ
2

ei(δ−σ−τ) cos θ
2

)
with θ, δ, σ, τ ∈ R

(1.5)
If this operator can be applied to arbitrary 2-dimensional subspaces of H,
then any unitary transformation can be constructed by composition. If only
subspaces corresponding to a subset of qubits are allowed, which is the case
for many proposed architectures, among them also the linear ion trap (Cirac-
Zoller gate [2]), then an additional 4-dimensional 2-qubit operator is needed
to obtain a mixing between separate qubits [6].

One possibility for this operator is the 2-qubit XOR which is defined as
XOR : |x, y〉 → |x, x⊕ y〉 or in matrix notation:

XOR =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.6)

A quantum computer which is capable of performing general single qubit and
XOR operations can therefore perform any possible operation and is in this
sense universal.

1.2.4 Initialisation

To set a quantum computer to the desired input state |ψ〉, it suffices to
provide means to initially “cool” all qubits to |0〉 and then apply a unitary
transformation U which matches the condition U |0〉 = |ψ〉. One might think
of U as a base transformation which trivially exists for any desired |ψ〉.

1.2.5 Measuring States

Measuring n qubits reduces the dimensionality of H by a factor of 2n. The
outcome of the measurement is biased by the probability amplitude for a
certain bit configuration.

Consider two quantum registers with n and m qubits in the state

|ψ〉 =
2n−1∑

i=0

2m−1∑

j=0

ci,j|i, j〉 with
∑

i,j

c∗i,jci,j = 1 (1.7)

CHAPTER 1. INTRODUCTION 10

The base-vectors |i, j〉 are interpreted as a pair of binary numbers with i < 2n

and j < 2m. The probability p(I) to measure the number I in the first register
and the according post measurement state |ψ′I〉 are given by

p(I) =
2m−1∑

j=0

c∗I,jcI,j, and |ψ′I〉 =
1√
p(I)

2m−1∑

j=0

cI,j|I, j〉 (1.8)

The measurement of qubits is the only non unitary operation, a quantum
computer must be able to perform during calculation.

1.3 Quantum Programming

1.3.1 Quantum Parallelism

Since all unitary transformations are linear operators, any operation per-
formed on a quantum state is simultaneously applied to all its base-vectors,
thus

U
∑

i

ci|i〉 =
∑

i

ciU |i〉 (1.9)

This unique feature of quantum computers is called quantum parallelism.
Since the number of base-vectors exponentially increases with the number of
qubits, it is possible to solve certain problems (e.g. Deutsch-Jozsa’s problem
[4]) in polynomial time (i.e. the number of elementary operations is a poly-
nomial in the length of the input) where a classical computer would need an
exponential number of steps.

1.3.2 Quantum Registers

1.3.2.1 2-register states

Since the qubits of a quantum computer constitute a possible entangled over-
all state, there is – strictly speaking – no such thing as a sub-state for par-
ticular qubits, since an n + m qubit state of the form

|ψ〉 =
2n−1∑

i=0

2m−1∑

j=0

aij |i, j〉 (1.10)

usually cannot be written as a product state |φ〉|χ〉 of an n and an m qubit
state, because generally

|ψ〉 6= |φ〉 × |χ〉 =
2n−1∑

i=0

2m−1∑

j=0

bicj |i, j〉 (1.11)

CHAPTER 1. INTRODUCTION 11

In analogy to the gate model (see section 1.1.3), we can, however, easily
extent the notion of n qubit unitary operators (see section 1.3.3.1) to work
on n+m qubit states, by using the extended operator U1 (the index indicates
that the first register is affected):

U1 = U × I(m) =
2n−1∑

i,j=0

2m−1∑

k=0

uij |i, k〉〈j, k| (1.12)

The first n qubits of the n + m qubit state |ψ〉 are referred to as an n qubit
quantum register relative to the operator U .

U1 |ψ〉 =
2n−1∑

i,j=0

2m−1∑

k=0

2n−1∑

i′=0

2m−1∑

j′=0

uijai′j′ |i, k〉〈j, k|i′, j′〉 =

2n−1∑

i,j,i′=0

2m−1∑

k,j′=0

uijai′j′δji′δk,j′ |i, k〉 =
2n−1∑

i,j=0

2m−1∑

k=0

uijajk |i, k〉 (1.13)

1.3.2.2 Register Reordering

The concept of quantum registers can be extended to arbitrary sequences of
qubits.

Definition 1 (Quantum Register) An n qubit quantum Register s is a
sequence of mutually different zero-based qubit positions 〈s0, s1 . . . sn−1〉 of
some state |ψ〉 ∈ C2N

with N ≥ n.

Let s be an n qubit register of the n + m qubit state |ψ〉. Using an arbitrary
permutation π over n + m elements with πi = si for i < n, we can construct
a reordering operator Πs by permutating the qubits.

Πs |b0, b1 . . . bl〉 = |bπ0 , bπ1 . . . bπl
〉 with l = n + m (1.14)

Using any Πs and U1 we can define the application of U to the register s of
|ψ〉 as

U(s) |ψ〉 = Π†
s U1 Πs |ψ〉 (1.15)

Note that despite the fact, that here are m! possible implementations of Πs,
the definition of U(s) is unique:

Definition 2 (Register Operators) The register operator for an n qubit
quantum register s of the state |ψ〉 ∈ C2N

and a unitary operator U : C2n →
C2n

is the N qubit unitary operator U(s) = Π†
s (U × I(m)) Πs.

CHAPTER 1. INTRODUCTION 12

1.3.3 Functions

1.3.3.1 Pseudo-classic Operators

The general form of a unitary operator U over n qubits is

U =
2n−1∑

i=0

2n−1∑

j=0

|i〉uij 〈j| with
2n−1∑

k=0

u∗kiukj = δij (1.16)

If the matrix elements uij are of the form uij = δiπj
with some permutation

π, then their effect on pure states (base-vectors) can be described in terms
of classical reversible boolean logic.

Definition 3 (Pseudo-classic Operator) A pseudo-classic operator is a
unitary operator of the form U : |i〉 → |πi〉.

Let f : Z2n → Z2n be a bijective function, then the corresponding pseudo-
classic operator F is given as

F =
2n−1∑

i=0

|f(i)〉〈i| and F−1 = F † =
2n−1∑

i=0

|i〉〈f(i)| (1.17)

1.3.3.2 Handling of Non-Reversible Functions

One obvious problem of quantum computing is its restriction to reversible
computations. Consider a simple arithmetical operation like integer division
by 2 (DIV2 ′|i〉 = |i/2〉 for even i and |(i− 1)/2〉 for odd i). Clearly, this
operation is non-reversible since DIV2 ′|0〉 = DIV2 ′|1〉, so no corresponding
pseudo-classic operator exists.

However, if we use a second register with the initial value |0〉, then we can
define an operator DIV2 witch matches the condition DIV2 |x, 0〉 = |x, x/2〉
or |x, (x− 1)/2〉 respectively. The behaviour of DIV2 |x, y 6= 0〉 is undefined
and can be set arbitrarily under the condition that DIV2 is unitary6.

Definition 4 (Quantum Functions) For any function f : Bn → Bm (or
equivalently f : Z2n → Z2m) there exists a pseudo-classic operator F :
C2n+m → C2n+m

working on an n-qubits input and an m-qubits output regis-
ter with F |x, 0〉 = |x, f(x)〉. Operators of that kind shall be called quantum
functions.

6In this special case, just one additional qubit to hold the lowest bit of the argument
would suffice to extend DIV2 ′ to a unitary operator.

CHAPTER 1. INTRODUCTION 13

1.3.4 Scratch Space Management

1.3.4.1 Register Reuse

While keeping a copy of the argument will allow us to compute non reversible
functions, this also forces us to provide extra storage for intermediate results.
In longer calculations this would leave us with a steadily increasing amount
of “junk” bits which are of no concern for the final result.

A simple and elegant solution of this problem was proposed by Bennet
[8, 9]: If a composition of two non-reversible functions f(x) = h(g(x)) is to
be computed, the scratch space for the intermediate result can be “recycled”
using the following procedure (G and H are the quantum functions for g and
h, the indices indicate the registers operated on):

|x, 0, 0〉 G12−→ |x, g(x), 0〉 H23−→ |x, g(x), h(g(x))〉 G†12−→ |x, 0, f(x)〉 (1.18)

The last step is merely the inversion of the first step and uncomputes the
intermediate result. The second register can then be reused for further com-
putations.

Without scratch-management, the evaluation of a composition of depth
d needs d operations and consumes d− 1 junk registers. Bennet’s method of
uncomputing can then be used to trade space against time: Totally uncom-
puting of all intermediate results needs 2d− 1 operations and d− 1 scratch
registers, which is useful, if the scratch can be reused in the further compu-
tation.

By a combined use of r registers as scratch and junk space, a composition
of depth d = (r + 2)(r + 1)/2 can be evaluated with 2d − r − 1 = (r +
1)2 operations. An calculation of f(x) = l(k(j(i(h(g(x)))))) on a 4-register
machine (1 input, 1 output and 2 scratch/junk registers) would run as follows
(function values are in prefix notation):

|x, 0, 0, 0〉 I34H23G12−→ |x, gx, hgx, ihgx〉 G†12H†
23−→ |x, 0, 0, ihgx〉 J†42K23J42−→ (1.19)

|x, 0, kjihgx, ihgx〉 L32−→ |x, lkjihgx, kjihgx, ihgx〉 = |x, fx, kjihgx, ihgx〉
By using this method, we can reduce the needed space by O(1/

√
d) with a

computation overhead of O(2).

1.3.4.2 Junk Registers

If the computation of a function f(x) fills a scratch register with the junk
bits j(x) (i.e. |x, 0, 0〉 → |x, f(x), j(x)〉), a similar procedure can free the

CHAPTER 1. INTRODUCTION 14

register again:

|x, 0, 0, 0〉 F123−→ |x, f(x), j(x), 0〉 FANOUT24−→ |x, f(x), j(x), f(x)〉 F †123−→ |x, 0, 0, f(x)〉
(1.20)

Again, the last step is the inversion of the first. The intermediate step is
a FANOUT operation which copies the function result into an additional
empty (i.e. in sub-state |0〉) register. Possible implementations are e.g.

FANOUT : |x, y〉 → |x, x⊕ y〉 or |x, (x + y) mod 2n〉 (1.21)

1.3.4.3 Overwriting Invertible Functions

As pointed out in section 1.3.3.1, every invertible function f : Z2n → Z2n

has a corresponding pseudo classic operator F : |i〉 → |f(i)〉. While a di-
rect implementation of F is possible with any complete set of pseudo-classic
operators7, the implementation as a quantum function can be substantially
more efficient.

If we have efficient implementations of the quantum functions Uf : |i, 0〉 →
|i, f(i)〉 and Uf−1 : |i, 0〉 → |i, f−1(i)〉, then an overwriting operator F ′ can
be constructed by using an n qubit scratch register.

F ′ : |i, 0〉 Uf−→ |i, f(i)〉 SWAP−→ |f(i), i〉
U†

f−1−→ |f(i), 0〉 (1.22)

1.3.5 Conditional Operators

Classical programs allow the conditional execution of code in dependence on
the content of a boolean variable (conditional branching).

A unitary operator, on the other hand, is static and has no internal flow-
control.8 Nevertheless, we can conditionally apply an n qubit operator U
to a quantum register by using an enable qubit and define an n + 1 qubit
operator U ′

U ′ =

(
I(n) 0

0 U

)
(1.23)

So U is only applied to base-vectors where the enable bit is set. This can be
easily extended to enable-registers of arbitrary length.

7One example would be the Toffoli gate T : |x, y, z〉 → |x⊕ (y ∧ z), y, z〉 which can be
used to implement any pseudo-classic operator for 3 or more qubits

8One might argue, that a QTM does in fact have internal flow control because head
state and head position are quantum registers. Here, however, flow-control refers to the
dynamic generation of a gate sequence, see section 1.1.3

CHAPTER 1. INTRODUCTION 15

Definition 5 (Conditional Operator) A conditional operator U[[e]] with
the enable register e is a unitary operator of the form

U[[e]] : |i, ε〉 = |i〉|ε〉e →
{

(U |i〉) |ε〉e if ε = 111 . . .
|i〉|ε〉e otherwise

(1.24)

Conditional operators a frequently used in arithmetic quantum functions
and other pseudo-classic operators.

If the architecture allows the efficient implementation of the controlled-
not gate C : |x, y1, y2 . . .〉 → |(x⊕ ∧

i yi), y1, y2 . . .〉, then conditional pseudo-
classic operators can be realised by simply adding the enable string to the
control register of all controlled-not operations.

Chapter 2

QCL – A Quantum
Computation Language

2.1 Introducing QCL

2.1.1 Features

As pointed out in section 1.1.4, QCL is a high level language for quantum
programming. Its main features are:

• a classical control language with functions, flow-control, interactive
i/o and various classical data types (int, real, complex, boolean,

string)

• 2 quantum operator types: general unitarian (operator) and reversible
pseudo-classic gates (qufunct)

• inverse execution, allowing for on-the-fly determination of the inverse
operator though caching of operator calls

• various quantum data types (qubit registers) for compile time informa-
tion on access modes (qureg, quconst, quvoid, quscratch)

• convenient functions to manipulate quantum registers (q[n] - qubit,
q[n:m] - substring, q&p - combined register

• Quantum memory management (quheap) allowing for local quantum
variables

• Transparent integration of Bennet-style scratch space management

16

CHAPTER 2. QCL 17

• Easy adaption to individual sets of elementary operators

The interpreter qcl additionally integrates a numeric simulator and a
shell environment for interactive use.

2.1.2 Example: Discrete Fourier Transform in QCL

Table 2.1 shows the QCL implementation of Coppersmith’s algorithm [7] of
fast quantum discrete Fourier Transform for quantum registers of arbitrary
length (see section 3.2.3 for details).

operator dft(qureg q) { // main operator
const n=#q; // set n to length of input
int i; int j; // declare loop counters
for i=0 to n-1 {

for j=0 to i-1 { // apply conditional phase gates
CPhase(2*pi/2^(i-j+1),q[n-i-1] & q[n-j-1]);

}
Mix(q[n-i-1]); // qubit rotation

}
flip(q); // swap bit order of the output

}

Table 2.1: dft.qcl Discrete Fourier Transform in QCL

Basically, dft.qcl contains of two loops: The outer loop performs a
Hadamard transformations (see section 3.1.1.3) from the highest to the lowest
qubit (Mix), while the inner loop performs conditional phase shifts (CPhase)
between the qubits.

The dft operator takes a quantum register (qureg) q as argument. As
pointed out in section 1.3.2, quantum register is not a quantum state by
itself, but a pointer indicating the target qubits in the overall machine state,
just like input and output lines in the gate model. To allow register size
independent operator definitions, the number of qubits of a register can be
determined at run time by the size operator #.

Inside the operator definition, sub-operators can be called just as sub-
procedures in classic procedural languages. This means that the actual se-
quence of operators (either built in or user defined) can be fully determined
at runtime, including the use of loops (in this case for-loops), conditional
statements, etc.

Other then most classic languages, QCL has a strict mathematical se-
mantics of functions and operators, meaning that two subsequent calls with

CHAPTER 2. QCL 18

the same parameters have to result in exactly the same operation. This re-
quires the operators to be free from side-effects and forbids the use of global
variables.

This allows for context dependent execution: DFT(q) called from toplevel
works a expected, however if called as !DFT(q) (adjungation, thus inversion
for unitary operators), all operators within DFT are also inverted and applied
in reverse order. Inverse execution can also take place implicitly, when local
quantum registers and Bennet-style scratch-space management is used.

