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Kurzfassung
W�ahrend andere Integralgleichungsmethoden zur Beschreibung thermodynami-scher Systeme im kritischen Bereich �ublicherweise versagen und teils �uberhauptkein, teils nur klassisches kritisches Verhalten zeigen, gelingt es der HierarchicalReference Theory (hrt) diese Einschr�ankungen durch Anwendung renormierungs-gruppentheoretischer Konzepte zu �uberwinden und in vielen F�allen sowohl dieunmittelbare Umgebung des kritischen Punktes als auch die bei unterkritischenTemperaturen auftretenden Zweiphasengebiete erfolgreich zu beschreiben, ohnedabei jedoch strukturelle Information auf kleinen L�angenskalen zu verlieren. UnterBeschr�ankung auf den Fall einfacher Einkomponentenuide untersuchen wir die�ubliche Formulierung der hrt mit einer Schlie�ungsbeziehung auf dem Zweiteil-chenniveau im Geiste der Lowest-Order -Ordered Approximation bzw. der dazu�aquivalenten Optimized Random-Phase Approximation sowie die relative Bedeu-tung verschiedener n�otiger N�aherungen auf analytischem, semi-analytischem sowienumerischem Weg; insbesondere erhellen wir den die Konvexit�at der freien En-ergie sicherstellenden Mechanismus und zeigen, dass er auch f�ur die Steifheit desGleichungssystems bei Temperaturen nahe der bzw. unterhalb der kritischen ver-antwortlich ist. Ebenso diskutieren wir die sogenannte Entkoppelungsannahme,die die Vernachl�assigbarkeit gewisser Terme proportional zu dritten partiellenAbleitungen der geeignet modi�zierten freien Energie zum Inhalt hat, und be-weisen die Instabilit�at der Theorie in der gegenw�artigen Formulierung f�ur vor-wiegend repulsive Potentiale. Durch Anwendung der hrt auf Hartkugel-Yukawa-und Square-Well-Systeme best�atigen wir die erwartete Potentialreichweitenab-h�angigkeit der Qualit�at der Rechenergebnisse, besch�aftigen uns mit Fragen derKonvergenz und Angemessenheit der blo� n�aherungsweise m�oglichen Ber�ucksich-tigung der Unm�oglichkeit gegenseitiger Durchdringung der das Referenzsystemkonstituierenden harten Kugeln, untersuchen die Bedeutung der Randbedingun-gen f�ur die Lage der Binodale und die numerische Stabilit�at der diskretisiertenGleichungen und betrachten die unphysikalischen Verschiebungen der kritischenTemperatur, wie sie durch Unstetigkeiten im St�orungsanteil des Potentials aus-gel�ost werden. Die numerischen Untersuchungen erfolgen unter Zuhilfenahme un-serer vollst�andig modularen Neuimplementierung der Theorie, die programmtech-nisch durch die Verwendung einer Metasprache und automatischer Codeerzeu-gungsmethoden, materiell jedoch durch den zur Sicherung der numerischen Sig-ni�kanz jedes Berechnungsschrittes getriebenen Aufwand gekennzeichnet ist.
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Abstract
Combining renormalization group theoretical ideas with the integral equation ap-proach to uid structure and thermodynamics, the Hierarchical Reference Theory(hrt) is known to be successful even in the vicinity of the critical point and forsub-critical temperatures for a wide variety of systems. Restricting ourselves tothe case of simple one-component uids, we present analytical, semi-analytical andnumerical results on the usual formulation of hrt and the customary closure rem-iniscent of the Lowest-Order -Ordered Approximation and the equivalent Opti-mized Random-Phase Approximation, investigating the necessary approximations'signi�cance for the numerical procedure. In particular, we clarify the mechanismleading to a suppression of van der Waals loops and furthermore show that it givesrise to the equations' sti�ness for close-to-critical and sub-critical temperatures;we also discuss the so-called decoupling assumption related to the elimination ofterms proportional to third-order partial derivatives of a suitably modi�ed freeenergy, and we prove the theory's instability for predominantly repulsive poten-tials. Applying hrt to both hard-core Yukawa and square-well uids we con�rmthe trend of decreasing accuracy for narrower potentials, assess convergence andappropriateness of an approximate implementation of the core condition, considerthe boundary conditions' relevance for the binodal's location and the numericalprocedure, and we highlight the rôle of discontinuities in the potential's pertur-bational part in triggering unphysical shifts of the critical temperature predicted.The numerical investigations are carried out by means of our re-implementationof the theory in a fully modular software package relying heavily on the use ofa meta-language and code construction techniques and going to great lengths toensure the numerical soundness of the calculation.
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I. Introduction
In a large part of the density-temperature plane integral equation theories area reliable tool for studying thermodynamic and structural properties of, amongothers, simple one-component uids [1]; unfortunately, in the vicinity of a liquid-vapor critical point integral equations are haunted by a host of di�culties leadingto a variety of shortcomings such as incorrect and non-matching branches of thebinodal, classical values at best for the critical exponents, or other deviationsfrom the correct behavior at the critical singularity [2]. Asymptotically close tothe critical point, on the other hand, renormalization group (rg) theory is theinstrument of choice for describing the uid; in general, however, rg approachesdo not allow one to derive non-universal quantities from microscopic informationonly, i. e. from knowledge of the forces acting between the uid's particles alone.One of the theories devised to bridge the conceptual gap between these com-plementary approaches is the Hierarchical Reference Theory (hrt) �rst put for-ward by Parola and Reatto [2{13]: In this theory the introduction of a cut-o�wavenumber Q inspired by momentum space rg theory and, for every value of Q,of a renormalized potential v(Q)(r) means that only non-critical systems have tobe considered at any stage of the calculation; consequently, integral equations maysuccessfully be applied to every system with Q > 0, and critical behavior charac-terized by non-classical critical exponents is recovered only in the limit Q! 0.An especially noteworthy trait of hrt is that it allows for a determination ofstructural and thermodynamic properties of various systems from �rst principles;in contrast, a similar scheme known under the name of global renormalization[14{17], originally developed by White and co-workers as an extension of Wilson'sphase-space cell method [18] to the liquid state, while deemed computationallymuch less demanding than hrt, typically relies on at least one parameter thatmust be determined by a �tting procedure in order to correctly locate the criticalpoint. Another distinguishing feature of hrt is its generality; indeed, after someearly demonstration of the theory's applicability to various one-component systemsthe main focus of research shifted to the richer phase behavior of binary systems[19{21], and the theory has also been used in the context of quantum systems[22{24] or for the determination of an e�ective coarse-grained Hamiltonian to beused in a �4 rg theory [25]. Nevertheless, in the light of hrt's high promiseand low penetration into the liquid physics community further study and critical7



Introductionassessment of this theory seem worthwhile, even and foremost in the case of simpleone-component uids: indeed, it is in this comparatively simple setting that wemay gain important insights into the numerical side of the theory, and barringspecial mechanisms relevant to some speci�c model system only any problemsuncovered here must be expected to haunt more advanced applications of hrt,too.In the work to be presented on the pages to follow1 we set out to re-implementhrt independently of earlier programs and to undertake a systematic explorationof the computational nature of the problem posed by this particular theory; boththe scope of our software and the results it typically yields will be demonstrated byapplying hrt to two suitable types of model potentials, viz. the hard-core Yukawa(hcy) system and the square-well (sw) uid; with e�ectively only one parametereach to vary, these systems provide convenient and popular test cases of liquidstate theories, and they have been studied extensively. The present contribution,it should be noted, is the �rst application of hrt to sws while this is one of thepreferred models for the authors of the global renormalization scheme mentionedabove [14{16].Due to the large body of literature available on the hcy uid and sws the morerecent of which will shortly be presented later on, and in view of some limita-tions of hrt in its current formulation we cannot expect to gain new insight intothese model systems with a level of precision comparable to that of the more so-phisticated simulation schemes. Instead, our focus of interest primarily lies onsome aspects of hrt's numerical side and the rôle the potential's range plays; asfar as the latter is concerned, the continuous nature of the hcy potential is instark contrast to the �nite domain of the sw interaction, and while the former, asystem previously studied by hrt [28], is expected to be computationally ratherunproblematic, the parametrization of the direct correlation functions in the usualclosure to the theory on the two-particle level is clearly inappropriate for sws inpart of the phase diagram at least; indeed, even for less pronouncedly short-rangedpotentials the computationally attractive but rather simlistic closure used almostexclusively has repeatedly been invoked as explanation of unsatisfactory aspectsof hrt results [9, 11, 28, 29]. On the other hand, the main justi�cation for usingthis particular closure relation comes from the need to avoid explicit Fourier trans-formations of quantities a�ected by the renormalized interparticle potential, withobvious repercussions for the implementation of the core condition. The additionalapproximations that this formulation of hrt necessitates raise further questionsthat are hardly mentioned in the literature and generally deemed unproblematic;in particular, the convergence properties of the correlation functions' expansionsand the rôle of certain terms routinely neglected by invoking the so-called de-coupling assumption are certainly not clear a priori and deserve closer study, thelatter especially on account of the short-rangedness of the sw potential. Unfor-tunately, adoption of the decoupling assumption is dictated by the computationalneed for an additional approximation regarding some integrals of poor convergence1 Note that many of our results have also been summarized in the reports [26, 27]; in accordancewith appendix F we will generally not reference these in the following.8



Introductionwhereas thermodynamic consistency mandates violation of this very assumption;not surprisingly, the resulting mathematical inconsistencies, not even mentionedin the literature to the best of our knowledge, adversely inuence the numericalresults as well as the theory's range of applicability. The closure and the chosenrenormalization procedure | both coinciding with the usual choices for the kindof systems we are interested in | are also to blame for other restrictions on hrt'spossible use: in particular, the presence of discontinuities in the potential is foundto lead to unphysical shifts of the critical temperatures predicted, and we provethe equations' unconditional instability for predominantly repulsive inter-particleforces. By way of contrast, the pathological behavior of the theory's exact solu-tion for high-compressibility thermodynamic states, here characterized for the �rsttime, is linked to the very mechanism that also e�ectuates the suppression of vander Waals loops, one of the major feats of hrt, and is thus likely to be a generictrait of hrt; some of its numerical manifestations will again be discussed in thecontext of hcy and sw systems.All of these issues will be considered in more detail by analytical, semi-analyticaland purely numerical ways in the chapters to follow, and while the computationalchallenges it presents are, indeed, considerable, we still �nd hrt a viable theoryof the liquid state well; however, because of the di�culties inherent in the theoryany single calculation must be considered as of uncertain standing, and it is onlyby combining several related calculations and checking the respective solutions'appropriateness, internal consistency, and mutual compatibility that we are able toextract reliable and meaningful information from hrt calculations in the theory'scurrent formulation.In the remainder of this work we will �rst outline the underlying theory in chap-ter 2, taking care to properly motivate and preliminarily assess the approximationswe introduce and discussing some general traits of the computational model of hrtso de�ned. After a short presentation of the physical systems that we consider aswell as two additional types of potentials that we will make use of (chapter 3)we then give a super�cial sketch of our recent re-implementation of hrt in theusual formulation for simple one-component uids (chapter 4). Application of oursoftware to the hcy and sw uids then complements our earlier analytical consid-erations: chapter 5 characterizes the numerical problems that we �nd and providesa summary of their manifestations in the hcy and sw systems considered. Theconcluding remarks of chapter 6 once more summarize the most important of thepoints raised; they are followed only by several appendices where we collect somematerial the presence of which seems desirable on account of completeness butthat would only hinder the ow of the exposition in the main text.
9



II. The Hierarchical Reference Theory for simpleone-component uids
Before we embark onto our excursion into some aspects of the application of hrtto simple one-component uids we �rst have to familiarize ourselves with saidtheory and to motivate the approximate equations to be used in the numericalimplementation of chapter 4, and with the more important of the properties ofhrt some of which are hardly mentioned in the literature1.Despite being somewhat dated and not even mentioning the points to be raisedin sections 2.3.2 and 2.4 as well as chapter 5, the review article [2] with its multitudeof references of course remains the de�nite resource on hrt; in this chapter we limitourselves to only a rough sketch of the theory as far as is relevant for the simple one-component uids we will consider in chapter 5. In particular, in our work we foundit convenient to restrict ourselves to the case of a spherically symmetric pure two-body interaction, and we took advantage of the additional simpli�cations possibleby identifying the reference system with a pure hard sphere system, vref = vhs,as can always be achieved via the well-known Weeks-Chandler-Andersen scheme[30{32]. Neither of these restrictions is, however, inherent to hrt itself, and theframework of our software (chapter 4) is in principle well able to accomodatea more general formulation of the theory if need be, cf. section 4.7. | In asimilar vein, the extensive mathematical apparatus developed for, and applied in,deriving the basic hierarchy will not be considered, and despite the generality ofhrt's approach to critical phenomena we will not consider any of the numerousother physical systems that hrt has been applied to, ranging from discrete [8]and continuous one component systems [5, 6, 11], the latter even including onescharacterized by three-body interactions [9, 29], internal degrees of freedom [33],or non-hard-core reference systems [21], to various mixtures [19{21] and latelyeven including quantum systems [22{24].1 Except, of course, in the articles [26, 27] shortly presenting some of the work documented here.10



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy2.1. Introduction of the Q-system and derivation of theexact hierarchyThe basic ingredient of hrt, already present in its precursor [12], is the gradualtransition from a reference potential2 vref(r; %) at density %, in our work chosen tocoincide with the hard-sphere potential of diameter �(%),vref(r; %) = vhs[�(%)](r) = (+1 : r < �(%)0 : r > �(%) ; (1)to the full potential v(r; %) = vref(r; %) + w(r; %) (2)describing the interaction between pairs of particles of a uid, where any one ofthe intermediate potentials serves as a reference system with respect to which theproperties of a successor potential are calculated. The two main di�erences be-tween hrt and the theory presented in [12], however, are the di�erential nature ofthis transition (so that @1 intermediate systems are to be considered as opposedto a mere @0 in [12]) and the parametrization of the auxiliary potentials in termsof vref and w e�ecting the suppression of long-wavelength uctuations typical ofmomentum-space rg calculations [34]. Correspondingly, a cut-o� wavenumber Qvarying from in�nity to zero is introduced, and for every value of Q the potentialv(Q) = vref +w(Q) is de�ned such that Fourier components k < Q of the perturba-tional part w(Q) of the Q-potential v(Q) are strongly suppressed whereas those fork > Q coincide with those of the original potential w. Consequently, the referencesystem and the fully interacting system are recovered in the limits Q ! 1 andQ! 0, respectively: v(1) = vref ;v(0) = v : (3)The rôle of the Q-potential just introduced becomes clear when we consider afunctional expansion in ~w(Q) of thermodynamic and structural properties of thesystem with pair interaction v(Q): as ~w(Q)(k), k < Q, is small, any integrals in theexpansion corresponding to graphs with at least one loop are e�ectively truncatedfor k < Q; as hrt is constructed in such a way that only graphs with one ormore loops are considered, use of the Q-potential is su�cient to implement the rgtheoretical cut-o�.In principle, the precise manner in which the potential is cut o� should notmatter, and one can easily conceive of many di�erent ways of doing so (q. v. sub-section 2.4.2). On the other hand, for such a procedure to be usable it must notintroduce instabilities when truncating the hrt hierarchy, which is usually doneat the two-particle level. Apart from approaches valid only for special types of2 For the notation used cf. appendix F; in particular, superscripts signal the system a quantityis evaluated for and a tilde indicates Fourier transformation.11



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchypotentials (cf. section C.1), we are aware of only two cut-o� procedures suitableat least for attractive potentials (q. v. sub-section 2.4.1); in our work we opted forthe prescription presented in the review article [2] which seems to have been usedalmost exclusively so far [4{6, 11, 28] rather than the smooth cut-o� formulationof [13], the latter being numerically cumbersome and predicting non-universalcritical exponents (q. v. sub-section 2.4.2). Thus we de�ne the Q-potential v(Q) =vref + w(Q) by ~w(Q)(k) = ( ~w(k) : k > Q0 : k < Q ; (4)and it is convenient to also introduce the symbol�(r) = �� w(r) (5)where � = 1=kB T , T is the temperature of the system considered and kB isBoltzmann's constant.A discussion of some questions regarding the properties of the Q-potential sode�ned can be found in section D.1; in particular, a simple calculation shows thatw(Q)(r) di�ers from w(r) by the addition of a convolution integral, viz.w(Q)(r) � w(r) = � 1�r Z 10 �sinQ (r0 � r)r0 � r � sinQ (r0 + r)r0 + r � r0 w(r0) dr0 (6)so that the Q-potential is a rather arti�cial function in r-space hardly resemblingthe full potential except in the limits of eq. (3); furthermore, the range over whichv(Q)(r) has to be considered is much larger than that of the original potential v(r),a property immediately carrying over to related quantities, the direct correlationfunctions in particular. As an immediate consequence, numerical Fourier trans-formations involving the Q-potential or any of the correlation functions for theQ-system are computationally expensive and must be treated with extreme care;in fact, they should be avoided if possible at all, with obvious repercussions forthe implementation of the core condition (v. i.).Equipped with this sequence of Q-systems, the theoretical backbone of hrt isformed by a perturbative expansion treating the system at any value of Q as astarting point, or reference system, for obtaining the properties of the uid within�nitesimally smaller cut-o� Q� dQ; as is well known from other theories, a re-organization and partial resummation of the resulting series is necessary in orderto surpass the mean-�eld level. The procedure for arriving at the �nal hierarchy,summarized and discussed in some detail in [2, 4] so that we may con�ne ourselvesto a mere sketch of the more important of the conceptual steps, is based uponstandard expansion techniques [35] in the grand-canonical formalism; starting withthe grand-canonical partition function of the (Q��Q)-system3 and the splittingv(Q��Q) = v(Q) + v(Q��Q) (Q) (7)3 Note that the hrt expansion (9) is a formally exact result that does not make use of thenotion of a suppression of length scales that underlies the Q-system's de�nition (4) but, inprinciple, applies to arbitrary physical potentials under rather general assumptions. As weare interested only in the hierarchy's application within the framework of hrt, we identifythe reference potential with v(Q)(r) and the target potential with v(Q��Q) right from thebeginning. 12



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchyof the potential with cut-o� Q��Q, in order to arrive at expansions of the prop-erties of the (Q��Q)-system in terms of those of the Q-system at the samedensity % rather than at �xed fugacity z the transition from Q to Q��Q mustbe accompanied by a shift in z formally corresponding to the e�ect of an as yetunknown external potential acting on the Q system that is implicitly determinedby the condition of equality of the densities; and indeed, in [4] the authors of hrtprovide an expansion of this external potential in a series the terms of which arenaturally interpreted in terms of diagrams [35]. But from the density operator'sde�nition as functional derivative of the partition function with respect to ln z, andtaking into account that �� times the Helmholtz free energy A is just the Legen-dre transform of the partition function with respect to the density, ln z(Q��Q)(~r)is equal to �(� A(Q��Q))=�%(~r); as ln z(Q��Q) di�ers from ln z(Q) only by theexternal potential and a term proportional to v(Q��Q) (Q)(0) the expansion forthe external potential acting on the Q-system (which is proportional to the di�er-ence of the logarithms of the fugacities) directly translates into an expansion forA(Q��Q) � A(Q). In hrt it is customary and convenient to de�ne the n-particledirect correlation functions as functional derivatives of the free energy with respectto the density, viz. c(Q)n (~r1; : : : ; ~rn) = �n(�� A(Q))�%(~r1) � � � %(~rn)for arbitrary Q; repeated functional di�erentiation of the expansion for A(Q��Q)readily yields analogous expansions for the c(Q)n , n � 1. In this context it isimportant to note that the above de�nition of the direct correlation functionsdi�ers from the usual one by inclusion of terms corresponding to the ideal gaslimit (given explicitly in eq. (5) of [4]); in particular, ~c(Q)2 (k) includes the term�1=% so that the Ornstein-Zernike (oz, [36]) equation takes the form~c(Q)2 (k) = �(1=%)� % ~h(Q)(k) ~c(Q)2 (k) ; (8)where g(Q)(r) = h(Q)(r) + 1 is the pair distribution function of the Q-system.The expansions for the free energy A(Q��Q) and the c(Q��Q)n , n � 1, so obtainedare, however, still not suitable as a basis for hrt; indeed, in order to allow fornon-classical critical behavior a re-summation has to be performed so that non-analyticities in the free energy as a function of � and %may arise from expansions to�nite order in �Q. To this end, the series for A(Q��Q) is ordered by the number ofloops in the corresponding diagrams, and assuming translational invariance chainsof perturbational interactions �(Q��Q) (Q) = �� v(Q��Q) (Q) and suitable two-particle correlation functions of the Q-system (technically, the negative functionalinverse of c(Q)2 , related to g(Q)(r) or, in Fourier space, to the structure factor) can13



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchybe summed up: for the free energies this yields the relation�A(Q��Q)V = �A(Q)V � 12 %2 ~�(Q��Q) (Q)(0)+ 12 ZR3 d3k(2�)3 ln 1 + ~�(Q��Q) (Q)(k)~c(Q)2 (k) !
+ 12 % �(Q��Q) (Q)(0) + � � � ; (9)

where the resummation's vestiges are clearly to be seen from the logarithm ap-pearing in the integral on the right hand side and the ellipsis corresponds to thesum of all the relevant diagrams with a minimum of two loops; analogous resultsof course apply to the n-particle direct correlation functions.The goal in developing the formal expansion of eq. (9) is to arrive at di�erentialequations by taking the limit of �Q ! 0 and retaining terms in the expansiononly up to �rst order in �Q, which turn out to be exactly those displayed ineq. (9). For this program to succeed, however, both sides of eq. (9) as well as ofits analogues for the direct correlation functions must be continuous in the cut-o�wavenumber even in the limit Q! 0; but from the de�nitions (7) of �(Q��Q) (Q)and (4) of the renormalized potential we immediately see that the zero-loop termproportional to ~�(Q��Q) (Q)(0) = ~�(Q��Q) � ~�(Q)(0) vanishes for Q��Q > 0but coincides with ~�(0) for Q��Q = 0. In order to eliminate this discontinuitywe therefore de�ne a modi�ed free energy A(Q) by formally subtracting this zero-loop contribution on both sides of eq. (9), and it is convenient to also treat thetrivial part proportional to �(Q��Q) (Q)(0) of the one-loop term in the same way;all in all, A(Q) is thus given by�A(Q)(%)V = �A(Q)(%)V � %22 �~�(0; %)� ~�(Q)(0; %)�+ %2 ��(0; %)� �(Q)(0; %)� (10)where we have added the density % as an argument for the bene�t of later usewithin the context of an approximate closure relying on thermodynamic consis-tency. An analogous discontinuity in c(Q)2 is similarly absorbed into the de�nitionof a modi�ed two-particle direct correlation functionC(Q)(r; %) = c(Q)2 (r; %) + �(r; %) � �(Q)(r; %) ; (11)whereas the higher order correlation functions c(Q)n , n � 1, are free from zero-loopterms and do not have to be changed. With these de�nitions, the modi�ed freeenergy A(Q), the modi�ed two-particle direct correlation function C(Q) and thehigher-order correlation functions c(Q)n , n � 1, are all continuous functions of Qeven in the limit Q ! 0 and can thus be used for the construction of di�erentialequations; on the other hand, from eqs. (10) and (11) it is obvious that theirlimits coincide with the physically meaningful unmodi�ed quantities for the fullyinteracting system. 14



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchyAssuming spherical symmetry, it is now simple to obtain the hrt hierarchy4:combining eq. (4) with the de�nition (7) of �(Q��Q) (Q) as the di�erence of�(Q��Q) and �(Q) (v. s.), we see that the integration on the right hand side ofeq. (9) is to be extended over the shell with Q��Q < k < Q only; but fork < Q we have ~c(Q)2 (k) = ~C(Q)(k) � ~�(k) from eq. (11), and according to eq. (7)~�(Q��Q) (Q)(k) = ~�(k) for Q��Q < k < Q. Writing d3k as 4� k2 dk by meansof rotational invariance of v, invoking continuity of the integrand and taking thelimit �Q! 0 we thus obtainddQ ��A(Q)(%)V � = �12 4�(2�)3 Q2 ln 1 + ~�(Q; %)~C(Q)(Q; %)� ~�(Q; %)!= � Q24�2 ln ~C(Q)(Q; %)~C(Q)(Q; %)� ~�(Q; %)= Q24�2 ln 1� ~�(Q; %)~C(Q)(Q; %)! : (12)
Analogous results can, of course, be obtained for the direct correlation functionsbut will not be given here as they will be considered no more in the remainder ofthis work; the interested reader may �nd the �rst few of these, in diagrammaticnotation, in eqs. (26) to (28) of [4] or, in conventional notation but for C(Q) alone,in eq. (4.27) of [2]. It is, however, important to note that the expression ford~c(Q)n (k; %)=dQ involves the direct correlation functions from C(Q) up to c(Q)n+2 sothat the hierarchy of di�erential equations never terminates; on the other hand,even though an exact solution of this hierarchy is not available for non-trivialpotentials, as the expansion underlying eq. (9) is formally exact, at every cut-o�Q the isothermal compressibility �(Q)T of the Q-system as obtained from the volumeintegral of the two-particle direct correlation function or by di�erentiation of thefree energy must coincide, which can be written in the simple form~C(Q)(0; %) = � d2d%2 ��A(Q)(%)V � (13)despite the additional terms introduced in eqs. (10) and (11). Also we wish tostress that all the calculations done so far were performed at �xed density %, andthat the hierarchy comprises ordinary di�erential equations (odes) in Q only; itis only for the bene�t of later application that we included % as an argument tovarious functions appearing in eqs. (9) to (12).From among the interesting aspects of the theory the conceptual basis of whichhas just been presented we here only want to mention two: �rst of all, hrt notonly draws considerable inspiration from rg theory, it can also be shown to beequivalent to an rg theoretical development by Nicoll and co-workers [2]; and4 Note that it is only now that identi�cation of the reference system in the expansion with anyof the Q-systems and of the target system with a system at slightly smaller cut-o� is necessary.15



The Hierarchical Reference Theory 2.2 Approximate closureexponent classical hrt Ising� 0 �0.07 0.1096(5)� 0.5 0.345 0.32653(10) 1 1.378 1.2373(2)� 3 5 4.7893(8)� 0 0 0.03639(15)� 0.5 0.689 0.63012(16)Table 1: The critical exponents for uids in the three-dimensional Ising universality class asobtained from mean �eld theory (\classical" exponents), from hrt with an oz ansatz for thestructure factor [2], and from recent 25th-order high-temperature series expansions [37].secondly, the equations can be analyzed in the scaling regime which allows one todemonstrate universality, and with an Ornstein-Zernike ansatz for the structurefactor (so that � = 0) the non-classical critical exponents listed in table 1 arefound.
2.2. Approximate closureDue to the non-terminating character of the hierarchy the derivation of whichwe just sketched, the need arises to introduce some approximate closure relation.In doing so, it is desirable to retain both the di�erential build-up of the relevantquantities mandated by the rg picture and thermodynamic consistency as embod-ied in the compressibility sum-rule (13); the derivatives with respect to % presentin the latter then mandate the transition from equations at �xed % to a partialdi�erential equation (pde) in the (Q; %)-plane with boundary conditions suppliedat two densities, %min and %max. In addition, we need to retain the core conditiong(Q)(r) = 0 ; r < � ; (14)indeed it is one of hrt's main advantages to conserve information on length scalesas diverse as the hard-sphere diameter �(%) of the reference system at density %and the cut-o� wavelength 1=Q allowing criticality to arise from long-wavelengthuctuations in the limit Q! 0 for low enough temperature.As noted above and discussed in more detail in section D.1, the long-rangednature of w(Q) and the correlation functions due to the cutting-o� of eq. (4) is astrong argument in favor of any closure allowing an approximate implementationof the core-condition without the need for costly Fourier transforms. This is alikely reason for the up to now seemingly exclusive use of a closure in the spiritof the Lowest-Order -ordered Approximation (loga, [38, 39]) or the equivalentOptimized Random-Phase Approximation (orpa, [40]) despite this closure's knownde�ciencies [9, 11, 28, 29] (cf. section 2.4). Just as in those approximations weintroduce a set of Q-independent basis functions un and corresponding expansion16



The Hierarchical Reference Theory 2.2 Approximate closurecoe�cients (Q)n , but unlike loga/orpa we add one degree of freedom in orderto be able to accomodate not only the core condition but also thermodynamicconsistency (13) or some other condition (cf. sub-section 2.2.1):C(Q)(r; %) = �(r; %) + (Q)0 (%)u0(r; %) +K(Q)(r; %) ;K(Q)(r; %) = G(Q)(r; %) + cref2 (r; %) ;G(Q)(r; %) = 1Xn=1 (Q)n (%)un(r; %) : (15)
Here, u0(r; %) is usually taken to be proportional to w(r; %) (but cf. section A.3)and normalized to ~u0(0; %) = 1 ; (16)and only the un(r; %) for n � 1 are taken to provide a basis for a suitable functionspace over [0; �(%)] (cf. section D.2); loga/orpa is recovered by dropping the0-term necessary for thermodynamic consistency (cf. section 2.4).With these provisions, the problem of implementing both thermodynamic con-sistency (13) and the core condition (14) reduces to that of an appropriate choiceof the expansion coe�cients (Q)n (%), n � 0, for every point (Q; %) in the pde's do-main. As �rst demonstrated in [6] and shown in more detail in section D.2, whenstarting with a reference system that already meets both of these requirementsthe problem of determining the correct (Q)n (%) for all Q reduces to that of thesolution of a countable set of odes coupled to each other as well as to the hrt-pdeat every density; with the short-hand notation�(Q)(%) = @3@Q@%2 ��A(Q)(%)V � (17)(a quantity that will play an important rôle in sub-section 2.2.1 below) and thede�nition (D.9) for the auxiliary symbol Î(Q) denoting a class of integrals extendedover all of Fourier space, these odes are conveniently written as1Xn=1 Î(Q) [~uj(k; %) (~un(k; %)� ~u0(k; %) ~un(0; %)) ; %] @(Q)n (%)@Q= �(Q)(%) Î(Q) [~uj(k; %) ~u0(k; %); %]+ Q22�2 ~�(Q; %) ~uj(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� ; j � 1 : (18)
To fully specify the mathematical problem, the pde must be amended by bothinitial and boundary conditions; the former take the simple form of vanishingexpansion coe�cients, i. e. refn (%) = 0 ; n � 0 ; (19)17



The Hierarchical Reference Theory 2.2 Approximate closurereecting the reference system's compliance with both thermodynamic consistencyand the core condition, whereas the question of the boundary conditions to beimposed upon the solution at high and low density will be discussed only in sec-tion 4.5.As eq. (18) stands, it is no more amenable to direct numerical treatment thanthe underlying oz relation (8) and the compressibility sum-rule (13); not onlymust this in�nite-dimensional matrix equation be truncated to a �nite number1+Ncc of basis functions but even then the Î-integrals (which, furthermore, turnout to converge only very slowly) need to be evaluated at every Q and % | atedious process no less demanding than the Fourier transformations this approachis meant to replace. It is only through the adoption of the simple, albeit notvery well justi�ed (q. v. section 5.2) approximation (D.11) for @Î(Q)[f(k; %); %]=@Qdetailed in section D.3 that this closure becomes manageable: following the stepsleading up to eq. (D.11), the task of evaluating one of the integrals of eq. (18), orof eq. (D.8), reduces to only an initial integration for the reference system followedby the solution of an ordinary di�erential equation (ode) coupled to the hrt-pdeas well as analogous odes for all the other integrals of the Î-type.2.2.1. Additional constraintsFor future reference, let us shortly contemplate the e�ect of imposing some addi-tional constraint on the solution at some density %; in the following it is understoodthat the constraint considered is distinct from other conditions in the sense of notintroducing redundancy into the equations. Under mild assumptions always ful-�lled for the cases we will consider, as long as we retain the core condition suchan additional constraint is already su�cient to determine the expansion coe�cient(Q)0 ; consequently, thermodynamic consistency can no longer be imposed withoutintroducing mathematical inconsistencies. By the same token, eq. (18) derivedby incorporating the compressibility sum rule (13) into the core condition (cf.section D.1) is no longer valid but must be changed to1Xn=1 Î(Q) [~uj(k; %) ~un(k; %); %] @(Q)n (%)@Q= �Î(Q) [~uj(k; %) ~u0(k; %); %] @(Q)0 (%)@Q+ Q22�2 ~�(Q; %) ~uj(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� ; j � 1; (20)
to reect the transition from eq. (13) to said constraint determining the function(Q)0 (%) appearing on the above equation's right hand side; furthermore, elimina-tion of thermodynamic consistency obviously means decoupling the pde to a setof odes at �xed density. Of course, eq. (18) is again recovered when inserting theexpression (D.10) for @(Q)0 =@Q in eq. (20).18