To demonstrate the use of the new operator, let’s start the QCL inter-
preter and prepare a test state:

$ qcl -b5 -i dft.qcl
[0/5] 1 |00000>
qcl> qureg q[5]; // allocate a 5 qubit register
qcl> Mix(q[3:4]); // rotate qubits 3 and 4
[5/5] 0.5 |00000> + 0.5 |10000> + 0.5 |01000> + 0.5 |11000>
qcl> Not(q[0]); // invert first qubit
[5/5] 0.5 |00001> + 0.5 |10001> + 0.5 |01001> + 0.5 |11001>

We now have a periodic state with period 23 = 8 and an offset of 1 composed
of 4 basevectors to which we can apply the DFT.

qcl> dft(q);
[5/5] 0.353553 |00000> + -0.353553 |10000> + 0.353553i |01000> +
-0.353553i |11000> + (0.25,0.25) |00100> + (-0.25,-0.25) |10100> +
(-0.25,0.25) |01100> + (0.25,-0.25) |11100>

The discrete Fourier transform “inverts” the period to 25/8 = 4 and results in
a periodic distribution with offset 0. The information about the original offset
is in the phase factors, and has no influence on the probability distribution:

qcl> dump q;
: SPECTRUM q: |43210>
0.125 |00000> + 0.125 |00100> + 0.125 |01000> + 0.125 |01100> +
0.125 |10000> + 0.125 |10100> + 0.125 |11000> + 0.125 |11100>

“Uncomputing” the DFT brings back the initial configuration:

qcl> !dft(q);
[5/5] 0.5 |00001> + 0.5 |10001> + 0.5 |01001> + 0.5 |11001>
qcl> exit;

2.1.3 The QCL Interpreter

The interpreter qcl simulates a quantum computer with an arbitrary number
of qubits (default is the system word length) and is called with the following
syntax:

qcl [options] [QCL-file] . . .

CHAPTER 2. QCL 19

2.1.3.1 Options

qcl takes the following command-line options (defaults are given in paran-
theses):

Startup Options:
-h, --help display this message
-V, --version display version information
-i, --interactive force interactive mode
-n, --no-default-include don’t read default.qcl on startup
-o, --logfile specify a logfile
-b, --bits=n: set number of qubits (32)
Dynamic Options (can be changed with the set statement):
-s, --seed=<seed-value> set random seed value (system time)
-I, --include-path=<path> QCL include path (.)
-p, --dump-prefix=<file-prefix> set dump-file prefix
-f, --dump-format=b,a,x list base vectors as hex, auto or binary (a)
-d, --debug=<y|n> open debug-shell on error (n)
-a, --auto-dump=<y|n> allways dump quantum state in shell mode (n)
-l, --log==<y|n> log external operator calls (n)
-L, --log-state==<y|n> log state after each transformation (n)
-T, --trace==<y|n> trace mode (very verbose) (n)
-S, --syntax=<y|n> check only the syntax, no interpretation (n)
-E, --echo=<y|n> echo parsed input (n)
-t, --test=<y|n> test programm, ignore quantum operations (n)
-e, --shell-escape=<y|n> honor shell-escapes (y)
-r, --allow-redefines=<y|n> ignore redefines instead of error (n)

Logical values can be given in any common format including y[es]/n[o],
0/1 and t[rue]/f[alse]. Dynamic options can also be invoked from the
shell or by QCL-Programs via the set command.

2.1.3.2 Default Include

Unless disabled with --no-default-include, qcl interprets the default in-
clude file default.qcl at startup. If no files are given at the command line,
qcl starts in interactive mode, otherwise the files are executed in the given
order and qcl exits.

2.1.3.3 Interactive Use

If started in interactive mode (no files given or option -i), qcl enters the top
level shell and prompts for user input (qcl>). Subshells with private scope
(see section 2.2.4.4) can be opened by the command shell; the prompt in
this case is qcln>, where n indicates the zero-based nesting depth. Subshells
are also opened in case of errors when --debug=yes and prompt with qcln$.

CHAPTER 2. QCL 20

qcl> set debug true; // turn on debuging
qcl> real inv(real x) { return 1/x; }
qcl> print inv(0.0); // trigger an error
! in function inv: math error: division by zero
qcl1$ list x; // this is the argument to fac
: local symbol x = 0.000000:
real x
qcl1$ exit; // close the debug shell
qcl> list x; // no global x defined
: symbol x is undefined.

A shell is closed by EOF (usually Ctrl-d) or by the exit command. Clos-
ing the top level shell terminates the program.

2.1.4 Structure of a QCL Program

2.1.4.1 Notation

The syntactic structure of a QCL program is described by a context free
LALR(1) grammar (see appendix B.1). For the formal definition of syntactic
expressions, the following notation is used:

expression-name ← expression-def 1

← expression-def 2

· · · · · ·

Within expression definitions, the following conventions apply

Keywords and other litteral text is set in courier

Subexpressions are set in italic

Optional expressions are put in [square brakets] Optional expressions can
be repeated 0 or 1 times.

Multiple expressions are put in { braces }. Multiple expression can be
repeated 0, 1 or n times.

Alternatives are written as alt 1| alt 2| . . . Exactly one alternative has to be
chosen.

Grouping of expressions can be forced by (round brackets).

To simplify the notation of literals, the following character classes are
defined:

CHAPTER 2. QCL 21

• digit ← decimal digit from 0 to 9.

• letter ← alphabetic letter form a to z or A to Z. Case is significant.

• char ← printable character except ‘"’.

A QCL Program is basically a sequence of statements and definitions
either read from a file or directly from the shell prompt. (In the latter case,
input is restricted to one line which is implicitly terminated by ‘;’.)

qcl-input ← { stmt | def }

2.1.4.2 Statements

Statements range from simple commands, over procedure-calls to complex
control-structures and are executed when they are encountered.

qcl> if random()>=0.5 { print "red"; } else { print "black"; }
: red

2.1.4.3 Definitions

Definitions are not executed but bind a value (variable- or constant-definition)
or a block of code (routine-definition) to a symbol (identifier).

qcl> int counter=5;
qcl> int fac(int n) { if n<=0 {return 1;} else {return n*fac(n-1);} }

Consequently, each symbol has an associated type, which can either be a data
type or a routine type and defines whether the symbol is accessed by reference
or call.

2.1.4.4 Expressions

Many statements and routines take arguments of certain data types. These
expressions can be composed of literals, variable references and sub-expressions
combined by operators and function calls.

qcl> print "5 out of 10:",fac(10)/fac(5)^2,"combinations."
: 5 out of 10: 252 combinations.

CHAPTER 2. QCL 22

2.1.4.5 Comments

As C++, QCL supports two ways of commenting code. All comments are
simply discarded by the scanner.

Line comments are started with // and last until the end of the current
line

C-style comments are started with /* and terminated with */ and may
continue over several lines. C-style comments may not be nested.

2.1.4.6 Include Files

The command include "filename" tells the interpreter, to process the file
filename.qcl, before continuing with the current input file or command line.
qcl looks for the file in the current directory and in the default include
directory, which can be changed with the option include-path.

In interactive use include "filename" can be abbreviated by <<filename.

2.2 Classic Expressions and Variables

2.2.1 Constant Expressions

The classic data-types of QCL are the arithmetic types int, real and
complex and the general types boolean and string.

Type Description Examples
int integer 1234, -1

real real number 3.14, -0.001

complex complex number (0,-1), (0.5, 0.866)

boolean logic value true, false

string character string "hello world", ""

Table 2.2: classic types and literals

2.2.1.1 Integer

The QCL type int is based on the C data type singed long. On a 32bit
computer, this typically allows values form −231 to 231 − 1. While this is
more than enough for any standard programming task, the implementation
of certain combinatoric functions can require some attention.

CHAPTER 2. QCL 23

However, the word-length limitation has no effect on the number of qubits
which can be simulated or on the maximum size of quantum registers. 1

2.2.1.2 Real

The QCL type real is based on C data type double, which is typically 64bit.
To improve readability, output of real numbers is truncated to a reasonable
number of digits.

Real numbers are written in decimal notation and must include the dec-
imal point.

2.2.1.3 Complex

QCL complex numbers are internally represented as two double floats. This
holds for variables of type complex as well as the internal representation of
the machine state. Complex numbers are given as (real,imag)-pairs:

const ← (complex-coord , complex-coord)

complex-coord ← [+ | -] digit { digit } [. { digit }]

2.2.1.4 Boolean

Unlike C, logical values have their own data type in QCL. Literals for boolean
are true and false:

2.2.1.5 Strings

String literals are quoted with "character string" and may contain any print-
able character except ‘"’.

2.2.2 Operators

2.2.2.1 Arithmetic Operators

Arithmetic operators generally work on all arithmetic data types and return
the most general type (operator overloading), e.g.

qcl> print 2+2; // evaluates to int
: 4
qcl> print 2+2.0; // evaluates to real
: 4.000000
qcl> print 2+(2,0); // evaluates to complex
: (4.000000,0.000000)

1As quantum measurements also return integers, measurements must be split for larger
registers

CHAPTER 2. QCL 24

To allow for clean integer arithmetic there are some exceptions to avoid
typecasts:

• The division operator / does integer division if both arguments are
integer.

• The modulus operator mod is only defined for integer arguments.

• The power operator ^ for integer bases is only defined for non-negative,
integer exponents. For real exponents, the base must be non-negative.

table 2.3 shows all arithmetic operators ordered from high to low prece-
dence. All binary operators are left associative, thus a ◦ b ◦ c = (a ◦ b) ◦ c.
Explicit grouping can be achieved by using parentheses.

Op Description Example Type Value
^ power (0,1)^-1.5 complex − 1√

2
(1 + i)

integer power (-2)^11 int −2048
- unary minus --1 int 1
* multiplication (0,1)*(0,1) complex −1
/ division 3./2 real 3

2

integer division 3/2 int 1
mod integer modulus 100 mod 16 int 4
+ addition 1.5+1.5 real 3
- subtraction (1,2)-(0,2) complex 1

Table 2.3: arithmetic operators

2.2.2.2 Comparison and Logic Operators

Table 2.4 shows all comparison and logic operators with their argument types.
The return type of all operators is boolean.

2.2.2.3 Other Operators

QCL defines two more operators, which are mainly used with quantum ex-
pressions. They are described in section 2.3.3 and mentioned her only for
completeness.

Concatenation The concatenation operator & combines two quantum reg-
isters or two strings. Its precedence is equal to the arithmetic operators
+ and -.

CHAPTER 2. QCL 25

Op Description Argument type
== equal all arithmetic, string
!= unequal all arithmetic, string
< less integer, real
<= less or equal integer, real
> greater integer, real
>= greater or equal integer, real
not logic not boolean

and logic and boolean

or logic inclusive or boolean

xor logic exclusive or boolean

Table 2.4: comparison and logic operators

Size The size-of operator # gives the length (i.e. the number of qubits) of any
quantum expression. This is the operator with the highest precedence.

2.2.3 Functions

Unlike user defined functions (see section 2.5.2), most of QCL’s built-in func-
tions are overloaded. Like arithmetic operators, they often accept more then
one argument type and evaluate to different return types.

2.2.3.1 Trigonometric Functions

Trigonometric functions (table 2.5) are defined for int, real and complex ar-
guments. There return type is real or complex, depending on the argument
type.

qcl> print sin(0); // integer or real arguments
: 0.000000 // evaluate to real, even if the
qcl> print sin(pi); // result is an integer number
: 0.000000
qcl> print tanh((0,1)*pi); // complex arguments evaluate
: (0.000000,-0.000000) // to complex

2.2.3.2 Exponents and Logarithms

exp, log and sqrt also work on all arithmetic types (table 2.6). Square roots
of negative real numbers trigger an error, as do non positive real logarithms.

CHAPTER 2. QCL 26

Funct. Description Funct. Description
sin(x) sine of x sinh(x) hyperbolic sine of x
cos(x) cosine of x cosh(x) hyperbolic cosine of x
tan(x) tangent of x tanh(x) hyperbolic tangent of x
cot(x) cotangent of x coth(x) hyperbolic cotangent of x

Table 2.5: trigonometric and hyperbolic functions

qcl> print sqrt(-1);
! math error: real square root of negative number
qcl> print log(-1.0);
! math error: real logarithm of non positive number
qcl> print sqrt((-1,0)),log((-1,0));
: (0.000000,1.000000) (0.000000,3.141593)

Funct. Description
exp(x) e raised to the power of x
log(x) natural logarithm of x

log(x,n) base-n logarithm of x
sqrt(x) square root of x

Table 2.6: exponential and related functions

2.2.3.3 Complex Numbers

For handling and conversion of complex expressions, the functions Re, Im, abs
and conj are defined (table 2.7). abs also works on real and int arguments.

Funct. Description
Re(z) real part of z
Im(z) imaginary part of z
abs(z) magnitude of z
conj(z) complex conjugate of z

Table 2.7: functions for complex numbers

2.2.3.4 Rounding

ceil(x) and floor(x) round the real value x up- or downwards to the
nearest integer. The rounded value is returned as int.

CHAPTER 2. QCL 27

2.2.3.5 Maximum and Minimum

The functions max and min take an arbitrary number of int or real argu-
ments and return the maximum or minimum value. The return type is int,
if all arguments are integer, and real otherwise.

qcl> print max(3,pi,4);
: 4.000000

2.2.3.6 GCD and LCM

The greatest common divisor and the least common multiple of a list of
integers can be determined by gcd and lcm.

qcl> print gcd(48,72,180),lcm(48,72,180);
: 12 720

2.2.3.7 Random Numbers

The pseudo function random() returns a random value from the interval
[0, 1). The generation of random numbers can be determined by providing a
seed value with the option --seed. Random numbers cannot be used in the
definition of functions and quantum operators.

Funct. Description
ceil(x) nearest integer to x (rounded upwards)
floor(x) nearest integer to x (rounded downward)
max(x,...) maximum
min(x,...) minimum
gcd(n,...) greatest common divisor
lcm(n,...) least common multiple
random() random value from [0, 1)

Table 2.8: other QCL functions

2.2.4 Symbols

2.2.4.1 Identifiers

Identifiers are restricted to alphanumeric characters (no underscores) and
must begin with a letter. As in C, there is no limit in length and case is
significant. Names must not collide with internal keywords.

CHAPTER 2. QCL 28

2.2.4.2 Constants

Frequently used values can be defined as symbolic constants. The syntax of
a constant declaration is

const-def ← const identifier = expr ;

The definition of pi in the standard include file is e.g.

const pi=3.141592653589793238462643383279502884197;

Constant definitions are not restricted to constant expressions, but keep their
value, once defined:

qcl> const seed=random();
qcl> print seed;
: 0.378990
qcl> print seed;
: 0.378990

2.2.4.3 Variables

The definition of variables in QCL is analogous to C:

var-def ← type identifier [= expr] ;

Classic data types are int, real, complex, boolean and string (see sec-
tion 2.2.1). If no initial value is given, the new variable is initialised with
zero, false or "", respectively.

The value of a variable can be changed by an assignment, as well as
several other statements (see section 2.4):

qcl> complex z; // declare complex variable z
qcl> print z; // z was initialised with 0
: (0.000000,0.000000)
qcl> z=(0,1); // setting z to i
qcl> print z;
: (0.000000,1.000000)
qcl> z=exp(z*pi); // assignment to z may contain z
qcl> print z;
: (-1.000000,0.000000)
qcl> input z; // ask for user input
? complex z [(Re,Im)] ? (0.8,0.6)
qcl> print z;
: (0.800000,0.600000)

Since the value of variables is by definition not unique, global variables cannot
be accessed in routines with mathematical semantics, namely functions and
(pseudo-classic) operators.

CHAPTER 2. QCL 29

2.2.4.4 Scopes and Namespaces

All Symbols share the same namespace, therefore all global identifiers have to
be unique, even if they designate different objects. To guarantee consistent
behaviour of defined functions and operators, there is no way to undefine a
once declared global symbol.

qcl> int f;
qcl> int f(int n) { return f^2; }
! illegal scope: Global symbol f already defined

The option --allow-redefines can be used to suppress errors when a sym-
bol is declared a second time. Redefinitions are then silently ignored and the
processing of the input file or line continues. This can be useful for safely
including files or shadowing definitions by private versions:

qufunct flip(qureg q) { /* define my own version of flip */ }
set allow-redefines true;
include "dft"; // flip-version in dft.qcl is ignored
set allow-redefines false;

The definition of a symbol can be shown with the list command (see below
for an example).

When using qcl interactively (see section 2.1.3.3), the shell command
can be used to open a subshell with a temporal scope. This means, that new
definitions are only valid within the current subshell.2 All temporal symbols
are destroyed again, when the subshell is left with exit.

qcl> list x;
: symbol x is undefined.
qcl> shell;
: shell escape
qcl1> int x;
qcl1> list x;
: global symbol x = 0:
int x;
qcl1> exit
qcl> list x;
: symbol x is undefined.

2Note that this doesn’t compromise mathematical semantics of functions and operators,
since the existence of used global symbols is checked already when the routine is defined
and not just at execution-time.

CHAPTER 2. QCL 30

2.3 Quantum Registers and Expressions

2.3.1 Registers and States

2.3.1.1 Machine State and Program State

The memory of a quantum computer is usually a combination of 2-state sub-
systems, referred to as quantum bits (qubits). As pointed out in section 1.2.2
the “memory content” is the combined state of all qubits. This state is re-
ferred to as the (quantum) machine state as opposed to the program state
which is the current state of the controlling (classic) algorithm (e.g. contents
of variable, execution stack, etc.) 3

The machine state |Ψ〉 of an n qubit quantum computer is a vector in
the Hilbert space H = C2n

, however – due to the destructive nature of
measurement (see section 1.2.5) – |Ψ〉 cannot be directly observed.

2.3.1.2 Quantum Registers

QCL uses the concept of quantum registers (see section 1.3.2) as an interface
between the machine state and the controlling algorithm. A quantum register
is a pointer to a sequence of (mutually different) qubits and all operations on
the machine state (except for the reset command, see section 2.4.2.2) take
quantum registers as arguments.

Since an n qubit quantum computer allows for n!
(n−m)!

different m qubit
registers, any unitary or measurement operation on a m qubit register, can
result in n!

(n−m)!
different operations on the machine state:

Let s be an m qubit register covering the qubits at the zero-based positions
〈s0, s1 . . . sm−1〉 (with si 6= sj for all i, j < m) of the n qubit machine state
|Ψ〉 and Op be a m qubit unitary or measurement operator, then the register
operation Op(s) corresponds to the following machine state operation (see
section 1.3.2.2):

Op(s) : |Ψ〉 → R†
s (Op × I(n−m)) Rs |Ψ〉 (2.1)

The reordering operator Rs and the k-qubit identity operator I(k) are defined
in (1.15) and (1.2), respectively.

2.3.1.3 Memory Management

In QCL, the relation between registers and qubits is handled transparently by
allocation and deallocation from qubits of the quantum heap, which allows the

3Note that QTM has no program state in this sense, since it isn’t subject to any classic
meta-algorithm

CHAPTER 2. QCL 31

use of local quantum variables. All free (i.e. unallocated) quantum memory
has to be empty.

Definition 6 (Empty Registers) A quantum register s is considered empty
if

P0(s) |Ψ〉 = |Ψ〉 with P0 = |0〉〈0| (2.2)

At startup or after the reset command, the whole machine state is empty,
thus |Ψ〉 = |0〉.

Pseudo-classic operators (qufunct) allow the use of local quantum vari-
ables as scratch space (see section 1.3.4). When temporary scratch registers
(quscratch) are allocated, memory management has to keep track of all ap-
plied operators until the local register is deallocated again. Then the result
registers are saved using FANOUT and the computation is run in reverse.

The user can override default memory management by explicitly exclude
local variables form uncomputing by declaring them as general registers
qureg (see section 2.3.2.1). In this case, proper cleanup is in the respon-
sibility of the programmer.

2.3.1.4 Simulation

While QCL – as a programming language – is designed to work with any
qubit-based quantum computer architecture, the development of the neces-
sary hardware will most probably take a few more decades. This is why
QCL also supports the simulation of quantum computers and provides spe-
cial commands for accessing the (simulated) machine state.

The interpreter qcl can simulate quantum computers with arbitrary num-
bers of qubits (option --bits). Only base-vectors with a nonzero amplitude
are actually stored, so the use of scratch registers doesn’t require additional
memory.

All numerical simulations are handled by the QC library. Please refer to
[17] for a more detailed description.

2.3.2 Quantum Variables

Quantum registers bound to a symbolic name are referred to as quantum
variables.

2.3.2.1 General Registers

A general quantum Register with n = expr qubits can be declared with

var-def ← qureg identifier [expr] ;

CHAPTER 2. QCL 32

Empty quantum memory is allocated from the heap and bound to the symbol
identifier .

A declaration in global scope defines a permanent quantum register which
is not to prone to scratch space management. This means that – as with
classic global variables – there is no way to reclaim allocated qubits within
the same shell.

If a global register is defined in a subshell (see section 2.2.4.4) and the
subshell is closed, the symbol is destroyed and the allocated qubits are again
marked as free. It is up to the programmer to guarantee that the deallocated
qubits are in fact empty.4

qcl> qureg q[1]; // allocate a qubit
qcl> Rot(-pi/2,q); // perform single bit rotation
[1/4] 0.707107 |0000> + 0.707107 |0001>
qcl> shell; // open subshell
: shell escape
qcl1> qureg p[1]; // allocate another qubit
qcl1> Rot(-pi/2,p); // also rotate register p
[2/4] 0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>
qcl1> exit; // leave subshell
qcl> dump; // former register p is not empty
: STATE: 1 / 4 qubits allocated, 3 / 4 qubits free
0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>
qcl> list p; // however symbol p is undefined
: symbol p is undefined.

The reseting of the machine state with the reset command has no effect on
register bindings.

[0/4] 1 |0000>
qcl> qureg q[1]; // allocate a qubit
qcl> reset; // reset: |Psi> -> |0>
[1/4] 1 |0000>
qcl> list q; // register q still exists
: global symbol q = |...0>:
qureg q[1];

The quantum types quvoid and quscratch are restricted to pseudo-classic
operators (qufunct) and are equivalent to qureg, except that they are treated
differently by memory management (see section 2.5.6.3 for details).

2.3.2.2 Quantum Constants

Registers can be declared constant, by using the register type quconst. A
quantum constant has to be invariant to all applied operators.

4Note that proper uncomputation is only possible if no non-reversible operations as
measurements have been performed since the allocation.

CHAPTER 2. QCL 33

Definition 7 (Invariance of Registers) A quantum register c is consid-
ered invariant to a register operator U(s, c) if U meets the condition

U : |i, j〉 = |i〉s|j〉c → (Uj |i〉s) |j〉c (2.3)

Quantum constants have a fixed probability spectrum: Let |Ψ〉 =
∑

aij|i, j〉
be the machine state and |Ψ′〉 = U(s, c) |Ψ〉 and p(J) and p′(J) the proba-
bilities to measure J in register c before and after the operator is applied,
then

p(J) = 〈Ψ|PJ |Ψ〉 =
∑

i

a∗iJaiJ with PJ =
∑

k

|k, J〉〈k, J | (2.4)

p′(J) = 〈Ψ′|PJ |Ψ′〉 = 〈Ψ|U †PJU |Ψ〉 = (2.5)

=
∑

i′,j′,i,j
a∗i′j′aij (〈i′|sU †

j′ 〈j′|c) PJ (Uj |i〉s |j〉c) =

=
∑

i′,i
a∗i′JaiJ 〈i|U †

JUJ |i〉 = p(J)

While global registers can be declared as quantum constants, this isn’t par-
ticularly useful, since there is no way to change the register spectrum and
the register will consequently always be empty.

qcl> quconst c[1];
qcl> Mix(c);
! parameter mismatch: quconst used as non-const argument to Mix

If an argument to an operator is declared as quconst, the register has to be
invariant to all subsequent operator calls within the operator definition.

qcl> operator foo(quconst c) { Rot(pi,c); }
! in operator foo: parameter mismatch: quconst used as non-const
argument to Rot

When used as an argument type to a quantum function, constant registers
aren’t swapped out when local scratch registers are uncomputed (see sec-
tion 2.5.5).

2.3.2.3 Empty Registers

If an argument v to an operator is declared quvoid, the quantum regis-
ter is expected to be empty when the operator is called normally (see sec-
tion 2.4.1.2), or to be uncomputed if the operator is called inverted. So,
depending on the adjungation flag of the operator, the machine state |Ψ〉 has
to conform to either

U(v, . . .) : |Ψ〉 = |0〉v|ψ〉 → |Ψ′〉 or U †(v, . . .) : |Ψ〉 → |0〉v|ψ′〉 (2.6)

This can be checked at runtime with the option --check.

CHAPTER 2. QCL 34

qcl> qureg q[4];
qcl> qureg p[4];
qcl> set check 1; // turn on consistency checking
qcl> Rot(pi/100,p[2]); // slightly rotate one target qubit
[8/8] 0.999877 |00000000> + -0.0157073 |01000000>
qcl> Fanout(q,p); // p is assumed void
! in qufunct Fanout: memory error: void or scratch register not empty

When used as an argument type to a quantum function, void registers are
swapped out to a temporary register if local scratch registers are uncomputed.

2.3.2.4 Scratch Registers

As an argument s to an operator, registers of type quscratch are considered
to be explicit scratch registers which have to be empty when the operator
is called and have to get uncomputed before the operator terminates, so
operator and machine state have to satisfy the condition

U(s, . . .) : |Ψ〉 = |0〉s|ψ〉 → |0〉s|ψ′〉 = |Ψ′〉 (2.7)

As with quvoid, this is verified at runtime if the option --check is set.
If a scratch register is defined within the body of a quantum function,

Bennet-style uncomputing as introduced in section 1.3.4.2 is used to empty
the register again (see section 2.5.5 for a detailed explanation).

Quantum functions using local scratch registers may not take general
(qureg) registers as arguments.

qcl> qufunct nop(qureg q) { quscratch s[1]; }
! invalid type: local scratch registers can’t be used with
qureg arguments

2.3.2.5 Register References

To conveniently address subregisters or combined registers (see below), quan-
tum expressions can be named by declaring a register reference.

def ← type identifier [= expr] ;

The quantum expression expr is bound the register identifier of the quantum
type type which can be qureg or quconst.

qcl> qureg q[8];
qcl> qureg oddbits=q[1]&q[3]&q[5]&q[7];
qcl> qureg lowbits=q[0:3];
qcl> list q,oddbits,lowbits;
: global symbol q = |........76543210>:
qureg q[8];
: global symbol oddbits = |........3.2.1.0.>:
qureg oddbits;
: global symbol lowbits = |............3210>:
qureg lowbits;

CHAPTER 2. QCL 35

References can also can be used to override typechecking by redeclaring a
quconst as qureg, which can be useful if a constant argument should be
temporarily used as scratch space but is restored later. See the implementa-
tion of modular addition (addn) in section 3.2.2.1 (page 62) for an example.

2.3.3 Quantum Expressions

A quantum expression is an anonymous register reference, which can be used
as an operator argument or to declare named references (see above).

Expr. Description Register
a reference 〈a0, a1 . . . an〉

a[i] qubit 〈ai〉
a[i:j] substring 〈ai, ai+1 . . . aj〉
a[i\l] substring 〈ai, ai+1 . . . ai+l−1〉
a&b concatenation 〈a0, a1 . . . an, b0, b1 . . . bm〉

Table 2.9: quantum expressions

2.3.3.1 Subregisters

Subregisters can be addressed with the subscript operator [. . .]. Depending
on the syntax (see table 2.9), Single qubits are specified by their zero-based
offset and substrings are specified by the offset of the first qubit and either the
offset of the last qubit (syntax [. . .:. . .]) or the total length of the subregister
(syntax [. . .\. . .]).

qcl> qureg q[8];
qcl> print q[3],q[3:4],q[3\4];
: |....0...> |...10...> |.3210...>

Indices can be arbitrary expressions of type int. Invalid subscripts trigger
an error.

qcl> int i=255;
qcl> print q[floor(log(i,2))];
: |0.......>
qcl> print q[floor(log(i,2))\2];
! range error: invalid quantum subregister

CHAPTER 2. QCL 36

2.3.3.2 Combined Registers

Registers can be combined with the concatenation operator &. If the registers
overlap, an error is triggered.

qcl> print q[4:7]&q[0:3];
: |32107654>
qcl> print q[2]&q[0:3];
! range error: quantum registers overlap

2.4 Statements

2.4.1 Elementary Commands

2.4.1.1 Assignment

The value of any classic variable can be set by the assignment operator =.
The right-hand value must be of the same type as the variable. In con-
trast to arithmetic operators and built-in functions, no implicit typecasting
is performed.

qcl> complex z;
qcl> z=pi; // no typecast
! type mismatch: invalid assignment
qcl> z=conj(pi); // implicit typecast

Since quantum variables are potentially subject to memory management,
neither quantum registers nor register references can be reassigned.

qcl> qureg q[2];
qcl> quref p=q[0];
qcl> p=q[1];
! invalid type: assignment to quantum variable

2.4.1.2 Call

The routine types procedure, operator and qufunct can be called.

stmt ← [!] identifier ([expr { , expr }]) ;

As with assignments, no typecasting is performed for classical argument
types. Quantum registers can be cast from qureg to quconst but not the
other way around.

qcl> list CNot; // The controlled-not operator takes
: global symbol CNot: // a qureg and a quconst as arguments
extern qufunct CNot(qureg q,quconst c);
qcl> qureg q[2];
qcl> quconst p[2];
qcl> CNot(q[0],q[1]); // cast from qureg to quconst
qcl> CNot(p[0],p[1]); // no cast from quconst to qureg
! parameter mismatch: quconst used as non-const argument to CNot

CHAPTER 2. QCL 37

The parameter type quvoid and the local register type quscratch merely
give meta-information for memory management and are otherwisely treated
as qureg.

Calls to the operator types operator and qufunct can be inverted with
the adjungation prefix ‘!’. The operator is then normally executed, except
that all suboperators within the operator definition are not immediately in-
voked, but stored in an internal list together with their evaluated parameters.

When the execution is finished, the suboperators are called in reverse
order with their adjungation flags inverted.

qcl> <<dft
qcl> qureg q[2]; // allocate 2 qubits
qcl> set log 1; // turn on operator logging
qcl> dft(q); // perform discrete Fourier transform
@ Rot(real theta=1.570796,qureg q=|..0.>)
@ CPhase(real phi=1.570796,qureg q=|..10>)
@ Rot(real theta=1.570796,qureg q=|...0>)
@ Swap(qureg a=|...0>,qureg b=|..0.>)
[2/4] 0.5 |0000> + -0.5 |0010> + -0.5 |0001> + 0.5 |0011>
qcl> !dft(q); // inverse Fourier transform
@ !Swap(qureg a=|...0>,qureg b=|..0.>)
@ !Rot(real theta=1.570796,qureg q=|...0>)
@ !CPhase(real phi=1.570796,qureg q=|..10>)
@ !Rot(real theta=1.570796,qureg q=|..0.>)
[2/4] 1 |0000>

2.4.1.3 Input and Output

stmt ← input [expr] , identifier ;

The input command prompts for user input and assigns the value to the
variable identifier . Optionally a prompt string expr can be given instead of
the standard prompt which indicates the type and the name of the variable.
Each input line is prepended by a question mark.

qcl> real n;
qcl> input "Enter Number of iterations:",n;
? Enter Number of iterations: 1000

input repeats prompting until a valid input expression is entered.

qcl> boolean b;
qcl> input b;
? boolean b [t(rue)/f(alse)] ? yes
? boolean b [t(rue)/f(alse)] ? true

Like global variables, the use of input statements in the definition of func-
tions and operators is forbidden.

CHAPTER 2. QCL 38

The print command takes a comma separated list of expressions and
prints them to the console. Each output is prepended by a colon and ter-
minated with newline. Multiple expressions are delimited by space. In the
case of quantum expressions, the position of the corresponding qubits in the
machine-state is printed.

qcl> int i=3; real x=pi; complex z=(0,1); boolean b; qureg q[8];
qcl> print i,x,z,b,q;
: 3 3.141593 (0.000000,1.000000) false |........76543210>

In interactive use, the print command can be abbreviated with ‘?’.