The Hierarchical Reference Theory 2.3 Reformulation, large �T2.2.2. Decoupling assumptionUnfortunately it turns out that a scheme retaining �(Q)(%) in eq. (18) for %min <% < %max presents signi�cant numerical problems for all but extremely high tem-peratures, precluding reaching Q = Q0 at least for the potentials that we havelooked at (q. v. sub-section 5.4.1). This is where the so-called \decoupling as-sumption" comes into play: based upon the di�erent ranges of u0(r) / �(r) andun(r), n � 1, the authors of [6] argue that terms related to third partial derivativesof the free energy might be ignored, thus e�ectively decoupling the long-range be-havior driven by thermodynamic consistency from the constraint of eq. (14) actingon very short range5. Consequently they set�(Q)(%) = 0 ; (21)which obviously eliminates the Î-integral on the right hand side of eq. (18); it turnsout that this change, to the best of our knowledge adopted in all later publicationson hrt for simple one-component uids that aspire to implement the core conditionat all, is often su�cient to allow generating a solution all the way to Q = Q0, thesmallest cut-o� considered numerically. While a more detailed discussion of thedecoupling assumption including numerical results will be presented in chapter 5,here we only point out that in the light of sub-section 2.2.1 eq. (21) is obviouslyincompatible not only with the loga/orpa condition(Q)0 (%) = 0 (22)retained in some numerical calculations for % = %max (q. v. section 5.4) but alsowith thermodynamic consistency (13) altogether; furthermore, when consistentlyapplying the approximation of eq. (21), the solution of eq. (15) is uniquely deter-mined by the core condition (14) alone and the pde thus reduced to a set of odesno longer capable of yielding clear phase boundaries (cf. section 5.3).
2.3. Reformulation in not-quite quasi-linear form andbehavior of the solution for large isothermalcompressibilityThe formulation of section 2.2, treating core condition and thermodynamic consis-tency along the lines of sections D.2 and D.3, provides us with a set of equationsimplementing hrt with the loga/orpa-like closure on the two-particle level thatis, in principle, well suited for numerical processing; but while these expressions5 But note that the longest-ranged part in c(Q)2 (r; %) is the zero-loop term for Q � 1=�, v. i.section 2.4. 19



The Hierarchical Reference Theory 2.3 Reformulation, large �Tlend themselves to discretization in a straightforward way (cf. section B.1), it iscomputationally much more convenient to cast the pde in a form super�ciallyresembling a quasi-linear one [11] so that an implicit �nite di�erence (fd) schemerequires only the inversion of a tridiagonal matrix. The re-writing we adopted |detailed in appendix A, very similar to the one of [11] | results in the introductionof an auxiliary function f(Q; %) via eq. (A.1) so that the pde implied by eqs. (12)and (13) can be written in the form@@Qf(Q; %) = d00[f;Q; %] + d01[f;Q; %] @@%f(Q; %) + d02[f;Q; %] @2@%2 f(Q; %) ; (23)with coe�cients d0i explicitly given in eq. (A.5); note that d01 vanishes for density-independent potential.Apart from the technical advantages this re-writing a�ords and the clari�cationregarding the admissible basis functions it brings about (cf. section A.3), inspectionof the expressions (A.5) for the pde's coe�cients d0i with the de�nitions (A.3)readily yields the information that, for su�ciently small Q and large "(Q; %) /exp(f(Q; %) ~u20(Q; %)) as de�ned in eq. (A.3), the coe�cients d0i grow much morerapidly in modulus than f(Q; %) and its derivatives with respect to %, viz.d0i = O("1) for i 2 f0; 1; 2g ;@if@%i = O("0) for i 2 f0; 1; 2g ;@f@Q = O("1) ; (24)
the last relation follows directly from eq. (23). This behavior, not easily seenfrom the relations (12), (13), and (15) underlying eq. (23), both provides us withsome insight regarding the mechanism leading to the suppression of van der Waalsloops in an implementation like that presented in chapter 4 and allows us todemonstrate the pde's sti�ness in the region where the isothermal compressibil-ity's divergence builds up. Note, however, that neither of these is directly linkedto the re-formulation of the pde but merely more conveniently discussed in thisframework as relations analogous to eq. (24) are not readily available in a formu-lation relying on the modi�ed free energy A(Q)(%) rather than f(Q; %): indeed,the emergence of rigorously at isotherms in the coexistence region and the cor-responding direct accessibility of the binodal have long been regarded as amonghrt's main advantages over other integral-equation based theories, and sti�ness isprobably at the heart of the problems preventing [6] from solving the hrt equationsfor sub-critical temperatures and its e�ects were also seen in an earlier version ofour program that did not rely on the rewriting of appendix A (cf. section B.1).2.3.1. Suppression of van der Waals loopsInterest in the case of large "(Q; %) mainly derives from relation (A.4): as theisothermal compressibility �T of the fully interacting system must diverge in20



The Hierarchical Reference Theory 2.3 Reformulation, large �Tthe phase diagram's coexistence region6, so must appendix A's "(0; %) and, fromeq. (A.3), f(0; %); continuity of the limit Q ! 0 (cf. eqs. (11) and (10)) thenbrings about that "(Q; %) and f(Q; %) must be large already for non-vanishing butsu�ciently small cut-o� Q, while the rg mechanism with its suppression of long-wavelength uctuations as implemented via eq. (4) precludes any divergences forQ 6= 0. In this and the following sub-section we will restrict ourselves to close-to-critical and subcritical temperatures only and concentrate on that part of the(Q; %)-plane where " is large and eq. (24) applies.Let us consider f(Q; %) at some �xed, non-vanishing and not too large7 valueof the cut-o� Q: in the following we take the potential's %-dependence to besu�ciently small to allow us to ignore the d01-term in eq. (23); furthermore, forsake of argument we assume that f(Q; %) is a smooth function of % that remainssmall for most of the density interval [0; %max] but becomes large for intermediate%. Note that the assumption of smoothness is not justi�ed for the pde's truesolution (cf. sub-section 2.3.2); on the other hand, when relying on a fd schemeakin to that of chapter 4, for any practical density grid the numerical procedurecan only produce an approximate solution that does not properly reect the truesolution's irregular behavior in the %-domain and again appears su�ciently smooth(cf. section 5.5, table 5.4 in particular). Strictly speaking some of the argumentsput forward in this sub-section thus apply only to a fd approximation to thepde rather than to the pde itself. Under these assumptions, inspection of thecoe�cients (A.5) shows that both d00 and d02 are negative whereever f(Q; %) and,hence, the Q-system's isothermal compressibility are large. Then, as j@2f=@%2j isassumed small, wherever f(Q; %) is su�ciently large already, df = (@f=@Q) dQ =�(@f=@Q) jdQj > 0 and f further increases to ever larger values as Q decreasestowards Q! 0. On the other hand, for the kind of f(Q; %) assumed, @2f=@%2 < 0for most of the density interval where f is large, with a change of signs only wheref falls o� to small values again; consequently, the d02-term in eq. (23) reducesj@f=@Qj where f is largest and enhances it closer to the edge of the region oflarge f , thereby e�ectively safeguarding that j@2f=@%2j remains rather small, asassumed; at the same time, the boundary between the regions of large and smallf becomes ever more sharply de�ned.Taken together the above considerations not only show that, indeed, the resultof following the discretized hrt equations all the way to Q! 0 is certainly free of avan der Waals loop; furthermore, it is not di�cult to see that binodal and spinodalcoincide under the smoothness assumptions stated, i. e. that 1=�(0)T / 1=�"(0; %) iscontinuous at %v and %l.6 Recall that, in three dimensions, binodal and spinodal as predicted by hrt coincide, i. e.1=�(0)T remains continuous at the phase boundary. The boundaries of the density interval ofdiverging �(0)T are naturally identi�ed with the densities %v and %l of the coexisting vapor andliquid, respectively.7 Typically, Q must be smaller than the location of the �rst minimum of ~�(k; %); there is,however, some numerical evidence for a much larger range of validity in the systems discussedin chapter 5. 21



The Hierarchical Reference Theory 2.3 Reformulation, large �T2.3.2. Sti�ness for large isothermal compressibilityAs already mentioned, however, the pde's true solution is certainly not smoothon the scales considered numerically for close-to-critical and sub-critical tempera-tures. In the following we will demonstrate the pde's pathological behavior in theregion of large f(Q; %); in doing so we restrict ourselves to even smaller Q thanin sub-section 2.3.1, viz. to so low a Q that ~u0(Q; %) may be replaced by unityby virtue of this basis function's normalization (16); extension of the argument toa larger Q-range is cumbersome but straightforward and cannot be expected toyield qualitatively di�erent results.As before, we base our considerations upon the orders cited for the various termsin the pde (23); furthermore, for the time being we only consider an ode at some�xed density %, which is possible without loss of generality as the exact solution ofthe pde exists and could, in principle, be imposed as discussed in sub-section 2.2.1.According to eq. (24), df=dQ is of order O("1) and can thus be written asdf(Q)dQ = ef(Q)d0(Q) ;d0(Q) = O(1) ; (25)where the order given for d0 is valid only with the assumption of su�ciently smallQ mentioned earlier; note that a negative sign of d0 corresponds to the rise off(Q) expected as Q approaches naught from above. But as the exponential in theabove relation's right hand side cannot vanish, it may also be read as a de�nitionfor d0(Q) in terms of the exact solution f of the hrt-pde; on the other hand, withthe d0(Q) so obtained eq. (25) is also an exact ode for f(Q; %), and imposing acorrect starting value for f at some cut-o� Q0 the solution at any other cut-o� Qis trivially obtained asf(Q) = � ln�e�f(Q0) � Z QQ0 d0(q) dq� :As stated already at the beginning of sub-section 2.3.1, f(Q) must be large but�nite for non-vanishing Q but diverge in the limit Q! 0; inspecting the argumentof the logarithm in the above solution, these requirements are readily translatedas Z QQ0 d0(q) dq < e�f(Q0) ;limQ!0 Z QQ0 d0(q) dq = e�f(Q0) :Thus the mean of d0(Q) over the interval ]0; Q[ is �1=(Q"(Q)), while jd0(Q)j it-self still is of order unity; these statements are compatible only if d0 is a rapidlyoscillating function of Q, with both amplitude and period no larger than approxi-mately 1=(Q"(Q)). Reverting to the hrt-pde and the auxiliary function f(Q; %)22



The Hierarchical Reference Theory 2.4 Choice of closurewe conclude that f(Q; %) as a function of Q also oscillates rapidly on a scale ofthe order of 1=(Q"(Q; %)) but with both the average slope and an upper boundfor the oscillations' amplitudes growing like 1=Q; this erratic behavior immedi-ately carries over to the solution's %-dependence due to the estimate of eq. (24)for @f(Q; %)=@%.The pde's sti�ness so demonstrated is, of course, a major obstacle in the nu-merical implementation of hrt, especially in view of the diverging upper boundon the oscillations' amplitudes; the above considerations, however, are rather gen-eral and rely only on some general properties of hrt in the current formulation asapplied to one-component uids, viz. divergence of the isothermal compressibilityin the coexistence region, continuity of the limit Q! 0, and suppression of diver-gences for Q > 0; only the remaining ingredient essential to our reasoning, viz. thebehavior of the ratio of the Q- and the %-derivatives as the divergence in the com-pressibility builds up, while obvious in the formulation of eq. (23), could only beobtained by reasoning about third- and second-order derivatives of A(Q)(%) ratherthan �rst- and second-order ones if we were to repeat the arguments without re-sorting to the re-writing of appendix A | after all, f is basically the modi�ed freeenergy's derivative with respect to Q. Still, this last aspect is intimately linked tothe continuous build-up of the isothermal compressibility for small Q so that noneof the properties we invoked appear speci�c to the closure adopted or any of theother approximations introduced so far, and sti�ness must be expected to arise inother formulations and more advanced applications of hrt, too.
2.4. Further considerations regarding the choice ofclosureBefore setting about the implementation of the theory just sketched, let us pausefor a moment to reect some more upon the properties of the closure adoptedwithout taking recourse to our numerical results: �rst of all, it is instructiveto write the loga/orpa-ansatz (15) for the true two-particle direct correlationfunction rather than for C(Q); from eq. (11) we immediately �ndc(Q)2 (r; %) = cref2 (r; %) + �(Q)(r; %) + (Q)0 (%)u0(r; %) + 1Xn=1 (Q)n (%)un(r; %) ;for the moment adopting the loga/orpa condition (22) and ensuring the corecondition by an appropriate choice of the other expansion coe�cients this is im-mediately recognized as the well-known loga/orpa closure for the Q-system withpotential vref + w(Q):( c(Q)2 (r; %) = cref2 (r; %)� � w(Q)(r; %) ; r > �(%)g(Q)(r; %) = 0 ; r < �(%) :23



The Hierarchical Reference Theory 2.4 Choice of closureBut as soon as we relax the condition of vanishing (Q)0 (%), with the usual choice8of u0(r; %) / w(r; %) the direct correlation function acquires a contribution fromthe full potential w(r; %) rather than from w(Q)(r; %) alone. This is certainly in-appropriate for a description of the Q-system, especially as the derivation of theexact hrt hierarchy in section 2.1 clearly treats the Q-system, despite its arti�cialpotential, as a real physical system and not just as a formal device in the con-struction; indeed, the expansion (9) that all of hrt is based upon remains validfor any choice of reference and target system provided the potentials' di�erence isnon-singular. | As a corollary we note that, from section D.1, the longest rangedcomponent of c(Q)2 (r; %) by far is not the term (Q)0 (%)u0(r; %) used for implement-ing thermodynamic consistency but rather the convolution integral resulting fromthe renormalization (4) of the potential, an observation that casts some doubt onthe decoupling assumption's justi�cation �rst presented in [6] and re-iterated eversince (q. v. section 5.2).Let us now assume that a given potential v(r) vanishes identically beyond some�nite interparticle distance (as is the case for the square well and multi-step sys-tems to be introduced in chapter 3), or else that it decreases su�ciently rapidlyfor large r to ensure convergence of the relevant integrals9 (like, e. g., the expo-nential in eq. (3.2)): then, from the closure (15) we immediately conclude thatall moments of C(Q)(r; %) and of c(Q)2 (r; %) exist throughout the Q-system's phasediagram, which is clearly at variance with the correct behavior near the criticalsingularity [41]. While existence of all moments of C(Q)(r; %) is obvious from theshort-rangedness and regularity of the terms in eq. (15), for the analogous conclu-sion regarding the physically meaningful c(Q)2 at non-vanishing Q we need to alsoinvoke eq. (11) in conjunction with the relation of any function's moments to thederivatives of its Fourier transform with respect to the wavenumber k at k = 0;application to the zero-loop terms in the de�nition of C(Q) then yields the desiredresult.2.4.1. Instability for repulsive potentialsAnother aspect of the closure (15) that can easily be seen is the instability ofthe pde for repulsive potentials, a restriction only hinted at in [2], v. i.; as thecore condition cannot be expected to be relevant in this context, for simplicity'ssake we adopt the approximation of vanishing loga/orpa function, i. e. we setG(Q)(r; %) = 0 or, equivalently, Ncc = 0. The hrt equations then provide a pde8 As noted in appendix A, u0(r; %) does not have to be strictly proportional to w(r; %) as long asit meets the requirements laid out in section A.3; but even then similar considerations applyunless we adopt Q-dependent basis functions, a possibility more general than the ansatz ofappendix A.9 As we will shortly see, for the following considerations it is su�cient that all moments of v(r; %)exist, which, it should be noted, is not the case for, e. g., a Lennard-Jones potential.24



The Hierarchical Reference Theory 2.4 Choice of closurefor (Q)0 (%): By di�erentiating the compressibility sum rule (13) in the form(Q)0 (%) = � @2@%2 �A(Q)(%)V � ~cref2 (0; %)� ~�(0; %) ; (26)with respect to Q as well as eq. (12) twice with respect to % and equating theresulting expressions for ��(Q)(%) we readily obtain this pde, viz.@(Q)0 (%)@Q = � Q24�2 @2@%2 ln�1� ~�(Q; %)~cref2 (Q; %) + ~�(Q; %) + (Q)0 (%) ~u0(Q; %)� :Let us now assume that, at some stage of the computation, (Q)0 (%) di�ers fromthe above pde's true solution by only a small amount �(Q)0 (%); performing thecorresponding substitution(Q)0 (%) =) (Q)0 (%) + �(Q)0 (%) ;expanding up to �rst order in �0 and simplifying we �nd the pde governing �0,viz.@�(Q)0 (%)@Q = Q2 ~�(Q; %) ~u0(Q; %)4�2 @2@%2� �(Q)0 (%)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)�� :For the hrt-pde to be stable d�(Q)0 (%), the total change of �(Q)0 (%) as the cut-o� is lowered fromQ to Q+dQ = Q�jdQj at constant density, must counteract theperturbation �(Q)0 (%), i. e. d�(Q)0 (%)=�(Q)0 (%) must be negative; as d�(Q)0 (%) =(@�(Q)0 (%)=@Q) dQ, this is equivalent to positive @�(Q)0 (%)=�(Q)0 (%) @Q. Assum-ing that �(Q)0 is a su�ciently well-behaved10 function of %, for low enough densitythe second %-derivative is dominated by the ideal-gas term �1=% in ~C(Q): for %! 0we may therefore neglect ~�(Q; %) in the denominator and move �(Q)0 out of thederivative; the remaining di�erentiation of the ideal-gas direct correlation func-tion is trivial, and dropping manifestly positive factors we immediately �nd that~�(Q; %) ~u0(Q; %) > 0 is a necessary but not su�cient condition for stability, whichis just another way of stating that the signs of ~�(Q; %) and of ~u0(Q; %) shouldcoincide, cf. [2] (p. 264). Note, however, that eq. (26) relies on the normalization(16) of u0; combining this with the condition for stability just found, we concludethat the hrt-pde with a closure of the type of eq. (15) is unconditionally unstablefor repulsive potentials, i. e. for systems where the volume integral of the pertur-bational part of the potential, ~w(0; %), is positive, contrary to what is claimed in[21].Concluding this short discussion of the problem's stability we should stress thatour reasoning pertains to the pde itself rather than to the related fd equation(fde) obtained by discretization as discussed in chapter 4; consequently our con-clusions are independent of the properties of the density grid used in the numericalwork, and the only %-scale relevant here is the separation % from the ideal gas sin-gularity at % = 0. Also, ~w(0) < 0 is only a necessary but by no means su�cientcondition for the pde's stability.10 In particular, it should be continuous and non-singular for %! 0.25



The Hierarchical Reference Theory 2.4 Choice of closure2.4.2. Motivation for using the LOGA/ORPA-like closureAs we have seen, the closure (15) su�ers from various defects: in addition tothe clearly unphysical traits (dependence of the Q-system on the full potential,existence of all moments of c(Q)2 for all Q-systems and all thermodynamic states,v. s.), its inability to treat repulsive potentials | a restriction not expected on thebasis of the derivation of the hrt equations | seems particularly unattractive;still, it is this closure that has been used almost exclusively so far even though ithas repeatedly been blamed for sub-optimal results obtained in hrt calculations [9,11, 28]. There are, however, good reasons why application of eq. (15) is worthwhileeven though any other closure popular in liquid state theory such as, e. g., thehypernetted chain (hnc) approximation could concievably be used11 in very muchthe same way in which loga/orpa provides the conceptual basis for eq. (15). Themost important reason seems to be that its use is computationally feasible whileother approximations incur substantial di�culties: with eq. (15) the pde is stableat least for many attractive potentials, the fde allows generating some solution allthe way to very smallQ in remarkably many cases despite the pde's sti�ness for lowtemperatures (q. v. section B.1), and a convenient approximate treatment of thecore condition without the need for costly and complicated Fourier transformationsis available (cf. sections D.2 and D.3); indeed, the latter can hardly be expectedin a more realistic ansatz for C(Q).In addition, the form of the zero-loop terms in eq. (11) makes it natural tochoose a closure expressing the two-particle direct correlation function c(Q)2 (r) ofthe Q-system as the sum of the correct limiting term for r!1, i. e. �(Q)(r), anda simple expression of shorter range; the transition to C(Q)(r) then only involvesexchanging the long-ranged summand �(Q)(r) by �(r). In this context, however,it should be noted that eqs. (10) and (11) are direct consequences of the de�nition(4) of the Q-potential: if instead we de�ne a cut-o� procedure that does notintroduce a discontinuity in ~w(Q)(0; %) at Q = 0, the hrt-pde might just as wellbe formulated in terms of the original quantities A(Q) and c(Q)2 even though themodi�ed functions may still provide some technical advantages [13]. However,for cut-o� procedures like that of the smooth cut-o� formulation [13] of hrt or,e. g., ones that replace the discontinuity of eq. (4) by a continuous function overa limited k-range (so that, other than in [13], @A(Q)(%)=@Q does not involve anintegral over all of Fourier space), in the light of the �ndings reported in [13] wemust expect the critical exponents to turn out non-universal and to depend onthe details of the de�nition of the renormalized potential. On the other hand, we11 Formally, it is only necessary to include an additional degree of freedom in the ansatz forc(Q)2 (r; %) corresponding to the (Q)0 (%)-term in eq. (15), provided ~C(Q)(0; %) invertibly dependson the corresponding parameter; as mixed closure theories typically involve some switchingparameter [1], some of these might even be applied without further modi�cations. For practicalapplications, however, both stability and regularity properties would still have to be discussed.26



The Hierarchical Reference Theory 2.4 Choice of closureshould recover potential-independent critical exponents when de�ning, e. g.,~w(Q)(k) = ( ~w(k) : k > Q~w(Q) : k < Q ;even though they might di�er from those listed in table 1; however, as this de�-nition obviously cannot be used to implement the suppression of long-wavelengthuctuations typical of rg theory it will come as no surprise that reasoning anal-ogous to that of sub-section 2.4.1 readily shows the pde following from a loga/orpa-like closure on the two-particle level to be unstable except maybe for highlycontrived potentials.All in all, despite the closure's undisputable short-comings (v. s.) its adoptionis almost dictated by the need to avoid explicit Fourier transformations and therequirement of stability of the pde; consequently, the remainder of the work re-ported here will be based upon the formulation of hrt presented in sections 2.1 to2.3, with eqs. (4) and (15) at its very core. Still, even within this framework thereis ample freedom regarding the details of the equations to be solved numerically;this will be discussed in the super�cial sketch of our software in chapter 4 and putto good use in chapter 5.
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III. The physical systems considered and their pairpotentials
Let us now shortly introduce the physical systems that we will apply the theory justoutlined to and present some of the literature data that will be used in assessingthe method's numerical qualities: in particular, we here de�ne the sw and the hcyuids, while other potentials of limited interest for the remainder of this work areonly shortly touched upon. Note that the full set of parameters de�ning a giventype of interaction is displayed here but suppressed in most of the remainder of thiswork (cf. sub-section F.1.1); also, the reference system unvaryingly identi�ed witha pure hard-sphere uid (q. v. section 4.7) has already been de�ned in section 2.1'seq. (2.1). Some seemingly awkward signs in the parametrizations were adoptedfor reasons of compatibility with the literature.
3.1. Square wellsThroughout our numerical work on hrt, the primary test case for the imple-mentations to be presented in chapter 4 as well as appendices B and C was thedensity-independent sw uid of range � given byvsw[��;�;�](r) = vhs[�](r) + wsw[��;�;�](r) ;wsw[��;�;�](r) = (�� : r < ��0 : r > �� ; (1)the perturbational part of which has~wsw[��;�;�](k) = �4� � sin�� k � �� k cos�� kk3as its Fourier transform.As noted in chapter 1, after �xing the %-independent hard-core diameter � andthe well depth � as units of length and energy, respectively, we are left with the28



Physical systems and potentials 3.1 Square wellspotential range � as the only free parameter; in this work we will study values of� from slightly above unity up to 3.6. With just one parameter, viz. �, to vary,sws obviously make for a convenient test case of hrt and, indeed, of liquid statetheories in general, and they can also be considered as among the simplest modelsystems exhibiting phase separation; consequently, a great many simulational andtheoretical e�orts have been directed at this system and studies of its phase be-havior abound [14, 15, 42{52]. But square wells are also of interest in their ownright, serving as | albeit somewhat crude | models of a wide variety of phys-ical systems including, e. g., 3He, Ne, Ar, H2, CO2, CH4, C2H6, n-pentane andn-butane [14, 16, 17] while current interest in this system derives mainly from the�nding that square wells capture the essential features of the interactions found incolloidal systems [53{57]; also, the recent, very accurate simulation study [52] ofthe system with � = 1:5 con�rmed and quanti�ed the presence of the Yang-Yang(yy) anomaly expected and experimentally found for asymmetric uids [58, 59].3.1.1. Non-HRT results on the critical point of square wells ofvariable rangeFor comparison purposes we compile in tables 1 and 2 the critical temperatures Tcand densities %c of various square well systems as obtained from simulations (table1) or by purely theoretical means (table 2); the data given have been publishedwithin the last decade.Of the simulation based results included in table 1, only those of [47] for � 2f1:25; 1:375; 1:5; 1:75; 2g were obtained by molecular dynamics (md); most of theother simulation studies rely on one or the other variant of the Monte Carlo (mc)method: Among these, the Gibbs ensemble mc (gemc) calculations of [42] set outto determine critical exponents, � in particular; that work's �nding of � � 1=2 for� = 2 as opposed to the expected � � 1=3 (cf. table 2.1) found for � up to 1.75prompted re-examination of the square well uid with � = 2 by gemc augmentedby �nite-size scaling (fss) techniques [43], refuting the mean �eld value for thee�ective exponent. | Especially in the critical regime, grand canonical mc (gcmc)simulations incorporating histogram re-weighting and fss o�er some advantageover gemc due to the latter's restriction to �xed temperature; such an approachhas been applied to square wells with � = 1:5 and 3 in [44]; a more elaborategcmc scheme not biased towards but con�rming the Ising universality class andtaking into account the yy anomaly has recently been applied to � = 1:5 [52], v. s.Yet another method goes under the name of thermodynamic- or temperature-and-density-scaling mc (tdsmc); it was applied to the case of � = 1:5 and analyzedin terms of an e�ective Hamiltonian in [45, 46]. | Also included in table 1are the results of [48], employing an mc scheme modi�ed to take advantage ofa speed-up possible by combining simulation data with an analytical ansatz forthe chemical potential; the e�ciency of this approach originally devised to studyphase separation allows a large number of systems to be considered. (The error29



Physical systems and potentials 3.1 Square wells� kB Tc(�)=� %c �3 method1.05 0.3751(1) 0.496(26) mod. mc [48]1.1 0.4912(4) 0.458(9) mod. mc [48]1.15 0.5942(35) 0.434(1) mod. mc [48]1.2 0.692(1) 0.415(3) mod. mc [48]1.25 0.764(4) 9.370(23) gemc [42]0.78 | md [47]0.7880(6) 0.392(1) mod. mc [48]1.3 0.8857(7) 0.370(1) mod. mc [48]1.375 0.974(10) 0.355(45) gemc [42]1.01 | md [47]1.4 1.076(8) 0.329(1) mod. mc [48]1.5 1.2179(3) 0.3067(4) gcmc [52]1.2180(2) 0.310(1) gcmc [44]1.219(8) 0.299(23) gemc [42]1.222 | tdsmc [45, 46]1.226 | tdsmc [45, 46]1.246(5) 0.329(6) tdsmc [45, 46]1.27 | md [47]1.302(8) 0.322(5) mod. mc [48]1.65 1.645(5) 0.282(3) mod. mc [48]1.75 1.79 | md [47]1.811(13) 0.284(9) gemc [42]1.8 2.062(8) 0.249(3) mod. mc [48]2 2.61 | md [47]2.648(14) 0.249(8) gemc+fss [43]2.666(85) 0.238(81) gemc+fss [43]2.678(27) 0.244(8) gemc+fss [43]2.6821(8) | gemc+fss [43]2.684(51) 0.235(82) gemc+fss [43]2.721(89) 0.228(85) gemc+fss [43]2.730(14) 0.235(8) gemc+fss [43]2.764(23) 0.225(18) gemc [42]2.778(7) 0.241(1) mod. mc [48]2.2 3.80(1) 0.258(1) mod. mc [48]2.4 5.08(2) 0.267(1) mod. mc [48]3 9.87(1) 0.257(1) gcmc [44]Table 1: The critical temperature Tc and critical density %c of square well systems for variousvalues of � as predicted by simulations and simulation-based theoretical analyses, and the cor-responding references. The acronyms used for labeling the method employed in obtaining theseresults are given in sub-section 3.1.1 of the text, q. v. appendix F.bounds given for these \modi�ed mc" results in table 1 have been obtained fromthe numbers displayed in [48] for di�erent parameter settings.)30



Physical systems and potentials 3.2 Hard-core Yukawa uid� kB Tc(�)=� %c �3 method1.125 0.587 0.71 apt2 [50]1.25 0.751 0.253 hsvdw [49]0.850 0.48 apt2 [50]1.375 0.978 0.253 hsvdw [49]1.08 0.36 apt2 [50]1.5 1.249 0.253 hsvdw [49]1.33 0.29 apt2 [50]1.625 1.61 0.26 apt2 [50]1.75 1.859 0.253 hsvdw [49]1.93 0.24 apt2 [50]1.85 2.23 0.23 apt2 [50]2 2.506 0.253 hsvdw [49]2.79 0.23 apt2 [50]Table 2: The critical temperature Tc and critical density %c of square well systems for variousvalues of � as predicted by purely theoretical means, and the corresponding references. Theacronyms used for labeling the method employed in obtaining these results are given in sub-section 3.1.1 of the text, q. v. appendix F.The theoretical predictions for the critical temperature listed in table 2 comprisea second-order analytic perturbation theory (apt2, [50]) applicable to 1 < � � 2and claimed accurate for � � 1:4 as well as the hard-sphere van der Waals (hsvdw,[49]) equation of state (eos). In addition, though not listed in table 2, we haveutilized the non-square-well-speci�c Okumura-Yonezawa (oy) estimate for �c of[60], viz. kB Tc� = 0:203 2�3 �3 � 0:273 ;primarily as a starting point when looking for the critical temperature in our hrtcalculations.
3.2. Hard-core Yukawa uidAnother potential we considered is the density-independent hcy potential para-metrized as vhcy[��0;��;z;�](r) = vhs[�](r) + whcy[��0;��;z;�](r) ;whcy[��0;��;z;�](r) = 8<: ��0 : r < ��� �r e�z (r��) : r > � ; (2)where the parameter ��0, the value of w(r) inside the core, defaults to the contactvalue �� = whcy(�+), a choice actually dictated by numerical stability require-ments in practical calculations (cf. section 4.3). Such a dependence of hrt's results31



Physical systems and potentials 3.2 Hard-core Yukawa uidkB Tc(�)=� %c �3 method1.193 0.326 mhnc [28]1.199 0.312 gmsa [28]1.21 0.28 mhnc [68]1.212(2) 0.312(2) mc [67]1.214 0.312 hrt [28]1.219 0.314 scoza [28]Table 3: The critical temperature Tc and critical density %c of the hcy system with z = 1:8=�as predicted by simulation and purely theoretical means, and the corresponding references. Theacronyms used for labeling the method employed in obtaining these results are given in section 3.2of the text.on the perturbational part of the potential inside the core may be unexpected at�rst, but bear in mind that even in the exact hrt hierarchy without any approx-imations and with arbitrary cut-o� procedure the renormalized potential w(Q)(r)outside the core will depend on w(r) inside the core, and with the cut-o� method ofeq. (2.4) any discontinuities of w(r) will feature prominently1 in the Fourier trans-forms; only in the limit Q! 0 are the exact results guaranteed to only depend onv(r) rather than on w(r), but so low a Q is unattainable at least numerically if2�0 6= �.In comparison to sws, the hcy uid will play only a minor rôle in the pre-sentation in the later chapters of this work; the reason for this is the richer setof numerical di�culties displayed by sws as opposed to the hcy system, wherethe same considerations (with the exception of those of section 5.6) apply as insws but are less of a reason for concern due to the usually much less pronounceddefects of the solution obtained. As far as assessing hrt as a general theory ofthe liquid state is concerned, the hcy uid is of interest mainly because it allowsdirect comparison [28] with the Self-Consistent Ornstein-Zernike Approximation(scoza, [61{63]) by Stell and H�ye as application of that theory bene�ts greatlyfrom an analytical solution to the mean spherical approximation in the case ofan hcy system; other than that, a direct comparison of hrt and scoza has onlybeen performed for the three-dimensional lattice gas model isomorphic to the Isingmodel [64, 65].For comparison purposes, in table 3 we again compile some results on the criticalpoint's location for the system with inverse screening length z = 1:8=�; the data aretaken from [28] and comprise that contribution's results as obtained from scoza,the generalized mean spherical approximation (gmsa), the modi�ed hypernetted1 Take into account that, from section D.1 and the obvious continuity of the convolution integralof eq. (2.6) for �nite Q, the renormalized potential w(Q)(r) is bound to sport exactly the samediscontinuities as w(r) itself except in the limit of Q!1; put di�erently, the cut-o� procedure(2.4) only a�ects the potential's continuous component. The same, by the way, is also true forthe smooth cut-o� formulation of [13].2 Of course, similar considerations apply to other potentials just as well. In the light of thisdiscussion it might be worthwhile to consider the numerical properties of hrt when confrontedwith a di�erent form of the hcy potential that even remains di�erentiable at r = �.32



Physical systems and potentials 3.3 Other potentialschain (mhnc) approximation and hrt3, as well as mc simulations with fss [67]and a variant of mhnc relying on Verlet-Weis results for the bridge functions [68].
3.3. Other potentialsTwo more types of potentials will briey be mentioned below; the �rst of these,viz. the general multi-step potential vst0(r), can be obtained as a superposition ofa �nite number of square well potentials with common hard-sphere diameter �,i. e. vst0[(��1;�1);(��2;�2);:::;�](r) = vhs[�](r) + wst0[(��1;�1);(��2;�2);:::;�](r) ;wst0[(��1;�1);(��2;�2);:::;�](r) =Xi2I wsw[��i;�i;�](r) ; (3)with a suitable set I of indices; this obviously de�nes a piecewise constant functionvanishing for r > maxi2I �i, with jumps of height �i = vst0(�i+) � vst0(�i�) ateach of the �i. A more natural parametrization uses the sequence of constantvalues �i of the potential, i. e. �i = vst(�i�),vst[(�1;�1);(�2;�2);:::;�] = vhs[�](r) + wst[(�1;�1);(�2;�2);:::;�] ;wst[(�1;�1);(�2;�2);:::;�] = 8>><>>: �1 : r < �1�i : �i�1 < r < �i; where fi� 1; ig � I0 : r > maxi2I �i ; (4)
of course, the �i are related to the �i in a straightforward way.Yet another potential that will be useful in sub-section 5.2.1 is what we call the\core" potential vcore obtained by restricting one of the more realistic types ofinteraction like those de�ned in this chapter to within the hard-sphere diameter�: for arbitrary function  (r), we de�ne the corresponding core potential asvcore[ (r);�](r) = vhs[�](r) + wcore[ (r);�](r) ;wcore[ (r);�](r) =  (r)�(� � r) : (5)As can easily be seen, vcore = vhs; but applying the cut-o� Q as in eq. (2.4) weobtain limQ!1 vcore(Q) = vhslimQ!0 vcore(Q) = vhsvcore(Q) 6= vhs ; 0 < Q <1 ; (6)which allows for simple reasoning the conclusions of which are of some relevancefor very short ranged potentials (cf. sub-section 5.2.1).3 Using what is referred to as the \original implementation" in chapter 4; these calculationswere carried out with a setting of Ncc = 5 [66], but q. v. section 5.2.33



IV. Implementation of HRT for simpleone-component uids
From the discussion of chapter 2 it should be clear that hrt holds high promisefor the study of, among others, simple one-component uids especially in the two-phase region where it renders Maxwell constructions obsolete, or in the criticalregion where the theory produces a true singularity characterized by non-classicalcritical exponents without loosing information on short length-scales as is oftenthe case in rg theoretical methods. Still, adoption of this theory by the liquidphysics community has been lagging, and while this reluctance to adopt so pow-erful a tool may partially be attributed to the theory's inherent di�culties andhigh computational cost, lack of an easy to use yet exible, well-documented im-plementation of hrt may also have played a rôle. To �ll this gap we have writtensoftware1 suited as a general framework for the exploration and application of hrtto simple one-component uids with hard sphere reference systems with variouscombinations of physical systems, approximations, and solution algorithms; to-gether with appendix C the present chapter will provide a short overview of ourimplementation, its facilities and limitations.
4.1. General characteristics and comparison with earlierprogramsOf course, the software to be presented here is not the �rst implementation of hrtfor simple one-component uids: indeed, there has been a series of earlier programs[6, 9, 13] by the authors of the theory and their collaborators, but it was the oneused in [11, 28], henceforth referred to as the \original" implementation, that wasa vital step in demonstrating the viability of hrt for continuous systems belowthe critical temperature; though never published or formally released, it has beencirculating among interested physicists for quite some time, serving as a valuableresource for us, too, as it solves in its own way some of the problems inherent to1 Available on the world wide web from http://purl.oclc.org/NET/ar-hrt-1/.34



Implementation of HRT 4.1 General characteristics and other programsthe theory in the formulation chosen; also, we point out that the current versionof our software which we will be concerned with in the remainder of this chapterevolved through various stages shortly presented in appendix B, each of whichprovided us with a host of new insights into the theoretical, numerical and practi-cal aspects of applying hrt to the systems considered (cf. chapter 3). Still, thereare good reasons for producing yet another implementation of the theory, and in-deed does the one at hand di�er from its precursors in many respects: adoptionof a meta-language in our version, programming style, and documentation-to-coderatio may be most obvious, number and nature of hard-coded limitations (e. g.the number of basis functions in the closure), important details of the numericalprocedure (e. g. the manner of discretization, a general preference for analyticexpressions over interpolation on grids, and some basic control of error terms andconvergence checks with clearly de�ned criteria to be met or explicitly overridden)and a possible speed gain through generation of customized code (cf. section C.1)might be less apparent. Most importantly, though, the original implementation'sstructure makes experimentation with di�erent combinations of approximations,pde solving algorithms, parameter settings and physical potentials rather cum-bersome; in contrast, the fully modular approach adoption of a meta-language (cf.section C.1) allowed us to take seems far better suited to a more general survey ofhrt's numerical side.In addition to the necessary exibility of our software, great care has been takento ensure the numerical soundness of every step in the calculation and hence ofthe results produced; as a secondary goal we also strive for e�ciency of the im-plementation but without sacri�cing correctness, which entails an almost uniformdistribution of the generation of numerical errors necessarily arising from �nite-precision arithmetic and a fd approximation to the underlying pde over all ofthe problem's domain. To this end we introduce one central parameter, �#, char-acteristic of the maximum relative error introduced at any step; together with anumber of criteria relying on �# this parameter governs virtually all of the nu-merics. Where the mathematical structure of the hrt-pde or limited computerresources necessitate a deviation from the criteria usually employed to maintainthe numerical quality indicated by �# this is made explicit (v. i. sub-section 4.6.2),as are all the other approximations entering the calculation.On a more technical note, in view of the well-known advantages of this program-ming language for numerical work that we did not want to forgo, we decided tostrive for an implementation in fully standards-conforming [69] Fortran-90; theonly non-standard feature we make use of is the availability of the special valuesNaN and �Inf for numerically unde�ned values and signed overows, respectively,as de�ned in the ieee oating-point standard [70]. These requirements should notpose a serious restriction for our software's prospective users: after all, Fortran-90 compilers have been available for a wide range of platforms for several years,and the desired oating-point behavior can usually be requested | albeit at asmall performance penalty | via compiler switches; also, the next revision of theFortran language informally known as Fortran-2000 (due in 2004) is set to in-clude a formal speci�cation on oating-point exception handling [71], which will35



Implementation of HRT 4.2 Computational frameworkprobably spur compliance with [70] on an even wider range of platforms. | Butdespite the chosen language's indisputable merits, experience with prior versionsof our code (cf. appendix B) taught us that the kind of exibility we need can-not be accommodated within the rather rigid framework Fortran-90's moduleswith their one-way ow of information provide. Instead we opted for the simplemeta-language arfg2 for self-con�guring construction of code customized to thechosen combination of approximations and the physical system at hand, at thesame time enhancing readability and maintainability of the source and encourag-ing modularization; for a more detailed discussion of this approach, the numeroustechnical advantages it a�ords, and of the meta-language itself we refer the readerto section C.1.
4.2. The program's computational frameworkAs a direct consequence of the adoption of a meta-language our software is moreappropriately described as a collection of mutually compatible building blocksrather than as a monolithic program so that the details of the numerical proce-dure are best left to these; however, for the combination of di�erent selections ofimplementations of these parts to jointly de�ne a valid numerical realization ofthe theory outlined in chapter 2 all of the code must adhere to a common view ofthe computation.Most obviously, we have to make the transition from the pde's domain, viz. thein�nite strip [0;1)� [%min; %max], to a discrete mesh de�ned by a �nite number ofdiscrete points in a �nite part [Q0; Q1]�[%min; %max] of the (Q; %)-plane. Evidently,the placement of these \nodes", as we shall call them, is of utmost importance forthe quality of the discretization so that it is only natural to de�ne �#, the centralparameter governing all of the numerics, in terms of the properties of this mesh:the coarser a mesh we choose, the larger �# will be.The locations of the nodes can, in principle, be chosen freely3 and should beleft to the corresponding parts of the program; we do, however, require the nodes'data structures to be organized in doubly linked lists roughly (v. i.) correspondingto Q-systems at di�erent densities the properties of which are to be determined inparallel. As for the cut-o�s Q of the nodes in such a list, we cannot assume themto coincide even though this is usually the case except for a low-density boundaryat % = 0, nor is there any reason to rule out a corresponding %-dependence ofQ0 or Q1, the boundaries of the Q-interval considered numerically. On the otherhand, as far as the densities of the nodes are concerned, implementation of the corecondition via the truncated eqs. (2.18) and (D.11) makes anything but constant2 Available on the world wide web from http://purl.oclc.org/NET/arfg/.3 Consequently, when we discuss step sizes �Q and �% of the fd scheme, both quantities, viz.the change �Q < 0 in Q from one node to the next at the same density and the spacing �%between adjacent densities are, in general, to be taken to depend on both Q and % even thoughwe do not explicitly show this dependence. 36



Implementation of HRT 4.2 Computational framework11 12 13
21 22 2331 32 33

Q
�Figure 1: Schematic of the grid used in the discretization of the pde (cf. section 4.5). Assuminguse of the three-point approximation for the second derivatives in the %-direction, the discretiza-tion is generated from an expansion around the intersection of the thin horizontal line with theline of constant density joining the nodes labeled (i2). | According to the general model of thecomputation discussed in section 4.2, a node list's Q-values may be %-dependent, whereas the%-values must coincide in all three node lists, though they need not be equispaced.(though not necessarily equispaced) density values impractical; if the grid is to bere�ned for low Q, additional nodes must be inserted at the same densities in allthe node lists in the calculation. After initialization of the nodes' data structures,solution of the pde proceeds by applying a (possibly iterated) predictor-correctorscheme to generate an approximate solution for the nodes most advanced towardsQ = 0 from the information available through the node lists at higher Q; in theinterest of the code's simplicity, the number of node lists has been �xed to exactlythree (q. v. �g. 1) which is su�cient for the determination of appropriate stepsizes �Q by estimating selected quantities' curvatures in the Q domain. Note,however, that this choice, convenient as it is for the work we have undertaken,poses an upper limit on the order in �Q of the discretization and thus presentsone of the hard-coded limitations of our program, v. s. section 4.7.Other aspects characteristic of our software are the amount of modularity itprovides and the rôles assigned to the program's modular constituents: indeed,most of the mutually compatible and freely exchangeable building blocks that arecombined to implement a particular set of approximations to the theory outlined inchapter 2 directly correspond to the underlying physical and mathematical notions;the resulting natural organization of the code cleanly separating conceptually un-related approximations is a direct consequence of our adoption of a meta-languageand the use of automatic code generation techniques. Note, however, that it ispossible only because there is no simple mapping from \main parts", as we shallcall them henceforth, to Fortran-90's rather inexible modules from which theymust be distinguished clearly: every main part may give rise to any number ofmodules and may incorporate all the information available within the code base.In the following sections we take a closer look at some of the main parts, theirphysical meaning, the algorithms and approximations they implement, and at some37



Implementation of HRT 4.3 Main part \potential"of the information they make available to the other parts via the facilities sketchedin section C.1; we will, however, exclude from this discussion the program's in-frastructure, e. g. the facilities for logging, for reading and parsing of options �les,handling of node lists as well as the de�nition of a versatile, lossless and storage-e�cient albeit platform dependent �le format for the results at Q = Q0. In asimilar vein, we only mention the assortment of accompanying tools for readingthese �les and dumping their content in human-readable or Mathematica-usableform, for locating the critical point or calculating phase diagrams. Thus only mainparts potential, reference, ansatz and solver|note that we use mono-spacedfont for the main parts' names | remain to be discussed:
4.3. Main part potential: Properties of the interactionof the uid's particlesFirst and foremost, we obviously have to provide the necessary information onthe uid's potential v = vref + w and its properties: this is the purpose of mainpart potential. Just as the full potential is a sum of a reference part vref and aperturbational part w, the functions and parameters to be provided by this mainpart fall into two distinct categories, pertaining to either vref or w; in addition, asthe temperature enters the calculation only as a pre-factor to w, viz. via � = �� w,the inverse temperature � is also de�ned here.As far as the reference system is concerned, restriction to hard spheres (cf. chap-ter 2, q. v. section 4.7 below) means that only a function returning the hard spherediameter �(%) and a ag indicating any deviation of �(%) from the unit of lengthneed to be made available. | A similar parameter pertaining to the perturba-tional part w of the potential, viz. a ag indicating any density-dependence of w,also plays an important rôle in many parts of the program as substantial simpli-�cations4 and, in many cases5, signi�cant speed-ups by caching previous resultsare possible whenever ~�(Q; %) only depends on Q. In addition, at every cut-o� Qthe program must have access to the Fourier transforms ~w(Q; %) and ~�(Q; %) aswell as the derivatives @ ~�(Q; %)=@Q and @n �~�(Q; %)�m =@%n, whereas powers ofthe volume integral, ~�(0; %)n, and their derivatives @n �~�(0; %)�m =@%n obviouslydo not depend on Q; here, m and n are appropriate integers known during codeconstruction. | Even though not used by our program directly, it is customaryto also implement the functions w(r) and �(r); not only do these functions allow4 Note that most of this simpli�cation automatically follows from using a standardized interfacefor accessing the exported functions as explained in section C.1; in particular, the code hasto explicitly take into account the potential's %-independence only in rare circumstances, e. g.when installing caching or when switching to a more e�cient algorithm altogether.5 This obviously depends on the pattern of accessing and initializing nodes, and on the com-putational cost of evaluating the relevant functions as opposed to mere lookup and test forequality; for a hint on the implementation of the simple one-shot cache cf. section C.1.38



Implementation of HRT 4.4 Main part \reference"for simple tests of the internal consistency of the description of the potential, theyalso come in handy for additional evaluations, especially for Fourier transforma-tions like those needed to get g(Q)(r; %) from ~C(Q) via the oz relation (2.8), cf.section 5.2.For the bene�t of the pde-solving algorithm, this main part also has to set aparameter �[v] indicative of the potential's range and related to the maximumrelative curvature of the second Q-derivative of ~�(Q; %), de�ned in such a wayas to coincide with � for the sw potential vsw[��;�;�] given in eq. (3.1): indeed,as discussed in chapter 3 it is this system that most of the work reported herehas focused on; apart from sws, the hcy potential vhcy[��0;��;z;�] of eq. (3.2) andthe multistep potentials of section 3.3 have been implemented, in the latter caseautomatically transforming vst[(��;�1);(�� x2;�2);:::;�] of eq. (3.4) into the computa-tionally more convenient vst0[(�1;�1);(�2;�2);:::;�], cf. eq. (3.3). In all these cases wehave implemented density-independent potentials only even though the remainderof the program is able to handle %-dependent interactions just as well; also, inthe calculations reported here the diameter � of the hard-sphere reference part(vref = vhs[�]) and the strength � of the attraction have invariably been chosen asunits of length and energy, respectively.As all of these potential types consist of an attractive tail attached to an in-�nitely repulsive core, the splitting of v into a reference part vref and a pertur-bational part w is uniquely determined outside the core; on the other hand, inthe case of the hcy uid any mismatch between �0 and � dominates ~whcy(k; %)for large k and is found to render unstable at least the numerics, and the same isalso expected whenever some potential introduces a length-scale close to or evensmaller than � so that there is little room for variation of w(r) inside the core,either. Also recall from sub-section 2.4.1 that an attractive potential (negative~w(0; %)) is a necessary though not su�cient condition for the stability of the pdeitself.
4.4. Main part reference: Hard-sphere reference systemDue to the specialization of vref to hard spheres, the reference system enters theexpressions of chapter 2 only through the direct correlation function cref2 , imple-mentation of which is the task set for main part reference. Not surprisingly, itturns out to be the simplest part of our program: it uses information only frommain part potential, viz. the function �(%) and the ag regarding the hard spherediameter's rôle as unit of length, and apart from initialization code only functionsfor the evaluation of ~cref2 (Q; %) and @~cref2 (Q; %)=@Q have to be exported.In our program we have so far included two di�erent versions implementing thePercus-Yevick (py) approximation [72] and the Grundke-Henderson (gh) descrip-tion6 [73]; the latter is very similar to the widely used Verlet-Weis [74] parametriza-6 As [73] is more concerned with an approximation for the bridge function rather than the direct39



Implementation of HRT 4.5 Main part \ansatz"tion of the hard sphere correlation functions in that it builds upon the py resultsbut is usually taken to present a superior approximation insofar as it implementsconsistency of both the virial eos and the compressibility eos with the well-knownCarnahan-Starling result [75]. Note that all results reported here have been ob-tained using the gh-cref : in a theory relying on internal consistency conditions likeeq. (2.13) as heavily as hrt, the thermodynamic inconsistency present in the pysolution seems particularly undesirable (q. v. section B.1).
4.5. Main part ansatz: Discretization, boundaryconditions, and other approximationsMain part ansatz where all the approximations on the physical and mathematicallevel are combined to jointly de�ne a reasonable numerical model of hrt is at thevery core of the pde-solving machinery: for the potential the perturbational andreference parts of which are described in the previous two sections, the hrt-pdeis discretized and solved according to a given set of approximations and on themesh de�ned by the node-lists served by main part solver (v. i. section 4.6).More precisely, ansatz provides a set of facilities in the form of subroutines withstandardized interfaces on the m4-level of arfg (cf. section C.1) implementing thevarious stages of the computation, viz. initialization of the node lists at Q = Q1and subsequent solution of the fde in a predictor-corrector full approximationscheme. Note, however, that the code must accommodate the possibilities of bothiterating the corrector step (which may allow attaining the numerical quality in-dicated by �# with somewhat larger step sizes, thus speeding up the calculation)and of discarding part of the solution should �#-based criteria not be met; to aidsolver in these decisions, care has to be taken to detect and signal numericalanomalies. Once a step's results have been accepted, ansatz may perform ad-ditional manipulations of the data structures: most importantly, for reasons ofboth simplicity of the code and e�ciency of the discretization the re-scaling of allquantities a�ected by exponentiation of f necessary whenever f is large (cf. ourdiscussion of the pde's sti�ness and the suppression of van der Waals loops inchapter 2) is adjusted only when the last corrector's result has been accepted.Due to the eminent rôle the consistency condition (2.13) plays in constructinga closure to the underlying ode (2.12), the pde (2.23) for f(Q; %) is of �rst or-der in Q and of second order in %; assuming the lowest possible number of nodesin the discretization (extension to higher order is straightforward) and a rectan-gular arrangement of the nodes we therefore need at least a 2 � 3 set of nodes.correlation function we had to re-derive and to re-write the gh results in a form more suitablefor the task at hand. In doing so we were led to a slightly di�erent form of [73]'s expression(18) for the parameter m that might point to a mis-print of that equation; the results we usedin our calculations can be obtained from those of [73] by changing the sign of the integral overthe py pair distribution function and by replacing the e�ective py hard-sphere radius by itsgh value on the left-hand side of the equation which then reads 12 � C=m�2.40



Implementation of HRT 4.5 Main part \ansatz"According to the general model of the computation presented in section 4.2, how-ever, we instead keep a third node list in order to allow monitoring of secondQ-derivatives; this still allows us to reach a classical consistency order two in �Qeven on a non-rectangular mesh while our discretization is of �rst order only in�% due to asymmetry of the 3� 3 grid schematically presenting in �g. 1 the mostgeneral constellation of nodes compatible with the general model of the compu-tation given in section 4.2. Locally, the fde is derived from an expansion aboutthe midpoint of the nodes labeled (22) and (32) in the schematic 1, evaluating thesecond %-derivative in eq. (2.23) along the line of constant Q through this point(thin horizontal line in �g. 1) by estimating the data at the intersection with thelines of constant density by interpolants de�ned from node triples (i1) and (i3), re-spectively; the resulting fd approximation is applied to every set of three adjacentnode-triples, substituting suitable boundary conditions at %min and %max.As indicated in �g. 1, Q is not necessarily constant along a given node list,whereas the stability of the numerical scheme may impose certain geometricalconstraints regarding the possible locations of the nodes, e. g. for ensuring thatthe Courant-Friedrichs-Lewy criterion [76] is met or for maintaining convexity ofthe remaining integration region; a suitable representation of these constraints isexported and must be taken into account by main part solver. If the latter decidesto insert nodes at intermediate densities, the code for initializing the inserted datastructures and for interpolating appropriate quantities is negotiated between themain parts, depending upon the order of the interpolation formul� available. Afurther consequence of having non-constant Q is that some parts of the densityrange may reach Q � Q0 earlier than others, which is regularly the case at leastfor the boundary condition at %min = 0; in this case, the corresponding nodes arelocked, preventing further modi�cation, and all of the converged nodes except thosenecessary for providing a boundary condition for the remaining density interval(q. v. section 4.7) are removed from the node lists available to main part ansatz.In addition to the discretization of the hrt-pde (2.23) discussed so far, the im-plementation of the core condition along the lines of chapter 2 and sections D.2and D.3 is also of interest. Relegating discussion of the choice of appropriate basisfunctions un, 1 � n � Ncc, to section C.2 we only point out the extremely slowconvergence of the Î-integrals (D.9) that have to be evaluated at Q = Q1; fur-thermore, as the integrand is temperature dependent for k > Q1, these integralshave to be evaluated for every isotherm | a problem that might be sidesteppedby adopting the original implementation's strategy of consistently using the re-sults for Q ! 1 rather than those valid at Q1 for initialization even thoughsuch an approach introduces an arti�cial discontinuity at Q = Q1. Also, withthe usual choice of Q1 � 102=�, integration merely up to k = Q1 can hardly bedeemed su�cient; an appropriate upper integration limit can instead be found bycomparing the integrand's asymptotic behavior with �#.For the bene�t of the rest of the pde solving machinery, main part solver (v. i.section 4.6) in particular, ansatz also has to identify quantities suitable bothfor monitoring convergence of the full approximation scheme and for choosingappropriate step sizes �Q and �%, to provide code fragments for the inspection41



Implementation of HRT 4.6 Main part \solver"of nodes in various stages of the computation as well as to export a description ofthe boundary conditions at %min and %max including mandatory settings for eitherof these parameters if necessary; in particular, most implementations of ansatzrequire %min = 0 in order to be able to use the result (A.2) brought about bythe divergence of the ideal-gas term �1=% in ~cref2 as a Q-independent boundarycondition for f .It is this main part where di�erent approximations related to conceptually sep-arated aspects of hrt like initial and boundary conditions, the manner of dis-cretization, the implementation of the core condition, the formulation of the pdeor any additional approximations must be combined to jointly de�ne a reason-able computational model of the pde; note that a higher degree of modularizationseparating all of the aspects mentioned that we here decided to implement onlytogether proves to be impractical and leads to the dreaded proliferation of largelyincompatible modules known from a previous version of our program, the veryexperience that led us to adopt a meta-language in the �rst place (cf. section B.2).In the course of our investigations into hrt's numerical side we produced a multi-tude of versions (q. v. sections 2.4 and 5.4.1) only a selected few of which we willmake use of in the remainder of this work: While mathematically inconsistent,both the re-implementation of the original program's approximations for the coreand boundary conditions and the approach combining the pde with �(Q) = 0 at alldensities including %max retain thermodynamic consistency at least in some approx-imate way (cf. our discussion of the decoupling assumption in sub-section 2.2.2);we have also implemented the two possible approaches at least mathematicallymeaningful, viz. the thermodynamically inconsistent odes directly following fromdecoupling (q. v. section B.3) and the pde resigning on the core condition for thebene�t of the compressibility sum rule (2.13) with the loga/orpa prescription(Q)0 (%max) = 0 as high density boundary condition.
4.6. Main part solver: Criteria for positioning of nodesIf main part ansatz is to provide a discretization on whatever mesh is handed toit, it is the task set for solver, the last of the main parts to be discussed in thischapter, to de�ne this very mesh and to keep track of the numerical solution'squality. Based primarily upon the value of �# but also taking into account otheroptions as well as compile-time parameters (cf. section C.1) and respecting anyrestrictions exported by ansatz, step sizes �Q and �% have to be chosen andchecked for compatibility with the solution generated, iterating or discarding stepsif certain criteria are not met; whenever ansatz signals an exception | usually anoverow in "(Q; %) or numerically unde�ned f(Q; %) | the last step is discarded,accepting the data in the node list corresponding to labels (2i) in �g. 1 as the bestapproximation to the solution for Q! 0. At the same time, care has to be takento locate and identify any problems in the solution, i. e. parts of the (Q; %)-plane42



Implementation of HRT 4.6 Main part \solver"where the solution found does not appear smooth on the scales set by the stepsizes, the most basic assumption underlying any fd calculation; whenever thisassumption no longer holds, the algorithm will react by locally reducing �Q and�%, inserting node triples (cf. section 4.5) in order to achieve the latter. | Oncewe �nd any nodes already holding the �nal results for their respective densities7they must be taken care of as discussed in section 4.5; integration of the pde isended when there is a node with Q � Q0 for every density in the calculation,or when ansatz requests an end either because an error condition has occurred(v. s.) or because the current node list is su�ciently close to Q = Q0 already.| As noted in section 4.2, the intimate link between this main part's task andthe numerical quality of the solution generated makes it natural to here de�ne �#,the central parameter governing the numerics, and it is this part of the programthat relies upon �# and the associated criteria the most; other main parts use �#for little more than for switching between full analytic expressions and asymptoticexpansions, a slightly atypical example of which is to be found in section C.2.One last aspect of this main part common to both of the implementations dis-cussed below regards the choice of Q1: As the only reasonable initial conditionfor the core condition assumes that the structure at Q1 is basically the same asthat for Q = 1 (so that c(Q1)2 = c(1)2 = cref2 or, equivalently, (Q1)n = (1)n = 0,n � 0) and the same set of parameters is used for the initialization of nodes atQ = Q1+ j�Qj, the nodes labled (1i) in �g. 1 in the �rst step, too, it is preferableto have @(Q)n (%)=@Q = 0 at Q = Q1; from eq. (2.18) one immediately concludesthat this is equivalent to ~w(Q1) = 0 whenever using the decoupling assumption.It is left to main part ansatz to decide whether Q1 should be determined inthis way, thereby necessarily introducing %-dependent Q1 when dealing with a%-dependent potential; if so, provisions have been made to ensure that Q1(%) iscontinuous.4.6.1. Monitoring the solutionOf the two implementations of this main part, one has been written in the hopes ofbeing able to avoid the problematic region of large f(Q; %) altogether, as is indeedpossible for some similar pdes (q. v. section 5.5). This implementation makes fulluse of �#, relying on numerous criteria to control the calculation; in the followingdiscussion the notation p[x]y refers to customization parameters that should usuallybe taken as real numbers of order unity. In most cases they are used as pre-factorsto �# so that increasing p[x]y relaxes the constraint imposed by the correspondingcriterion; the pivotal parameter �# itself is de�ned viaN% = (%max � %min)2�# p[%]N% ; (1)7 Note that this will be the case already after the �rst step for the nodes at %min providedeq. (A.2) is used as the low-density boundary condition.43



Implementation of HRT 4.6 Main part \solver"where N%+1 is the number of density values spanning the range from %min to %maxin the equispaced %-grid we always decided to start with; the above relation reectsthe importance of second %-derivatives for the numerical quality of the solution ofthe pde8, the correlations of the truncation errors of the three-point fd estimatorfor these derivatives as well as the static nature of this set of densities due to theÎ-approach to the core-condition.Once �# has been �xed, the system is ready to start determining appropriatestep sizes �Q; in particular the assumption that the potential v(r; %) introduceslength scales only in the range from �(%) to �[v](%)�(%), where �[v] is related tothe second and fourth derivatives of ~v(k; %) with respect to k (v. s. section 4.3),places an upper bound on the admissible step sizes, viz.�Q � q12 �# p[�Q]�Qmax�[v] �(%) :On the other hand, for a fd scheme to be meaningful at least a certain numberof bits must remain signi�cant in evaluating the di�erences, which implies a lowerbound on �Q proportional to Q, and the solution has to be smooth on the scalesde�ned by the mesh, which also rules out abrupt changes in the step sizes; con-sequently, the ratio of two consecutive �Q steps at the same density is restrictedto lie between p[�Q]ratio and 1=p[�Q]ratio . In a similar vein, considering smoothness in the%-direction we have to postulate that (Q(22) + Q(32))=2 is greater than either ofQ(31) and Q(33), where the labels coincide with those of the nodes of �g. 1; thiscondition, unlike the other rules mentioned so far, does not limit the step sizes�Q at any density % but rather determines whether �% should be reduced by theinsertion of nodes at an additional density. But the most important criteria forchoosing �Q come from monitoring the solution generated: for every monitoredquantity x we make sure thats 1kxkQ ���� @2x@Q2 �����Q �q�# p[�Q]x ;where kxkQ = maxk>Q jx(k; %)j (2)is the usual maximum-norm on the interval ]Q;1[; the quantities taken for x are,of course, chosen by ansatz (v. s. section 4.5), and a usual selection is x(Q; %) 2nf(Q; %); 1= ~K(Q)(Q; %)o so that aspects of the solution related to both thermo-dynamic and structural properties of the uid are monitored. A di�erent set ofquantities y, also chosen by ansatz and usually comprising just y(Q; %) = f(Q; %),is used to monitor the convergence of the predictor-corrector scheme and to de-termine whether or not the corrector should be iterated: denoting the absolute8 A conclusion based upon tests performed with the program of section B.1.44