2.4.1.4 Debugging

The commands shell and exit open and close subshells during interactive
use. Please refer to section 2.1.3.3 and section 2.2.4.4 for a detailed descrip-
tion.

stmt ← list [identifier { , identifier }] ;

If called without arguments, the list command prints a list of all defined
global and local symbols. When given a list of symbols, their scope, value (if
appropriate) and their definition is printed.

qcl> <<dft
qcl> list flip,pi;
: global symbol flip:
qufunct flip(qureg q) {
int i;
for i = 0 to #q/2-1 {

Swap(q[i],q[(#q-i)-1]);
}

}
: global symbol pi = 3.141593:
const pi = 3.141593;

The dump command can be used to inspect the simulated machine state or the
spectrum of quantum registers. Please refer to section 2.4.2.3 for a detailed
description.

stmt ← set option [, expr] ;

The set command can be used to temporarily turn on command-line debug
options. See section 2.1.3.1 for a complete list of options.

CHAPTER 2. QCL 39

extern qufunct CNot(qureg q,quconst c);

qufunct Swap(qureg a,qureg b) {
int i;
if #a != #b { exit "Swap: unmatching register sizes"; }
for i=0 to #a-1 {

CNot(a[i],b[i]); // |a,b> -> |a xor b,b>
CNot(b[i],a[i]); // |a xor b,b> -> |a xor b,a>
CNot(a[i],b[i]); // |a xor b,a> -> |b,a>

}
}

Table 2.10: swap.qcl Custom implementation of Swap

2.4.2 Quantum Statements

2.4.2.1 Unitary Operations

The operators Fanout and Swap play a major role in QC as the moral equiv-
alent to the elementary mov operation in conventional microprocessors.

FANOUT : |i, 0〉 → |i, i〉 (2.8)

SWAP : |i, j〉 → |j, i〉 (2.9)

The default implementation of Fanout and Swap as defined in default.qcl

declares them as external (i.e. elementary, see section section 3.1) operators:

extern qufunct Fanout(qureg a,qureg b);
extern qufunct Swap(qureg a,qureg b);

Since QCL doesn’t enforce a specific set of elementary operators, the user is
free to provide his own implementations. Table 2.10 gives an example of a
custom Swap operator using controlled-not gates. Even the Fanout opera-
tion, which is used by internal scratch space management can be replaced if
desired (see table 2.13 on page 53 for an example).

For convenience, QCL provides some syntactic sugar for calls to Fanout

and Swap, which can be used instead of the standard syntax:

stmt ← expr a(-> | <- | <->) expr b ;

These are shortcuts for Fanout(a,b), !Fanout(a,b) and Swap(a,b).

CHAPTER 2. QCL 40

2.4.2.2 Non-unitary Operations

As pointed out in section 1.1.1, any quantum computation must be com-
position of initialisations, unitary operators and measurements. A typical
probabilistic quantum algorithm usually runs an evaluation loop like this:

{
reset; // R: |Psi> -> |0>
myoperator(q); // U: |0> -> |Psi’>
measure q,m; // M: |Psi’> -> |m>

} until ok(m); // picked the right m ?

The reset command resets the machine-state |Ψ〉 to |0〉, which is also
the initial state when qcl is started. The quantum heap and the binding of
quantum variables are unaffected.

stmt ← measure expr [, identifier] ;

The measure command measures the quantum register expr and assigns the
measured bit-string to the int variable identifier . If no variable is given,
the value is discarded.

The outcome of the measurement is determined by a random number
generator, which – by default – is initialised with the current system time.
For reproducable behaviour of the simulation, a seed value can be given with
the option --seed.

Since reset and measure operations are irreversible, they must not occur
within operator definitions.

2.4.2.3 Simulator Commands

QCL provides several commands to directly access the simulated machine
state. Since this would be impossible when using a real quantum computer,
they should be regarded as a non-standard extention to the QCL language.

stmt ← dump [expr] ;

← load [expr] ;

← save [expr] ;

If called without arguments, the dump command prints the current machine
state in bra-ket notation. When a quantum expression is given, it prints the
probability spectrum instead.

CHAPTER 2. QCL 41

qcl> qureg q[2];
qcl> Mix(q);
qcl> dump;
: STATE: 2 / 4 qubits allocated, 2 / 4 qubits free
0.5 |0000> + 0.5 |0010> + 0.5 |0001> + 0.5 |0011>
qcl> dump q;
: SPECTRUM q: |..10>
0.25 |00> + 0.25 |01> + 0.25 |10> + 0.25 |11>

The base-vectors are given in binary notation if the number of qubits is ≤ 32
and in hexadecimal otherwise. A particular output format can be forced by
using the option --dump-format.

qcl> set dump-format "x";
qcl> dump;
: STATE: 2 / 4 qubits allocated, 2 / 4 qubits free
0.5 |0x0> + 0.5 |0x2> + 0.5 |0x1> + 0.5 |0x3>

If the --auto-dump option is set, the current state is logged at the shell-
prompt in interactive mode. By default, --auto-dump is active if the number
of qubits ≤ 8.

The current machine-state can be loaded and saved with the load and
save command. State files have the extention .qst. If no filename is given,
the default file qclstate.qst is used.

2.4.3 Flow Control

2.4.3.1 Blocks

All flow control statements operate on blocks of code. A block is a list of
statements enclosed in braces:

block ← { stmt { stmt } }
Blocks may only contain executable statements, no definitions. Unlike C, a
block is not a compound statement and always part of a control structure.
To avoid ambiguities with nesting, the braces are obligatory, even for single
commands.

2.4.3.2 Conditional Branching

The if and if-else statements allow for the conditional execution of blocks,
depending on the value of a boolean expression.

stmt ← if expr block [else block]

If expr evaluates to true, the if-block is executed. If expr evaluates to false,
the else-block is executed if defined.

CHAPTER 2. QCL 42

2.4.3.3 Counting Loops

for-loops take a counter identifier of type integer5 which is incremented from
expr from to expr to . The loop body is executed for each value of identifier .

stmt ← for identifier = expr from to expr to [step expr step] block

Inside the body, the counter is treated as a constant. The increment is
expr step or 1 if unspecified. If (expr to − expr to) expr step < 0 the loop isn’t
executed at all.

qcl> int i;
qcl> for i=10 to 2 step -2 { print i^2; }
: 100
: 64
: 36
: 16
: 4
qcl> for i=1 to 10 { i=i^2; } // i is constant in body
! unknown symbol: Unknown variable i

When the loop is finished, identifier is set to expr to .

2.4.3.4 Conditional Loops

QCL supports two types of conditional loops:

stmt ← while expr block

← block until expr ;

A while-loop is iterated as long as a the condition expr is satisfied. When
expr evaluates to false, the loop terminates.

An until-loop is executed at least once and iterated until the condition
expr is satisfied.

2.4.3.5 Error Reporting

User defined routines often require their parameters to match certain condi-
tions (e.g. sizes of quantum register arguments). Abnormal termination of
subroutines can be forced with the exit statement.

stmt ← exit [expr] ;

Exit takes an error messages of type string as argument. Consider the
custom Swap operator (Table 2.10) on page 39.

5This is to avoid subtle problems with floating point arithmetic

CHAPTER 2. QCL 43

$ qcl -n -i swap.qcl
qcl> qureg q[2];
qcl> qureg p[1];
qcl> Swap(q,p);
! in qufunct Swap: user error: Swap: unmatching register sizes

If exit is called without arguments, the current subshell is closed as described
in section 2.1.3.3.

2.5 Subroutines

2.5.1 Introduction

2.5.1.1 Syntax

QCL provides 4 kinds of subroutines: classical functions, pseudo-classical
operators (qufunct), general unitary operators (operator) and procedures
(procedure). The basic syntax for all subroutine declarations is

def ← (type | routine-type) identifier arg-list body

routine-type ← operator | qufunct | procedure
arg-list ← ([arg-def { , arg-def }])
arg-def ← type identifier

body ← { { const-def | var-def } { stmt } }

2.5.1.2 Hierarchy of Subroutines

Since QCL allows for the inverse call of operators and can perform scratch-
space management for quantum functions, the allowed side effects on the
classical program state as well as on the quantum machine state have to be
strictly specified.

routine type program state machine state
procedure all all
operator none unitary
qufunct none pseudo-classic
functions none none

Table 2.11: hierarchy of QCL Subroutines and allowed side-effects

The 4 QCL routine types form a call hierarchy, which means that a routine
may invoke only subroutines of the same or a lower level (see table 2.11).

CHAPTER 2. QCL 44

The mathematical semantic of QCL operators and functions requires that
every call is reproducable. This means, that not only the program state must
not be changed by these routines, but also that their execution may in no way
depend on the global program state which includes global variables, options
and the state of the internal random nuber generator.6

2.5.1.3 External Routines

While QCL incorporates a classical programming language, to provides all
the necessary means to change the program state, there is no hardwired set
of elementary operators to manipulate the quantum machine state, since this
would require assumptions about the architecture of the simulated quantum
computer.

An elementary operator or qufunct can be incorporated by declaring it
as extern.

def ← extern operator identifier arg-list ;

← extern qufunct identifier arg-list ;

External operators have no body since they are not executed within QCL, but
merely serve as a hook for a binary function which implements the desired
operation directly by using the numeric QC-library [17] and is linked to the
interpreter.

The interpreter qcl includes binary versions of several common operators,
including an implementation of the Fanout operator (see section 2.5.6.2)
which is used by QCL scratch space management, and patterns of general
unitary matrices to allow the implementation of new elementary operators.

To conveniently define a custom set of elementary operators, the external
declarations can be included into the default include file default.qcl. Note
that a definition of a Fanout has to be provided if local scratch variables are
to be used.

For a complete list of available external operators, please refer to section
3.1.

2.5.2 Functions

Functions are the most restrictive routine type and don’t allow any interac-
tions with the global state.

6These restrictions can be partially overridden for debugging purposes by using the
shell command

CHAPTER 2. QCL 45

User defined functions may be of any classic type, namely int, real,
complex or string, and may take an arbitrary number of classical param-
eters. The value of the function is passed to the invoking routine by the
return statement.

int digits(int n) { // calculate the number of
return 1+floor(log(n,2)); // binary digits of n

}

Lokal variables can be defined at the top of the function body.

int fibonachi(int n) { // calculate the n-th
int a=0; // fibonachi number
int b=1; // by iteration
int i;
for i = 1 to n {

b = a+b;
a = b-a;

}
return a;

}

Functions can call other functions within their body. Recursive calls are also
allowed.

int fac(int n) { // calculate n!
if n<2 { // by recursion

return 1;
} else {

return n*fac(n-1);
}

}

Other than most internal functions, no implicit typecasting is performed, so
the function arguments have to exactly match the specified parameter type.

2.5.3 Procedures

Procedures are the most general routine type and used to implement the
classical control structures of quantum algorithms which generally involve
evaluation loops, the choise of applied operators, the interpretation of mea-
surements and classical probabilistic elements.

With the exception of routine declarations, procedures allow the same
operations as are available in global scope (e.g. at the shell prompt) allowing
arbitrary changes to both the program and the machine state. Operations
exclusive to procedures are

• Access to global variables

CHAPTER 2. QCL 46

• (Pseudo) Random numbers by using the pseudo-function random (see
section 2.2.3.7)

• Non-unitary operations on the machine state by using the reset and
measure commands (see section 2.4.2.2)

• User input by using the input command (see section 2.4.1.3)

Procedures can take any number of classical or quantum arguments and
may call all types of subroutines.

procedure prepare(qureg q) {
const l = #q/2; // use one half of the register
int i; // for the offset
reset; // initialize machine state
Mix(q[l:#q-1]); // generate periodic distribution
for i = 0 to l-1 { // randomize the offset

if 0.5<random() {
Not(q[i]);

}
}

}

The procedure prepare generates a periodic test state with random offset,
as we have used in the DFT example in section 2.1.2.

qcl> qureg q[4];
qcl> prepare(q);
[4/4] 0.5 |0010> + 0.5 |1010> + 0.5 |0110> + 0.5 |1110>
qcl> prepare(q);
[4/4] 0.5 |0000> + 0.5 |1000> + 0.5 |0100> + 0.5 |1100>
qcl> prepare(q);
[4/4] 0.5 |0011> + 0.5 |1011> + 0.5 |0111> + 0.5 |1111>

Procedures may declare local variables of classical and quantum types. When
local quantum registers are used, it is up to the programmer to properly
empty them again, which can either be acheived by uncomputing or by a
reset command. Table 2.12 shows a simple game where a local quantum
register is used to generate “real” random numbers.

2.5.4 General Operators

The routine type operator is used for general unitary operators. Conforming
to the mathematical notion of an operator, a call with the same parameters
has to result in exactly the same transformation, so no global variable refer-
ences, random elements or dependencies on input are allowed.

Since the type operator is restricted to reversible transformations of the
machine state, reset and measure commands are also forbidden.

CHAPTER 2. QCL 47

procedure quRoulette() {
qureg q[5];
int field;
int number;
input "Enter field number:",field;
repeat {

Mix(q);
measure q,number;
reset;

} until number<=36;
if field==number {

print "Number",number,"You won!";
} else {

print "Number",number,"You lose.";
}

}

Table 2.12: roulette.qcl quantum roulette

2.5.4.1 Operator Arguments

Operators work on one or more quantum registers (register operator, see
section 1.3.2.2), so depending on the mapping of the registers, a call of an
m qubit operator with a total quantum heap of n qubits can result in n!

(n−m)!

different unitary transformations.
In QCL, this polymorphism is even further extended by the fact, that

quantum registers can be of different sizes, so for every quantum parameter
s, the register size #s = |s| is an implicit extra parameter of type int. An
addition to that, operators can take an arbitrary number of explicit classical
arguments.

If more than one argument register is given, their qubits may not overlap.

qcl> qureg q[4];
qcl> qureg p=q[2:3];
qcl> CNot(q[1\2],p);
! runtime error: quantum arguments overlapping

2.5.4.2 Inverse Operators

As allready mentioned in section 2.4.1.2, operator calls can be inverted by
the adjungation prefix ‘!’. The adjoint operator to a composition of unitary

CHAPTER 2. QCL 48

operators is7

(
n∏

i=1

Ui

)†
=

1∏

i=n

U †
i (2.10)

Since the sequence of applied suboperators is specified using a procedural
classical language which cannot be executed in reverse, the inversion the
composition, is is achieved by the delayed execution of operator calls.

When the adjungation flag is set, the operator body is executed and all
calls of suboperators are pushed on a stack which is then processed in reverse
order with inverted adjungation flags.

2.5.4.3 Local Registers

As opposed to pseudo-classic operators, it is in general impossible to uncom-
pute an unitary operator in order to free a local register again without also
destroying the intended result of the computation. This is a fundamental
limitation of QC known as the non cloning theorem which results from the
fact that a cloning operation i.e. a transformation with meets the condition

U : |ψ〉|0〉 → |ψ〉|ψ〉 (2.11)

for an arbitrary8 |ψ〉 cannot be unitary if |ψ〉 is a composed state because

U (a|0, 0〉+ b|1, 0〉) = a2|0, 0〉+ ab |0, 1〉+ ba |1, 0〉) + b2|1, 1〉 (2.12)

6= aU |0, 0〉+ b U |1, 0〉 = a|0, 0〉+ b|1, 1〉 (2.13)

U can only be unitary if |ψ〉 is in a pure state, i.e. |ψ〉 = |i〉, in which case
U = FANOUT .

Due to the lack of a unitary copy operation for quantum states, Bennet-
style scratch space management is impossible for general operators since it
is based on cloning the result register.

Despite this limitation, it is possible in QCL to allocate temporary quan-
tum registers but it is up to the programmer to properly uncompute them
again. If the option --check is set, proper cleanup is verified by the simula-
tor.