Implementation of HRT 4.7 Limitations inherent to our softwaredi�erence of consecutive approximations of y divided by kykQ by �y, iterationsare performed until �y < �# p[conv]y , and the ratio of two consecutive step sizes isbounded from above by (�# p[�Q]y )1=�2+p[�Q]Nit �=p�(1)y, where �(1)y is �y evalu-ated after the �rst corrector step. According to simple heuristic arguments regard-ing the convergence of corrector iterations and ignoring the e�ect of other criteria,an average of p[�Q]Nit calls of the corrector can be expected to solve the di�erenceequations to within �#, and a setting of p[�Q]Nit > 1 may signi�cantly speed up thecalculation by allowing larger steps to be taken without loss of accuracy.After �nding and tentatively using a candidate �Q we still have to check thatthe assumptions leading to that particular choice for �Q actually hold; to thisend we re-evaluate all the criteria with the obvious exception of the one involving�(1)y after the predictor and discard the step unless a slightly smaller step size,viz. �Qp[�Q]discard (0 < p[�Q]discard < 1), passes the tests. If no step size can be foundsatisfying all the constraints, the calculation is terminated.4.6.2. Pre-determined step sizesWhile the above set of prescriptions for �nding suitable node locations has provedindispensible in understanding the behavior of the pde's solution, the oscillatorynature of f(Q; %) invariably linked to the build-up of the isothermal compressibil-ity's divergence for sub-critical temperatures (cf. sub-section 2.3.2) prevents itsuse for � >� �c: considering even the modest value f � 103, ��Q would haveto be smaller than e�103 � 10�430, which is obviously completely useless for anypractical implementation. Thus, even though it means loosing control over thelevel of accuracy in the solution, we have also implemented a version of main partsolver with predetermined step sizes that just happen to often be su�cient forreaching Q = Q0 even well below the critical temperature while reproducing theoverow necessary for �T 's divergence in a density interval the edges of which maythen be identi�ed with the coexisting phases' densities %v and %l. Recalling thebehavior of f wherever it is large we obviously have to drastically reduce �Q aswe approach Q0; for this we use the very prescription introduced by the authors of[11] and evidently underlying all later published hrt calculations: at any density %the Q-values are written in the form ln �1 + exp �Q01 � i�Q��1�� with successiveintegers i and a parameter Q01 adjusted to yield the correct starting value Q1(%).Apart from the determination of step sizes �# is still very much in control of thenumerical processing and plays an important rôle in the calculation.
4.7. Limitations inherent to our softwareFrom the preceding super�cial sketch of our implementation of hrt in conjunction45



Implementation of HRT 4.7 Limitations inherent to our softwarewith the discussions of appendix C, section C.1 in particular, it should be clear thatwe have produced a rather general, exible and extensible framework well suitedto the systematic investigation of di�erent approximations' e�ects in numericalcalculations; also, the reader will not have failed to notice the natural separationof the code according to the underlying physical and mathematical notions thatis mirrored in both the ease with which our code's capabilities can be extendedby alternative implementations of the main parts and in the simplicity of thesoftware's use (cf. section C.1).On the other hand, there are a number of limitations present that prospectiveusers should be aware of; due to the exibility of our approach, however, some ofthem are related only to speci�c implementations of the main parts whereas othersare inherent to the view of the computation underlying all our code.The most poignant restriction on our software's range of applicability comesfrom the specialization to the case of a spherically symmetric pure two-body inter-action with a hard-sphere reference part (cf. chapter 2): also taking into accountrotational degrees of freedom would, of course, dramatically increase both thecomplexity of the program and the computing resources necessary, and while ap-plication of hrt to systems with three-body interactions has been demonstratedin [9] the necessity to include all many-body forces already in the reference partmakes such an approach appear cumbersome and rather less attractive; identi�-cation of the reference uid with pure hard spheres, a restriction not present inthe original implementation of hrt, seems justi�ed in the light of the substan-tial simpli�cation it brings about. Of these extensions, only the elimination ofrotational symmetry of the interaction mandates an alternative implementationof one of the main parts, viz. ansatz, only and could thus be incorporated intoour implementation without much hassle; both of the other changes indicated,viz. three-particle potentials or non-hard-core reference system, require changes tomain parts reference and ansatz and therefore cannot be accomodated withinthe framework laid out in the preceding sections without hampering the possibilityof freely combining any of the main part versions into a reasonable computationalmodel of some approximation to hrt as presented in chapter 2.As noted already in section 4.2, �xing the number of node lists to exactly threecertainly renders discretizations of high order in �Q based upon simple Taylorarguments impractical; still, not only are such an approach's merits not clear [77],it is also certainly possible to implement the handling of additional node listswithout incurring too severe a performance penalty.As far as the solver of sub-section 4.6.1 is concerned, we should point out thatthis version of the code is not ready to deal with more than one density intervalwhere no solution has been obtained yet; still, such a situation might only arisethrough violation of the Courant-Friedrichs-Lewy criterion [76] and would almostcertainly induce instability of the fde, nor do we expect such a situation to arisedue to the way the pde's sti�ness arises (cf. section 5.5).The last class of limitations that we should mention is a number of hard-codedexpansion orders: as noted, e. g., in sections A.4 and C.2, in a number of cir-cumstances evaluation of some quantities via the full analytical expressions is nu-46



Implementation of HRT 4.8 Default parameter settingsmerically inappropriate except under certain conditions, and series expansions aretypically applied when these are not met; with the notable exception of section C.2,while the criteria for switching between the methods of calculating an expressiongenerally depend on �#, the expansion orders are typically hard-coded rather thandynamically adjusted to reect the calculation's level of accuracy, which may causeoating-point problems for extremely small values of �#.
4.8. Default parameter settingsUnless otherwise noted, all of the calculations reported in this work have beenperformed on an equispaced density grid of N% = 100 density intervals spanningthe range from %min = 0 to %max = 1=�3, corresponding to a value of �# = 10�2;Ncc was usually set to 7; and the pre-determined step sizes started from �Q =�10�2=� at Q1 = 80=�, plunging to a mere �5 � 10�6=� when approaching Q0 =10�4=�; the preferred ansatz inconsistently applies the decoupling assumptionfor %min < % < %max but consistently uses it as a boundary condition for thepde at %max. | When locating the binodal via the divergence of the isothermalcompressibility �(Q0)T we did not require an actual overow to occur but insteadlooked for a �(Q0)T -ratio at neighbouring densities exceeding 104, which is a ratherreliable indicator for the binodal's location as �(Q0)T typically jumps by far less thantwo or by at least some twenty orders of magnitude within one �%; the reportedvalues for %v and %l are the mid-points of the density intervals so found. In principlethis allows us to locate the coexisting densities and the critical temperature anddensity to arbitrary precision, even though the computational cost rises sharplywith falling �#.
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V. Aspects of the numerical solution of the HRTequations for simple one-component uids
In the preceding chapters we had to introduce a number of approximations some ofwhich may seem rather less justi�ed; their respective importance for and bearingon our program's predictions of structure and thermodynamics of simple liquidsnow remain to be assessed. As an exact solution with which to compare numericalresults is lacking for non-trivial systems, for hrt in the formulation of chapter 2as implemented by our software package (chapter 4) to be considered a reliabletool well applicable to realistic physical potentials it is necessary to demonstratethe limited e�ects variations in the numerical recipe have and to compare theresults obtained with those available by other means for certain potentials. Tothis end in the sections to follow we will make use of the systems discussed atsome length in chapter 3, viz. the hcy uid with z = 1:8=� and sw systemsof variable well width, varying the parameter � from slightly above unity up to3.6; as mentioned in section 3.2, the former of these is expected to be largelyunproblematic numerically whereas the pronouncedly short-ranged sws shouldbring out the di�culties inherent in hrt much more clearly.Of course, it is to be understood that any of the de�ciencies of the solutionsnumerically obtained or of the pde solving process only relate to an implemen-tation along the lines of chapters 2 and 4 and not to hrt proper; however, forreasons discussed in chapter 2 and section 4.7 alternative formulations almost cer-tainly render the numerics far more demanding and open up a whole new suiteof problems regarding the numerical implementation's soundness, especially wheninvolving Fourier transforms of cut-o� a�ected functions (cf. section D.1).
5.1. Insensitivity of the critical densityAn important trait that is found for all the systems and parameter settings weconsidered is that the critical density %c is hardly a�ected by a variation of thenumerical recipe and is, in fact, virtually always in good to excellent agreementwith the data presented in chapter 3; consequently, in the considerations of the48



Aspects of the numerical solution 5.2 Core conditionsections to come %c will usually not be referred to explicitly. Insensitivity of%c is clearly illustrated by this chapter's tables 1 to 3 as well as �gs. 2 and 3;furthermore, as is apparent from �g. 4, hrt is even able to reproduce the markedrise in %c predicted by [42, 48, 50] for �! 1+ as opposed to the rigorously constantvalue in [49] despite the theory's short-comings for very short-ranged potentials.The reasons for %c's insensitivity will at least partially become clear at the end ofsection 5.5 when we consider the e�ect of inappropriately large step sizes on thebinodal's location.
5.2. Implementation of the core condition by coupledODEsEver since application of hrt to continuous uids started the implementation ofthe core condition has been a major issue; indeed, it is no coincidence that severalstudies [5, 8, 20, 33] primarily concerned with the rg aspect of the theory choseto completely eliminate it. When applying hrt as a regular liquid state theory,on the other hand, this is not an option: as we shall see in section 5.3, too greatis the e�ect this may have on both correlation functions and phase behavior. Asmentioned already in chapter 2, this is a likely motivation for the adoption ofthe closure (2.15) and variants thereof for non-hard-sphere reference systems [21]despite its known de�ciencies [9, 11, 28] as it allows a computationally manageableapproximate treatment of the core condition without the need to explicitly performcostly Fourier transformations (q. v. section D.1).For the moment setting aside the question of thermodynamic consistency thatwill be considered in section 5.3 below, i. e. accepting any (Q)0 (%) that decou-pling or some other condition may yield (cf. sub-section 2.2.1), there are twoimportant approximations that cannot be avoided in an approach based uponsection D.2: truncation of the odes implementing the core condition to a �nitenumber Ncc + 1 of basis functions and expansion coe�cients, and elimination ofthe non-local contribution to the slowly converging Î-integrals' Q-dependence ac-cording to section D.3. With these we will concern ourselves in this section.5.2.1. Inadequacy of the implementation for very short rangedpotentialsFor a �rst orientation and to demonstrate that the combination of these two ap-proximations may, indeed, pose a problem let us shortly consider the rather arti-�cial1 system characterized by the potential vcore(r) de�ned in (3.5): as, say, thecorrelation functions of the exact solution of the hrt evolution equations in Q are1 Contrived as it may be, this type of potential could also be used for a rather stringent checkon the approximations' internal consistency: as any potential vcore(r) and consequently u0(r)49



Aspects of the numerical solution 5.2 Core conditionfunctionals of the total potential only, eq. (3.6) implies that c(0)2 = c(1)2 = cref2 ;taking into account the zero-loop term of eq. (2.11) and the initial condition (2.19)we easily �nd the expansion coe�cients' limitslimQ!1 (Q)n (%) = 0 ; n � 0 ;and limQ!0X (Q)n (%)un(%) = ��(r) = +� w(r) ;for a perturbational potential �core constant inside the core, i. e. forw(r) = wcore[��;�](r) = lim�!1+wsw[��;�;�](r) = limz!1whcy[��;��0;z;�](r) ; (1)and assuming u0 / w (q. v. section A.3) the latter relation readily reduces to2limQ!0 (Q)0 (%) = �~�(0) ;limQ!0 (Q)n (%) = 0 ; n � 1 : (2)
For generic intermediate value of Q, on the other hand, none of the (Q)n (%), n � 1,may vanish as their evolution is driven by the projections of w(Q)(r) inside thecore onto the basis functions un(r), n � 1.When testing eq. (2) numerically we cannot expect the (Q)n , n � 1, to vanishexactly for Q = Q0, but at least their �nal values should be considerably smallerthan their maxima in the course of the evolution from Q = Q1 to Q0; solvingthe odes following from the consistent imposition of the decoupling assumption(cf. section 4.5; Ncc = 5, other parameters as in section 4.8) at some �xed den-sity %, however, clearly shows that these conditions are met not even remotely,producing a (Q0)0 o� by several orders of magnitude and expansion coe�cients���(Q0)n ���, n � 1, not appreciably smaller than maxQ2[Q0;Q1] ���(Q)n ��� except for veryhigh temperature. Note that the only approximations to the core condition thatenter these calculations are truncation of eq. (2.18) to a �nite value Ncc = 5 ofbasis functions and that of neglecting the non-local contribution to eq. (D.11);such a failure to reproduce the correct behavior seems particularly troubling inview of eq. (2), and indeed do we see grave defects in the numerical solution forvery short ranged sw uids (v. i.).have unique expansions in the basis provided by the un(r), n � 1, with expansion coe�cientsvn and u0n, respectively, for any n in the range 1 � n � Ncc the sum of coe�cients vn +0 u0n + (Q)n should be independent of the potential in the limit Q! 0.2 Note that the �rst of the relations (2) holds despite the assumed proportionality of u0 and wdue to continuity of the limit Q ! 0; from a consideration of the functions for Q = 0 alone,on the other hand, only the limit of 0 u0(0) + 1 u1(0) can be established.50



Aspects of the numerical solution 5.2 Core conditionThere is, however, one more point that has to be addressed in this context, viz.the rôle of the decoupling assumption3: According to sub-section 2.2.1, the condi-tion of vanishing �(Q)(%) in the calculations just outlined simply takes the place ofthermodynamic consistency and thus should not directly a�ect the core condition;on the other hand, from eq. (D.10) and with the normalization of eq. (C.1) the sumPn�0 (Q)n (%) should be independent of Q so that, strictly speaking, decoupling isincompatible with an evolution from (Q1)n = 0, n � 0, to (Q0)0 6= 0, (Q0)n = 0,n � 1. Of course, from the arguments given in [6] for adopting the approximationof eq. (2.21) failure is to be expected for very short-ranged potentials (but cf. sec-tion 2.4); still, we think that the approximations of �nite Ncc and of eq. (D.11)have no less a share than decoupling in causing gross violation of eq. (2), and anumerical calculation is not possible within the formulation of hrt outlined inchapter 2 except with these approximations and when eliminating either the corecondition or the �(Q)(%) term in eq. (2.18): if we want to use hrt as a general toolfor the study of phase transitions in simple uids we have to gauge the severity ofthe restrictions brought about by this numerical necessity and to investigate theirdependence on the potential's range (v. i.).All in all, this sub-section's considerations at the very least demonstrate theneed for further discussion of the importance of the approximations considered inthis section.5.2.2. Ncc-dependence of critical and phase behavior in the HCYuidAs far as the need to replace eq. (2.18) by only a �nite number of equationsinvolving a �nite number of terms each is concerned, it is important that Nccshould actually be rather small (as was the case in the preceding sub-section) ifevaluation of the slowly-convergent Î(Q)-integrals at Q = Q1 is not to dominateprogram execution time; on the other hand, for an implementation of the corecondition as outlined in chapter 2 to be reasonable at all | especially as theansatz consistently applying the compressibility sum-rule instead (cf. section 4.5)allows for much more rapid calculation of realistic phase diagrams without theneed for mathematically inconsistent assumptions |, convergence of the proceduretowards a solution of eq. (2.8) in the presence of a hard core, i. e. compliance withthe core condition (2.14), must be considered and the dependence of the qualityof the results on Ncc must be investigated.As a �rst test regarding the number of basis functions to keep in the calculationlet us have a look at the critical and phase behavior of the hcy system with3 Note that it is equally easy to solve the equations following from consistent application ofthe loga/orpa-condition (2.22) instead of the decoupling assumption (2.21); however, as thisentails a signi�cant change in the structure of the matrices in eq. (2.18) according to sub-section 2.2.1 this, too, would provide us with only a rather tenuous link to typical numericalcalculations. Still, we expect the results and conclusions to be very similar to those obtainedin this section. 51



Aspects of the numerical solution 5.2 Core conditionNcc kB Tc=� %c �3 %v(� = 0:9=�)�3 %l(� = 0:9=�)�3| 1.20244(56) 0.325(30) 0.115(5) 0.565(5)1 1.21847(58) 0.315(30) 0.105(5) 0.575(5)2 1.21731(58) 0.315(10) 0.105(5) 0.565(5)3 1.21615(58) 0.315(30) 0.105(5) 0.565(5)4 1.21615(58) 0.315(30) 0.105(5) 0.565(5)5 1.28740(32) 0.320(15) 0.075(5) 0.645(5)6 1.32402(34) 0.325(30) 0.055(5) 0.685(5)7 1.31653(34) 0.330(25) 0.065(5) 0.675(5)8 1.29358(65) 0.320(35) 0.065(5) 0.645(5)9 1.27300(63) 0.315(20) 0.075(5) 0.615(5)Table 1: Dependence of the inverse critical temperature �c = 1=kB Tc, coexisting densities%v and %l at � = 0:9=�, and critical density %c of the hcy uid with z = 1:8=� on the numberof basis functions. The results reported have been obtained from pdes retaining Ncc + 1 basisfunctions or (�rst line) not implementing the core condition at all; other parameters and mainpart versions were chosen as in section 4.8. We have checked that the di�erences summarizedhere cannot be explained by the Ncc-dependence of the upper integration limits in evaluatingthe Î(Q1)-integrals.z = 1:8=� when varying Ncc in the range Ncc 2 f0; : : : ; 9g as summarized in table1; note that the coexisting densities listed belong to the subcritical isotherm at� = 0:9=�, a temperature su�ciently far away from the critical one so that thedi�erences in %v and %l are not merely to be attributed to the di�erences in �c butnot too low so that the distortion of the binodal in the boundaries' proximity (cf.section 5.4) is of no concern yet. | As can be seen from table 1, inclusion of thecore condition is of vital importance in determining the uid's phase behavior, andthere is a considerable amount of variation in the results, the critical temperaturein particular; the amount of variation seen, however, drops markedly once weeliminate the essentially constant4 results for 1 � Ncc � 4, i. e. when we considerNcc � 5 only, which is a �rst indication for the minimum number of basis functionsnecessary for a suitable description of the hard cores' repulsion. Also, comparingthe critical temperatures in table 1 with the literature data on the system at handlisted in table 3.3 we �nd that our implementation's predictions for 1 � Ncc � 4fall precisely into the same range as those of that table and, for Ncc 2 f3; 4g, arequite close to the mc simulation result of Tc = 1:212(2)�=kB ; however, as we will4 Note that the relative di�erences of the results in the parameter range Ncc � 4 including thosewhere the core condition is not implemented at all are compatible with the \typical accuracy"of one per-cent repeatedly claimed by the authors of the theory and their collaborators [2].We should also point out that as of fall 1998 the original implementation was not equipped toperform any calculations with higher than fourth-order polynomials, corresponding toNcc � 5,and the recent calculations of [28] were performed with Ncc = 5 [66]. | As for the immediatereason for the near-constancy of the results for low Ncc, the core condition can drive theevolution of the expansion coe�cients (Q)(%) only if the function space chosen is su�cientto accommodate a reasonable approximation to the true direct correlation function, which isthe case at Ncc = 5 for the �rst time at high densities (v. i.); the solution's behavior at lowdensity, on the other hand, is dominated by the ideal gas term �1=% which explains why thelargest change in hrt's results occurs at Ncc = 5 rather than at Ncc = 7.52



Aspects of the numerical solution 5.2 Core conditionsee shortly, that very same Ncc-range is characterized by gross violation of the corecondition due to an insu�cient number of basis functions retained in the truncatedeq. (2.18). As we further increase Ncc so that the core condition is obeyed to acertain extent (v. i.), Tc rises dramatically to values far outside the range quotedin [28]; while the trend of decreasing Tc evident for Ncc � 7 indicates that hrtmight match the mc predictions for Ncc � 15, we have not performed these cpuintensive calculations.Similar but more detailed information may be gleaned directly from the �nalvalues of the expansion coe�cients (Q0)n : both for the expansion (2.15) to convergeand for the truncation of G(Q) to just a few terms to be admissible, the (Q)nobviously have to be quite small for high enough n and indeed must tend to zerosu�ciently fast for n!1. Inspecting the (Q0)n as generated by our program withthe basis functions of section C.2 and taking into account that maxr2[0;�] un(r) =un(�) / n+2, n � 1, not only the (Q0)n themselves but also the respective terms'contributions to the two-particle direct correlation functions markedly drop inmagnitude and become rather small for n > 5 at high density and for n > 7 atlow density, irrespective of the temperature used.The real test for applicability of eq. (2.18) after truncation and of the ad hocapproximation (D.11) is, of course, the pair distribution function g(Q0)(r) itself asobtained from the �nal values of the expansion coe�cients (Q0)n via the Ornstein-Zernike equation (2.8). In order to separate these e�ects from other problematicaspects of hrt's numerical side we again turn to the odes consistently employingthe decoupling assumption; the results obtained within this approach, explicitlyperforming the inverse Fourier transformation to get the pair correlation functiong(Q0)(r) from ~C(Q0)(k), largely con�rm our earlier �ndings from the (Q0)n (%): In-side the core, the g(Q0)(r) so obtained generally takes on rather large values forsmall r while remaining within a few percent of the contact value g(Q0)(�+) forlarger r up to ��; upon increasing Ncc the magnitude of g(Q0)(r) for r close to� is hardly reduced in general but the r-range of rather small g(Q0)(r) is insteadextended to ever smaller r. Just as expected from the direct inspection of the�nal values (Q0)n (%) (v. s.), at high density there is no substantial improvementin g(Q0)(r; %) within the core for Ncc > 5, nor for Ncc > 7 at low density; on theother hand, whenever f(Q0; %) is large (corresponding to the critical region or thecoexistence region in implementations relying on a pde) the core condition is butpoorly met. | As an aside we note that solving the pde without implementingthe core condition at all (�rst line in table 1) may, of course, result in arbitrarilylarge g(Q0)(r) within the core: e. g. for � = 0:7=� and % = 0:9=�3, g(Q0)(r) = �3:26inside the core while the contact value is g(Q0)(�+) = +1:91.All of these �ndings indicate that we needs must keep the core condition inthe calculation due to its bearing on the phase behavior predicted5, and that Nccshould probably be chosen no less than 7 (corresponding to a 6th order polynomial5 This is somewhat at variance with earlier �ndings [11] indicating only a modest inuence ofthe core condition upon the results, a �nding expressly referred to in [20].53



Aspects of the numerical solution 5.2 Core condition� = 1:5 � = 2:0 � = 3:0Ncc kB Tc=� %c �3 kB Tc=� %c �3 kB Tc=� %c �30 1.209437(36) 0.315(15) 2.66095(13) 0.260(20) 9.89103(30) 0.260(10)1 1.190663(35) 0.290(20) 2.68249(11) 0.255(15) 9.89994(48) 0.260(10)2 1.203326(35) 0.295(15) 2.68629(11) 0.260(10) 9.90089(48) 0.260(10)3 1.200152(35) 0.295(15) 2.68608(11) 0.260(10) 9.90089(48) 0.260(10)4 1.197136(35) 0.295(15) 2.68566(11) 0.255(15) 9.90089(48) 0.260(10)5 1.287443(40) 0.300(20) 2.52736(10) 0.250(10) 9.73708(46) 0.255(15)6 1.098329(29) 0.280(09) 2.74240(11) 0.275(15) 9.82207(47) 0.260(10)7 0.984757(47) 0.275(15) 2.91476(12) 0.290(20) 9.86750(48) 0.260(10)8 1.070878(28) 0.285(15) 2.74483(11) 0.275(15) 9.77332(47) 0.255(15)9 1.216333(36) 0.300(20) 2.74969(11) 0.275(15) 9.88751(48) 0.260(10)10 1.207583(36) 0.300(10) 2.93759(13) 0.290(10) 9.74820(46) 0.255(15)Table 2: Dependence of the critical temperature Tc and density %c of various square wellsystems on the number Ncc+1 of basis functions retained in eqs. (2.15) and (D.8). For Ncc > 0,the decoupling assumption was imposed as high density boundary condition, whereas the loga/orpa-condition (Q)0 (%max) = 0 served the same purpose for Ncc = 0; other parameters werechosen as indicated in section 4.8.in r for C(Q)(r) inside the core) even though systematic shortcomings in the pairdistribution function g(Q0)(r) itself cannot be avoided in an implementation relyingon eqs. (2.18) and (D.11) even for higher Ncc; on the other hand, Ncc = 5 maystill be su�ciently accurate for some applications while the near-constancy of theresults for Ncc < 5 listed in table 1 indicates that we cannot expect to obtainsigni�cantly better results with such a low number of basis functions than in anansatz not taking into account the core condition at all, which runs much fasterand at least does not rely on inconsistent assumptions (cf. sub-sections 2.2.1 and4.5).5.2.3. Ncc-dependence of critical and phase behavior in the SWuidSo far we have found that a minimum of Ncc + 1 = 7 + 1 basis functions must bekept for the approximations of �nite Ncc and of eq. (D.11) to yield satisfactorypair distribution functions of the fully interacting system despite residual defects.In order to assess the generality of this result we have repeated the analysis ofsub-section 5.2.2 for sws at selected values of �; doing so provides us with a �rsthint on the potential range dependence of the e�ects found in the hcy uid withz = 1:8=� before.From table 2 where we compile the critical temperature and density for varioussquare well potentials as functions of the number Ncc + 1 of basis functions inthe closure (2.15), just as in sub-section 5.2.2 we �nd virtually constant criticaltemperatures for 1 � Ncc � 4; on the other hand, the amount of variation seen54



Aspects of the numerical solution 5.2 Core conditionupon further increasing Ncc strongly depends on �, which immediately carriesover to the pair distribution function g(Q0)(r; %) and its compatibility with thecore condition: For � = 3, the longest ranged potential considered in table 2,g(Q0)(r; %) = 0, r < �, holds reasonably well except very close to r = 0 even forNcc = 1; when increasing the number of basis functions all the way to Ncc = 10,the pair distribution function has to be corrected for very small r only, yielding ajg(Q0)(r; %)j that remains bounded by some 10�2 of the contact value g(Q0)(�+; %)for all r < �; the correspondingly only small change in g(Q0)(r; %) and C(Q0)(r; %) isreected in the near-constant predictions for �c evident from table 2. Similarly, for� 2 f1:5; 2g and within the Ncc-range considered, the implementation of the corecondition does not convincingly improve except for supercritical temperatures andintermediate densities; this time, however, the pair distribution functions remainfar from compatible with the core condition even for Ncc = 10, and neither �c norg(Q0)(r; %) itself nor, for that matter, the �nal values of the loga/orpa expansioncoe�cients (Q0)n (%) indicate that the expansion (2.15) for ~C(Q)(k; %) might be closeto convergence. But if the quality of g(Q0)(r; %) improves only little if at all, theremaining de�ciencies are probably to be blamed on the approximation (D.11) forthe poorly convergent integrals' derivative with respect to Q rather than on aninsu�cient number of basis functions.As far as our results' compatibility with the literature data of tables 3.1 and3.2 is concerned, for the � values considered we �nd only marginal agreementwith simulation and purely theoretical results: indeed, for � = 1:5 not even oneof the hrt values for the critical temperature falls into the range predicted bysimulations, whereas the situation is clearly6 better for higher �. Also, it strikesas peculiar that in all three of the systems listed in table 2 it is the results forNcc = 9 that compare with literature results most favorably; on the other hand, asthis does not correspond to what is found in the hcy system of sub-section 5.2.2this seems a particularity of the sw system and has not been investigated anyfurther.But table 2 demonstrates not only the �-dependence of the results' sensitivityto the number Ncc + 1 of basis functions retained in the truncated eq. (D.8)when varying Ncc in the range 0 � Ncc � 10: on the one hand, the criticaltemperature and density predicted for � = 3 seem trustworthy on account of thesmall di�erences apparent from table 2, the pair distribution function's compliancewith the oz relation (2.8), and its fair agreement with simulation results (v. s.); onthe other hand, for � = 1:5 and, to a much lesser degree, for � = 2 the amount ofvariation in Tc precludes accurate determination of the critical temperature. Thisis a �rst indication of the range of potentials that the theory is able to handle:square wells with � = 3 can be dealt with quite reliably whereas problems cannotbe denied for � = 2, and � = 1:5 seems largely out of reach for hrt in the presentformulation; this also corresponds to what we will �nd in section 5.6 below.6 Unfortunately, we have only one data point with which to compare our results for � = 3; onthe other hand, the rather small amount of variation seen here (especially when consideringrelative di�erences, which are at around one per-cent for Ncc > 5 as compared to 7 and 24per-cent for � = 2 and 1.5, respectively) inspires some con�dence in the values obtained.55



Aspects of the numerical solution 5.3 Decoupling assumption5.3. Decoupling assumption and lack of thermodynamicconsistencyAs we have seen in sub-section 5.2.3, a likely reason for our implementation'sfailure to comply with the core condition for sws with � 2 f1:5; 2g is not so muchthe low number of basis functions but rather the approximation (D.11) for theslowly converging Î-integral's Q-dependence; on the other hand, as stressed bythe authors of [6] upon jointly introducing these two assumptions, the decouplingassumption (2.21) is on the same level of approximation as that of neglecting thenon-local term in @Î(Q) [ (k; %); %] =@Q. It thus seems pertinent to also considerthe e�ect that additional approximation may have on the results, ever more soas retaining both the core condition (the importance of which we demonstratedin section 5.2) and the compressibility sum-rule (2.13) (which is vital for hrt'sability to provide clear phase boundaries, v. i.) is possible only when restrictinguse of eq. (2.21) to the evolution equations for the expansion coe�cients, i. e. inorder to get rid of the Î-integral on the right hand side of eq. (2.18).But if such a procedure is to be considered harmless, the results so obtainedmust not di�er much from those following from consistent application of eq. (2.21)to the closure (2.15) along the lines of sub-sections 2.2.1 and 2.2.2. Turning to thehcy system of section 3.2, a potential su�ciently long-ranged so that the argu-ments for this assumption's validity given in [6] are applicable, we have performedthese calculations and summarized them in �g. 1: as is apparent from the plot, theisothermal compressibilities are very di�erent even for super-critical temperaturesso that we cannot rule out a non-negligible e�ect on the structural and ther-modynamic properties predicted; most importantly, the odes cannot reproducewell-de�ned phase boundaries, they clearly violate thermodynamic consistency,and they even yield slightly negative inverse compressibility 1=�T in what wouldotherwise be the coexistence region. On the other hand, preserving the structureof the pde so that thermodynamic consistency is at least partly implemented bythe pde's coe�cients d0i of eq. (A.5) | which is the case for three of the im-plementations of main part ansatz discussed in section 4.5, only one of whichis mathematically consistent at the expense of eliminating the core condition |seems su�cient to remedy these de�ciencies; at any rate, we have to accept thedecoupling assumption as indispensable for the implementation of the core condi-tion.As far as the sw uid is concerned, similar calculations as those summarizedin �g. 1 reveal that the decoupling approximation's e�ects are qualitatively un-changed; furthermore, as vsw(r) vanishes identically beyond r = �� the assump-tions invoked in the arguments of [6] as motivation for neglecting �(Q)(%) ineq. (2.18), viz. the potential's range being much larger than the hard core diameter�, appear even less justi�ed, and combining the analysis of sub-section 5.2.3 withthe calculations summarized in �g. 1 we conclude that decoupling poses certainlyno less a problem for sws than for the hcy potential considered before.56