7To avoid ambiguities with non-commutative matrix products, we use the convention∏n
i=1 fi = fnfn−1 . . . f1
8For any particular |ψ〉 an infinite number of unitary “cloning” operators trivially exists,

as e.g. Uψ =
∑

i,j,k |i, j ⊕ k〉〈k|ψ〉〈i, j|

CHAPTER 2. QCL 49

qcl> set check 1
qcl> operator foo(qureg q) { qureg p[1]; CNot(p,q); }
qcl> qureg q[1];
qcl> Mix(q);
[1/4] 0.707107 |0000> + 0.707107 |0001>
qcl> foo(q);
! in operator foo: memory error: quantum heap is corrupted
[1/4] 0.707107 |0000> + 0.707107 |0011>

Local registers are useful if an operator contains some intermediary pseudo-
classic operations which require scratch space. See the implementation of
modular addition (addn) in section 3.2.2.1 (page 62) for an example.

2.5.5 Pseudo-classic Operators

The routine type qufunct is used for pseudo-classic operators and quantum
functions, so all transformations have to be of the form

|Ψ〉 =
∑

i

ci|i〉 →
∑

i,j

ciδjπi
|j〉 = |Ψ′〉 (2.14)

with some permutation π. All n qubit pseudo-classic operators F therefore
have the common eigenstate

|Ψ〉 = 2−
1
2
n

2n−1∑

i=0

|i〉 ⇒ F |Ψ〉 = |Ψ〉 (2.15)

2.5.5.1 Bijective Functions

The most straightforward application for pseudo-classic operators is the di-
rect implementation of bijective functions (see section 1.3.3.1)

qufunct inc(qureg x) {
int i;
for i = #x-1 to 1 {

CNot(x[i],x[0:i-1]);
}
Not(x[0]);

}

The operator inc shifts the base-vectors of it’s argument. In analogy to boson
states, where the increment of the eigenstate corresponds to the generation
of a particle, inc is a creation operator.9

9In fact, this is not quite correct, since other than bosons, an n qubit register is limited
to 2n states, so inc |2n − 1〉 = |0〉 whereas a† |2n − 1〉 = |2n〉

CHAPTER 2. QCL 50

qcl> qureg q[4];
qcl> inc(q);
[4/4] 1 |0001>
qcl> inc(q);
[4/4] 1 |0010>
qcl> inc(q);
[4/4] 1 |0011>
qcl> inc(q);
[4/4] 1 |0100>

2.5.5.2 Conditional Operators

When it comes to more complicated arithmetic operations, it is often required
to apply a transformation to a register a in dependence on the content of
another register e.

If all qubits of e are required to be set, for the transformation to take
place, the operator is a conditional operator with the invariant (quconst)
enable register e (see section 1.3.5).

A simple example for a conditional operator is the Toffoli gate T : |x, y, z〉 →
|x⊕ (y ∧ z), y, z〉 or it’s generalisation, the controlled not gate. A conditional
version of the above increment operator is also easy to implement:

qufunct cinc(qureg x,quconst e) {
int i;
for i = #x-1 to 1 step -1 {

CNot(x[i],x[0:i-1] & e);
}
CNot(x[0],e);

}

Now, only base-vectors of the form |i〉|11 . . .〉s are incremented:

qcl> qureg q[4]; qureg e[2]; Mix(e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110000>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110001>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110010>
qcl> cinc(q,e);
[6/6] 0.5 |000000> + 0.5 |100000> + 0.5 |010000> + 0.5 |110011>

2.5.6 Quantum Functions

As defined in section 1.3.3.2, a quantum function F is a pseudo-classic oper-
ator with the characteristic

F : |x〉x|0〉y → |x〉x|f(x)〉y with f : Bn → Bm (2.16)

CHAPTER 2. QCL 51

If we require the argument register x to be invariant to F by declaring x as
quconst, this leaves us with 2(2n−1)m possible pseudo-classic implementations
of F for any given f . To reflect the fact that F |x, y 6= 0〉 is undefined, the
target register has to be of type quvoid. (see section 2.3.2.3).

Since, according to the above definition, quantum functions are merely
ordinary pseudo-classic operators, whose specification is restricted to certain
types of input states, they also use the same QCL routine type qufunct.

The following example calculates the parity of x and stores it to y:

qufunct parity(quconst x,quvoid y) {
int i;
for i = 0 to #x-1 {

CNot(y,x[i]);
}

}

qcl> qureg x[2]; qureg y[1]; Mix(x);
[3/3] 0.5 |000> + 0.5 |010> + 0.5 |001> + 0.5 |011>
qcl> parity(x,y);
[3/3] 0.5 |000> + 0.5 |110> + 0.5 |101> + 0.5 |011>

2.5.6.1 Scratch parameters

We can extend the notion of quantum functions, by also allowing an explicit
scratch register s (see section 2.3.2.4) as an optional parameter to F , so we
end up with an operator F (x,y, s) with the characteristic

F : |x〉x|0〉y|0〉s → |x〉x|f(x)〉y|0〉s (2.17)

Using the parity and the cinc operator form the above examples, we can
implement an “add parity” function f(x) = x + parity(x) by providing a
scratch qubit:

qufunct addparity(quconst x,quvoid y,quscratch s) {
parity(x,s); // write parity to scratch
x -> y; // Fanout x to y
cinc(y,s); // increment y if parity is odd
parity(x,s); // clear scratch

}

qcl2> qureg x[2]; qureg y[2]; qureg s[1]; Mix(x);
[5/8] 0.5 |00000> + 0.5 |00010> + 0.5 |00001> + 0.5 |00011>
qcl2> addparity(x,y,s);
[5/8] 0.5 |00000> + 0.5 |01110> + 0.5 |01001> + 0.5 |01111>

Instead of providing a explicit scratch parameter, we can, of course, also use
a local register of type qureg, which is functionally equivalent:

CHAPTER 2. QCL 52

qufunct addparity2(quconst x,quvoid y) {
qureg s[1];
parity(x,s);
x -> y;
cinc(y,s);
parity(x,s);

}

qcl2> qureg x[2]; qureg y[2]; Mix(x);
[4/8] 0.5 |00000> + 0.5 |00010> + 0.5 |00001> + 0.5 |00011>
qcl2> addparity2(x,y);
[4/8] 0.5 |00000> + 0.5 |01110> + 0.5 |01001> + 0.5 |01111>

Explicit scratch parameters are useful to save memory, if a quantum function
F is to be used by another operator U , which still has empty scratch registers
at the moment, the suboperator is called, which would e.g. be the case if U
is of the form

U(x,y, s, . . .) =

(
l∏

i=2

Ui(x,y, s, . . .)

)
F (x,y, s) U1(x,y, . . .) (2.18)

Since both, explicit scratch parameters of type quscratch and local registers
of type qureg, have to be uncomputed manually, they are especially useful
for quantum functions U : |x, 0, 0〉 → |x, f(s(x), x), 0〉 of the form

U(x,y, s) = S(x, s)F (x, s,y)S†(x, s) (2.19)

if S is invariant to x and F is invariant to x and s, because the uncompu-
tation of s doesn’t require an additional register to temporarily save y (see
section 1.3.4.2) as would be the case, if a managed local scratch register of
type quscratch would be used instead (see below).

2.5.6.2 The Fanout Operator

The restriction to base-vector permutations implies that the computational
path of a pure state is also a sequence of pure states, so in the case of
superpositions each base-vector can be treated separately.

As shown in section 2.5.4, a arbitrary pure state |ψ〉 = |i〉 can be copied
onto an empty register by a unitary FANOUT operation:

FANOUT : |ψ〉|0〉 = |i, 0〉 → |i, i〉 = |ψ〉|ψ〉 (2.20)

For non-empty target registers, FANOUT |i, j 6= 0〉 is undefined, so for two n
qubit registers there are (22n − 2n)! possible pseudo-classic implementations
of a fanout gate.10

10In fact, the definition of fanout used by QCL is somewhat more restrictive, since it re-
quires the first argument to be invariant (quconst). This can be overridden be redeclaring
the argument as qureg if necessary (see section 2.3.2.5)

CHAPTER 2. QCL 53

extern qufunct CNot(qureg q,quconst c);

qufunct Fanout(quconst a,quvoid b) {
int i;
if #a != #b { exit "Fanout: arguments must be of equal size"; }
for i=0 to #a-1 {

CNot(b[i],a[i]);
}

}

Table 2.13: fanout.qcl Custom implementation of Fanout

Table 2.13 shows a realisation using controlled-not gates which is mathe-
matically equivalent to the default implementation of the external operator
Fanout.

2.5.6.3 Scratch Space Management

The quantum type quscratch declares a local register as managed scratch
space. Managed scratch space (or junk) registers are temporary registers
which are empty when allocated and automatically get uncomputed after
the body of the qufunct has been applied.

So, in contrast to local qureg registers or quscratch parameters, a local
quscratch register j has not to be emptied within the the qufunct definition
but can be left dirty. So, in order to compute some f(x), it is sufficient,
the the body of the quantum function merely implements some operator
F : |x, 0, 0〉 → |x, f(x), j(x)〉 with an arbitrary junk string j(x) in the scratch
register.

When a quantum function with the local junk register j and the body
F (x,y, j) is called, an additional scratch register y′ of the same size as y is
allocated and instead of the 3 register operator F , the 4 register operator F ′

is applied, which is defined as

F ′(x,y, j,y′) = F †(x,y′, j)FANOUT (y′,y) F (x,y′, j) (2.21)

F ′ initially calls F , but instead of y, a temporary target register y′ is used.
The desired result f(x) is then copied onto the original target register y,
while the undesired junk result j(x) is left in the junk register. By undoing
the initial computation by applying the adjoint operator F †, both, the junk
register j and the scratch register y′, get uncomputed again, so the whole

CHAPTER 2. QCL 54

procedure is:

|x〉x|0〉y|0〉j|0〉y′
F (x,y′,j)−→ |x〉x|0〉y|j(x)〉j|f(x)〉y′

FANOUT (y′,y)−→ (2.22)

|x〉x|f(x)〉y|j(x)〉j|f(x)〉y′
F †(x,y′,j)−→ |x〉x|f(x)〉y|0〉j|0〉y′

By using the conditional increment operator from page 50 we can construct
a quantum function bitcmp which implements a “bit comparison” function
f(x1, x2) which returns 1 if the bitstrings x1 and x2 contain the same number
of set bits, and zero otherwise.

qufunct bitcmp(quconst x1,quconst x2,quvoid y) {
const n=ceil(log(max(#x1,#x2)+1,2));
int i;
quscratch j[n]; // allocate a managed scratch register
for i=0 to #x1-1 { // j = number of bits in x1

cinc(j,x1[i]); // increment j if bit i of x1 is set
}
Not(j); // j = 2^n-j-1 = -1-j mod 2^n
for i=0 to #x2-1 { // j = j+number of bits in x2

cinc(j,x2[i]); // increment j if bit i of x1 is set
}
CNot(y,j); // set y=1 if j==2^n-1

}

qcl> qureg x1[2]; qureg x2[2]; qureg y[1];
qcl> Mix(x1[1]); Mix(x2[0]); Not(x2[1]);
[5/8] 0.5 |00001000> + 0.5 |00001100> + 0.5 |00001010> + 0.5 |00001110>
qcl> bitcmp(x1,x2,y);
[5/8] 0.5 |00001000> + 0.5 |00001100> + 0.5 |00011010> + 0.5 |00001110>

By using the option --log we can trace the call of each elementary operator:

CHAPTER 2. QCL 55

qcl> set log 1
qcl> bitcmp(x1,x2,y);
@ CNot(qureg q=|0.......>,quconst c=|.0.....1>)
@ CNot(qureg q=|.0......>,quconst c=|.......0>)
@ CNot(qureg q=|0.......>,quconst c=|.0....1.>)
@ CNot(qureg q=|.0......>,quconst c=|......0.>)
@ Not(qureg q=|10......>)
@ CNot(qureg q=|0.......>,quconst c=|.0...1..>)
@ CNot(qureg q=|.0......>,quconst c=|.....0..>)
@ CNot(qureg q=|0.......>,quconst c=|.0..1...>)
@ CNot(qureg q=|.0......>,quconst c=|....0...>)
@ CNot(qureg q=|..0.....>,quconst c=|10......>)
@ Fanout(quconst a=|..0.....>,quvoid b=|...0....>)
@ !CNot(qureg q=|..0.....>,quconst c=|10......>)
@ !CNot(qureg q=|.0......>,quconst c=|....0...>)
@ !CNot(qureg q=|0.......>,quconst c=|.0..1...>)
@ !CNot(qureg q=|.0......>,quconst c=|.....0..>)
@ !CNot(qureg q=|0.......>,quconst c=|.0...1..>)
@ !Not(qureg q=|10......>)
@ !CNot(qureg q=|.0......>,quconst c=|......0.>)
@ !CNot(qureg q=|0.......>,quconst c=|.0....1.>)
@ !CNot(qureg q=|.0......>,quconst c=|.......0>)
@ !CNot(qureg q=|0.......>,quconst c=|.0.....1>)

The first 10 operations belong to the body operator F ; after the FANOUT ,
they are repeated in reverse order with inverted adjungation flags (F †).

By additionally using the option --log-state, we can also trace the
evolution of the machine state.

qcl> bitcmp(x1,x2,y);
@ CNot(qureg q=|0.......>,quconst c=|.0.....1>)
% 0.5 |00001000> + 0.5 |00001100> + 0.5 |00001010> + 0.5 |00001110>
.....
% 0.5 |00001000> + 0.5 |01001100> + 0.5 |11101010> + 0.5 |00001110>
@ Fanout(quconst a=|..0.....>,quvoid b=|...0....>)
% 0.5 |00001000> + 0.5 |01001100> + 0.5 |11111010> + 0.5 |00001110>
.....
@ !CNot(qureg q=|0.......>,quconst c=|.0.....1>)
% 0.5 |00001000> + 0.5 |00001100> + 0.5 |00011010> + 0.5 |00001110>

Chapter 3

Operators and Algorithms

3.1 Elementary Operators

This section introduces the possible elementary operators, that can be used
with the current implementation of QCL. Since QCL as a language doesn’t
enforce a specific set of elementary operators, they have to be declared as
external (see section 2.5.1.3), to make them available to programs.

This is usually done within the default include file default.qcl (see
appendix A.1), which is loaded at startup.

3.1.1 General Unitary Operators

3.1.1.1 Unitary Matrices

The most general form for specifying a unitary operator (or any other linear
transformation) is by defining it’s matrix elements: An n qubit unitary oper-
ator U describes a transformation U : C2n → C2n

and therefore corresponds
to a 2n × 2n matrix in C

U =
2n∑

i,j=0

|i〉uij〈j| =

u0,0 · · · u0,2n−1
...

. . .
...

u2n−1,0 · · · u2n−1,2n−1

 (3.1)

Since for a unitary transformation U †U = (U∗)TU = I(n), the Matrix U
unitary if and only if

2n−1∧

i,j=0

2n−1∑

k=0

u∗ikukj = 1 (3.2)

QCL provides external operators for general unitary 2 × 2, 4 × 4 and 8 × 8
matrices, which the programmer can use to directly implement a custom set
of 1, 2 and 3 qubit gates.

56

CHAPTER 3. OPERATORS AND ALGORITHMS 57

extern operator Matrix2x2(
complex u00,complex u01,
complex u10,complex u11,

qureg q);
extern operator Matrix4x4(...,qureg q);
extern operator Matrix8x8(...,qureg q);

Matrix operators are checked for unitarity before they are applied:
qcl> const i=(0,1);
qcl> qureg q[1];
qcl> Matrix2x2(i*cos(pi/6),i*sin(pi/6),(0,0),(1,0),q);
! external error: matrix operator is not unitary

3.1.1.2 Qubit Rotation

The rotation of a single qubit is defined by the transformation matrix U(θ)

U(θ) =

(
cos θ

2
sin θ

2

− sin θ
2

cos θ
2

)
(3.3)

The factor −1
2

to θ is set in analogy to spin rotations, which can be shown

to be of the form D = e−
i
2
δjσj and thus have a period of 4π.

extern operator Rot(real theta,qureg q);

In contrast to most other external Operators, Rot is not generalised to work
with arbitrary register sizes.

qcl> Rot(pi/2,q);
! external error: Only single qubits can be rotated

3.1.1.3 Hadamard Gate

The Hadamard Gate is a special case of a generalised qubit Rotation and
defined by the transformation matrix H

H =
1√
2

(
1 1
1 −1

)
(3.4)

For the case of n qubit registers, H can be generalised to

H : |i〉 → 2−
n
2

∑

j∈Bn

(−1)(i,j) |j〉 (3.5)

The vectors B′ = {i ∈ Bn | |i′〉 = H |i〉} form the Hadamard base or dual base
or parity base to B = {i ∈ Bn | |i〉}.