Aspects of the numerical solution 5.4 Density grid and boundary conditions
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Figure 1: Comparison of the inverse compressibility of the hcy system with z=1:8=� as obtainedfrom the odes following from the decoupling assumption �(Q)(%)=0 (thin lines) and from apde inconsistently applying this approximation to the evolution of the core condition expansioncoe�cients (Q)n only (thick line). The parameters of the calculation coincide with those ofsection 4.8, where the criterion for identifying the critical temperature �c=0:759497(24)=� is alsodocumented.5.4. Density grid and boundary conditionsAs we have just seen, it is of utmost importance to retain the %-derivatives char-57



Aspects of the numerical solution 5.4 Density grid and boundary conditionsacteristic of a pde in the equations or else we cannot hope to obtain clear phaseboundaries; on the other hand, these di�erentiations have to be performed nu-merically as part of the fd scheme adopted, and the terms corresponding to thefd approximation to the operator (@2=@%2) have been found the primary limitingfactor for the quality of the numerical solution (cf. sub-section 4.6.1). It is thuspertinent to shortly investigate the properties of the set of density values in thecalculation, the number N% + 1 of densities (or, equivalently, the parameter �#de�ned in eq. (4.1)), the width �% of the density steps, and both location %maxand nature (cf. section 4.5) of the high density boundary condition in particular;indeed, for any practical step size �% the near-discontinuity of the solution closeto the coexisting densities %v and %l at sub-critical temperatures and small Q isbound to render three-point formul� inappropriate for estimating @2f=@%2; simi-lar considerations also apply to the region of large f(Q; %) (cf. sub-section 2.3.2)and close to the boundaries (v. i. sub-section 5.4.1).From �g. 1 we also readily �nd that odes substituting an approximate relationlike, e. g., eq. (2.21) for the compressibility sum rule (2.13) cannot reproduce thesingularities characteristic of the coexistence region; on the other hand, at theboundaries of the pde's domain the second-order %-derivatives of eq. (2.13) can-not be evaluated accurately so that we have to rely on an approximate ode ofthis kind at %max (setting %min = 0 provides us with a convenient and numericallylargely7 unproblematic low density boundary condition, cf. section 4.5). But notonly the solution obtained at %max is thus forced to lie outside the coexistenceregion: nearby densities are similarly bound to sport �nite and, in fact, rathersmall f(Q0; %) due to the continuity enforced by the pde. If this is not to un-duly inuence the phase behavior found (v. i.), the coexisting densities %v and%l must maintain a separation of at least several density grid spacings �% fromthe boundaries at %min and %max; consequently, � should never exceed some maxi-mum value, � < �max, and for the systems considered here and the typical choicesfor %min and %max the binodal's proximity to the low density boundary renders�max largely density grid- and �#-independent. | Not to be confused with �maxis the lowest temperature kB=�max;# numerically accessible to the program withpre-determined step sizes: this is the temperature below which the program ofchapter 4 never reaches Q � Q0 (cf. section 4.6) or produces abnormal results(v. i.); note that �max;# may be larger or smaller than �max, depending on thechosen combination of physical potential, approximations in the formulation used(the boundary conditions in particular), and the choice of parameters a�ecting thenumerical work.7 Care has to be taken when evaluating some of the %-derivatives of eq. (A.5) for % ! 0;in particular, only inverse powers of direct correlation functions are amenable to numericaldi�erentiation without incurring substantial truncation error.58



Aspects of the numerical solution 5.4 Density grid and boundary conditions5.4.1. The boundary condition's signi�cance for the square welluidNot surprisingly, the problems of the numerical procedure related to the densitygrid chosen again show up much more clearly in sws than in the comparativelylong-ranged hcy system with z = 1:8=�, so that we discuss the related e�ectsin the context of sws only, highlighting any di�erences found in the hcy uid insub-section 5.4.2 below.Numerically, there are two ways for the implementation of chapter 4 to fail inprogressing toQ = Q0, both, of course, easily detected by the \monitoring" variantof our code as described in sub-section 4.6.1, viz. due to the solution's pathologicalbehavior wherever f(Q; %) is large (v. i. section 5.5) or because of inappropriateboundary conditions at high density; as for the latter | an issue intimately linkedto the decoupling assumption (v. s.) |, the immediate reason for the program'sfailure is a near-discontinuity in the numerical solution close to the boundary.5.4.1.1. Mismatch at the high-density boundaryBoth8 to understand how such a solution betraying the most basic assumption un-derlying any fd scheme may arise and to put into perspective the di�erent bound-ary conditions routinely used in the original implementation and in our softwarelet us for the moment set aside the decoupling assumption or any other approx-imations; we also demand that the low density boundary be located at %min = 0so that the boundary condition there reads f(Q0; %) = 0 (cf. eq. (A.2)). Applyinghrt with the closure (2.15) to some model potential v(r), at any point (Q; %) in theinterior of the pde's domain the core condition uniquely determines the (Q)n (%),n � 1, for given (Q)0 (%); for % < %max this expansion coe�cient is then determinedby imposing thermodynamic consistency9 as embodied in the compressibility sum-rule (2.13). For % = %max, on the other hand, we are in principle free to use anysuitable approximation for the structural and thermodynamic properties of theQ-system and to calculate f(Q; %max) from said approximation via the de�ningrelation (A.1) and eq. (2.12), thereby providing the necessary boundary condi-tion for the pde (2.23); for practical reasons, however, it is desirable to use thesame loga/orpa-form for the Q-system's direct correlation function at %max asin the rest of the problem's domain so that, in particular, the loga/orpa pre-scription (2.22) is a natural choice of boundary condition. In general, however,due to the pde's di�usion-like character any condition imposed at %max that is8 In addition to the e�ects of the boundary condition to be discussed in this sub-section andpresent at any Q, note that according to eq. (A.3) ~�(Q; %) = 0 implies �"(Q; %) = 0; thus, fromthe explicit expression for the pde's coe�cient d02 given in eq. (A.5) both for Q ! 0 and ata root of the Fourier transform of the perturbational part of the potential the parabolic pdedegenerates into a hyperbolic one and is of mixed type for small �"(Q; %) | a situation almostcertainly characterized by non-di�erentiable solutions [77].9 This is the conceptual basis of the decoupling assumption (2.21).59



Aspects of the numerical solution 5.4 Density grid and boundary conditionsincompatible with the solution for % < %max by necessity induces a correspondingnear-discontinuity in f(Q; %) close to the boundary; within the framework of an fdscheme this is reected in a mismatch of f(Q; %max) and the solution at densitiesclose by, i. e. f(Q; %max � i�%) for small i � 1, and the mismatch's severity mayserve as a natural measure for the inappropriateness of the boundary condition at%max in relation to the approximations applied at densities in ]%min; %max[.In a numerical realization of this scheme, however, at least the approximationsdiscussed in section 5.2, viz. truncation of eq. (2.18) to a small number of ba-sis functions and elimination of some integrals according to eq. (D.11), have tobe adopted; but even for rather high � (and for the hcy uid just as well) thestructural changes in the matrices of eq. (2.18) brought about by the condition ofvanishing (Q)0 (%max) at the high density boundary give rise to a rapidly growingmismatch10, and the calculation founders after only a few steps when Q is stillclose to Q1. In an attempt to remedy this situation without incurring the disad-vantages adoption of the decoupling assumption in the interior of the pde's domainbrings about we also studied numerous variations of main part ansatz (and theanalogous program parts of the implementation sketched in section B.2) imposing,e. g., vanishing �rst- or second-order %-derivatives of various components of thesolution vector at %max; none of these, however, succeeded in reducing the mis-match to the point of allowing us to advance the solution to cut-o�s signi�cantlylower than Q1, which once more illustrates the severity of the approximationsdiscussed in section 5.2.Unless we are ready to abandon the core condition altogether we thus haveno choice but to adopt the decoupling assumption (2.21); but according to sub-section 2.2.1 the condition of vanishing �(Q)(%), when applied consistently, de-couples the hrt-pde to a set of odes at �xed density only, which, unfortunately,removes all traces of thermodynamic consistency from the equations and therebyprecludes obtaining clear phase boundaries (v. s. section 5.3). Together with thelarge amount of mismatch whenever �(Q)(%) is not taken to vanish identically inthe interior of the pde's domain (v. s.), this is the reason for restricting applica-tion of the decoupling assumption to the implementation of the core condition onlywhile retaining the structure of a pde so that the compressibility sum rule (2.13)is still partially implemented for %min < % < %max via the expressions (A.5) for thepde's coe�cients d0i despite its incompatibility with decoupling; at %max, how-ever, again any approximation allowing calculation of f(Q; %max) may be used sothat it is tempting to once again resort to the loga/orpa-condition of vanishing(Q)0 (%max) or variants thereof as in the original implementation.But due to the decoupling assumption's possibly large e�ect (v. s. section 5.3),any boundary condition that does not incorporate �(Q)(%max) = 0 | and bearin mind that (Q)0 (%max) and �(Q)(%max) cannot both vanish at the same time forgeneric cut-o� Q| will once again incur a fatally large mismatch; if, however, wemust resort to decoupling anyway, it seems preferable to consistently apply it at10 Except, of course, for extremely high temperatures like � � � 10�20 that will be excluded fromfurther considerations. 60



Aspects of the numerical solution 5.4 Density grid and boundary conditions% = %max, too, rather than to inconsistently combine it with a condition alien to thetheory, especially as this has the added advantage of allowing matrices of the samestructure to be used both within the pde's domain and at the boundary: afterall, a discontinuity in the terms of eq. (2.18) is likely to introduce an additionalmismatch in the numerical solution. In the original implementation, it shouldbe noted, uniform structure of the matrices is achieved in a manner involving aneven greater number of inconsistent assumptions, viz. by invoking decoupling forall densities including %max for the core condition only while using the loga/orpa condition (Q)0 (%max) = 0 to determine f(Q; %max); in addition, it retainsthe compressibility sum-rule (2.13) incompatible with any of these conditions inthe interior of the pde's domain. On the other hand, as our implementation ofmain part ansatz combining the core condition with decoupling as high-densityboundary condition to the pde (2.23) does not make use of eq. (2.22), only twoconicting assumptions enter calculations adhering to the choices of section 4.8..In the numerical work we �nd that a mismatch of the kind just outlined is presentwhenever the calculation proceeds via mathematically inconsistent or conictingapproximations; as we shall see in section 5.6 below, in the case of square wells withtheir comparatively short potential range the associated problems are so severe asto render �max;# rather small and to make it drop even below �c for most ofthe � interval from 1 to 2 (cf. section 5.6). At intermediate to large Q, and notconsidering peculiarities brought about by the pde's sti�ness forQ < 10=� and lowenough temperatures, the mismatch of some component of the solution vector11 isan oscillating function ofQ the amplitudes of which are largely constant or growingas Q decreases, depending both on the quantity considered and the potential usedin the calculations; in particular, f(Q; %max) is always found to oscillate out ofphase with respect to f at densities close by, which immediately carries over toother components of the solution as well.Considering the fully interacting system, i. e. Q = Q0, and thus obviouslyrestricting ourselves to � < �max;#, the �nal mismatch is typically reected inan increase by one order of magnitude in the three-point fd estimate of, e. g.,11 Speci�cally, for several quantities x(Q; %) (the approximation of which obtained in the numeri-cal process we denote by x(Q; %)) and small non-negative integers o and s we de�ned o;s�(Q)#;x asthe relative di�erence of the solution obtained at the boundary and an o-th order extrapolationfrom results at adjacent densities, skipping the �rst s ones, i. e. byo;s�(Q)#;x = x(Q; %max)o;sx(Q; %max) � 1 ;o;sx(Q; %) = oXi=0 o;sxi(Q) %i ;o;sx(Q; %max � i�%) = x(Q; %max � i�%); s � i� 1 � s+ o ;we analyzed o;s�(Q)#;x for o 2 f1; 2g, s 2 f0; 1g, and identifying x(Q; %) with f(Q; %), ~K(Q)(Q; %)and ln "(Q; %) in turn for several settings of �#, di�erent boundary conditions, and both sub-and super-critical temperatures. 61
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�Figure 2: The binodal of the square well system with �=1:5 as obtained for di�erent values of�# and %max, cf. the discussion in sub-section 5.4.1. Most strikingly, there are large di�erencesin the binodals (including the critical temperatures and, to a lesser degree, even the criticaldensities) under variation of these parameters. Note that, for clarity's sake, only a selection ofthe calculated isotherms is shown.j@2f(Q0; %)=@%2j right at the boundary over the near-constant values at slightlylower densities; apart from a positive correlation with �#, the mismatch's severityis qualitatively una�ected by a change in parameters of the numerical procedure orthe choice and location of the boundary condition as long as su�cient separationof the boundaries and the binodal is maintained, while changing the model poten-tial may signi�cantly alter the picture (v. i. sub-section 5.4.2). At least part of thereason for the almost uniform amount of mismatch in f(Q0; %) close to the highdensity boundary, furthermore corroborated by the �nding of smaller mismatchesupon decreasing �#, is the obvious precondition of the isotherm's calculation ac-tually having reached Q = Q0: indeed, if the mismatch ever gets too large, thenumerical procedure will founder one way or another (cf. section 4.6) already atQ � Q0. Note that an implementation insisting on some level of convergence ofthe fdes will never accept even the small mismatch seen for square wells at Qonly slightly less than Q1; on the other hand, when resigning on control of thenumerical scheme's convergence (cf. sub-section 4.6.2), the pde's sti�ness is thelimiting factor for �max;# as evidenced by the distribution of the last Q values inthe calculation (v. i. section 5.5).5.4.1.2. Location of the high-density boundaryAnother e�ect worth mentioning in connection with the boundaries is the inuencetheir locations, viz. %min and %max, may have on the results, the binodal and the62
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�Figure 3: The binodal of the square well system with �=3 as obtained for di�erent values of �#and %max, cf. the discussion in sub-section 5.4.1. Note that for this rather long-ranged system(unlike �g. 2) the critical point's location is virtually una�ected by variation of these parameters.Also, imposing the boundary condition at %max=0:5=�3 clearly induces a shift in %v to higherand, to a lesser degree, in %l to lower values even well above the temperature where %l gets closeto %max, which is readily interpreted as an e�ect brought about by sti�ness (cf. section 5.5), andthe shift in the binodal's vapor branch decreases somewhat as �# is lowered from 0.01 to 0.005.Again, for clarity's sake, only a selection of the calculated isotherms is shown.critical point predicted in particular: as mentioned earlier, the need of resorting toan ode at the boundaries prevents nearby densities from entering the coexistenceregion, which may considerably distort the binodal; furthermore, very small %maxmay also allow one to reach Q = Q0 at higher �, thus e�ectively raising �max;#while lowering �max. From the results for sws with � = 1:5 displayed in �g. 2 weimmediately conclude that, indeed, the amount of distortion seen in the binodalmay be considerable, and furthermore there is nothing in the theory or the numer-ical solution that helps us single out any one of the four curves displayed as mosttrustworthy. On the other hand, the much longer ranged potential used for �g. 3,viz. sws with � = 3, leads to binodals in fair agreement at least as regards thecritical point's location, just as expected on the basis of table 2; imposition of theboundary condition at the rather low value of %max = 0:5=�3, however, inducesshifts in the coexisting densities %v and, to a lesser degree, %l towards smallerphase separation at temperatures only slightly below Tc, i. e. at temperatureswhere the binodal still keeps considerable distance from the boundaries. In thiscase, the results' apparent stability under variation of �# for %max = 1=�3 clearlyinspires some con�dence in those curves representing the \true" hrt binodal of thesystem at hand. | Taken together, the data of �gs. 2 and 3 further corroboratesub-section 5.2.3's preliminary conclusions on the � range accessible to hrt in theformulation of chapter 2; they also illustrate the importance of always combiningseveral related calculations if reliable information is to be extracted from numerical63



Aspects of the numerical solution 5.4 Density grid and boundary conditionsboundary � = 0:9=�Ncc condition kB Tc=� %c �3 %v �3 %l �3{ (Q)0 (%max) = 0 1.20254(13) 0.330(20) 0.115(5) 0.565(5)7 (Q)0 (%max) = 0 1.31678(15) 0.325(15) 0.055(5) 0.675(5)7 �(Q)(%max) = 0 1.31678(15) 0.325(15) 0.055(5) 0.675(5)Table 3: Critical temperature Tc and density %c as well as the coexisting densities %v and%l at � = 0:9=�, for a hcy potential with z = 1:8=� as predicted by various combinations ofapproximations and boundary conditions at %max = 1=�3; again, the results reported have beenobtained from pdes retaining Ncc + 1 basis functions or (�rst line) not implementing the corecondition at all.application of hrt.We should also point out that sometimes the expectation of the binodal keep-ing a separation from the boundary of several �% at least does not hold, and apreposterous two-phase region appears very close to %max or, very rarely, close to%min; e. g., for � = 1:88 and � = 0:392=� the equations can be solved all the waydown to Q = Q0 = 10�4=�, predicting an unrealistic two-phase region extend-ing from 0:845=�3 to 0:995=�3, and two examples can also be seen at rather lowtemperatures from the binodals obtained by setting %max = 0:5=�3 for � = 1:5 asdisplayed in �g. 2. It is again by varying parameters in the numerical procedureand by looking at isotherms at slightly di�erent temperatures that such results canbe rejected as unphysical without taking recourse to, e. g., simulation results; themechanism responsible for large f(Q0; %) close to the boundary is, of course, eas-ily clari�ed: combining the abnormally large second %-derivatives following froma mismatch at the boundary with the pde (2.23), the d02-term in @f(Q; %)=@Qwill also be large, and depending on the signs of the coe�cients we may well beable to enter the region of large f(Q; %) at low enough Q so that the reasoning ofsub-section 2.3.1 applies.5.4.2. Hard-core Yukawa uidLet us now shortly outline the di�erences seen when going from sws to the hcyuid with z = 1:8=�; not surprisingly, the numerical problems are much smallerhere, and �max;# exceeds �max by far: for some parameter settings and withthe ansatz not implementing the core condition the mismatch's severity is sosmall that even the monitoring variant of main part solver (cf. sub-section 4.6.1)can successfully be used in a large part of the pde's domain. Similarly, limitingourselves to �# � 0:02 and with the same ansatz we �nd that neither the criticalpoint nor the binodal predicted appreciably depend upon N%, nor does f(Q0; %)some 3�% outside the coexistence region; also, the results are largely independentof the location %max of the high-density boundary as well as of the boundarycondition chosen there ((Q)0 = 0 vs. �(Q) = 0) provided %max is well above %l, asevidenced by the data collected in table 3.64



Aspects of the numerical solution 5.5 Region of high compressibility and large fJust as expected from our lengthy discussion of the choice of boundary con-dition for sws in sub-section 5.4.1, if we do not adopt the decoupling assump-tion of vanishing �(Q)(%) the mismatch at the boundaries is again so severe as toprevent the numerical calculation from going signi�cantly below Q1; but inspec-tion of the solution at high Q as generated when choosing the same high-densityboundary condition as the original implementation, viz. the loga/orpa relation(Q)0 (%max) = 0, as opposed to decoupling itself clearly shows the latter approach'spreferability: inconvenient as the mismatch discussed in this section may be, itonce more turns out a sensitive indicator of the assumptions' inconsistency.
5.5. Thermodynamic states of high compressibility: theregion of large f(Q; %), sti�ness, and pre-determinedstep sizesAs evidenced by the data presented in the preceding section and in keeping withsection 5.1, hrt's estimates for the critical density present little to no di�cul-ties for both of the model systems considered, nor is there any mention of suchdi�culties in any of the other publications on this topic that we are aware of; in-deed, apart from the solution's defects close to the boundaries just discussed, thetheory's numerical problems primarily lie in the solution's pathological small-Qbehavior for close-to-critical and sub-critical temperatures that we will summarilyrefer to as the pde's sti�ness in the following; we now turn to the correspond-ing features of the solution numerically obtained, which will provide us with asignature of the problem readily detected by the monitoring variant of our code(cf. sub-section 4.6.1); we also note in passing that the e�ects of sti�ness will beevident from section 5.6's application of hrt in its current formulation to sws ofquasi-continually varying range parameter �.From sub-section 2.3.2 it should be clear that the hrt-pde's true solution eludesreliable numerical realization for high compressibility states, i. e. for sub-criticalor close-to-critical temperatures and densities close to %c or the interval [%v; %l];in particular, while �# still characterizes the level of accuracy in auxiliary calcula-tions, the same can no longer be true for the accuracy of the pde's discretizationas this would require step sizes �Q so small as to cause oating point underowupon evaluating, e. g., Q�(Q��Q), thus rendering fds numerically insigni�cant.In this respect we thus have to give up our strategy of controlling the numericalprocedure so as to locally ensure a quality of �# at least, turning to pre-determinedstep sizes �Q (cf. sub-section 4.6.2) in addition to �xed �% (to which similar con-cerns apply, cf. sub-section 2.3.2) instead; on such a coarse mesh of (Q; %)-points,however, the pde's true solution cannot be represented adequately, and the nu-merical approximation for f(Q; %) obtained from the fde the pde is mapped ontocannot be trusted to faithfully represent even the average behavior of f(Q; %).65



Aspects of the numerical solution 5.5 Region of high compressibility and large f% �3 f ���Qj1=0:002=� r0:0020:005 r0:0020:01 r0:0020:02 r0:0020:050.06 1:046 104 7.092 1.083 2.185 5.3170.15 4:361 104 7.100 1.083 2.186 5.3210.25 6:311 104 7.102 1.083 2.186 5.3220.34 6:822 104 7.103 1.083 2.186 5.3220.45 5:870 104 7.103 1.083 2.186 5.3210.61 0:960 104 7.092 1.083 2.185 5.316Table 4: The �nal values of the auxiliary function f(Q; %) for various densities in the coexistenceregion as obtained with di�erent sets of step sizes �Q for the isotherm at � = 1=� of the swsystem with � = 1:5 in an implementation of main part ansatz not implementing the corecondition (other parameters as in section 4.8); here, the symbol rab is used to denote the ratio(f(Q0; %)j�Qj1=�a=�)=(f(Q0; %)j�Qj1=�b=�). With these settings, the coexisting densitiesare %v = 0:05(1)=� and %l = 0:62(1)=�, and f(Q0; %) takes on its maximum at % = 0:34=�.Most strikingly, the ratios displayed are close to constant except right next to the binodal; if thef(Q; %) numerically obtained were to represent an average over the true solution's oscillationsthese ratios should all be unity. Also note that @2f(Q0; %)=@%2 is rather small, just as expectedfrom, and assumed at somewhat higher cut-o� Q in, sub-section 2.3.1.This inadequacy of the step sizes is reected in various peculiarities of the solu-tion obtained in the numerical procedure; indeed, when monitoring the evolutionof f(Q; %) and the core condition coe�cients (Q)n (%), our code readily detects theplummeting step sizes necessary and, when forced to use pre-determined step sizes,signals the incompatibility of the behavior seen with the assumption of smoothnessunderlying fd schemes. Another telltale sign is iterated corrector steps' failure toconverge when f(Q; %) is large: even though implicit schemes like the one weemploy are the standard treatment for sti� systems, the rapid growth of the oscil-lations' amplitudes (cf. our estimates in sub-section 2.3.2) renders the non-linearfdes themselves unstable under iteration; only when resigning on any control ofthe numerical error and refraining12 from iterations of the corrector step do thestep sizes �Q chosen allow one to force advancing Q all the way to Q0 in remark-ably many cases.Considering the fde's solution in that part of the (Q; %)-plane where the isother-mal compressibility's divergence builds up, we always �nd smooth functions of Qand % that are in gross violation of the behavior of the pde's solution demonstratedin sub-section 2.3.2; one might therefore hope that the function obtained numeri-cally presents an average over oscillations. It is, however, easy to see that this isnot so, or else the solution obtained at any �xed value of the cut-o� Q would haveto be largely independent of the step sizes used in obtaining them; numerically,however, we �nd that, say, f(Q0; %) not only sensitively depends on the step sizesinside the coexistence region, it does so in a very distinct pattern, too: With theversion of main part solver discussed in sub-section 4.6.2, for any Q the step sizes�Q are fully determined by the Q1 and the step size for in�nite cut-o�, �Qj1 ;12 Or, for that matter, when �xing the number of iterations beforehand, without taking heedof questions of convergence; on the other hand, in this case the standard argument againstiteration of the corrector step applies [78]. 66



Aspects of the numerical solution 5.5 Region of high compressibility and large fconsidering the �nal values of f as a function of �Qj1 and %, while f typicallyvaries by half an order of magnitude between the center and the boundaries %v and%l of the region of large f , it markedly depends on the initial step sizes �Qj1 , andthe ratios of the f values obtained with di�erent �Qj1 are virtually independentof13 %. Such a behavior, illustrated for a particular isotherm of the sw uid with� = 1:5 in table 4, is readily explained in a two-tier model of the computation: assti�ness typically sets in only for Q <� 8=�, in any of the cases considered in thetable the step sizes chosen are viable for most of the Q-interval [Q0; Q1], i. e. forQ down to, say, some cut-o� Q1 that should not depend too sensitively on �Qj1due to the oscillatory nature of f and the still rather large cut-o�; however, asthe solution is forced to proceed beyond Q1 the fde's solution can no longer serveas an appropriate approximation for the hrt-pde, and the following evolution isdriven by the number of steps14 and the corresponding Q values, with the largely�Qj1 -independent f(Q1; %) as starting value. Note that this model is also ableto explain a small �Q-dependence of the critical temperature like the one of thedata of �g. 3 (not to be seen on the scale of the plot), whereas the tremendousdi�erences in the critical point's locations in �g. 2 are due to other e�ects to bediscussed in section 5.6 below.So far we only discussed the relation of the fde's solution to that of the un-derlying pde in the region of large f(Q; %); on the other hand, due to the d01-and d02-terms in eq. (2.23), the pde's sti�ness and the related problems in thatregion have a direct bearing on the solution outside the coexistence region. Un-fortunately, the inuence of the fundamental discrepancy of the solutions of thepde and the fde, respectively, whereever �(Q)T (%) is large on the data producedoutside the coexistence region is not assessed easily; and even though the numeri-cal predictions there turn out rather insensitive to variation of parameters of thenumerical procedure we expect a gradual but non-negligible distortion15 of thebinodal, increasing with falling temperature. But if the solutions for % 62 [%v; %l]are hardly a�ected by the vastly di�ering numerical approximations for f(Q0; %)within the coexistence region, this is indicative of e�ective boundary conditionsarising at the coexisting densities due to the very large second-order %-derivativein eq. (2.23) there; consequently, it should in principle be possible to avoid en-tering the region of large f(Q; %) altogether even though the pde's characteristicsare the lines of constant Q and such an approach must therefore be at variance13 Note that these calculations cannot directly be repeated for the odes obtained by imposingsome constraint like, e. g., the decoupling assumption or the loga/orpa condition on thesolution as discussed in sub-section 2.2.1: not only �"(Q0; %) becomes negative in what wouldotherwise be identi�ed as the coexistence region as can be seen from �g. 1, even "(Q0; %) doesso that f(Q0; %) and, consequently, the free energy cannot be real for these states. This alsoprecludes any use of this peculiar �Qj1 -dependence, an otherwise quite sensitive indicatorfor the onset of sti�ness, as a means of extracting information on the system's phase behaviorfrom calculations via odes.14 Also, the numerical estimates for @2f(Q; %)=@Q2 in the region of large f(Q; %) are found toroughly correlate to 1=(�Qj1 )2, which corresponds to an essentially exponential growth withthe number of steps.15 In addition to the e�ects of numerical di�erentiation via three-point formul� close to thesolution's near-discontinuities at the coexisting densities.67



Aspects of the numerical solution 5.5 Region of high compressibility and large fwith the Courant-Friedrichs-Lewy criterion (cf. sub-section 4.6.1). An immedi-ate consequence of this e�ective-boundary-condition interpretation is that the twobranches of the binodal are numerically decoupled, which is borne out by the pre-liminary16 �nding of di�ering pressures at the coexisting densities; of course, bothbranches of the binodal must meet, and the corresponding limits of the pressurealong the branches must coincide, for � ! �c; note that this irregularity of thepressures provides further evidence for a distortion of the hrt-binodal of the kindjust indicated.As a corollary we note that the e�ective phase decoupling scenario just developedalso casts some doubt on hrt's ability to deal with systems exhibiting more thanone liquid-vapor transition, i. e. where the region of large f consists of two ormore lobes in the (Q; %)-plane: For one, if we try to avoid the region of thepde's sti�ness, the corresponding loss of convexity of the remaining integrationregion almost certainly induces instability in the fde. On the other hand, if weadopt a rectangular grid and force the solution to advance to smaller Q as inmost of the applications of hrt presented in this study it seems likely that thesame mechanism sets in that we �nd to give rise to the situation postulated insub-section 2.3.1 in the �rst place: for the systems with only one critical pointand intermediate Q we typically �nd several small patches of the pde's domainwhere f is rather large (one of which will often be located close to the high densityboundary due to the mismatch discussed in sub-section 5.4.1); as Q decreases thereis a clear tendency for these patches to either die out or to shift, spread and joinuntil for sub-critical temperatures we are left with exactly one density interval ofhigh isothermal compressibility. In this context we should also mention that wewere unable to apply even the ansatz not implementing the core condition to themulti-step potential vst with parameters �1 = ��, 0 < �2 � �, � > 0, �1 = 1:25,�2 = 1:5 [79].Returning to the theme of the step sizes' inappropriateness, given the sheernumbers | according to section 4.8, for Q close to Q0 we have j�Qj � 10�6=�whereas table 4's data and the estimates of sub-section 2.3.2 demand step sizesmuch smaller by some 103 to 104 orders of magnitude | it is certainly astonishingthat we are able to reach rather small Q in so many calculations even thoughimplicit fd schemes' stability properties are generally considered excellent; onthe other hand, while the re-scaling of quantities a�ected by exponentiation of fcertainly allows us to deal with the tremendous magnitudes that have to be con-sidered in the calculation, according to section 4.5 the scaling factors are adjustedonly after the last corrector step, and they are the same for all three node lists.16 These calculations were performed with version 2 of our software (cf. section B.2) for sws with� = 1:5 and Ncc = 5, and the pressure was calculated by di�erentiation of the free energy;these results await con�rmation and further investigation in other model systems with themore advanced possibilities the program of chapter 4 provides. Also note that the di�cultiesassociated with the core condition (v. s. section 5.2) preclude accurate determination of thepressure from the virial route. Of course, in an implementation like the one discussed insection B.1 not relying on the re-writing of appendix A the pressure obtained by di�erentiatingA(Q0)(%) cannot di�er, but then again that version does not allow one to force the solution toadvance towards Q = Q0 so that sub-critical temperatures are not accessible, �max;# <� �c.68



Aspects of the numerical solution 5.6 Discontinuous potentialWhile obviously justi�ed for any appropriate step size �Q, for the pre-determinedstep sizes we employ this smoothness- and regularity-assumption is certainly notmet and it will come as no surprise that overows or numerically unde�ned valuessometimes occur at Q > Q0; as discussed in conjunction with main parts ansatzand solver (sections 4.5 and 4.6, respectively), the calculation is then terminatedand the data at the last Q before the numerical exception occurred are taken asthe �nal results for the isotherm at hand. If, indeed, sti�ness is the limiting factorfor the numerical procedure's ability to reach Q = Q0, the lowest Q values in thecalculation must be su�ciently small so that we are already in the region of largef , the maximum of f(Q; %) should be at intermediate densities rather than closeto the boundaries, and we will generally see the program halt at higher cut-o�for lower temperature; taken together these criteria allow us to distinguish be-tween the mismatch discussed in sub-section 5.4.1 and the e�ects of sti�ness asthe immediate reason for the program's halt (v. s.).In concluding this section we should point out that sti�ness' e�ects are qualita-tively very much the same for both sws and for the hcy uid considered earlier;quantitatively, however, the numerical problems associated with the pde's sti�nessare much more severe for narrow wells so that �max;# < � for many sw systemswith � < 2; these e�ects, however, cannot be discussed without reference to therôle discontinuities of w(r) play.
5.6. Discontinuities in the potential's perturbationalpartFor the case of hcy uids with variable inverse potential range parameter z, theauthors of [28] found a systematic degradation of hrt's performance comparableto that of gmsa with growing z, i. e. when going to ever narrower potentials; inparticular, they studied z � 2 f1:8; 4; 7; 9g, and for all these systems except thelongest ranged one, viz. the one with z = 1:8=� also considered in the present study,the critical temperature predicted by hrt was consistently found to be too high.It may therefore, and in view of some of the limitations of the theory expected forgenuinely short-ranged potentials (cf. chapter 1, q. v. section 2.4), be interestingto also consider sws of varying range parameter �, which furthermore will serveto illuminate the decisive rôle played in the numerical process by discontinuities.For a �rst orientation, let us look at the results summarized in �g. 4 (q. v. sec-tion E.1), where the critical temperature Tc and density %c are shown as functionsof �; the underlying calculations have been obtained with the parameters chosen asindicated in section 4.8. With the exception of some spurious results at � � 1:10,wherever �c < �max;# the critical temperature generally compares quite favorablywith the data of tables 3.1 and 3.2; from the calculations we have performed fora large number of systems in the range 1 < � � 3:6 and ignoring some isolatedresults, a critical point is found for 1:06 � � � 1:24, for 1:45 � � � 1:53, and for69
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Figure 4: The critical temperature Tc (upper panel) and critical density %c (lower panel) ofsquare well systems for � ranging from close to unity up to 3.6 as obtained from calculations withthe parameter settings of section 4.8; also included are the non-hrt predictions listed in tables3.1 and 3.2, labeled by the acronyms introduced in sub-section 3.1.1 and already used in thosetables. q. v. appendix F. The ticks on the top border of the �gure's frame indicate the � valuesconsidered; of the 200-odd systems we studied, �max;# exceeds �c only in the � ranges indicatedin section 5.6 or for some isolated � values outside those ranges. To facilitate comparison, bothhrt and literature results on the critical temperature for � close to 1.1, 1.5, and 2 are shown atlarger scale in insets. In the lower panel, the bars show the coexisting densities found accordingto the prescriptions of section 4.8 for the highest-temperature sub-critical isotherm calculatedin locating the critical temperature; this explains the apparent di�erences in %c's accuracy. Thesmallest %c intervals shown coincide with the spacing �%=10�2=�3 of the density grid. Thehrt-results used in this plot are given in section E.1.� � 1:939; calculations with Ncc = 5 (summarized in section E.2) yield analogousresults, with �c < �max;# in a somewhat larger part of the parameter range, viz.for 1:09 � � � 1:58 and for � � 1:896, but will not be considered in the following70
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Q10 20 30 40 50 60 70 80Figure 5: The core-condition function ~C(Q)(Q;%) for %=0:3=�3, �=0:2=� and for two di�erentranges � of the square well potential, on arbitrary scales; the horizontal lines correspond tothe ideal gas value �1=%. Note that for �=3 (upper curve) the peak of every single one of thefunction's swings is partially reduced, just as expected for a superposition of terms involvingperiodic functions of Q� and 3Q�, respectively; the same happens less than half the time |and at rather high Q only | for �=2:9 (lower curve). We have excluded the data for Q<10=�so that the e�ects of the pde's sti�ness are still negligible; the underlying calculations havebeen performed by solving the odes corresponding to consistent application of the decouplingassumption at the density indicated.in view of the considerations of section 5.2 and of other defects that turn out tobe larger than for Ncc = 7, the amount of variation in the critical temperature fornarrow wells in particular.For the moment setting aside the data for � < 1:939, hrt's predictions for thecritical temperature are in generally satisfactory agreement with the �c(�)-curveexpected from the simulation-based and purely theoretical results presented insub-section sub-section 3.1.1. Embedded into this regular overall behavior of �cas a function of �, however, we �nd a number of depressions and elevations of �c,some of which cannot be seen on the scale of the plot �g. 4 but from the numericresults only; others, however, are so strong as to render the critical temperaturea non-monotonic function of �, which is certainly not expected on the grounds ofthe literature presented in sub-section 3.1.1, the data of [48{50] in particular.In the light of section 5.5 it is of course tempting to simply attribute this behaviorto the di�culties previously discussed, especially since the critical point is locatedin the region of large f(Q0; %) by de�nition; the peculiar distribution of �-valuesa�ected, however, suggests that these problems of the numerical procedure aretriggered or modulated by a special mechanism. Indeed, a closer look at the corecondition function ~C(Q)(Q; %) for �xed density % reveals, for every single one ofthe � values implicated that we checked, that the combination of terms pertainingto w(r) or vhs(r) alone (of ranges �� and �, respectively) regularly and quite71



Aspects of the numerical solution 5.6 Discontinuous potentialfrequently reduces the amplitude of this function's swings about the ideal gasvalue of �1=%; the same happens only occasionally for �-values removed from theseirregularities, a pattern consistent to the point of allowing one to quite reliablydetermine whether or not a given � is a�ected by these shifts of �c from a plot of~C(Q)(Q; %) for % � %c alone; two typical examples at similar � values illustratingthis point are shown in �g. 5. In that plot's curve corresponding to � = 3 it isvery clear that every oscillation of the reference-system part corresponds to threeoscillations of the perturbational part of ~C(Q) that partly cancel where the formerwould otherwise have its maximum; the regularity with which this occurs is, ofcourse, a direct consequence of �, the ratio of the two characteristic lengths presentin the model, being integer. Slightly generalizing this reasoning, it will come as nosurprise that most of the irregularities occur when � is close to a simple fraction:among the shifts in Tc most obvious in the plot 4 are those where � is close to 2,214 , 217 , 219 and 2 112 , and in retrospect it seems justi�ed to also include the smallparameter range around � = 112 in this list, v. i.; the e�ect is less obvious from�g. 4 but still discernible at 212 , 213 and 223 , whereas for 214 and 234 it is so small asto make the plot of �c(�) appear smooth while the irregularities are still evidentfrom the numerical values; also note that, once again, %c is hardly a�ected.Taken together all these observations seem to point to the interplay of the twodi�erent lengths special to the model and the resulting partial oppression of asigni�cant portion of the extrema of ~C(Q)(Q; %) that cause the discrepancy of hrtand literature results for the critical temperature around certain � values; thisinterpretation is corroborated by the �nding that an interpolation of hrt's pre-dictions from � values nearby is usually well compatible with the data presentedin sub-section 3.1.1. Even though we currently cannot pinpoint the precise mech-anism by which this unphysical behavior of hrt arises and, in particular, cannotdistinguish between the closure's inadequacy and the pde's sti�ness as the mainculprit | though the latter is certainly implicated to some degree17 |, two con-clusions may be drawn quite safely: for one, these shifts in the critical temperatureare not an issue as long as we stay clear of values of � >� 2 that are close to sim-ple fractions or other special values (a condition to be checked by considering thee�ect of varying � in a narrow range around the value of interest), or else as longas we restrict ourselves to � >� 2:7 where the e�ects are rather small; and sec-ondly, it is only in the presence of discontinuities in the potential's perturbationalpart that certain lengths feature prominently18 in the relevant functions' Fouriertransforms and can so give rise to problems of the kind outlined above. In anycase, however, the numerical e�ects discussed in sections 5.2 to 5.5 above are,in principle, always present; the special mechanism outlined in this section onlyhighlights these e�ects' severity and thus acts as a magnifying glass of sorts for the17 Take into account that, from eq. (A.3) in appendix A, �"(Q; %) = �~�(Q; %)= ~C(Q)(Q; %) so thata reduction of j ~C(Q)(Q; %) + 1=%j can conceivably modulate both the cut-o� for the onset ofthe growth of f(Q; %) following from the discrepancy of the pde and the fde as well as thatfunction's starting value, denoted Q1 and f(Q1; %), respectively, in section 5.5.18 Recall that the cut-o� procedure (2.4) only a�ects the potential's continuous component, asshortly discussed in chapter 3. 72



Aspects of the numerical solution 5.6 Discontinuous potentialuncertainty in the results brought about by the corresponding di�culties of thenumerical procedure. In order to avoid at least this mechanism from setting in itis thus preferable to avoid systems with discontinuities in w(r) like, e. g., sws orthe multi-step potential de�ned in section 3.3; fortunately this still leaves most ofthe potentials popular in liquid state physics like the hcy uid or Lennard-Jonessystems, to both of which hrt has been applied in the original implementation [5,6, 11, 13, 19, 21, 28, 80, 81].
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VI. Concluding remarks
In the course of the last few chapters we have mainly been concerned with arather detailed study of a number of traits characteristic of the application ofhrt to one-component uids, both in a general setting (cf. chapter 2) and inthe numerical treatment of selected model systems (cf. chapter 5). As this studydraws to an end, however, it is only �tting to pause for a moment and once morecontemplate the major points we raised. We then see a theory, rich in promiseand attractive in its generality but still not in wide-spread use, that presents itselfas a uni�ed framework for the description of thermodynamic systems throughouttheir phase diagrams; its key ingredient is the combination of perturbation- andintegral equation theory with rg-theoretical ideas via a sequence of renormalizedpotentials.In order to allow application to speci�c physical models and to extract bothuniversal and non-universal information from the theory it is, of course, necessaryto close the formally exact but non-terminating hierarchy of odes underlying allof hrt at some order of the perturbational expansion; in principle there are manysuitable approximations, and when combined with thermodynamic consistency asexpressed in the compressibility sum-rule (2.13) they typically give rise to partialintegro-di�erential equations. In the case that we concern ourselves with, viz. thatof simple one-component uids interacting via purely additive, spherically sym-metric pair potentials with in�nitely repulsive cores, there is one such ansatz thathas been used almost exclusively, viz. the loga/orpa-style closure of eq. (2.15)that we, too, decided to adopt in our work. The formulation we rely on is thuslargely the same as that of earlier applications, but we take care in motivatingthe introduction of the various approximations and discuss their relative merits.Among the most important of our analytical and semi-analytical results on theresulting equations | all of which are borne out by the numerics | are thoseregarding the pde's stability and the build-up of divergences of the isothermalcompressibility: in particular, hrt is found unable to deal with predominantlyrepulsive potentials in the formulation of chapter 2, and the mechanism leading toa suppression of van der Waals loops is shown to be linked to the pde's sti�nessin the critical region or when describing phase coexistence; furthermore, graveproblems are shown to be likely to arise for very short-ranged interactions.74



Concluding remarksIn order to put into perspective and to gauge the relevance of these rathergeneral concerns regarding the theory's applicability we turned to two types ofmodel potentials, viz. the hcy potential with inverse screening length z = 1:8=�as well as a large number of sw systems with range parameter � varying fromextremely narrow wells up to � = 3:6. By way of experimentation we were thenable to identify three major issues a�ecting the computational realization of hrtin its standard formulation: An important one that should not be taken lightlywithout at least checking its implications for a particular system is the necessarilyapproximate treatment of the core condition by odes coupled to the hrt-pde atevery density %; in addition to some systematic shortcomings in the pair distri-bution functions that we found in all the systems we looked at, the numericalproblems associated with adoption of eq. (D.11) alone are so severe as to necessi-tate elimination of other terms related to third-order partial derivatives of the freeenergy. While this so-called decoupling assumption provides a partial remedy forsome of the problems linked to the core condition, decoupling by necessity intro-duces both mathematical and thermodynamical inconsistency into the equations;in particular, well-de�ned phase boundaries are strictly incompatible with a fullimplementation of decoupling, and imposition of a boundary condition at the high-est density %max in the calculation gives rise to an unphysical near-discontinuityof the solution there reecting the lack of internal consistency in the approxima-tions made and the condition imposed at %max. Other than these two problemsthat are likely to be linked both to the closure adopted and the continuous (i. e.,non-discrete) nature of the physical systems considered, the equations' sti�nessfor high-compressibility states seems deeply rooted in hrt; in the one-componentuids under consideration here this leads to a pathological behavior of the solu-tion wherever the auxiliary quantity f(Q; %) is large and the rg-theoretical cut-o�Q su�ciently small, a behavior that cannot be matched with practical step sizesin an fd scheme and brings about considerable uncertainty regarding the resultsobtained numerically and their validity. Not the least, even if the data outsidethe coexistence region turn out rather stable under variation of the computationalstrategy or the parameters it depends upon we still have to anticipate the possi-bility of a systematic distortion of the binodal and other defects, in addition towhat problems an inappropriate choice and location of the high-density boundarycondition may bring about. Interestingly enough, the presence of discontinuitiesin the potential's perturbational part makes for some peculiar e�ects in, e. g., thecritical point's location that might be used as a diagnostic tool for the level ofcon�dence that should be attributed to numerical results in view of the unavoid-able sti�ness of the pde and the corresponding fde in part of the phase diagram.| All these e�ects, it should be noted, to some degree depend on the potential'srange, i. e. on the parameters z and � for the hcy and the sw case, respectively.From the preceding remarks we �nd that hrt, a theory successfully applied toa number of di�erent systems by various authors, clearly has its share of numer-ical di�culties; as a consequence, every single calculation must be regarded as ofuncertain standing, and it is only through the combination of meticulous scrutiny75



Concluding remarksof a set of related calculations that meaningful and reliable information can beextracted from hrt calculations.Such a program is, of course, greatly facilitated by the availability of a fullymodular implementation of hrt in several variants of its usual formulation likethe one we have written. In doing so we have gone to great lengths to ensure thenumerical soundness of each and every step in the calculation except where thisis not compatible with the pde's nature; as secondary design goals we have alsostriven for e�ciency, ease of use, and a natural organization of the program, whichhas only been possible through the adoption of a simple meta-language and codeconstruction techniques. Not only should our software provide the liquid physicscommunity with a versatile tool for the systematic exploration and applicationof hrt to a variety of systems, it has also proved essential in understanding bothnumerical and analytical properties of the equations at hand; indeed, several of theissues mentioned above were �rst found in the numerical work when monitoringand assessing the evolution of the solution throughout the numerical process. Asdiscussed in some detail in the text, the same approach also provides us withdistinct signatures for the problems we found as well as with a means of detectingthem.All in all this puts us into a position where we are con�dent of our ability to applyhrt in a numerically meaningful way to a variety of physically signi�cant systemsand to use the tools and techniques we developed to extract relevant informationfrom these calculations; the possibilities here range from the rapid determinationof approximate binodals including the liquid-vapor critical points in an ansatz notimplementing the core condition all the way to extensive numerical work employ-ing several variations of the theory's formulation as well as a host of checks togauge the the level of con�dence to be attributed to the results obtained. Despitethe considerable computational challenges encountered we thus �nd that hrt is,indeed, capable of providing reliable structural and thermodynamic informationon liquid-vapor transitions in simple one-component uids even in the immediatevicinity of the critical point.
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A. Rewriting the partial di�erential equation innot-quite quasi-linear form
In order to facilitate the numerical treatment of the pde implied by eqs. (2.13) and(2.12), it is advantageous to adopt a re-formulation in terms of an auxiliary quan-tity f(Q; %) rather than the modi�ed free energy A(Q)(%): the resulting pde (2.23)super�cially resembling a quasi-linear one (cf. section A.1) allows implementationof an implicit �nite-di�erence scheme by simple inversion of a tri-diagonal matrixinstead of more cumbersome and slower iterative procedures; also note that, de-spite complete mathematical equivalence, the pde's formulation plays a rôle inthe numerical algorithm's ability to enter the region of the pde's sti�ness withpre-determined step sizes.This re-writing, leading up to eq. (2.23) and to be detailed here, is character-ized by a certain amount of arbitrariness that can be used to optimize the �nalexpressions with regard to their numerical properties at the cost of repeatedlyperforming the time-consuming calculations for various ansatzes for f(Q; %); andeven though the calculations themselves are straightforward, intermediate resultssoon become unwieldy, making experimentation with di�erent de�nitions for frather cumbersome. It is precisely in a situation like this that computer algebrasystems (cass) may be put to particularly good use: not only is it much moreconvenient to check the validity of high-level commands for the symbolic manip-ulation of the complicated expressions arising than to actually follow these steps,but the necessary experimentation reduces to mere re-evaluation of the re-writingprocedure starting with a modi�ed initial de�nition of f . Considering these ad-vantages, much of the re-formulation's presentation in this appendix is devoted tothe use of the popular cas Mathematica [82] for implementing and analyzing thesteps leading to eq. (2.23); the reader should, however, keep in mind that the codegiven here is not meant to be optimally e�cient but favors clarity over speed; theexperienced user will no doubt easily spot unnecessarily slow calculations. | Inthis appendix's remainder, input into Mathematica is given in mono-spaced fontwhereas the program's output (as obtained with version 4) is shown in slantedmono-spaced font. 78



Rewriting the PDE A.1 Basic relations, introduction of f(Q; %)Mathematica arguments symbolc 3 ~Ccij { cijcR0 1 ~cref jk=0cRef 2 ~crefdij { dijeny 2 Aeps 2 "f 2 fg 3 ~Gg0 2 ~G0gamma0 2 0phi 2 ~�phi0 1 ~�0u0 2 ~u0u0divphi 2 ~u0=~�Table 1: Correspondence of identi�ers used in Mathematica code and the symbols used inconventional notation (eq. (3) in this appendix; q. v. appendix F); in the above table, i and j areto be replaced by suitable one-digit integers. The number of arguments the Mathematica symbolslisted expect is indicated in the second column; these functions enter the calculations with eitherthe density % alone, with both Q and %, or with the full triple of (Q;Q; %) as arguments; also notethat the distinction of superscripts (Q), indicating quantities to be evaluated for the Q-system,and of function arguments Q, where Q plays the more general rôle of a wave number coincidingwith the cut-o�, is inappropriate in the Mathematica code due to the peculiar behavior of D[]when operating on expressions of the form x[Q][Q,rho]. | In addition to the Mathematicasymbols listed above, we also use variables with names of the form dQnRhomx to indicate thepartial derivative @n+mx=@nQ@m% of x, suppressing Q0 or Rho0 as well as the digit 1 after Q.A.1. Basic relations and introduction of auxiliaryfunction f(Q; %)Much of the following exposition is vastly facilitated by introduction of variousrules implementing trnasformations corresponding to the basic relations underly-ing hrt in the formulation chosen; among these, and with the notational corre-spondences listed in table 1, the loga/orpa-ansatz (2.15) for ~C(Q)(k; %) is writtenas:rC = c[Q ,k ,rho ] :> cRef[k,rho] + phi[k,rho] +gamma0[Q,rho] u0[k,rho] + g[Q,k,rho];As the all-important compressibility sum rule (2.13) involves ~C(Q)(0; %) and settinga wave number to zero means loosing one argument, we introduce some additionalsymbols for Fourier transforms evaluated at zero momentum; note that the onlycondition imposed upon basis function u0(r; %) at this point is the normalizationcondition ~u0(0; %) = 1, cf. eq. (2.16): 79



Rewriting the PDE A.1 Basic relations, introduction of f(Q; %)g[Q ,0,rho ] := g0[Q,rho];phi[0, rho ] := phi0[rho];u0[0, rho ] := 1 (* Four[u 0](k=0) == 1 *) ;cRef[0, rho] := cR0[rho];Also, arithmetic with derivatives is facilitated by introduction of special symbolsnamed according to the rules given in conjunction with table 1:Derivative[1,0][phi] := dQphi;Derivative[0,1][phi] := dRho1phi;Derivative[0,1][dRho1phi] := dRho2phi;Derivative[0,2][phi] := dRho2phi;Derivative[1,0][cRef] := dQcRef;Derivative[0,1][cRef] := dRho1cRef;Derivative[0,1][dRho1cRef] := dRho2cRef;Derivative[0,2][cRef] := dRho2cRef;Derivative[1,0][u0] := dQu0;Derivative[0,1][u0] := dRho1u0;Derivative[0,1][dRho1u0] := dRho2u0;Derivative[0,2][u0] := dRho2u0;The list eqs is now de�ned to hold the fundamental relations that our re-writing isbased upon: de�nition of ~C(Q)(Q; %) according to eq. (2.15), the hrt result (2.12)for @A(Q)(%)=@Q, and the compressibility sum-rule (2.13):eqs = {c[Q,Q,rho] == (c[Q,Q,rho] /. rC),Derivative[1,0][eny][Q,rho] ==Q^2/(4 Pi^2) Log[1-phi[Q,rho]/c[Q,Q,rho]],Derivative[0,2][eny][Q,rho] == -(c[Q,0,rho]/. rC) }{c[Q, Q, rho] == cRef[Q, rho] + g[Q, Q, rho] + phi[Q, rho] +> gamma0[Q, rho] u0[Q, rho],2 phi[Q, rho]Q Log[1 - ------------](1,0) c[Q, Q, rho]> eny [Q, rho] == ------------------------,24 Pi(0,2)> eny [Q, rho] == -cR0[rho] - g0[Q, rho] - gamma0[Q, rho] - phi0[rho]}In order to make the transition from the pde as implied by the above relationsinto a form numerically more tractable (falsely labeled \quasi-linear" in the lit-erature [11], v. i.), it might seem most natural to de�ne f(Q; %) as equal to thelogarithm in eq. (2.12); however, to avoid spurious singularities at roots of ~�, fhas to be multiplied by a term of order O( ~�2) at least, and an extra term must beadded. As for the factor, note that our choice of ~u20 / ~�2 allows for a reductionof the number of oating point operations necessary when evaluating the �nal ex-pressions (5) for the coe�cients d0i when compared to the factor ~�2 adopted by[11], the �rst reference to acknowledge the necessity to adopt such a re-writing.80



Rewriting the PDE A.1 Basic relations, introduction of f(Q; %)(Previous work re-cast the pde as a ux-conserving one but was unable to en-ter the critical region [6].) The term to be added is still largely undeterminedbut is written as a product of ~� and a regular function extra[] of ~cref(Q; %) and~G(Q)(Q; %) alone, the simplest choice possible; note that the �nal result for the theadditional term is largely determined by the choice of the pre-factor for f . | Asstated before, experimentation with more general de�nitions of f(Q; %) is possibleby mere modi�cation of the following statement and subsequent re-evaluation ofthe remaining steps.ansatz =Log[1-phi[Q,rho]/c[Q,Q,rho]] ==f[Q,rho] u0[Q,rho]^2 + phi[Q,rho] extra[cRef[Q,rho], g[Q,Q,rho]];(rAnsatz = Simplify[Solve[ansatz, c[Q,Q,rho]][[1,1]]]) // InputFormc[Q, Q, rho] ->-(phi[Q, rho]/(-1 + E^(extra[cRef[Q, rho], g[Q, Q, rho]]*phi[Q, rho] +f[Q, rho]*u0[Q, rho]^2)))This ansatz must, of course, be inserted into into the set of equations consideredearlier; furthermore, it is convenient to de�ne "(Q; %) as the exponential appearingin the expression for ~C(Q)(Q; %):(eqsAnsatz = (eqs /. rAnsatz // Simplify) /. Log[Power[E,x ]] -> x) // InputForm{0 == cRef[Q, rho] + g[Q, Q, rho] + phi[Q, rho] +phi[Q, rho]/(-1 + E^(extra[cRef[Q, rho], g[Q, Q, rho]]*phi[Q, rho] +f[Q, rho]*u0[Q, rho]^2)) + gamma0[Q, rho]*u0[Q, rho],Derivative[1, 0][eny][Q, rho] ==(Q^2*(extra[cRef[Q, rho], g[Q, Q, rho]]*phi[Q, rho] +f[Q, rho]*u0[Q, rho]^2))/(4*Pi^2),cR0[rho] + g0[Q, rho] + gamma0[Q, rho] + phi0[rho] +Derivative[0, 2][eny][Q, rho] == 0}rEps = E^(b . Evaluate[Cases[rAnsatz, E^a -> a, Infinity] [[1]]]) :>eps[Q,rho]^b;rrEps = RuleDelayed @@ {eps[Q , rho ], rEps[[1]] /. Optional -> 1};In order to make the transition from two equations, viz. eqs. (2.12) and (2.13),to a single pde of the form of eq. (2.23), the compressibility sum-rule (2.13) isused to eliminate the loga/orpa-coe�cient (Q)0 (%):rElim = Solve[Select[eqsAnsatz, !FreeQ[#,Derivative[0,2]]&],gamma0[Q,rho]][[1,1]]eqsElim = Simplify[eqsAnsatz /. rElim]gamma0[Q, rho] -> (0,2)> -cR0[rho] - g0[Q, rho] - phi0[rho] - eny [Q, rho]The pde is now obtained by postulating interchangeability of partial derivativesacting on A(Q), i. e. by equating the expressions @ �@2A(Q)(%)=@2%� =@Q and@2 �@A(Q)(%)=@Q� =@2% for eq. (2.17)'s �(Q)(%); after the following commandsde�ning quasilin as the di�erence of these expressions, the pde is equivalentto the condition of vanishing quasilin:81



Rewriting the PDE A.2 Coe�cients of the PDEdQeny = Solve[Select[eqsElim, !FreeQ[#,Derivative[1,0]]&],Derivative[1,0][eny][Q,rho]][[1,1,2]];dRho2eny = (Solve[Select[eqsElim, !FreeQ[#,Derivative[0,2]]&],Derivative[0,2][eny][Q,rho]][[1,1,2]]) // Simplify;quasilin = Expand[(D[dQeny, {rho, 2}] - D[dRho2eny, Q])/. rEps];With the last step, the modi�ed free energy A(Q)(%) has been eliminated from thepde and replaced by f(Q; %); the new formulation involves the following derivativesof f :Union[Cases[quasilin, Derivative[ ][f][ ], Infinity]](0,1) (0,2) (1,0){f [Q, rho], f [Q, rho], f [Q, rho]}All in all, the following derivatives are present in the new formulation of the pde:Union[Cases[quasilin, Derivative[ ][ ][ ], Infinity]] /.f [Q,rho] :> f /. f [Q,Q,rho] :> f /. f [cRef,g] :> f(0,1) (0,1) (0,2) (0,2) (1,0) (1,0){extra , f , extra , f , extra , f ,(1,0) (1,1) (2,0) (0,0,1) (0,0,2) (0,1,0) (1,0,0)> g0 , extra , extra , g , g , g , g }Presence of second-order %-derivatives on functions other than f clearly makes thepde in this formulation, just as the form used in [11], not fall into the quasi-linearclass despite reiterated claims to the contrary; fortunately this is an issue of littlepractical relevance.
A.2. Coe�cients of the PDEWith the representation of the pde obtained so far, we can easily extract fromquasilin the explicit expressions for the coe�cients cij for writing the pde in theformPij cij �@i+jf=@iQ@j%� = 0:c02 = Coefficient[quasilin, Derivative[0,2][f][Q,rho]];c01 = Coefficient[quasilin, Derivative[0,1][f][Q,rho]];c10 = Coefficient[quasilin, Derivative[1,0][f][Q,rho]] // Together;c00 = Select[quasilin, FreeQ[#,Derivative[ ][f]]&];These expressions, c00 in particular, are rather unwieldy; may it su�ce to demon-strate that they, indeed, represent the full pde:Expand[quasilin - (c02 Derivative[0,2][f][Q,rho] + 82



Rewriting the PDE A.3 Coe�cients d0i for small ~�c01 Derivative[0,1][f][Q,rho] +c00 +c10 Derivative[1,0][f][Q,rho])] // Simplify0 In the numerical implementaton, however, the pde is more useful when @f=@Q isisolated; the coe�cients d0i for expressing the pde as @f=@Q =Pi d0i �@if=@%i�are, of course, related to c10 and the c0i in a straightforward way:d02 = Together[-c02/c10];d01 = Together[-c01/c10];d00 = Together[-c00/c10];Note that this simplistic approach to the re-writing, though well suitable for d02and d01, can be used for d00 only in fairly recent versions of Mathematica andon su�ciently fast hardware; a more e�cient way of performing the necessarycalculation and simpli�cation should be obvious.
A.3. Coe�cients d0i for small ~�In order to �x the still unknown function extra[], we now analyze the coe�-cients d0i just found for small ~�(Q; %); it is this analysis, performed for variousansatzes for f , that leads to the requirements quoted earlier. The following seriesexpansion (including terms only up to order O( ~�0)) for extracting the coe�cients'singularities is one of the most demanding calculations in this re-writing of thehrt-pde:ser = (Normal[Series[#, {phi[Q,rho],0,0}]]& /@(Simplify[{d02, d01, d00} /. rrEps /.u0 :> (phi[##] u0divphi[##]&)])) /. Exp[b . extra[ ]] :> ExpExtra^b;While the �rst two coe�cients, i. e. d02 and d01 actually vanish for ~� ! 0, thelimit of d00 is a complicated expression depending on extra[] and still containing~� with exponents -2 and -1:ser[[{1,2}]]{0, 0}s = ser[[3]];Cases[s, phi[Q,rho]^b . -> b, Infinity] 83



Rewriting the PDE A.3 Coe�cients d0i for small ~�{1, -2, 1, -1}Now the reason for introducing the function extra[] becomes clear: together withthe pre-factors quoted earlier, it allows the removal of any singularities in d00. |There are two candidates for extra[] that eliminate terms of order O( ~��2):sol2 = (RuleDelayed @@ {#[[1,1,0]], Function @@ ({List@@(#[[1,1]]),Evaluate[#[[1,1]]/.#]} /.f [Q,rho]:>f /. f [Q,Q,rho] :> f)})& /@Solve[Coefficient[s, phi[Q,rho], -2] == 0,extra[cRef[Q,rho],g[Q,Q,rho]]]{extra :> Function[{cRef, g}, 0], 1> extra :> Function[{cRef, g}, ---------]}-cRef - gThe �rst of these, i. e. vanishing extra[], is, however, not su�cient to also removethe �rst-order pole:Coefficient[s, phi[Q,rho], -1] /. sol2[[1]](-12 Pi dQu0[Q, rho] f[Q, rho] u0divphi[Q, rho] +2 3> 4 Pi dQphi[Q, rho] f[Q, rho] u0divphi[Q, rho] ) /2 3> (4 Pi u0divphi[Q, rho] )Unless the ansatz for f was not su�ciently general in the �rst place, we thushave to accept the second solution for extra[]; this, however, entails a furtherrestriction, in addition to the normalization condition ~u0(0; %) = 1 given earlier,of the basis functions u0(r; %) admissible:(Coefficient[s, phi[Q,rho], -1] /. sol2[[2]] // Simplify)((-dQu0[Q, rho] + dQphi[Q, rho] u0divphi[Q, rho])2 2> (1 + 2 cRef[Q, rho] f[Q, rho] u0divphi[Q, rho] + 2> 4 cRef[Q, rho] f[Q, rho] g[Q, Q, rho] u0divphi[Q, rho] +2 2> 2 f[Q, rho] g[Q, Q, rho] u0divphi[Q, rho] )) /2 3> (2 (cRef[Q, rho] + g[Q, Q, rho]) u0divphi[Q, rho] )Of the three solutions for the ratio u0divphi[Q,rho] of ~u0(Q; %) and ~�(Q; %), twohave non-vanishing imaginary part and still depend on f(Q; %), while the thirdone yields: 84