The Hadamard Transformation is self adjoint (i.e. H† = H), which, for
unitary operators, implies that H2 = I.

Since B′ only contains uniform superpositions that just differ by the signs
of the base-vectors, the external implementation of H id called Mix.

extern operator Mix(qureg q);

CHAPTER 3. OPERATORS AND ALGORITHMS 58

3.1.1.4 Conditional Phase Gate

The conditional phase gate is a pathological case of a conditional operator
(see section 1.3.5), for the zero-qubit phase operator eiφ.

V (φ) : |ε〉 →
{

eiφ |ε〉 if ε = 111 . . .
|ε〉 otherwise

(3.6)

The conditional phase gate is used in the quantum Fourier transform (see
section 3.2.3).

extern operator CPhase(real phi,qureg q);

3.1.2 Pseudo-classic Operators

3.1.2.1 Base Permutation

The most general form for specifying an n qubit pseudo-classic operator U ,
is by explicitly defining the underlying permutation π of base-vectors:

Upc. =
2n−1∑

i=0

|πi〉〈i| = 〈π0, π1 . . . π2n−1〉 (3.7)

QCL provides external operators for vector permutations for |π| = 2, 4, 8, 16, 32
and 64 which the programmer can use to directly implement a custom set of
1 to 6 qubit pseudo-classical operators:

extern qufunct Perm2(int p0 ,int p1 ,qureg q);
extern qufunct Perm4(int p0 ,int p1 ,int p2 ,int p3 ,qureg q);
extern qufunct Perm8(...,qureg q);
extern qufunct Perm16(...,qureg q);
extern qufunct Perm32(...,qureg q);
extern qufunct Perm64(...,qureg q);

Base permutations are checked for unitarity before they are applied (i.e. it
is verified that the given integer sequence is in fact a permutation)

qcl> qureg q[3];
qcl> Perm8(0,0,1,2,3,4,5,6,q);
! external error: no permutation

3.1.2.2 Fanout

The FANOUT operation is a quantum function (see section 1.3.3.2) and
stands for a class of transformations with the characteristic FANOUT :
|x, 0〉 → |x, x〉 (see section 2.5.6.2 for details).

CHAPTER 3. OPERATORS AND ALGORITHMS 59

The external fanout operator of QCL is defined as

FANOUT : |x, y〉 → |x, x⊕ y〉, (3.8)

however, it is considered bad programming style to rely on this particular
implementation.

extern qufunct Fanout(quconst a,quvoid b);

3.1.2.3 Swap

The SWAP operator exchanges the qubits of two equal sized registers (SWAP :
|x, y〉 → |y, x〉). A one to one qubit SWAP operator has the transformation
matrix

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (3.9)

extern qufunct Swap(qureg a,qureg b);

3.1.2.4 Not and Controlled Not

The not operator C inverts a qubit. Its transformation matrix is

C =

(
0 1
1 0

)
(3.10)

The controlled-not operator C[[e]] is the conditional operator (see section 1.3.5)
to C with the enable register e:

C[[e]] : |b〉|ε〉e →
{
|1− b〉 |ε〉e if ε = 111 . . .
|b〉|ε〉e otherwise

(3.11)

extern qufunct Not(qureg q);
extern qufunct CNot(qureg q,quconst c);

The QCL versions of Not and CNot also work on target registers:

qcl> qureg q[4]; qureg p[4];
qcl> Not(q);
[8/8] 1 |00001111>
qcl> CNot(p,q);
[8/8] 1 |11111111>

CHAPTER 3. OPERATORS AND ALGORITHMS 60

3.2 Composed Operators

This section introduces the unitary operators needed by the Shor algorithm
presented in section 3.3.

3.2.1 Pseudo-classic Operators

3.2.1.1 Simple Bit-Manipulations

Reverting Registers The flip operator reverts the bit order of a register.

flip : |b1, b2 . . . bn〉 → |bn, bn−1 . . . b1〉 (3.12)

qufunct flip(qureg q) { // pseudo classic op to swap bit order
int i; // declare loop counter
for i=0 to #q/2-1 { // swap 2 symmetric bits

Swap(q[i],q[#q-i-1]);
}

}

Conditional Exclusive Or The cxor operator has the functionality of a
conditional CNot-based FANOUT operation:

cxor : |a〉a|b〉b|ε〉e →
{
|a〉a|a⊕ b〉b|ε〉e if ε = 111 . . .
|a〉a|b〉b|ε〉e otherwise

(3.13)

qufunct cxor(quconst a,qureg b,quconst enable) {
int i;
for i=0 to #a-1 {

CNot(b[i],a[i] & enable);
}

}

3.2.1.2 Comparing Registers

Comparing two classical binary numbers a and b can be simply achieved
by comparing form the highest to the lowest bits and returning at the first
mismatch.

for i=n-1 to 0 { // check whether b<a
if bit(b,i)<bit(a,i) { return true; }

}
return false;

It is, however, not so trivial if one of the values is a quantum register b, due
to the lack of conditional branching. So, since we can’t simply return form
the loop, we have to look for another solution.

CHAPTER 3. OPERATORS AND ALGORITHMS 61

One possibility is to emulate an early return from the loop by using
conditional operators (see section 1.3.5): For each bit comparison, we use an
enable bit which is set to 1 if the bits are equal (and the loop has to continue)
or to 0 if the result is decided and further comparisons should be disabled.

To compare an n qubit register b to a classical integer a, we have to
use an n − 1 junk register j to store the enable bits. The main loop of the
quantum comparison b < a then runs a follows.

for i=#b-2 to 1 step -1 { // continue for lower bits
if bit(a,i) { // set new junk bit if undecided

CNot(j[i-1],j[i] & b[i]);
Not(b[i]); // honour last junk bit and
CNot(flag,j[i] & b[i]); // set result flag if a[i]>b[i]

} else {
Not(b[i]);
CNot(j[i-1],j[i] & b[i]);

}
Not(b[i]); // restore b[i] again

}

For the complete implementation of the lt operator, as used in modular
addition, please refer to appendix 3.2.1.2.

3.2.1.3 Multiplexed Adder

A multiplexed adder adds one of two classical bits a0 and a1 to a qubit b,
depending on the content of a selection qubit s. The target register ysum =
(cin, cout) consists of a carry-in and a carry-out qubit, to allow cascading.
The truth table for the operation is:

s a0 a1 as

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

as b cin c′in c′out

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

The implementation of the truth-table with controlled-not gates (muxaddbit)
is straightforward and can be found in appendix A.3.1 A multiplexed adder
for registers can be constructed by cascading several single bit adders:

1muxaddbit is actually a conditional version with an additional enable register e, as it
is needed for modular multiplication

CHAPTER 3. OPERATORS AND ALGORITHMS 62

qufunct muxadd(int a0,int a1,qureg sel,quconst b,quvoid sum,quconst e) {
int i;
for i=0 to #b-2 { // fulladd first #b-1 bits

muxaddbit(bit(a0,i),bit(a1,i),sel,b[i],sum[i:i+1],e);
} // half add last bit
muxaddbit(bit(a0,#b-1),bit(a1,#b-1),sel,b[#b-1],sum[#b-1],e);

}

3.2.2 Modular Arithmetic

Many number theoretic algorithms describe calculations in the remainder
class Zn. On example for a quantum algorithm using modular arithmetic, is
Shor’s method of polynomial time quantum factoring (see section 3.3).[11].

For a more detailed discussion of unitary operators for modular arith-
metic, please refer to [13].

3.2.2.1 Modular Addition

The addition modulo n of a classic integer a and a quantum register b can
result in either a + b or (a−n) + b), depending on the particular base-vector
|b〉.

While for b < n the operation is revertible, this is not the case for b ≥ n,
so, if n doesn’t happen to be a power of 2, besides the target resister ys for
the sum, we need an additional flag-qubit yy to allow for a quantum function
addn which is both, unitary and invariant to b:

addna,n : |b〉b|0〉ys
|0〉yf

→
{ |b〉b|a + b〉ys

|1〉yflag
if a + b < n

|b〉b|a + b− n〉ys
|0〉yflag

if a + b ≥ n
(3.14)

By using the less-than operator lt and the multiplexing adder muxadd, the
implementation is rather straightforward. (The enable register e has been
added to allow the use for modular multiplication; see below.)

qufunct addn(int a,int n,quconst b,quvoid flag,quvoid sum,quconst e) {
qureg s=sum[0\#b-1];
qureg f=sum[#b-1];
qureg bb=b; // "abuse" sum and b as scratch
lt(n-a,bb,f,s); // for the less-than operator
CNot(flag,f & e); // save result of comparison
!lt(n-a,bb,f,s); // restore sum and b
muxadd(2^#b+a-n,a,flag,b,sum,e); // add either a or a-n

}

The only trick here is, that we redeclare the quconst b as qureg, so that we
can use a “dirty” implementation of lt which doesn’t perform any cleanup

CHAPTER 3. OPERATORS AND ALGORITHMS 63

on b or ys (sum), which would be pointless anyway, since the comparison
gets uncomputed after the result has been saved.

Since addnn−a,n is a quantum function for modular subtraction and thus
implements the inverse function f−1

a,n(b) = b− a mod n to fa,n = a + b mod n,
we can construct an overwriting version oaddn of modular addition, by using
the method introduced in section 1.3.4.3:

F ′ : |i, 0〉 Uf−→ |i, f(i)〉 SWAP−→ |f(i), i〉
U†

f−1−→ |f(i), 0〉 (3.15)

addnn−a,n doesn’t invert the overflow flag yf , so we have to switch it manu-
ally:

U †
f−1 = addnn−a,n(b,ys,yf) (3.16)

The original target registers ys and yf can now be allocated as unmanaged
local scratch.

qufunct oaddn(int a,int n,qureg sum,quconst e) {
qureg j[#sum];
qureg f[1];

addn(a,n,sum,f,j,e); // junk -> a+b mod n
Swap(sum,j); // swap junk and sum
CNot(f,e); // toggle flag
!addn(n-a,n,sum,f,j,e); // uncompute b to zero

}

3.2.2.2 Modular Multiplication

Modular multiplication is merely a composition of conditional additions for
each qubit of b since

ab mod n =
dld be∑

i=0

bi

(
2ia mod n

)
with bi ∈ B (3.17)

The first summand can be slightly optimised, since the accumulator (prod)
is still empty.

qufunct muln(int a,int n,quconst b,qureg prod,quconst e) {
int i;

for i=0 to #prod-1 {
if bit(a,i) { CNot(prod[i],b[0] & e); }

}
for i=1 to #b-1 {

oaddn(2^i*a mod n,n,prod,b[i] & e);
}

}

CHAPTER 3. OPERATORS AND ALGORITHMS 64

As above, we can construct an overwriting version, if an implementation of
the inverse function exists. This is the case if gcd(a, n) = 1 so a and n are
relatively prime, because then the modular inverse a−1 with a−1a mod n = 1
exists. Since we intend to use the operator for the Shor algorithm which
demands that gcd(ak, n) = 1, this is good enough for us.

By using two conditional XOR gates (see section 3.2.1.1) for swapping
the registers2 we can implement a conditional omuln[[e]],a,n|b〉 → |ab mod n〉

qufunct omuln(int a,int n,qureg b,quconst e) {
qureg j[#b];

muln(a,n,b,j,e);
!muln(invmod(a,n),n,j,b,e);
cxor(j,b,e);
cxor(b,j,e);

}

3.2.2.3 Modular Exponentiation

As with muln, we can construct modular exponentiation by conditionally
applying omuln with the qubits of the exponents as enable string, according
to

ab mod n =
dld be∏

i=0

(
a2i bi mod n

)
with bi ∈ B (3.18)

Before we can start the iteration, the accumulator (ex) has to be initialised
by 1.

qufunct expn(int a,int n,quconst b,quvoid ex) {
int i;

Not(ex[0]); // start with 1
for i=0 to #b-1 {

omuln(powmod(a,2^i,n),n,ex,b[i]); // ex -> ex*a^2^i mod n
}

}

3.2.3 Quantum Fourier Transform

For a q dimensional vector |ψ〉, the discrete Fourier transform is defined as

DFT : |x〉 → 1√
q

q−1∑

y=0

e
2πi
q

xy |y〉 (3.19)

2normally, 3 XOR operations are necessary to swap a register, but since one register is
empty, 2 XORs suffice.

CHAPTER 3. OPERATORS AND ALGORITHMS 65

Since |ψ〉 is a combined state of n qubits, q is always a power of 2. The
classical fast Fourier Transform (FFT) uses a binary decomposition of the
exponent to perform the transformation in O(n2n) steps.

As suggested by Coppersmith [7], the same principle could adapted be to
quantum computers by using a combination of Hadamard transformations
H and conditional phase gates V (indices indicate the qubits operated on):

DFT ′ =
n−1∏

i=1

Hn−i−1(

π

2
)

i−1∏

j=0

Vn−i−1,n−j−1(
2π

2i−j+1
)

 Hn−1 (3.20)

DFT ′ iterates the qubits form the MSB to the LSB, “splits” the qubits
with the Hadamard transformation and then conditionally applies phases

according to their relative binary position (e
2πi

2i−j+1) to each already split qubit.
The base-vectors of the transformed state |ψ̃′〉 = DFT ′ |ψ〉 are given in

reverse bit order, so the get the actual DFT , the bits have to be flipped.

operator dft(qureg q) { // main operator
const n=#q; // set n to length of input
int i; int j; // declare loop counters
for i=0 to n-1 {

for j=0 to i-1 { // apply conditional phase gates
CPhase(2*pi/2^(i-j+1),q[n-i-1] & q[n-j-1]);

}
Mix(q[n-i-1]); // qubit rotation

}
flip(q); // swap bit order of the output

}

3.3 Shor’s Algorithm for Quantum Factorisa-

tion

3.3.1 Motivation

In contrast to finding and multiplying of large prime numbers, no efficient
classical algorithm for the factorisation of large number is known. An algo-
rithm is called efficient if its execution time i.e. the number of elementary
operations is assymtotically polynomial in the length of its input measured in
bits. The best known (or at least published) classical algorithm (the quadratic

sieve) needs O
(
exp

(
(64

9
)1/3N1/3(ln N)2/3

))
operations for factoring a binary

number of N bits [12] i.e. scales exponentially with the input size.
The multiplication of large prime numbers is therefore a one-way function

i.e. a function which can easily be evaluated in one direction, while its
inversion is practically impossible. One-way functions play a major roll in

CHAPTER 3. OPERATORS AND ALGORITHMS 66

cryptography and are essential to public key crypto-systems where the key
for encoding is public and only the key for decoding remains secret.

In 1978, Rivest, Shamir and Adleman developed a cryptographic algo-
rithm based on the one-way character of multiplying two large (typically
above 100 decimal digits) prime numbers. The RSA method (named after
the initials of their inventors) became the most popular public key system
and is implemented in many communication programs.

While it is generally believed (although not formally proved) that effi-
cient prime factorisation on a classical computer is impossible, an efficient
algorithm for quantum computers has been proposed in 1994 by P.W. Shor
[11].

3.3.2 The Algorithm

This section describes Shor’s algorithm from a functional point of view which
means that it doesn’t deal with the implementation for a specific hardware
architecture. A detailed implementation for the Cirac-Zoller gate can be
found in [13]. For a more rigid mathematical description, please refer to [14].

3.3.2.1 Modular Exponentiation

Let N = n1n2 with the greatest common divisor gcd(n1, n2) = 1 be the
number to be factorised, x a randomly selected number relatively prime to
N (i.e. gcd(x,N) = 1) and expn the modular exponentiation function with
the period r:

expn(k, N) = xk mod N, expn(k + r,N) = expn(k, N), xr ≡ 1 mod N
(3.21)

The period r is the order of x mod N . If r is even, we can define a y = xr/2,
which satisfies the condition y2 ≡ 1 mod N and therefore is the solution of
one of the following systems of equations:

y1 ≡ 1 mod n1 ≡ 1 mod n2 (3.22)

y2 ≡ −1 mod n1 ≡ −1 mod n2

y3 ≡ 1 mod n1 ≡ −1 mod n2

y4 ≡ −1 mod n1 ≡ 1 mod n2

The first two systems have the trivial solutions y1 = 1 and y2 = −1 which
don’t differ from those of the quadratic equation y2 = 1 in Z or a Galois
field GF(p) (i.e. Zp with prime p). The last two systems have the non-
trivial solutions y3 = a, y4 = −a, as postulated by the Chinese remainder

CHAPTER 3. OPERATORS AND ALGORITHMS 67

theorem stating that a system of k simultaneous congruences (i.e. a system
of equations of the form y ≡ ai mod mi) with coprime moduli m1, . . . , mk

(i.e. gcd(mi,mj) = 1 for all i 6= j) has a unique solution y with 0 ≤ x <
m1m2 . . . mk.

3.3.2.2 Finding a Factor

If r is even and y = ±a with a 6= 1 and a 6= N − 1, then (a + 1) or (a − 1)
must have a common divisor with N because a2 ≡ 1 mod N which means
that a2 = cN + 1 with c ∈ N and therefore a2 − 1 = (a + 1)(a − 1) = cN .
A factor of N can then be found by using Euclid’s algorithm to determine
gcd(N, a + 1) and gcd(N, a− 1) which is defined as

gcd(a, b) =

{
b if a mod b = 0

gcd(b, a mod b) if a mod b 6= 0
with a > b (3.23)

It can be shown that a random x matches the above mentioned conditions
with a probability p > 1

2
if N is not of the form N = pα or N = 2pα. Since

there are efficient classical algorithms to factorise pure prime powers (and
of course to recognise a factor of 2), an efficient probabilistic algorithm for
factorisation can be found if the period r of the modular exponentiation can
be determined in polynomial time.

3.3.2.3 Period of a Sequence

Let F be quantum function F : |x, 0〉 → |x, f(x)〉 of the integer function
f : Z → Z2m with the unknown period r < 2n.

To determine r, we need two registers, with the sizes of 2n and m qubits,
which should be reset to |0, 0〉.

As a first step we produce a homogenous superposition of all base-vectors
in the first register by applying an operator U with

U |0, 0〉 =
22n−1∑

i=0

ci|i, 0〉 with |ci| = 1

2n
(3.24)

This can e.g. be achieved by the Hadamard transform H. Applying F to
the resulting state gives

|ψ〉 = F H |0, 0〉 = F
1

2n

22n−1∑

i=0

|i, 0〉 =
1

2n

22n−1∑

i=0

|i, f(i)〉 (3.25)

A measurement of the second register with the result k = f(s) with s < r
reduces the state to

CHAPTER 3. OPERATORS AND ALGORITHMS 68

|ψ′〉 =
dq/re−1∑

j=0

c′j|rj + s, k〉 with q = 22n and c′j =

√√√√
⌈
r

q

⌉
(3.26)

The post-measurement state |ψ′〉 of the first register consists only of base-
vectors of the form |rj + s〉 since f(rj + s) = f(s) for all j. It therefore has
a discrete, homogenous spectrum.

It is not possible to directly extract the period r or a multiple of it by
measurement of the first register because of the random offset s. The result
of a Fourier transform, however, is invariant (except for phase factors which
don’t effect the probability spectrum) to offsets of a periodic distribution.

|ψ̃′〉 = DFT |ψ′〉 =
q−1∑

i=0

c̃′i|i, k〉 (3.27)

c̃′i =

√
r

q

p−1∑

j=0

exp

(
2πi

q
i(jr + s)

)
=

√
r

q
eφi

p−1∑

j=0

exp

(
2πi

ijr

q

)
(3.28)

with φi = 2πi
is

q
and p =

⌈
q

r

⌉

If q = 22n is a multiple of r then c̃′i = eφi/
√

r if i is a multiple of q/r and
0 otherwise. But even if r is not a power of 2, the spectrum of |ψ̃′〉 shows
distinct peaks with a period of q/r because

lim
n→∞

1

n

n−1∑

k=0

e2πikα =

{
1 if α ∈ Z
0 if α 6∈ Z

(3.29)

This is also the reason why we use a first register of 2n qubits when r < 2n

because it guarantees at least 2n elements in the above sum and thus a peak
width of order O(1).

If we now measure the first register, we will get a value c close to λq/r
with λ ∈ Zr. This can be written as c/q = c · 2−2n ≈ λ/r. We can think
of this as finding a rational approximation a/b with a, b < 2n for the fixed
point binary number c · 2−2n. An efficient classical algorithm for solving this
problem using continued fractions is described in [15] and is implemented in
the denominator function (appendix A.2).

Since the form of a rational number is not unique, λ and r are only
determined by a/b = λ/r if gcd(λ, r) = 1. The probability that λ and r are
coprime is greater then 1/ln r, so only O(n) tries are necessary for a constant
probability of success as close at 1 as desired.3

3If the supposed period r′ = b derived form the rational approximation a/b ≈ c 2−2m

is odd or gcd(xr′/2 ± 1, N) = 1, then one could try to expand a/b by some integer factor
k in order to guess the actual period r = kb.

CHAPTER 3. OPERATORS AND ALGORITHMS 69

3.3.3 QCL Implementation

3.3.3.1 Auxiliary Functions

The implementation of the Shor algorithm uses the following functions:

• boolean testprime(int n)

Tests whether n is a prime number 4

• boolean testprimepower(int n)

Tests whether n is a prime power

• int powmod(int x,int a,int n)

Calculates xa mod n

• int denominator(real x,int qmax)

Returns the denominator q of the best rational approximation p
q
≈ x

with p, q < qmax

For the actual implementations of these functions, please refer to appendix A.2.

3.3.3.2 The Procedure shor

The procedure shor checks whether the integer number is suitable for quan-
tum factorisation, and then repeats Shor’s algorithm until a factor has been
found.

procedure shor(int number) {
int width=ceil(log(number,2)); // size of number in bits
qureg reg1[2*width]; // first register
qureg reg2[width]; // second register
int qmax=2^width;
int factor; // found factor
int m; real c; // measured value
int x; // base of exponentiation
int p; int q; // rational approximation p/q
int a; int b; // possible factors of number
int e; // e=x^(q/2) mod number

if number mod 2 == 0 { exit "number must be odd"; }
if testprime(number) { exit "prime number"; }
if testprimepower(number) { exit "prime power"; };

4Since both testfunctions are not part of the algorithm itself, short but inefficient
implementations with O(

√
n) have been used

CHAPTER 3. OPERATORS AND ALGORITHMS 70

{
{ // generate random base

x=floor(random()*(number-3))+2;
} until gcd(x,number)==1;
print "chosen random x =",x;
Mix(reg1); // Hadamard transform
expn(x,number,reg1,reg2); // modular exponentiation
measure reg2; // measure 2nd register
dft(reg1); // Fourier transform
measure reg1,m; // measure 2st register
reset; // clear local registers
if m==0 { // failed if measured 0

print "measured zero in 1st register. trying again ...";
} else {

c=m*0.5^(2*width); // fixed point form of m
q=denominator(c,qmax); // find rational approximation
p=floor(q*m*c+0.5);
print "measured",m,", approximation for",c,"is",p,"/",q;
if q mod 2==1 and 2*q<qmax { // odd q ? try expanding p/q

print "odd denominator, expanding by 2";
p=2*p; q=2*q;

}
if q mod 2==1 { // failed if odd q

print "odd period. trying again ...";
} else {

print "possible period is",q;
e=powmod(x,q/2,number); // calculate candidates for
a=(e+1) mod number; // possible common factors
b=(e+number-1) mod number; // with number
print x,"^",q/2,"+ 1 mod",number,"=",a,",",

x,"^",q/2,"- 1 mod",number,"=",b;
factor=max(gcd(number,a),gcd(number,b));

}
}

} until factor>1 and factor<number;
print number,"=",factor,"*",number/factor;

}

3.3.3.3 Factoring 15

15 is the smallest number that can be factorised with Shor’s algorithm, as it’s
the product of smallest odd prime numbers 3 and 5. Our implementation
of the modular exponentiation needs 2l + 1 qubits scratch space with l =
dld(15+1)e = 4. The algorithm itself needs 3l qubits, so a total of 21 qubits
must be provided.

CHAPTER 3. OPERATORS AND ALGORITHMS 71

$ qcl -b21 -i shor.qcl
qcl> shor(15)
: chosen random x = 4
: measured zero in 1st register. trying again ...
: chosen random x = 11
: measured 128 , approximation for 0.500000 is 1 / 2
: possible period is 2
: 11 ^ 1 + 1 mod 15 = 12 , 11 ^ 1 - 1 mod 15 = 10
: 15 = 5 * 3

The first try failed because 0 was measured in the first register of |ψ′〉 and
λ/r = 0 gives no information about the period r.

One might argue that this is not likely to happen, since the first register
has 8 qubits and 256 possible base-vectors, however, if a number n is to be
factored, one might expect a period about

√
n assuming that the prime fac-

tors of n are of the same order of magnitude. This would lead to a period q√
n

after the DFT and the probability p = 1√
n

to accidentally pick the basevector

|0〉, would be p = 25.8%.
In the special case of a start value x = 4 the period of the modular

exponentiation is 2 since 42 mod 15 = 1, consequently the Fourier spectrum
shows 2 peaks at |0〉 and |128〉 and p = 1/2.

The second try also had the same probability of failure since 112 mod 15 =
1, but this time, the measurement picked the second peak in the spectrum
at |128〉. With 128/28 = 1/2 = λ/r, the period r = 2 was correctly identified
and the factors gcd(112/2 ± 1 , 15) = {3, 5} to 15 have been found.

Bibliography

[1] Paul Benioff 1997 Models of Quantum Turing Machines, LANL Archive
quant-ph/9708054

[2] J.I. Cirac, P. Zoller 1995 Quantum Computations with Cold trapped Ions,
Phys. Rev. Lett. 74, 1995 , 4091

[3] D. Deutsch, 1985 Proceedings of the Royal Society London A 400, 97-117

[4] J. Gruska, 1998 Foundations of Computing, chap. 12: “Frontiers -
Quantum Computing”

[5] R. W. Keyes 1988 IBM J. Res. Develop. 32, 24

[6] D. Deutsch 1989 Quantum computational networks. Proceedings of the
Royal Society London A 439, 553-558

[7] D. Coppersmith 1994 An Approximate Fourier Transform Useful in
Quantum Factoring, IBM Research Report No. RC19642

[8] C. H. Bennet 1973 IBM J. Res. Develop. 17, 525

[9] C. H. Bennet 1989 SIAM J.Comput. 18, 766

[10] Johannes Buchmann 1996 Faktorisierung großer Zahlen. Spektrum der
Wissenschaft 9/96, 80-88

[11] P.W. Shor. 1994 Algorithms for quantum computation: Discrete loga-
rithms and factoring

[12] Samuel L. Braunstein 1995 Quantum computation: a tutorial

[13] David Beckman et al. 1996 Efficient networks for quantum factoring

[14] Artur Ekert and Richard Jozsa. 1996 Shor’s Quantum Algorithm for
Factoring Numbers, Rev. Modern Physics 68 (3), 733-753

72

BIBLIOGRAPHY 73

[15] G.H. Hardy and E.M. Wright 1965 An Introduction to the Theory of
Numbers (4th edition OUP)

[16] W. Kummer and R. Trausmuth 1988 Skriptum zur Vorlesung 131.869 -
Quantentheorie

[17] B. Oemer 1996 Simulation of Quantum Computers [unpublished]

List of Tables

1.1 classical and quantum computational models 4

2.1 dft.qcl Discrete Fourier Transform in QCL 17
2.2 classic types and literals . 22
2.3 arithmetic operators . 24
2.4 comparison and logic operators 25
2.5 trigonometric and hyperbolic functions 26
2.6 exponential and related functions 26
2.7 functions for complex numbers 26
2.8 other QCL functions . 27
2.9 quantum expressions . 35
2.10 swap.qcl Custom implementation of Swap 39
2.11 hierarchy of QCL Subroutines and allowed side-effects 43
2.12 roulette.qcl quantum roulette 47
2.13 fanout.qcl Custom implementation of Fanout 53

74

Appendix A

QCL Programs and Include
Files

A.1 default.qcl

extern qufunct Fanout(quconst a,quvoid b);

extern qufunct Swap(qureg a,qureg b);

extern operator Matrix2x2(
complex u00,complex u01,
complex u10,complex u11,

qureg q);

extern operator Matrix4x4(
complex u00,complex u01,complex u02,complex u03,
complex u10,complex u11,complex u12,complex u13,
complex u20,complex u21,complex u22,complex u23,
complex u30,complex u31,complex u32,complex u33,

qureg q);

extern operator Matrix8x8(
complex u00,complex u01,complex u02,complex u03,
complex u04,complex u05,complex u06,complex u07,
complex u10,complex u11,complex u12,complex u13,
complex u14,complex u15,complex u16,complex u17,
complex u20,complex u21,complex u22,complex u23,
complex u24,complex u25,complex u26,complex u27,
complex u30,complex u31,complex u32,complex u33,
complex u34,complex u35,complex u36,complex u37,
complex u40,complex u41,complex u42,complex u43,
complex u44,complex u45,complex u46,complex u47,
complex u50,complex u51,complex u52,complex u53,

75

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 76

complex u54,complex u55,complex u56,complex u57,
complex u60,complex u61,complex u62,complex u63,
complex u64,complex u65,complex u66,complex u67,
complex u70,complex u71,complex u72,complex u73,
complex u74,complex u75,complex u76,complex u77,

qureg q);

extern qufunct Perm2(int p0 ,int p1 ,qureg q);

extern qufunct Perm4(int p0 ,int p1 ,int p2 ,int p3 ,qureg q);

extern qufunct Perm8(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,

qureg q);

extern qufunct Perm16(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,

qureg q);

extern qufunct Perm32(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,
int p16,int p17,int p18,int p19,int p20,int p21,int p22,int p23,
int p24,int p25,int p26,int p27,int p28,int p29,int p30,int p31,

qureg q);

extern qufunct Perm64(
int p0 ,int p1 ,int p2 ,int p3 ,int p4 ,int p5 ,int p6 ,int p7 ,
int p8 ,int p9 ,int p10,int p11,int p12,int p13,int p14,int p15,
int p16,int p17,int p18,int p19,int p20,int p21,int p22,int p23,
int p24,int p25,int p26,int p27,int p28,int p29,int p30,int p31,
int p32,int p33,int p34,int p35,int p36,int p37,int p38,int p39,
int p40,int p41,int p42,int p43,int p44,int p45,int p46,int p47,
int p48,int p49,int p50,int p51,int p52,int p53,int p54,int p55,
int p56,int p57,int p58,int p59,int p60,int p61,int p62,int p63,

qureg q);

extern qufunct Not(qureg q);

extern qufunct CNot(qureg q,quconst c);

extern operator CPhase(real phi,qureg q);

extern operator Rot(real theta,qureg q);

extern operator Mix(qureg q);

extern qufunct ModExp(int n,int x,quconst a,quvoid b);

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 77

boolean bit(int n,int b) {
return n/2^b mod 2 == 1;

}

qufunct set(int n,qureg q) {
int i;
for i=0 to #q-1 {

if bit(n,i) { Not(q[i]); }
}

}

const pi=3.141592653589793238462643383279502884197;

A.2 functions.qcl

set allow-redefines 1;

// returns the smallest factor > 1 of n or 1 if n is prime

int findfactor(int n) {
int i;
if n<=0 { exit "findfactor takes only positive args"; }
for i=2 to floor(sqrt(n)) {

if n mod i == 0 { return i; }
}
return 1;

}

// test if n is a prime number

boolean testprime(int n) {
int i;
if n<=1 { return false; }
for i=2 to floor(sqrt(n)) {

if n mod i == 0 { return false; }
}
return true;