Rewriting the PDE A.3 Coe�cients d0i for small ~�Select[Solve[(Coefficient[s, phi[Q,rho], -1] /. sol2[[2]] // Simplify)==0,u0divphi[Q,rho]],FreeQ[#,f]&] dQu0[Q, rho]{{u0divphi[Q, rho] -> -------------}}dQphi[Q, rho]Note that this result, easily re-written as1~u0(Q; %) @~u0(Q; %)@Q = 1~�(Q; %) @ ~�(Q; %)@Q �~�! 0� ;in conventional notation, does not imply strict proportionality of ~u0 and ~�; rather,~u0 / ~� must hold only up to terms of order O( ~�). This freedom might, of course,be exploited to arrive at basis functions u0(r; %), and, by virtue of eq. (2.15), ofdirect correlation functions C(Q)(r; %), of longer range than �(r; %); it is, however,hardly conceivable that such a strategy might advantageously by applied with-out introducing an additional, computationally unattractive %-dependence, not tomention the basis functions' Q dependence one would naturally want to introducein such a more general closure. Thus, in our work we �x u0 as strictly proportionalto � so that ~u0=~� is a constant, viz. �1=~�(0; %):rU0 = {u0 -> (phi[#1,#2] / phi0[#2]&),dQu0 -> (dQphi[#1,#2] / phi0[#2]&),u0divphi -> (1/phi0[#2]&)};rExtra = sol2[[2]] 1extra :> Function[{cRef, g}, ---------]-cRef - g(Coefficient[s, phi[Q,rho], -1] /. sol2[[2]] /. rU0 // Simplify)0The last of these command con�rms that the terms of order O( ~��1) do, indeed,cancel; consequently, the ansatz by which we introduced f is su�cient to avoidspurious singularities in the pde's coe�cients d0i. With these results, the de�nitionof f(Q; %) readsln 1� ~�(Q; %)~C(Q)(Q; %)! = f(Q; %) ~u20(Q; %)� ~�(Q; %)~K(Q)(Q; %) ; (1)a result very similar to that of [11]. Taking the ideal gas limit and considering thedivergence of the term �1=% in ~cref we readily �nd that both f and its derivativewith respect to % vanish, f(Q; 0) = @f(Q; %)@% ����%=0 = 0 ; (2)85



Rewriting the PDE A.4 Final resultsthe former of which is a convenient low-density boundary condition most versionsof our program rely on; indeed, as eq. (2) provides us with two conditions thisin principle already su�ces to determine the pde's solution up to high density,even though such a use is computationally clearly unattractive. Introducing theshort-hand notations (with the obvious superscripts and arguments omitted)" = 1� ~�~C(Q) = ef ~u20+x� �" = "� 1x� = � ~�~K(Q) xf = �f � ~K(Q)�2~�20~�0 = ~�(0; %) ~G0 = ~G(Q)(0; %) ; (3)
eqs. (2.12) and (1) can be written more succinctly asddQ ��A(Q)(%)V � = Q24�2 ln "(Q; %) ;~�(Q; %)~C(Q)(Q; %) = ��"(Q; %) :Restricting ourselves to the fully interacting system, i. e. to the limit Q ! 0 sothat C(Q) ! c2 and A(Q) ! A, and taking into account the oz relation (2.8), theisothermal compressibility �T is easily found to be1�(0)T = %2� @2@%2 ��A(0)V �

= %=�1 + % ~h(0)(0; %)= %2 ~�(0; %)� �"(0; %) ; (4)
note that a divergence of �(Q)T in the limit Q ! 0 is thus only possible if accom-panied by a corresponding divergence of f(Q; %) in the same limit.
A.4. Final resultsEven though the pde's coe�cients are now fully determined, they | and d00 inparticular | are still not in a form usable but demand further simpli�cation. Thisstraightforward but rather tedious process will not be detailed here; su�ce it tosay that cass again prove very helpful in manipulating the complex expressiontrees representing the coe�cient functions. | Reverting to conventional notation86



Rewriting the PDE A.4 Final resultsand dropping the obvious arguments and superscripts, our �nal results for the d0iared00 = + @ ~�@Q � ~�20~K(Q) ~�2 � ~K(Q) �"2 ~�20" ~�4 � 2f~� �+ @ ~K(Q)@Q � �"2 ~�20" ~�3 � ~�20� ~K(Q)�2 ~��� @2~u20@%2 Q2 �"2 f ~�04�2 " ~�2 � @2x�@%2 Q2 �"2 ~�04�2 " ~�2 � @ ~G(Q)0@Q �"2 ~�0" ~�2 ;d01 = � @~u0@% Q2 �"2�2 " ~� ; d02 = � Q2 �"24�2 " ~�0 : (5)
In the light of our previous analysis of these coe�cients' behavior in the limit~�! 0, great care must be exercised when evaluating the d0i for small ~�; noting that(�"2 ~�20="~�3)� ( ~�20=( ~K(Q))2 ~�), the coe�cient of @ ~K(Q)=@Q in d00, can be written interms of the (@�=@Q)-coe�cient, in the numerical implementation the calculationof these terms proceeds via the �fth-order Taylor expansion~�20~K(Q) ~�2 � ~K(Q) �"2 ~�20" ~�4 � 2f~�= � 1� ~K(Q)�3 �~�20 ( 112 + x2f ) + x� � ~K(Q)�2 f 13+ x2� ~�20 ( 1360 + 12 x2f ) + x3� � ~K(Q)�2 f ( 160 + 13 x2f )+ x4� ~�20 ( 120160 + 124 x2f + 112 x4f )+ x5� � ~K(Q)�2 f ( 12520 + 118 x2f )�+O(x6�) ;and �"=~�, another quantity of order O( ~�0), is evaluated as�"~� =� 1~K(Q) (1 + x� ( 12 + xf ) + x2� ( 16 + xf ) + x3� ( 124 + 12 xf + 12 x2f )+ x4� ( 1120 + 16 xf + 12 x2f ) + x5� ( 1720 + 124 xf + 14 xf + 16 x2f ))+O(x6�) :Note that even though the criteria for switching between the full analytic expres-sions and said expansions depend on �#, the expansion orders are not increasedfor very small values of �#, which is one of the few hard-coded limitations of ourprogram (cf. section 4.7).In this appendix we have shown some details of the transition from the com-bination of eqs. (2.12) and (2.13) to the pde (2.23) super�cially resembling aquasi-linear one; only use of the cas Mathematica allowed us to focus the pre-sentation of the pde's re-writing on the general procedure and to emphasize thedeliberate choices made as opposed to mere conclusions following from them; inparticular, it should be clear that there is ample room for variation of the precise87



Rewriting the PDE A.4 Final resultsform of the ansatz (1), and we have given our reasons for the speci�c choices wemade. The �nal results (3) for the coe�cients clearly show that in the case of %-independent potentials | and only these have been considered in this work despiteour program's ability to deal with %-dependent potential | substantial simpli�ca-tion ensues, resulting in signi�cant speed-ups of the numerical procedure: in thatcase, none of the basis functions depend on the density, which allows for simplerdata structures and for caching of intermediate results.
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B. Overview of previous versions of theimplementation of HRT for simpleone-component uids
Most of the calculations presented in this work have been performed within theframework provided by the implementation of chapter 4, i. e. with version 4 ofour program; occasionally, however, we will also reference results obtained, orconclusions reached, with earlier versions. Therefore it is pertinent to give a shortoverview of these programs, their main characteristics and di�erences, as well astheir relation to the software's �nal form.As a general note regarding all three of the versions sketched in this appendix,the implementations touched upon here di�er from that of chapter 4 in the basisfunctions they use (cf. section C.2), and their inexible and unnecessarily compli-cated code-structure (most obvious in version 2) betrays the programmer's formerobject-oriented background [83] (cf. the discussion of our adoption of a meta-language in chapter 4); other than the implementation of chapter 4, there is nointent to make the ones discussed in this appendix generally available. All ver-sions (including version 4) are written in Fortran-90, striving for full standards[69] compliance.
B.1. Version 1: Non-linear PDE for the modi�ed freeenergyThis initial implementation of hrt di�ers from its successors (as well as from whatis referred to as the original implementation in chapter 4) in that it does not rely onthe re-writing of the pde in the form (2.23) super�cially resembling a quasi-linearone (cf. appendix A); instead, eqs. (2.12) and (2.13) were subject to discretizationin a straight-forward way, with the core condition implemented along the lines ofsection D.2 with the approximations of section D.3. Due to the markedly non-linear character of this pde for the modi�ed free energy A(Q)(%), convergenceof an implicit �nite-di�erence full-approximation scheme can only be ensured by89



Previous program versions B.2 Version 2: PDE for f(Q; %)iteration of the corrector step; the need to keep the number of corrector iterationsas low as possible without compromising the numerical procedure's convergence�rst led to the introduction of the central parameter �# and early versions of anumber of the criteria summarized in section 4.6. The pde's numerical treatmentrelied on a second-order three-level predictor-corrector scheme similar to that ofthe original implementation: in particular, in the step leading from Q to Q��Q,the predictor produced an estimate for the solution at cut-o� Q � 12�Q only; asthis is obviously inconvenient in iterations of the corrector step, later versionsswitched to a two-level algorithm, where the predictor step estimates the solutionat Q��Q directly.As far as the reference system's description is concerned, in this version of theprogram only the py approximation was implemented; there was some numericalevidence of this resulting in a smooth additional contribution to the isothermalcompressibility �T as evaluated by di�erentiation of A(Q)(%) while the binodal (or%l at least) could still be made out from �T 's near-discontinuity.Incidentally, this �rst version was already fully capable of handling square wellswith � = 1:5, the primary test case for all the programs presented in this ap-pendix, for super-critical temperatures, even though the computational cost wasprohibitive (typically on the order of one hour of cpu time per isotherm for low-precision calculations on an alpha workstation). Upon increasing � beyond itscritical value �c, then estimated at around 0.85, however, the �#-based criterialed to dramatically falling step sizes �Q, which is a clear indication of the pde'ssti�ness not being an artifact of the rewriting of appendix A; other than in theformulation �rst adopted in version 2 and used ever since, an attempt to force thesolution's advancement towards Q0 via pre-determined step sizes produced numer-ically unde�ned results only, i. e. the ieee oating-point standard's special valuesof NaN or �Inf [70]. It was also with this implementation that the core-conditionfunction C(Q)(Q; %) was �rst considered, cf. section 5.6.
B.2. Version 2: Not-quite quasi-linear PDE for anauxiliary quantityVersion 2 di�ers from its predecessor mainly in the adoption of the re-writing ofappendix A (although in a somewhat simpler form considering density-independentpotentials only) and the corresponding transition from the modi�ed free energyA(Q)(%) to the auxiliary function f(Q; %); it was within the framework providedby this implementation that some of the problems discussed in chapter 5 were �rstuncovered and partly understood [84]. Just as version 1, this version, too, madeuse of Fortran-90's built-in module system to enhance re-usability and exibilityof the program; but as experimentation with di�erent approximations and re-factoring of some of the program's functionality continued, the need to accomodate90



Previous program versions B.3 Version 3: ODEs from consistent decouplingvastly di�erent data structures became obvious, prompting the proliferation of alarge number of partly incompatible module versions.The discretization of the pde again relied on an iterated predictor-correctorfull-approximation scheme; despite the pde's being of �rst order in Q and the useof a rectangular (Q; %)-grid in a two-level scheme, in order to be able to apply�#-based criteria for assessing or choosing the step sizes in the �Q direction fromsecond-order derivatives we had to retain the solution at a third Q value in thecalculation; by way of contrast, version 4 needs three node-lists in order to acco-modate the possibility of a more general grid underlying the numerical calculation(cf. section 4.2).The main conclusions drawn from experimentation with version 2 concern theproblematic nature of the decoupling assumption (cf. section B.3) and of theboundary conditions as well as the numerical inaccessibility of the true solution inthe region of large f(Q; %) in the pde's domain. On the other hand, this program�rst allowed us to generate some solution all the way down to Q = Q0 even belowthe critical temperature, albeit only when imposing the decoupling assumptionand resigning on the local error's boundedness in the �nite di�erence scheme; ascan be seen from [84], it also became apparent that square wells could be treatedfor some � values only [84].
B.3. Version 3: ODEs following from consistentapplication of the decoupling assumptionOther than versions 1, 2, and 4, version 3 of the program was never meant toimplement hrt in a generally usable form; rather, its only point was to investigatethe decoupling assumption's e�ects and to demonstrate its importance. To this endwe implemented the solution of the odes following from consistent application ofthe decoupling assumption (2.21), cf. sub-section 2.2.2. Apart from minor changesconcerning some of the �#-based criteria and the choice of basis functions (cf.section C.2), this version is fully equivalent to, and superseded by, one of theansatzes discussed in section 4.5.
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C. Implementational Details
In this appendix we want to shortly discuss some specialized aspects of the im-plementation of hrt presented in chapter 4; in particular, we highlight the rôleof the meta-language in our software and some of the facilities this o�ers for itspotential users, and we give the explicit expressions for the set of basis functionsun, n � 1, we use in the computations and compare it to some alternatives.
C.1. The arfg meta-languageAs shortly mentioned in section 4.1, some of the most attractive features of oursoftware have become possible only by our adoption of the simple meta-languagearfg1 constructed from readily available text-processing and scripting tools: Inparticular, this allows us to code in a manner not unlike the \literate programming"style pioneered by Knuth [85], although the pipelined nature of the system we use,originally inspired by Engelschall's wml system2, more closely resembles Ramsey'snoweb [86]. But where the traditional literate programming tools emphasize theproduction of high-quality documentation (\weaving") and constructing the code(\tangling") is seen as a rather trivial task, for arfg the focus is on exible con-struction of code customized to the chosen combination of approximations and thephysical system at hand instead; the resulting Fortran-90 code is not meant forhuman inspection, and no pretty printing is performed.As expected from this similarity to literate programming, the overall e�ect ofadopting a meta-language is to enhance readability and maintainability of thesource, at the same time encouraging modularization while providing us withenough exibility to generate e�cient and reliable Fortran-90 code that takesinto account as much information about the properties of the physical system as isfeasible; furthermore, the free ow of information and the self-con�guring nature ofthe code (v. i.) make it much easier to maintain consistency within the code base1 Available on the world wide web from http://purl.oclc.org/NET/arfg/. More precisely,arfg is a framework for the de�nition of a customized meta-language that co-evolved with theimplementation of chapter 4 into its current state.2 Available from http://www.engelschall.com/sw/wml/.92



Implementational Details C.1 The arfg meta-languageand to introduce non-trivial changes3. As an added bonus, the expressive power ofmore modern programming or scripting languages provides a means of overcom-ing some of the limitations inherent to Fortran-90, mitigating its austerity to acertain extent.The meta-language arfg itself is just a simple script written in Perl that doeslittle more than feed the current source �le, together with appropriate de�nitions,to a unix pipeline consisting of an arbitrary re-writing �lter, gnu's m4 macroprocessor, a diversion �lter for accumulation and re-ordering of text blocks, andthe eperl interpreter for embedded commands in the Perl language; the latterrelies on the budding cas yacas4 for simple auxiliary calculations. With thesetools, code construction usually proceeds by repeated application of the arfg-scriptto all source �les until the output �les | typically Fortran-90-code, interfacinginformation, include �les, and customized scripts for compiling of the resultingprogram | no longer change; re-con�guration of the software thus only meansselection of the desired components followed by re-construction and re-compilationof the Fortran-90 code. As a consequence of this organization none of the mainparts can make any assumptions about the internal workings of any other mainpart, and the code produced must be generic with respect to any informationnot available via either the program's general design as sketched in section 4.2 orthe interface provided by the code, usually in the form of m4 de�nitions. Thisalso means that optimizations valid only for special combinations of main partshave not been implemented; such a situation might arise, e. g., for an ansatz (cf.section 4.5) implementing the core condition via the truncated eq. (2.18) if theÎ-integrals turn out to allow an analytical short-cut only for a certain choice ofpotential (cf. section 4.3; v. i. section C.2).In order to provide a solution to this problem we have introduced a hook-mechanism reminiscent of that found in other programs but resolved during codeconstruction rather than at run-time: wherever a hook has been declared in thearfg-source, arbitrary replacement text may be inserted at the m4 step. In combi-nation with automatic declaration of hooks during the initial re-writing step andwith arfg's subsequent �lters, they provide an extremely powerful and versatiletool, opening up a wide range of possibilities: most obviously, already quite simplehook de�nitions allow for, e. g., insertion of test code, additional evaluations andlogging of selected quantities as well as the implementation of installation- andsite-speci�cs, which allows one to deal, e. g., with non fully standards compliant,ine�cient or otherwise de�cient Fortran-90 compilers; slightly more advanced def-initions may result in small-scale program transformations like the introductionof explicit caching of numerical results or the transformation of loop bodies intointernal subroutines to prompt timely garbage collection should this be necessary.In addition to the far-reaching code manipulation facilities o�ered by hooks,there are numerous parameters, usually endowed with reasonable default values,that may be used to customize speci�c aspects of the program; these fall into3 In this context the ability to maintain test code in the same source �le as the implementationit is to act on proves particularly valuable.4 Available from http://www.xs4all.nl/~apinkus/yacas.html.93



Implementational Details C.2 The basis functionstwo groups: the \compile-time parameters" | e. g. the number Ncc + 1 of ba-sis functions un in eq. (2.18) or settings that are unlikely to be changed once asatisfactory value has been found | are speci�ed as m4 de�nitions and thus haveto be processed during code construction, whereas the \options" | most promi-nently the temperature, �#, and the potential's parameters | are read from �lesat run-time. | Especially in a setting as variable as the one a�orded by the arfg-approach to our implementation the main parts of which may freely be combined,anything less but thorough documentation is bound to render any results unus-able in the long term; consequently, a suitable description of the program includingboth compile-time parameters and relevant options is generated automatically andstored together with the isotherm data produced. In a similar vein, it is importantto assist the user in dealing with this system, in particular as far as selection ofappropriate options and interpretation of error messages is concerned: to this end,well-documented templates for the options �les are produced, and any run-timeerror messages include both the Fortran-90 program unit and the arfg source�le where it occurred.
C.2. The basis functionsAccording to section D.2 there is ample freedom in choosing the basis functions un,n � 1; in particular, there is no use for orthogonality properties per se, and regu-larity considerations in r space are of only minor interest | they play a rôle onlyfor assessing convergence of the expansion (2.15) of C(Q)(r; %). All this amountsto the impression that the original implementation's choice of a�ne transforms ofthe Legendre polynomials might not be a particularly fortunate one.As long as we deal with hard-sphere reference systems only, in view of theconsiderations of section D.2 it is natural to ask for the set fu1(r); : : : ; uNcc(r)g tospan the space of polynomials of order up to Ncc�1 so that un(r) will generally bea polynomial or order n� 1 in r; but whereas di�erent sets of polynomials do notalter the function space, their choice has implications for the numerical propertiesof the matrix equations implementing the core condition (cf. sections D.2 andD.3), as well as, to a certain extent, for the convergence of the Î-integrals to beevaluated at Q = Q1 (cf. section 4.5).In our work we considered two di�erent de�nitions of the un, n � 1: in theprogram's versions summarized in appendix B as well as in some very early im-plementations of version 4's main part ansatz not considered in section 4.5 weadopted basis functions orthonormalized in ]0; �[ with respect to the weightingfunction r2; according to simple heuristic arguments this enhances the diagonalelements of the matrices in the truncated eq. (2.18) relative to the o�-diagonalelements which might help in ensuring existence of a solution. Unfortunately,however, this choice of basis functions turns out to be insu�cient to render the94



Implementational Details C.2 The basis functionsmatrices diagonally dominant due to the (~u0(k; %) ~un(0; %))-term in eq. (2.18); fur-thermore, the matrices' entries vary by several orders of magnitude which bringsabout additional numerical problems.Based upon these experiences, in the software of chapter 4 we adopted a di�er-ent and computationally more convenient set of basis functions instead, choosingun(r; %) simply proportional to rn�1 and normalizing it to ~un(0; %) = 1. Thesefunctions are easily evaluated in r space, and the normalization condition rendersevaluation of ~G(Q)(0; %), a term in the coe�cients d0i of eq. (A.5), particularly sim-ple; also, all the entries of the matrices of eq. (2.18) are usually of the same orderof magnitude, allowing Gaussian elimination with full pivoting to be used withoutthe need for a re-scaling of the equations. | Dropping the obvious argument %,with the ansatz un(r) = un(�) � r��n�1 �(� � r) ;~un(0) = 1 ; (1)a simple calculation based upon eq. (F.1) and using eq. (2.633.1) of [87] easilyyields5 un(�) = (n+ 2)=4��3 as well as the Fourier transform~un(k) = n+ 2(�k)n+2 24n! cos n�2 � nXj=0 n!(n� j)! (�k)n�j cos��k + j�2 �35 ;an expression used for �k > n only for numerical reasons. For smaller k, we relyon the expansion~un(k) = (n+ 2) 1Xj=0 (�1)j(n+ 2j + 2) (2j + 1)! (�k)2j ;truncating the series to Nn terms, where Nn is the smallest number such thatn+ 2n+ 2Nn + 4 n2Nn+2(2Nn + 3)! � �# p[un]Nnwith a customization factor p[un]Nn of order unity. Of course, analogous resultsmay be derived for the basis functions' derivatives with respect to k. Note thatthe asymptotic behavior of the ~un(k) for large k allows an analytic short-cut inthe Î-integrations of eq. (2.18) for certain forms of the Fourier transform of theperturbational part of the potential for k ! 1 (q. v. section C.1); e. g. for swswe can replace the large-k part of such an integration by a single evaluation of thesine-integral si(k) at �nite k only (cf., e. g., eq. (2.642.7) of [87]; for the numericalevaluation of si(k) by continued fractions cf., e. g., [78]).5 Note that maxr2[0;�] un(r) = un(�) / n + 2, which must be taken into account when usingthe maximum norm for discussing convergence of the expansion (2.15) for the direct correlationfunction. 95



D. Mathematical Supplement
In this appendix we spell out in detail some auxiliary calculations that would onlyhinder the ow of arguments in the main text, the presence of which neverthelessseems desirable for completeness' sake. The sections are given in no particularorder.
D.1. The Q-potential in r-spaceMuch of the motivation for using the closure (2.15) despite its known and fre-quently referred-to short-comings is related to the arti�cial shape, and long-rangednature, of the Q-potential de�ned in eq. (2.4). In order to see how this long-rangedness arises, for an arbitrary function  (r) in real space we ask for thefunction  (Q)(r) obtained by this cut-o� procedure. Taking into account eq. (F.1)in applying eq. (2.4), we obviously have~ (k) = 4�k 1Z0 dr r  (r) sin kr ;~ (Q)(k) = ~ (k)�(k �Q) ; (Q)(r) = 12�2r 1Z0 dk k ~ (Q)(k) sin kr : (1)
With Fourier's theorem and the identity �(k�Q) = 1��(Q�k), the last integralbecomes  (Q)(r) = 12�2r 0@ 1Z0 dk k ~ (k) sin kr � QZ0 dk k ~ (k) sin kr1A=  (r) � 12�2r QZ0 dk k ~ (k) sin kr ;96



Mathematical Supplement D.1 The Q-potential in r-spaceinserting the expression (1) for ~ (k) in the last expression and assuming inter-changeability of the integrations, we then obtain (Q)(r) �  (r) = � 4�2�2r QZ0 dk 1Z0 dr0 r0  (r0) sin kr sin kr0= � 2�r 1Z0 dr0 r0  (r0) QZ0 dk sin kr sin kr0= � 1�r 1Z0 dr0 r0  (r0) QZ0 dk (cos k(r0 � r)� cos k(r0 + r))= � 1�r 1Z0 dr0r0 (r0)� sinQ(r0 � r)r0 � r| {z }\peak" � sinQ(r0 + r)r0 + r| {z }\regular" �
(2)

where we have used the trigonometric relation 2 sin a sin b = cos(a�b)�cos(a+b).(Eq. (2.6) is obtained by replacing the general function  by the perturbation partw of the potential in the last expression.)From eq. (2) the limits of eq. (2.3) are apparent: for Q! 0, both sines obviouslyvanish, whereas for Q ! 1 the �rst of these (labeled \peak") reproduces the �-function necessary for vanishing  (1) while the second one (\regular") vanishesagain. For an intermediate value of Q, however, it should be clear that the peakof width � 1=Q coming from sin(Q (r0 � r))=(r0 � r) makes  (Q)(r) a long-rangedfunction in r space, rendering Fourier transformations unattractive at least forvery small Q, i. e. in that part of the hrt evolution where criticality is recovered;on the other hand, due to the peak's height's proportionality to Q, in an approachrelying on boundedness of relative errors by some small constant �# we can expectto be able to restrict calculations in r space to a �nite interval even in the limitQ! 0.To make this expectation somewhat more explicit, in the following we look atthe contribution  (Q)peak coming from the \peak" term for a function  (r) of rangeR, i. e. for a function  (r) that may be neglected for r > R without incurring arelative error larger than �#; our aim is to estimate the range R(Q) of  (Q)(r) sothat  (Q)(r) must be considered on the grounds of �# only for r < R(Q). To thisend, in the convolution integral eq. (2) we neglect the \regular" term as well as thecontributions coming from the \peak" term outside of the main maximum, and wemake the simple approximation of replacing the main peak of sin(Q (r0�r))=(r0�r)by a rectangle of equal width and area:sinQ(r0 � r)r0 � r =) Q2 ��jr0 � rj � �Q� (3)97



Mathematical Supplement D.1 The Q-potential in r-spaceWith this and restricting integration to  's domain, viz. r < R, only, we have (Q)peak = � 1�r RZ0 dr0  (r0) Q2 ��jr0 � rj � �Q�= � Q2� rmin(R;r+ �Q )Zmax(0;r� �Q )dr0 r0  (r0) (4)
where the integral is taken to vanish if r�(�=Q) > R; again, for Q!1 we readily�nd  (Q)peak ! �f . For very small Q, on the other hand, the integral's bounds are,of course, 0 and R; assuming that  does not di�er wildly from its mean value forr 2 [0; R], neglecting  (Q)(r) is compatible with �# for r > R(Q), where R(Q) / Qis obtained from Q2� R(Q) RZ0 dr0 r0 = QR24� R(Q) = �# (Q! 0) (5)(but note that the neglected terms, the \regular" contribution to  (Q)(r) in par-ticular, enforce R(Q) � R).The behavior for intermediate values of Q is, of course, more complicated;shortly before the integration region of eq. (4) spans the whole of [0; R], how-ever, we must have r� (�=Q) > 0 and r+ (�=Q) > R for r � R(Q). Inserting thisinto eq. (4), by a reasoning analogous to that leading to eq. (5) we immediately�nd Q2� R(Q) RZR(Q)� �Qdr0 r0 = Q4� R(Q) �Q2 � �R(Q) � �Q�2� = �# : (6)This is a quadratic equation for R(Q) in terms of R and �#; ignoring terms oforder O(p�#) and depending on the value of Q, the R(Q) so found lies betweenR+ (�=Q) and �=Q, where the latter applies to very small Q.With these approximate results for  (Q)peak we are now in a position to �nd anexplicit estimate for the maximum value of R(Q) as Q is varied from +1 to 0: thetransition from intermediate Q, where eq. (6) applies, to the regime of eq. (5) takesplace when the integration's lower bound in eq. (4) for evaluating  (Q)(R(Q)) �rstbecomes 0, and the estimates for R(Q) as obtained from eq. (5) or from eq. (6) willthen coincide. We thus havemax0<Q<1R(Q) = �Q = QR24� �# ;98



Mathematical Supplement D.1 The Q-potential in r-spacewhich is easily evaluated to1 max0<Q<1R(Q) = R2p�# : (7)Taking into account that �# is supposed to be a small quantity hardly greaterthan 10�2 in typical calculations, we thus see that  (Q)(r) is indeed not only muchlonger ranged than  (r) but has to be considered over an r range much larger thanthe domain of  (r) if numerical errors resulting from the truncation of Fouriertransformations in r space are not to render the results' accuracy incompatiblewith �#.Thus it seems that an implementation of hrt in a formulation relying on Fouriertransforms to implement the core condition might well be feasible, at least formodest values of �#; but in such an approach not only the cut o� potential w(Q)but also more complicated functionals of w(Q) must be accomodated, and someof these are by necessity a�ected by at least partial cancellation2; this makesit impossible to determine the domain of integration in Fourier transformationsbeforehand in a way analogous to the estimates leading up to eq. (7). If, indeed,such an approach were to be used in hrt, it is not obvious how one might ensurelocal errors to remain bounded by �# without providing for potentially repeatedadjustment of the parameters of the Fourier transform in accordance with theresults of monitoring the behavior of appropriate functions for large r, therebyrendering Fast Fourier Transform libraries, and the excellent FFTW code [88] inparticular, largely useless. Furthermore, as the properties of the full potential onlength scales comparable to � must not be lost, the step size �r remains �xedthroughout the calculation so that a change in the r range considered is invariablyaccompanied by a corresponding change in the number of function values in thecalculation, a procedure not necessarily unproblematic; also, the question of anappropriate choice for the grid for representing ~ (Q)(k) in Fourier space has notbeen addressed so far.Thus, while a formulation of hrt with a closure depending on quantities bothin real space and in Fourier space can conceivably be implemented, the long-rangedness introduced by the cut-o� procedure de�ned in eq. (2.4) certainly ren-ders the numerics much more involved and opens up a whole new suite of problemsregarding Fourier transformations of cut-o� a�ected quantities; at present, and inthe light of the limitations of hrt in its current formulation as highlighted insection 2.4 and chapter 5, it is not clear that the improvements from the moreappropriate closure relations then possible can be expected to justify the imple-mentational e�ort.1 In eq. (7), the factor 1=2 is, of course, completely insigni�cant and a mere artifact of the crudeapproximation of eq. (3).2 Consider, e. g., the modi�ed direct correlation function in the critical region.99



Mathematical Supplement D.2 Core condition, consistency via ODEsD.2. Implementation of the core condition andthermodynamic consistency by ordinarydi�erential equationsWith the ansatz of eq. (2.15), implementation of both the core condition (2.14)and thermodynamic consistency as embodied in the compressibility sum-rule (2.13)reduces to the correct choice of the expansion coe�cients (Q)n , n � 0; as was �rstshown in [6], for the loga/orpa-like closure this can be achieved without relyingon costly and precarious Fourier transformations (cf. section D.1). In this sectionwe present an analogous scheme, closely following but somewhat extending thecalculations �rst reported in [6] and later generalized to non-hard sphere referencesystems [2, 29]; just as [6] we start by assuming that both conditions, viz. eqs. (2.14)and (2.13), already hold for the reference system; furthermore, in the following wetake convergence of sums and integrals as granted so that we may freely change theorder of these operations as well as of any derivatives; in�nite sums are interpretedin the obvious way; and the space spanned by the basis functions un(r; %), jfungj =@0, is required to be su�ciently general (v. i.); note that the general result is notcompatible with only a �nite number Ncc of these basis functions.As the core condition must be met for Q = 1 (or, numerically, for Q = Q1),this will also be the case if, and only if, the pair distribution function's derivativewith respect to Q also vanishes for all r 2 [0; �(%)[; with the oz relation (2.8) in theform ~h(Q) = �(1=%) � (1=%2 ~c(Q)2 ) and swapping the integration from the inverseFourier transform and the di�erentiation with respect to Q this readily yields
0 = @ g(Q)(r; %)@Q / @@Q 1Z0 dk k sin krc(Q)2 (k; %)= 1Z0 dk k sin kr @@Q �c(Q)2 (k; %)��1; r < �(%) ;

as the above involves the derivative of a term a�ected by the discontinuity of~c(Q)2 (cf. the de�nition (2.11) of C(Q)), we have to distinguish two parts of theintegration domain:
~c(Q)2 (k; %) = ( ~C(Q)(k; %) � ~�(k; %) : k < Q~C(Q)(k; %) : k > Q ;100



Mathematical Supplement D.2 Core condition, consistency via ODEsso that@@Q�c(Q)2 (k; %)��1 = � �(Q� k)� ~C(Q)(k; %) � ~�(k; %)�2 + �(k �Q)� ~C(Q)(k; %)�2! @ ~C(Q)(k; %)@Q+ ~�(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� �(k �Q)= � 1�~c(Q)2 (k; %)�2 @ ~C(Q)(k; %)@Q+ ~�(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� �(k �Q) :From eq. (2.15), however, the Q-derivative of ~C(Q) is easily evaluated to@ ~C(Q)(k; %)@Q = 1Xn=0 ~un(k; %) @(Q)n (%)@Q ; r < �(%) ;and combining all these expressions and interchanging integration and summationwe obtain 1Xn=0 @(Q)n (%)@Q 1Z0 dk k ~un(k; %)�~c(Q)2 (k; %)�2 sin kr= Q ~�(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� sinQr ; r < �(%) :In this equation, the free variable r appears as sinQr on the right hand side butunder the integral, as sin kr, on the left hand side; in order to extract the odesfor the expansion coe�cients (Q)n (%), we now multiply both sides by3 4� r uj(r),j � 1, and integrate over 0 < r < �(%); by once more changing the order of theintegrations and taking into account eq. (F.2) we immediately recover the Fouriertransform of uj :Xn=0 @(Q)n (%)@Q 1Z0 dk k2 ~uj(k; %) ~un(k; %)�~c(Q)2 (k; %)�2= Q2 ~�(Q; %) ~uj(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� ; j � 1:3 Note that, in the limit of short potential range, i. e. for the potential vcore(r) considered insub-section 5.2.1, with the usual choice of u0 / w the following considerations are valid alsofor j = 0. 101



Mathematical Supplement D.2 Core condition, consistency via ODEsThus we arrive at the result that the core condition is completely equivalent tothe combination ofgref(r; %) = 0 for r < �(%) and1Xn=0 Î(Q)[~uj(k; %) ~un(k; %); %] @(Q)n (%)@Q= Q22�2 ~�(Q; %) ~uj(Q; %)~C(Q)(Q; %) � ~C(Q)(Q; %)� ~�(Q; %)� ; j � 1 ; (8)
the symbol Î so introduced | a convenient notation we will heavily rely on insection D.3 | we de�ne asÎ(Q)[ (k; %); %] = 12�2 1Z0 dk k2  (k; %)�~c(Q)2 (k; %)�2 ; (9)where  (k; %) is an arbitrary spherically symmetric function (extension to non-rotationally invariant  (~k; %) is straightforward [26, 27] but will not be consideredhere; note the discontinuity at k = Q in the Î(Q)-integrand due to the presence of~c(Q)2 rather than the continuous ~C(Q), v. i. section D.3).So far we have only made use of the core condition, and only r values insidethe core have entered the derivation of eq. (8); however, under the assumptionsstated at the beginning of this section u0(r; %) has an expansion inside the core interms of the uj(r; %), j � 1, and the generalized matrix equation just derived (orits truncation to Ncc+1 basis functions) cannot be invertible. On the other hand,the one additional real parameter can easily be �xed by imposing an additionalconstraint on the expansion coe�cients (Q)n (%), n � 0; for the hrt-pde withthe closure (2.15) it is, of course, the compressibility sum-rule (2.13) itself thatprovides the information necessary to uniquely determine all the (Q)n (%), n � 0,provided the un(r), n � 1, are linearly independent in ]0; �(%)[; inserting thede�nition (2.11) into eq. (2.13) we �nd~C(Q)(0; %) = ~cref2 (0; %) + ~�(0; %) + 1Xn=0 (Q)n (%) ~un(0; %) = �@2A(Q)(%)@%2 ;and again assuming that this already holds for the reference system it is su�cient toconsider the above relation's derivative with respect toQ. Thus the compressibilitysum-rule (2.13) turns out completely equivalent to~Cref(0; %) = �@2Aref(%)@%2 and@(Q)0 (%)@Q = ��(Q)(%)� 1Xn=1 @(Q)n (%)@Q ~un(0; %) ; (10)
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Mathematical Supplement D.3 Approximation for @Î(Q)=@Q-integralswhere we have made use of the normalization (2.16) and the symbol �(Q)(%) ofeq. (2.17). | Eq. (10) now allows us to eliminate (Q)0 (%) from the core condition(8), which directly leads to eq. (2.18), while the initial condition (2.19) merelyexpresses the equivalence of the reference system with the system at in�nite cut-o�, i. e. c(1)2 = cref2 .By following the derivation of eqs. (8), (10) and (2.18), we also �nd what prop-erties the set of basis functions must have in addition to the uj(r; %) vanishingfor r > �(%) and j � 1; these requirements turn out to be remarkably moderate:indeed, for the combination of eqs. (8) and (10) to uniquely determine all the ex-pansion coe�cients it is su�cient that the uj(r; %), j � 1, be linearly independenton ]0; �(%)[; neither normalization nor orthogonality are required, and the latterconcept is not even de�ned so far as we have not cared to introduce an innerproduct in the function space at hand. On the other hand we need a metric ifwe want to speak of convergence of the expansion (2.15) for C(Q)(r; %), and for itsvalidity the space spanned by the uj(r; %), j � 1, must lie dense in some appro-priate Banach space over ]0; �(%)[, a natural choice being L2([0; �(%)]). It is thussu�cient to let uj(r; %), j � 1, be a polynomial of degree j�1 within the core; theremaining considerable amount of freedom can still be used to optimize the basisfunctions' numerical properties, cf. section C.2.Another point worth making concerns the way a description of the referencesystem that is not thermodynamically self-consistent may be used in hrt: Whileapproximations like, e. g., the Percus-Yevick one do yield vanishing g(Q)(r; %) forr < �(%) as called for by eq. (8), they fail to also meet the requirements of eq. (10);on the other hand, as the derivation of the matrix equation (2.18) detailed in thissection hinges on the compressibility sum-rule's validity for the reference systemwe immediately conclude that the free energy for in�nite cut-o� Q (or at �niteQ = Q1, for that matter, taking into account the zero-loop terms of eq. (2.11))should be obtained by the compressibility route so that the pre-condition of eq. (10)holds again.
D.3. Approximation for Q-dependence of core-conditionintegralsConsidering the ideal-gas term �1=% in ~c(Q)2 and large k only it is evident that theoscillatory nature of the basis functions' Fourier transforms ~un will immediatelycarry over to the integrands of the Î(Q)-terms in eqs. (2.18) and (8), renderingthese integrations slowly convergent and certainly no less problematic than theFourier transformations they allow to avoid. In this section we want to discussan approximation that makes an implementation along the lines of section D.2feasible by bringing the number of Î(Q)-integrations necessary down to only oneper density; that even the remaining initial integration still takes up a considerable103



Mathematical Supplement D.3 Approximation for @Î(Q)=@Q-integralsfraction of the program's execution time in a typical application of the implemen-tation sketched in chapter 4 (unless an analytical short-cut is taken, v. i., q. v.section C.2) dramatically underlines the practical importance of adopting such anapproximation.This approximation is simple enough: rather than re-evaluating the Î(Q)-inte-grals for every Q, it is su�cient to calculate only the derivative with respect toQ and integrate the resulting odes alongside the hrt-pde; assuming interchange-ability of di�erentiation and integration and taking into account the integrand'sdiscontinuity at k = Q due to the appearance of ~c(Q)2 instead of the continuous~C(Q), from eq. (9) we easily �nd@ Î(Q)[ (k; %); %]@Q= 1Z0 dk k2  (k; %)2�2 @@Q  �(Q� k)� ~C(Q)(k; %)� ~�(k; %)�2 + �(k �Q)� ~C(Q)(k; %)�2!= 1Z0 dk k2  (k; %)2�2  �2�(Q� k)� ~C(Q)(k; %) � ~�(k; %)�3 + �2�(k �Q)� ~C(Q)(k; %)�3! @ ~C(Q)(k; %)@Q+ 1Z0 dk k2  (k; %)2�2  1� ~C(Q)(k; %)� ~�(k; %)�2 � 1� ~C(Q)(k; %)�2! �(k �Q)= �2 1Xn=0 Î(Q) " (k; %) ~un(k; %)~c(Q)2 (k; %) ; %# @(Q)n (%)@Q+  (Q) Q22�2 2 ~C(Q)(Q; %) ~�(Q; %)� �~�(Q; %)�2� ~C(Q)(Q; %)�2 � ~C(Q)(Q; %)� ~�(Q; %)�2where  (k; %) once more plays the rôle of an arbitrary spherically symmetric func-tion and we have used eq. (2.11) to evaluate the Q-derivative of ~C(Q) in the laststep. Of these terms, the one stemming from the change in the discontinuity'slocation, dubbed the `local' contribution in [6], is easily evaluated at any Q as itinvolves functions evaluated at k = Q only; by way of contrast, the `non-local'term related to the expansion coe�cients' change again involves an integral of thesame type as before. Note that the latter will, in fact, converge somewhat morereadily than Î(Q)[ ; %] itself due to the large-k behavior of the factor ~un(k; %) in theintegrand; still, its evaluation will just the same be plagued by near-cancellationof the integrand's oscillations' contributions, and performing the integrations atevery Q would incur prohibitive computational cost. | Even though it is far fromclear that the Î(Q)-term's magnitude is small when compared to that of the localterm, it is convenient to adopt the strategy �rst introduced in [6] and seeminglyunvaryingly used ever since when implementing the core condition and thermody-namic consistency along the lines of section D.2, i. e., to simply drop the non-local104



Mathematical Supplement D.3 Approximation for @Î(Q)=@Q-integralsterm with its numerically expensive and cumbersome integrations, leading to theapproximation@@Q Î(Q)[ (k; %); %] =)  (Q; %) Q22�2 2 ~C(Q)(Q; %) ~�(Q; %)� �~�(Q; %)�2� ~C(Q)(Q; %)�2 � ~C(Q)(Q; %)� ~�(Q; %)�2 :(11)Of course, eq. (11) is not well justi�ed a priori; as pointed out in [6], it isonly by checking that the resulting pair distribution function g(Q)(r; %) remainssmall within the core | which is feasible only in the limits of eq. (2.3) due to thelong-rangedness of the �(Q)(r; %) for intermediate Q (cf. section D.1) | and byindependently verifying thermodynamic consistency that the above approximationmay be found admissible (q. v. section 5.2).In the above calculation we have used an arbitrary function  (k; %) for Î(Q)to operate on, whereas only certain combinations of the basis functions' Fouriertransforms are considered in eqs. (2.18) and (8); it is well conceivable that theseintegrals may be amenable to an analytical short-cut so that the numerical inte-gration has to be extended over only a small k-range. E. g., for the basis functionsof section C.2 this is the case whenever the leading term in ~w(k; %) (and thus,of basis function ~u0(k; %)) is of the form sin(ak + b)=k2; replacing ~c(Q)2 (k; %) by�1=% and considering leading terms only, for large k the integral can formallysolved and evaluated numerically by the use of a continued-fractions series for thesine integral function. Still, such an approach obviously depends on the potentialchosen (which has certain implications for the implementation of chapter 4, cf.section C.1), and even where the analytical short-cut is available, its applicabilityonly for large k renders this mode of evaluation still too costly to repeat at everystep in Q and %.Also we should point out that, with the usual choice of Q1 � 102=�, extendingthe initial integration only up to k = Q1 is completely unsatisfactory and can-not be expected to lead to an acceptable implementation of core condition andthermodynamic consistency.
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E. Tables
On the pages to follow we collect some of the numerical results we obtained intabular form.
E.1. Critical temperature and density for square wellsof variable range with 7 + 1 basis functionsIn this section we present the critical temperature Tc and critical density %c ofsquare well systems for various values of � as predicted by hrt with Ncc = 7(other parameters as in section 4.8). These are the data underlying �g. 5.4, cf. thediscussion in section 5.6.� kB Tc=� %c �31.06 1.247607(49) 0.415(25)1.065 1.116157(22) 0.430(20)1.07 0.983168(38) 0.445(25)1.09 1.304243(35) 0.450(30)1.1 1.1359488(47) 0.460(20)1.11 1.0342880(46) 0.450(20)1.13 1.0969009(50) 0.470(10)1.14 0.9328253(47) 0.480(20)1.15 1.239469(31) 0.430(20)1.16 1.1441553(49) 0.420(10)1.17 1.095618(37) 0.455(15)1.18 0.971344(31) 0.460(20)1.19 1.058746(31) 0.420(20)1.2 0.9638977(44) 0.415(15)1.21 0.959198(31) 0.460(20)1.22 0.8355684(43) 0.490(10)1.24 1.003369(49) 0.415(15) (contd.)106



Tables E.1 Square wells with variable � and Ncc = 7� kB Tc=� %c �31.45 0.938257(24) 0.300(10)1.455 0.935561(50) 0.295(15)1.46 0.932264(29) 0.295(15)1.465 0.9280290(47) 0.300(10)1.48 0.985574(46) 0.280(10)1.485 0.99222(25) 0.280(20)1.49 0.999573(37) 0.275(15)1.495 1.007487(46) 0.275(15)1.5 1.015479(49) 0.275(15)1.505 1.023449(50) 0.275(15)1.51 0.929114(37) 0.275(15)1.515 0.933961(50) 0.270(10)1.52 0.939642(25) 0.270(10)1.525 0.94567(25) 0.270(20)1.53 0.952911(31) 0.265(15)1.535 0.960687(50) 0.265(15)1.91 0.421395(11) 0.270(10)1.92 0.410502(11) 0.270(10)1.939 0.399557(11) 0.270(10)1.94 0.398622(11) 0.270(10)1.941 0.397687(11) 0.270(10)1.942 0.396741(11) 0.270(10)1.943 0.395785(11) 0.270(10)1.945 0.393867(11) 0.270(10)1.946 0.392913(11) 0.275(15)1.947 0.391933(11) 0.270(10)1.948 0.390958(11) 0.275(15)1.949 0.389981(11) 0.275(15)1.95 0.388988(11) 0.275(15)1.951 0.387993(11) 0.275(15)1.952 0.386980(11) 0.275(15)1.953 0.385967(11) 0.275(15)1.954 0.384935(11) 0.275(15)1.955 0.383903(10) 0.280(10)1.956 0.382871(10) 0.280(10)1.958 0.380773(10) 0.280(10)1.959 0.379705(12) 0.280(10)1.96 0.378640(10) 0.280(10)1.97 0.381476(10) 0.275(15)1.975 0.385001(10) 0.270(10)1.98 0.380143(10) 0.270(10)1.985 0.359343(10) 0.280(10)1.99 0.3541496(99) 0.285(15) (contd.)107



Tables E.1 Square wells with variable � and Ncc = 7� kB Tc=� %c �31.995 0.3487383(98) 0.285(15)2.0 0.3430749(97) 0.290(10)2.005 0.3417560(97) 0.290(10)2.01 0.3353786(96) 0.295(15)2.015 0.3530471(95) 0.275(15)2.02 0.3489358(94) 0.280(10)2.025 0.3447285(94) 0.280(10)2.03 0.3337710(93) 0.285(15)2.035 0.3347087(92) 0.280(10)2.04 0.3298508(91) 0.285(15)2.05 0.3321901(90) 0.275(15)2.06 0.3236569(89) 0.285(15)2.07 0.3054373(87) 0.295(15)2.08 0.2949694(86) 0.315(15)2.09 0.3121407(85) 0.280(10)2.1 0.3047839(83) 0.285(15)2.12 0.2971047(81) 0.285(15)2.14 0.2820428(78) 0.295(15)2.16 0.2801630(76) 0.280(10)2.18 0.269303(13) 0.290(10)2.2 0.2634137(79) 0.285(15)2.21 0.2584991(92) 0.290(10)2.22 0.2473085(70) 0.300(10)2.23 0.2566864(92) 0.275(15)2.24 0.2524211(95) 0.280(10)2.25 0.2448761(92) 0.285(15)2.26 0.240805(10) 0.285(15)2.28 0.2325036(64) 0.285(15)2.3 0.2334408(62) 0.275(15)2.32 0.2234691(60) 0.275(15)2.33 0.2234528(92) 0.275(15)2.34 0.2173783(59) 0.275(15)2.36 0.2112648(57) 0.275(15)2.38 0.2075895(56) 0.270(10)2.4 0.2017438(54) 0.270(10)2.42 0.1974284(53) 0.270(10)2.44 0.1908109(52) 0.275(15)2.46 0.1871306(50) 0.270(10)2.48 0.1784964(49) 0.275(15)2.5 0.1780193(48) 0.270(10)2.52 0.1705328(47) 0.270(10)2.54 0.1647649(45) 0.275(15)2.55 0.1635040(55) 0.275(15) (contd.)108



Tables E.1 Square wells with variable � and Ncc = 7� kB Tc=� %c �32.56 0.1610674(44) 0.275(15)2.57 0.1587360(55) 0.270(10)2.58 0.1564089(43) 0.275(15)2.59 0.1559131(49) 0.270(10)2.6 0.1537577(42) 0.270(10)2.62 0.1499922(41) 0.270(10)2.64 0.1460387(40) 0.270(10)2.66 0.1401607(39) 0.275(15)2.68 0.1402388(38) 0.270(10)2.7 0.1349930(38) 0.270(10)2.72 0.1345349(37) 0.270(10)2.74 0.1292534(36) 0.270(10)2.75 0.1276306(61) 0.270(10)2.76 0.1278133(35) 0.270(10)2.78 0.1252788(34) 0.270(10)2.8 0.1224374(34) 0.265(15)2.82 0.1190511(33) 0.270(10)2.84 0.1171284(32) 0.265(15)2.86 0.1152180(31) 0.265(15)2.88 0.1123890(31) 0.265(15)2.9 0.1111786(30) 0.260(10)2.92 0.1087431(30) 0.260(10)2.94 0.1067793(29) 0.260(10)2.96 0.1051046(28) 0.260(10)2.98 0.1029332(28) 0.260(10)3.0 0.1013445(27) 0.260(10)3.025 0.0989655(31) 0.260(10)3.05 0.0967575(46) 0.260(10)3.075 0.0946991(31) 0.260(10)3.1 0.0934158(46) 0.255(15)3.125 0.0908478(31) 0.255(15)3.15 0.0879250(23) 0.260(10)3.175 0.0869965(31) 0.255(15)3.2 0.0848534(23) 0.250(10)3.225 0.0823944(31) 0.255(15)3.25 0.0810376(24) 0.255(15)3.275 0.0784332(31) 0.255(15)3.3 0.0764185(24) 0.255(15)3.325 0.0748260(31) 0.255(15)3.35 0.0735229(24) 0.250(10)3.375 0.0710968(31) 0.260(10)3.4 0.0697437(24) 0.260(10)3.425 0.0680145(31) 0.255(15) (contd.)109



Tables E.2 Square wells with variable � and Ncc = 5� kB Tc=� %c �33.45 0.0662378(24) 0.260(10)3.46 0.0656219(31) 0.255(15)3.47 0.0650055(31) 0.255(15)3.48 0.0643829(31) 0.255(15)3.49 0.0638092(31) 0.255(15)3.5 0.0631128(24) 0.260(10)3.51 0.0625702(31) 0.260(10)3.52 0.0619354(31) 0.260(10)3.53 0.0613312(31) 0.260(10)3.54 0.0607468(15) 0.260(10)3.55 0.0601831(24) 0.260(10)3.56 0.0595261(15) 0.260(10)3.58 0.0586105(15) 0.260(10)3.6 0.0572647(15) 0.260(10)
E.2. Critical temperature and density for square wellsof variable range with 5 + 1 basis functionsWe here list the results on the critical temperature's �-dependence in sws as ob-tained with Ncc = 5 (other parameters as in section 4.8) as well as estimates of thereciprocal of �max;#, the lowest temperature where the program terminates nor-mally, where available. The reader will notice not only that a larger fraction of theparameter range 1 < � � 2 is accessible to hrt than for Ncc = 7 (cf. section E.1)but also that the uctuations in the critical temperatures are considerably higher.In the light of section 5.6 the behavior of �max;# around � � 1:7 is of particularinterest, and the small-� data, showing dramatically falling �max;# for � ! 1+,provides some support for the considerations of sub-section 5.2.1.� kB Tc=� 1=�max;# �1.01 | 3.414(45)1.02 | 1.574(54)1.03 | 0.9884(38)1.04 | 0.861(16)1.05 | 0.7232(41)1.06 | 0.6739(41)1.07 | 0.6432(32)1.08 | 0.563088(16)1.09 0.5303591(17) 0.5255(39) (contd.)110



Tables E.2 Square wells with variable � and Ncc = 5� kB Tc=� 1=�max;# �1.095 0.56064(15) |1.1 0.592238(18) |1.105 0.62573(19) |1.11 0.663002(88) 0.47(16)1.12 0.75075(23) 0.379(56)1.1225 0.581899(81) |1.125 0.592354(63) |1.13 0.613467(68) |1.135 0.635316(81) 0.598(27)1.14 0.658241(74) |1.15 0.708210(80) |1.16 0.76849(37) 0.590(35)1.18 0.784135(61) 0.57(15)1.185 0.81496(33) |1.19 0.84992(10) 0.650(59)1.195 0.887887(77) 0.690(24)1.2 0.93015(11) |1.205 0.977566(94) 0.750(83)1.2075 0.78558(30) |1.21 0.795868(82) |1.22 0.838574(84) 0.583(83)1.23 0.886407(94) |1.24 0.943005(98) |1.26 0.95179(10) |1.27 1.01017(10) |1.28 1.07919(10) |1.29 1.16129(13) |1.2925 1.18416(34) |1.295 0.965582(91) 0.741(92)1.3 0.984485(87) |1.32 1.07380(10) |1.34 1.07236(11) 0.87(13)1.36 1.17318(10) |1.38 1.087623(85) |1.4 1.15735(11) |1.41 1.19872(34) |1.42 1.24397(10) |1.43 1.19174(34) |1.44 1.228172(92) |1.45 1.26693(39) |1.46 1.305492(99) |1.47 1.20562(33) |1.48 1.23139(17) | (contd.)111



Tables E.2 Square wells with variable � and Ncc = 5� kB Tc=� 1=�max;# �1.49 1.25888(35) |1.5 1.28732(17) |1.52 1.29559(17) |1.54 1.33876(18) |1.55 1.35624(35) |1.56 1.33770(16) |1.57 1.35591(17) 1.008(91)1.575 1.36448(17) 1.019(93)1.576 1.36599(17) 1.181(69)1.578 1.36902(17) 1.181(69)1.58 1.37218(17) 1.181(69)1.59 | 1.3832(96)1.6 | 1.468364(65)1.608 | 1.49403(74)1.616 | 1.8071(10)1.625 | 1.9392(94)1.65 | 2.289(13)1.675 | 2.494(14)1.7 | 2.7686(11)1.725 | 2.891(17)1.75 | 2.972(17)1.775 | 2.793(15)1.8 | 2.7153(16)1.82 | 2.786(17)1.84 | 2.588(11)1.86 | 2.401(13)1.88 | 2.2920(68)1.89 | 2.174(14)1.895 | 2.088(13)1.896 2.13667(21) 1.94(19)1.897 2.13847(21) 1.94(19)1.898 2.14029(21) 1.94(19)1.9 2.14415(11) 1.94(19)1.92 2.18069(86) 1.59(22)1.94 2.27428(88) 1.68(25)1.96 2.31621(86) |1.97 2.33803(87) |1.98 2.36061(89) |1.99 2.4996(10) |2.0 2.52733(25) |2.02 2.5860(10) |2.04 2.7041(11) |2.06 2.7748(11) | (contd.)112



Tables E.2 Square wells with variable � and Ncc = 5� kB Tc=� 1=�max;# �2.08 2.9519(12) |2.1 3.03503(30) |2.2 3.6959(31) |2.3 4.41721(49) |2.4 5.22450(57) |2.5 5.887(21) |2.6 6.66916(76) |2.7 7.44070(83) |2.8 8.18652(87) |2.9 8.92347(96) |2.94 9.2563(39) |2.96 9.4069(40) |2.98 9.5890(40) |3.0 9.7371(10) |3.02 9.9620(42) |3.04 10.1193(43) |3.06 10.3178(44) |3.1 10.6301(11) |3.2 11.7840(12) |3.3 12.9604(14) |3.4 14.2922(15) |3.5 15.8032(17) |3.6 17.4047(19) |3.7 19.1095(21) |3.8 20.7190(22) |3.9 22.4488(25) |4.0 24.1788(26) |
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F. Notation, Conventions, and Abbreviations
In this appendix we summarize the mathematical, notational and presentationalconventions used throughout this text, complete with pointers to the symbols'de�nitions and short descriptions, as well as some of the abbreviations used.Much of the presentation below is in tabular form but interspersed in the text;in these lists, the �rst column gives the quantity to be de�ned, the second col-umn (which may be missing) references the equation introducing it, and the thirdprovides a short description of the quantity under consideration.
F.1. Notation
F.1.1. Modi�ers for symbolsIn view of the pivotal rôle a hierarchy of physical systems plays for the develop-ment of hrt it is natural to modify a given symbol's meaning by various super-and subscripts indicating the system or the thermodynamic state it refers to; inparticular, for any quantity x, the following quantities are de�ned:x# quantity x in the context of numerical evaluation~x three-dimensional Fourier transform of xxc x at the system's critical pointxv x at the binodal's vapor branchxl x at the binodal's liquid branchxy x for the system indicated by y; in particular, as specialcases we have:x(Q) x for the system with cut-o� Qxv x for the system with potential vConsequently, xv(Q) and x(Q) are equivalent. | Among the labels that can takethe place of y in the above list, the following are used frequently:114



Notation, Conventions, and Abbreviations F.1 Notationref (2.1) reference systemhs (2.1) hard sphere systemcore (3.5) system where w vanishes for r > �sw (3.1) square well systemst (3.4) general multi-step systemst0 (3.3) general multi-step system (di�erent parametrization thanfor \st")hcy (3.2) hard-core Yukawa systemNote that the parameters these potentials depend on may be added in brackets;for the parameters appropriate for some of the potentials listed above, see therespective de�ning equations.F.1.2. SymbolsThe following sub-sections list those of the symbols used in the text the de�nitionor meaning of which might not be self-evident, even though their use is standardpractice for the most part; we do, however, leave out some symbols that are usedonly in a short passage and should thus easily be identi�ed from context. Notethat these symbols may still be modi�ed according to sub-section F.1.1 where thismakes sense, and that di�erent entities of the same kind may be distinguished byindices.F.1.2.1. Greek symbols� (2.17) auxiliary quantity, related to third-order partial derivativeof A; table 2.1 only: critical exponent.� 1=kB T ; table 2.1 only: critical exponent.�max maximum � amenable to hrt�max;# maximum � accessible to the implementation of chapter 4 table 2.1 only: critical exponentn (2.15) expansion coe�cients in closure�Q step size in Q�% step size in %�Qj1 limit of the pre-determined step sizes for in�nite cut-o�in the implementation of main part solver discussed insub-section 4.6.2� Dirac generalized function; parameter of potential vst0 ;table 2.1 only: critical exponent.�0 sub-section 2.4.1 only: a hypothetical small error intro-duced in 0� energy-like potential parameter115



Notation, Conventions, and Abbreviations F.1 Notation�# pivotal parameter governing the numerics, characteristicof maximum relative error admissible in any step" (A.3) auxiliary quantity�" (A.3) "� 1� table 2.1 only: critical exponent.� Heaviside function�T (A.4) isothermal compressibility� dimensionless potential parameter indicative of the rangein r-space of some component of the potential� table 2.1 only: critical exponent.% particle number density� (2.1) hard-core diameter� (2.5) �� w an arbitrary functionF.1.2.2. Hebrew symbols@0 cardinality of Z@1 cardinality of RF.1.2.3. Latin symbolsA free energyA (2.10) modi�ed free energyC (2.11) modi�ed c2cn n-particle direct correlation functiond0 (2.25) sub-section 2.3.2 only: auxiliary function related to thetotal derivative of f(Q; %) with respect to Q, of order O(1)for large "(Q; %).d0i (A.5) coe�cients of the pde in the form (2.23)f (A.1) auxiliary function for re-writing the hrt-pde in a formsuper�cially resembling a quasi-linear oneg pair distribution functionh total correlation functionÎ (D.9) short-hand notation for certain integrals in Fourier spacewith discontinuous integrandk wavenumberkB Boltzmann's constantNcc number of basis functions vanishing outside the coreN% the number of %-intervals in the density grid, which is oneless than the number of % values considered116



Notation, Conventions, and Abbreviations F.2 Mathematical conventionsO(� � �) terms of the order indicatedp[x]y customization parameters of the numerical procedure forcontrolling some quantity x via some criterion identi�edby the label yQ cut-o� wavenumberQ0 smallest Q considered numericallyQ1 largest Q considered numericallyr distanceR the set of realsT thermodynamic temperatureu (C.1) basis functions in the expansion (2.15) for C.v interparticle potentialw (2.2) perturbational part of potential v(0)x section 4.6 only: a quantity monitored for choosing andassessing step sizes �Qy section 4.6 only: a quantity monitored for assessing con-vergence of corrector steps and indirectly a�ecting stepsizes �QZ the set of integersz inverse screening length of Yukawa potential; section 2.1only: fugacityF.1.2.4. Miscellaneousa / b proportionality of a and ba =) b replacement of a by b[a; b] closed interval extending from a to b]a; b[ open interval extending from a to bkxkQ (4.2) L1-norm of x on ]Q;1[As far as the notation for intervals is concerned, there are, of course, also themixed cases not mentioned in the above list.
F.2. Mathematical conventionsOne important convention regards the choice of constants in Fourier transforma-tions; restricting ourselves to the spherically symmetric case in three dimensions,for any function  (r) we de�ne the Fourier transform ~ (k) as~ (k) = 4�k Z 10  (r) sin(kr) r dr ; (1)117



Notation, Conventions, and Abbreviations F.3 Abbreviationsthus, the inverse transform is (r) = 12�2r Z 10 ~ (k) sin(kr) k dk : (2)
F.3. AbbreviationsIn the text we make use of a number of abbreviations, some of which are speci�cto this work while others are generally accepted in English prose or for the �eldof liquid theory but may be unfamiliar to some readers.apt2 second-order perturbation theorycas Computer algebra systemcf. confer, comparee. g. exempli gratia, for exampleet al. et alii, and others; et alibi, and elsewhereeos equation of statefd �nite di�erencefde fd equationfss �nite size scalinggcmc grand-canonical mcgemc Gibbs-ensemble mcgmsa generalized mean spherical approximationgh Grundke-Hendersonhcy hard-core Yukawahrt Hierarchical Reference Theoryhsvdw hard-sphere van-der-Waalsi. e. id est, that isloga Lowest-Order -Ordered Approximationmc Monte Carlomd molecular dynamicsmhnc modi�ed hypernetted chainode ordinary di�erential equationorpa Optimized Random-Phase Approximationoy Okumura-Yonezawaoz Ornstein-Zernikepde partial di�erential equationpy Percus-Yevickq. v. quod vide, which seescoza Self-consistent Ornstein-Zernike approximation118



Notation, Conventions, and Abbreviations F.4 Presentationsw square welltdsmc thermodynamic- or temperature-and-density scaling mcurl uniform resource locatorv. i. vide infra, see belowviz. videlicet, that is to say, namelyv. s. vide supra, see abovevs. versus, against, compared toyy Yang-YangNote that the plural of an abbreviation is consistently formed by appending -s.
F.4. PresentationEquations, tables, and �gures are numbered on a per-chapter basis, and referencesto them are displayed in the form (c:n), where c references the chapter and n isthe number within the current chapter; for references within the same chapter,only the number n is shown. The same applies, with the obvious modi�cations,to appendices, where c now is an uppercase letter.References to the literature are indicated as (lists of) numbers in brackets, re-ferring to the bibliography (appendix G). Note that, as much of the work reportedhere is in the process of also being published as [26, 27], we generally do not includereferences to those.Mono-spaced font is generally used for the main parts of our software (cf. chap-ter 4), for the names of programming languages and computer software, and inrepresenting the dialog with the Mathematica cas in appendix A.
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