}

// test if n is a prime power

boolean testprimepower(int n) {
int i;
int f;
i=2;

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 78

while i<=floor(sqrt(n)) and f==0 {
if n mod i == 0 { f=i; }
i=i+1;

}
for i=2 to floor(log(n,f)) {

if f^i==n { return true; }
}
return false;

}

// returns x^a mod n

int powmod(int x,int a,int n) {
int u=x;
int y=1;
int i;

for i=0 to 30 {
if a/2^i mod 2 == 1 { y=y*u mod n; }
u=u^2 mod n;

}
return y;

}

// return the modular inverse to a mod n or 0 if gcd(a,n)>1

int invmod(int a,int n) {
int b=a;
int i;

if gcd(a,n)>1 { return 0; }
for i=1 to n {

if b*a mod n == 1 { return b; }
b=b*a mod n;

}
return 0;

}

// finds the denominator q of the best rational approximation p/q
// for x with q<qmax

int denominator(real x,int qmax) {
real y=x;
real z;
int q0;
int q1=1;
int q2;

while true {

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 79

z=y-floor(y);
if z<0.5/qmax^2 { return q1; }
y=1/z;
q2=floor(y)*q1+q0;
if q2>=qmax { return q1; }
q0=q1; q1=q2;

}
}

set allow-redefines 0;

A.3 qufunct.qcl

set allow-redefines 1;

// pseudo classic operator to swap bit order

qufunct flip(qureg q) {
int i; // declare loop counter
for i=0 to #q/2-1 { // swap 2 symmetric bits

Swap(q[i],q[#q-i-1]);
}

}

// Conditional Xor

qufunct cxor(quconst a,qureg b,quconst e) {
int i;
for i=0 to #a-1 {

CNot(b[i],a[i] & e);
}

}

// Conditional multiplexed binary adder for one of 2 classical
// bits and 1 qubit.
// Full adder if #sum=2, half adder if #sum=1.

qufunct muxaddbit(boolean a0,boolean a1,quconst sel,quconst b,qureg sum,quconst e) {
qureg s=sel; // redeclare sel as qureg

if (a0 xor a1) { // a0 and a1 differ?
if a0 { Not(s); } // write a into sect qubit
if #sum>1 { // set carry if available

CNot(sum[1],sum[0] & s & e);
}
CNot(sum[0],s & e); // add a

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 80

if a0 { Not(s); } // restore sect qubit
} else {

if a0 and a1 {
if #sum>1 { // set carry if available

CNot(sum[1],sum[0] & e);
}
CNot(sum[0],e); // add a

}
};

// Add qubit b
if #sum>1 { // set carry if available

CNot(sum[1],b & sum[0]);
}
CNot(sum[0],b); // add b

}

// conditional multiplexed binary adder for one of 2 integers
// and 1 qureg. No output carry.

qufunct muxadd(int a0,int a1,qureg sel,quconst b,quvoid sum,quconst e) {
int i;
for i=0 to #b-2 { // fulladd first #b-1 bits

muxaddbit(bit(a0,i),bit(a1,i),sel,b[i],sum[i:i+1],e);
}

// half add last bit
muxaddbit(bit(a0,#b-1),bit(a1,#b-1),sel,b[#b-1],sum[#b-1],e);

}

// Comparison operator. flag is toggled if b<a.
// b gets overwritten. Needs a #b-1 qubit junk register j
// as argument which is left dirty.

qufunct lt(int a,qureg b,qureg flag,quvoid j) {
int i;
if bit(a,#b-1) { // disable further comparison

CNot(j[#b-2],b[#b-1]); // and set result flag if
Not(b[#b-1]); // MSB(a)>MSB(b)
CNot(flag,b[#b-1]);

} else {
Not(b[#b-1]); // disable further comparison
CNot(j[#b-2],b[#b-1]); // if MSB(a)<MSB(b)

}
for i=#b-2 to 1 step -1 { // continue for lower bits

if bit(a,i) { // set new junk bit if undecided
CNot(j[i-1],j[i] & b[i]);
Not(b[i]); // honor last junk bit and
CNot(flag,j[i] & b[i]); // set result flag if a[i]>b[i]

} else {
Not(b[i]);

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 81

CNot(j[i-1],j[i] & b[i]);
}

}
if bit(a,0) {

Not(b[0]); // if still undecided (j[0]=1)
CNot(flag,j[0] & b[0]); // result is LSB(a)>LSB(b)

}
}

set allow-redefines 0;

A.4 modarith.qcl

set allow-redefines 1;

include "functions.qcl";
include "qufunct.qcl";

// conditional addition mod n for 1 integer and 1 qureg
// flag is set if a+b<n for invertability

qufunct addn(int a,int n,quconst b,quvoid flag,quvoid sum,quconst e) {
qureg s=sum[0\#b-1];
qureg f=sum[#b-1];
qureg bb=b; // "abuse" sum and b as scratch
lt(n-a,bb,f,s); // for the less-than operator
CNot(flag,f & e); // save result of comparison
!lt(n-a,bb,f,s); // restore sum and b
muxadd(2^#b+a-n,a,flag,b,sum,e); // add either a or a-n

}

// Conditional overwriting addition mod n: sum -> (a+sum) mod n

qufunct oaddn(int a,int n,qureg sum,quconst e) {
qureg j[#sum];
qureg f[1];

addn(a,n,sum,f,j,e); // junk -> a+b mod n
Swap(sum,j); // swap junk and sum
CNot(f,e); // toggle flag
!addn(n-a,n,sum,f,j,e); // uncompute b to zero

}

// Conditional Multiplication mod n of an integer a by the qureg b,
// prod <- ab mod n.

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 82

qufunct muln(int a,int n,quconst b,qureg prod,quconst e) {
int i;

for i=0 to #prod-1 {
if bit(a,i) { CNot(prod[i],b[0] & e); }

}
for i=1 to #b-1 {

oaddn(2^i*a mod n,n,prod,b[i] & e);
}

}

// Conditional Overwriting multiplication mod n: b-> ab mod n

qufunct omuln(int a,int n,qureg b,quconst e) {
qureg j[#b];

if gcd(a,n)>1 {
exit "omuln: a and n have to be relativly prime";

}
muln(a,n,b,j,e);
!muln(invmod(a,n),n,j,b,e);
cxor(j,b,e);
cxor(b,j,e);

}

// Modular exponentiation: b -> x^a mod n

qufunct expn(int a,int n,quconst b,quvoid ex) {
int i;

Not(ex[0]); // start with 1
for i=0 to #b-1 {

omuln(powmod(a,2^i,n),n,ex,b[i]); // ex -> ex*a^2^i mod n
}

}

set allow-redefines 0;

A.5 dft.qcl

operator dft(qureg q) { // main operator
const n=#q; // set n to length of input
int i; int j; // declare loop counters
for i=0 to n-1 {

for j=0 to i-1 { // apply conditional phase gates
CPhase(2*pi/2^(i-j+1),q[n-i-1] & q[n-j-1]);

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 83

}
Mix(q[n-i-1]); // qubit rotation

}
flip(q); // swap bit order of the output

}

A.6 shor.qcl

include "modarith.qcl";
include "dft.qcl";

procedure shor(int number) {
int width=ceil(log(number,2)); // size of number in bits
qureg reg1[2*width]; // first register
qureg reg2[width]; // second register
int qmax=2^width;
int factor; // found factor
int m; real c; // measured value
int x; // base of exponentiation
int p; int q; // rational approximation p/q
int a; int b; // possible factors of number
int e; // e=x^(q/2) mod number

if number mod 2 == 0 { exit "number must be odd"; }
if testprime(number) { exit "prime number"; }
if testprimepower(number) { exit "prime power"; };

{
{ // generate random base

x=floor(random()*(number-3))+2;
} until gcd(x,number)==1;
print "chosen random x =",x;
Mix(reg1); // Hadamard transform
expn(x,number,reg1,reg2); // modular exponentiation
measure reg2; // measure 2nd register
dft(reg1); // Fourier transform
measure reg1,m; // measure 2st register
reset; // clear local registers
if m==0 { // failed if measured 0

print "measured zero in 1st register. trying again ...";
} else {

c=m*0.5^(2*width); // fixed point form of m
q=denominator(c,qmax); // find rational approximation
p=floor(q*c+0.5);
print "measured",m,", approximation for",c,"is",p,"/",q;
if q mod 2==1 and 2*q<qmax { // odd q ? try expanding p/q

APPENDIX A. QCL PROGRAMS AND INCLUDE FILES 84

print "odd denominator, expanding by 2";
p=2*p; q=2*q;

}
if q mod 2==1 { // failed if odd q

print "odd period. trying again ...";
} else {

print "possible period is",q;
e=powmod(x,q/2,number); // calculate candidates for
a=(e+1) mod number; // possible common factors
b=(e+number-1) mod number; // with number
print x,"^",q/2,"+ 1 mod",number,"=",a,",",

x,"^",q/2,"- 1 mod",number,"=",b;
factor=max(gcd(number,a),gcd(number,b));

}
}

} until factor>1 and factor<number;
print number,"=",factor,"*",number/factor;

}

Appendix B

QCL Charts

B.1 Syntax

B.1.1 Expressions

complex-coord ← [+ | -] digit { digit } [. { digit }]
const ← digit { digit } [. { digit }]

← (complex-coord , complex-coord)

← true | false
← " { char } "

expr ← const

← identifier [[expr [(: | ..) expr]]]

← identifier ([expr { , expr }])
← (expr)

← # expr

← expr ^ expr

← - expr

← expr (* | /) expr

← expr mod expr

← expr (+ | - | &) expr

← expr (== | != | < | <= | > | >=) expr

← not expr

← expr and expr

← expr (or | xor) expr

85

APPENDIX B. QCL CHARTS 86

B.1.2 Statements

block ← { stmt { stmt } }
option ← letter { letter | - }

stmt ← [!] identifier ([expr { , expr }]) ;

← identifier = expr ;

← expr (-> | <- | <->) expr ;

← for identifier = expr to expr [step expr] block

← while expr block

← block until expr ;

← if expr block [else block]

← return expr ;

← input [expr] , identifier ;

← print expr [, expr] ;

← exit [expr] ;

← measure expr [, identifier] ;

← reset ;

← dump [expr] ;

← list [identifier { , identifier }] ;
← (load | save) [expr] ;

← shell ;

← set option [, expr] ;

← stmt ;

B.1.3 Definitions

type ← int | real | complex | string
← qureg | quvoid | quconst | quscratch

const-def ← const identifier = expr ;

var-def ← type identifier [expr] ;

← type identifier [= expr] ;

arg-def ← type identifier

arg-list ← ([arg-def { , arg-def }])
body ← { { const-def | var-def } { stmt } }

APPENDIX B. QCL CHARTS 87

def ← const-def | var-def
← type identifier arg-list body

← procedure identifier arg-list body

← operator identifier arg-list body

← qufunct identifier arg-list body

← extern operator identifier arg-list ;

← extern qufunct identifier arg-list ;

B.2 Error Messages

B.2.1 Typecheck Errors

invalid definition: Invalid length
invalid definition: Length cannot be specified with this type
invalid definition: Quantum variable must be allocated or initialised
invalid definition: Quantum variable can either be allocated or defined as
reference, not both

external error: external routine identifier not found

internal error: Invalid binary operator
internal error: Invalid unary operator
internal error: Local call within non subroutine definition
internal error: alloc failed
internal error: can’t add symbol identifier to symtab
internal error: can’t add symbol to symtab
internal error: no operator operator defined
internal error: uncaught include
internal error: unknown base function
internal error: unknown list function

invalid parameter: Functions may not depend on quantum parameters
invalid parameter: duplicate parameter

invalid type: Can only list symbols
invalid type: Filename must be a string
invalid type: Length operator is only defined for quantum expressions
invalid type: Modulus arguments must be integer
invalid type: Negation: argument must be boolean

APPENDIX B. QCL CHARTS 88

invalid type: Non numeric argument to binary arithmetic operator
invalid type: Quantum expression required
invalid type: Unary Minus: argument must be number
invalid type: assignment to quantum variable
invalid type: bit selection not on quantum variable
invalid type: bit selection on on quantum variable
invalid type: can’t compare boolean values
invalid type: can’t compare quantum expressions
invalid type: cannot input quantum variables
invalid type: comparison operator with unordered type
invalid type: comparison type mismatch
invalid type: concatenation of invalid types
invalid type: constant target register for operator
invalid type: for loop parameters must be integer
invalid type: input prompt is no string
invalid type: local scratch registers can’t be used with qureg arguments
invalid type: logical operator with non boolean arguments
invalid type: quantum eigenstates are integers
invalid type: quantum expression as option argument
invalid type: quantum state required
invalid type: quantum variables may not be accessed within functions
invalid type: subrange parameters not integer
invalid type: subscript not integer
invalid type: operator is only defined on quantum expressions

option error: illegal option option
option error: missing argument for option option
option error: option option takes no argument

parameter mismatch: quconst used as non-const argument to identifier
parameter mismatch: unmatching argument number
parameter mismatch: unmatching argument types

illegal scope: Calls not allowed within functions
illegal scope: Global symbol identifier already defined
illegal scope: Local symbol identifier already defined
illegal scope: Procedure call within operator
illegal scope: Quantum Variables may non be defined within functions
illegal scope: Reset of quantum state is not allowed in this scope
illegal scope: Void Registers have to be arguments
illegal scope: error message is not a string

APPENDIX B. QCL CHARTS 89

illegal scope: function random is not allowed in this scope
illegal scope: input not allowed in this scope
illegal scope: measurement is not allowed in this scope
illegal scope: operator called within qufunct
illegal scope: return statement outside function
illegal scope: subroutines may only be defined in global scope
illegal scope: Scratch Space may only be allocated within quantum func-
tions

unknown symbol: Invalid Symbol type
unknown symbol: Undefined function identifier
unknown symbol: Undefined procedure or operator identifier
unknown symbol: Unknown local variable identifier
unknown symbol: Unknown local variable identifier
unknown symbol: Unknown variable identifier
unknown symbol: Unknown variable or constant identifier

syntax error: function random takes no arguments
syntax error: invalid number of argument to log
syntax error: missing argument

type mismatch: Invalid initialisation
type mismatch: Invalid initialiser for quantum register reference
type mismatch: Quantum variables cannot be defined as constant
type mismatch: argument is not a number
type mismatch: argument of unordered type
type mismatch: integer required
type mismatch: invalid assignment
type mismatch: invalid log argument
type mismatch: not boolean if condition
type mismatch: not boolean loop condition
type mismatch: ordered type required
type mismatch: return expression doesn’t match function type

B.2.2 Evaluation Errors

general error: function didn’t return a value

internal error: argument binding failed
internal error: eval is not implemented on class sExpr

APPENDIX B. QCL CHARTS 90

internal error: invalid return value

math error: 00 is undefined
math error: division by zero
math error: negative base in non integer real value power
math error: negative exponent in integer power
math error: real logarithm of non positive number
math error: real square root of negative number

range error: invalid quantum subregister
range error: invalid qubit subscript
range error: quantum registers overlap

B.2.3 Execution Errors

internal error: Measurement failed
internal error: argument binding failed
internal error: cannot store constant
internal error: cannot store routine
internal error: cannot store variable
internal error: invalid quantum parameter
internal error: parameter identifier not found
internal error: reset failed
internal error: temporary register not found
internal error: uncaught include
internal error: undefined sTrans object

I/O-error: Can’t close filename
I/O-error: Can’t open filename for reading
I/O-error: Can’t open filename for writing
I/O-error: Error while reading filename
I/O-error: Error writing reading filename

math error: Measured Integer is too long

memory error: can’t allocate internal scratch space
memory error: not enough quantum memory
memory error: quantum heap is corrupted
memory error: quantum register of non-positive length
memory error: void or scratch register not empty

APPENDIX B. QCL CHARTS 91

option error: illegal option option
option error: missing argument for option option
option error: option option takes no argument

runtime error: infinite for loop
runtime error: quantum arguments overlapping
runtime error: zero increment in for loop
runtime error: operator arguments are of different length

user error: message

