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Kurzfassung

Wahrend andere Integralgleichungsmethoden zur Beschreibung thermodynami-
scher Systeme im kritischen Bereich ublicherweise versagen und teils iiberhaupt
kein, teils nur klassisches kritisches Verhalten zeigen, gelingt es der Hierarchical
Reference Theory (HRT) diese Einschrankungen durch Anwendung renormierungs-
gruppentheoretischer Konzepte zu iiberwinden und in vielen Fallen sowohl die
unmittelbare Umgebung des kritischen Punktes als auch die bei unterkritischen
Temperaturen auftretenden Zweiphasengebiete erfolgreich zu beschreiben, ohne
dabei jedoch strukturelle Information auf kleinen Langenskalen zu verlieren. Unter
Beschrankung auf den Fall einfacher Einkomponentenfluide untersuchen wir die
iibliche Formulierung der HRT mit einer Schliefungsbeziehung auf dem Zweiteil-
chenniveau im Geiste der Lowest-Order v-Ordered Approximation bzw. der dazu
aquivalenten Optimized Random-Phase Approzimation sowie die relative Bedeu-
tung verschiedener notiger Naherungen auf analytischem, semi-analytischem sowie
numerischem Weg; insbesondere erhellen wir den die Konvexitat der freien En-
ergie sicherstellenden Mechanismus und zeigen, dass er auch fiir die Steiftheit des
Gleichungssystems bei Temperaturen nahe der bzw. unterhalb der kritischen ver-
antwortlich ist. Ebenso diskutieren wir die sogenannte Entkoppelungsannahme,
die die Vernachlassigbarkeit gewisser Terme proportional zu dritten partiellen
Ableitungen der geeignet modifizierten freien Energie zum Inhalt hat, und be-
weisen die Instabilitat der Theorie in der gegenwartigen Formulierung fur vor-
wiegend repulsive Potentiale. Durch Anwendung der HRT auf Hartkugel-Yukawa-
und Square- Well-Systeme bestatigen wir die erwartete Potentialreichweitenab-
hangigkeit der Qualitat der Rechenergebnisse, beschaftigen uns mit Fragen der
Konvergenz und Angemessenheit der blof3 naherungsweise moglichen Berticksich-
tigung der Unmoglichkeit gegenseitiger Durchdringung der das Referenzsystem
konstituierenden harten Kugeln, untersuchen die Bedeutung der Randbedingun-
gen fur die Lage der Binodale und die numerische Stabilitat der diskretisierten
Gleichungen und betrachten die unphysikalischen Verschiebungen der kritischen
Temperatur, wie sie durch Unstetigkeiten im Storungsanteil des Potentials aus-
gelost werden. Die numerischen Untersuchungen erfolgen unter Zuhilfenahme un-
serer vollstandig modularen Neuimplementierung der Theorie, die programmtech-
nisch durch die Verwendung einer Metasprache und automatischer Codeerzeu-
gungsmethoden, materiell jedoch durch den zur Sicherung der numerischen Sig-
nifikanz jedes Berechnungsschrittes getriebenen Aufwand gekennzeichnet ist.



Abstract

Combining renormalization group theoretical ideas with the integral equation ap-
proach to fluid structure and thermodynamics, the Hierarchical Reference Theory
(HRT) is known to be successful even in the vicinity of the critical point and for
sub-critical temperatures for a wide variety of systems. Restricting ourselves to
the case of simple one-component fluids, we present analytical, semi-analytical and
numerical results on the usual formulation of HRT and the customary closure rem-
iniscent of the Lowest-Order v-Ordered Approrimation and the equivalent Opti-
mized Random-Phase Approzimation, investigating the necessary approximations’
significance for the numerical procedure. In particular, we clarify the mechanism
leading to a suppression of van der Waals loops and furthermore show that it gives
rise to the equations’ stiffness for close-to-critical and sub-critical temperatures;
we also discuss the so-called decoupling assumption related to the elimination of
terms proportional to third-order partial derivatives of a suitably modified free
energy, and we prove the theory’s instability for predominantly repulsive poten-
tials. Applying HRT to both hard-core Yukawa and square-well fluids we confirm
the trend of decreasing accuracy for narrower potentials, assess convergence and
appropriateness of an approximate implementation of the core condition, consider
the boundary conditions’ relevance for the binodal’s location and the numerical
procedure, and we highlight the réle of discontinuities in the potential’s pertur-
bational part in triggering unphysical shifts of the critical temperature predicted.
The numerical investigations are carried out by means of our re-implementation
of the theory in a fully modular software package relying heavily on the use of
a meta-language and code construction techniques and going to great lengths to
ensure the numerical soundness of the calculation.
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I. Introduction

In a large part of the density-temperature plane integral equation theories are
a reliable tool for studying thermodynamic and structural properties of, among
others, simple one-component fluids [1]; unfortunately, in the vicinity of a liquid-
vapor critical point integral equations are haunted by a host of difficulties leading
to a variety of shortcomings such as incorrect and non-matching branches of the
binodal, classical values at best for the critical exponents, or other deviations
from the correct behavior at the critical singularity [2]. Asymptotically close to
the critical point, on the other hand, renormalization group (RG) theory is the
instrument of choice for describing the fluid; in general, however, RG approaches
do not allow one to derive non-universal quantities from microscopic information
only, 7. e. from knowledge of the forces acting between the fluid’s particles alone.
One of the theories devised to bridge the conceptual gap between these com-
plementary approaches is the Hierarchical Reference Theory (HRT) first put for-
ward by Parola and Reatto [2-13]: In this theory the introduction of a cut-off
wavenumber () inspired by momentum space RG theory and, for every value of @,
of a renormalized potential U(Q)(T) means that only non-critical systems have to
be considered at any stage of the calculation; consequently, integral equations may
successfully be applied to every system with @ > 0, and critical behavior charac-
terized by non-classical critical exponents is recovered only in the limit ) — 0.
An especially noteworthy trait of HRT is that it allows for a determination of
structural and thermodynamic properties of various systems from first principles;
in contrast, a similar scheme known under the name of global renormalization
[14-17], originally developed by White and co-workers as an extension of Wilson’s
phase-space cell method [18] to the liquid state, while deemed computationally
much less demanding than HRT, typically relies on at least one parameter that
must be determined by a fitting procedure in order to correctly locate the critical
point. Another distinguishing feature of HRT is its generality; indeed, after some
early demonstration of the theory’s applicability to various one-component systems
the main focus of research shifted to the richer phase behavior of binary systems
[19-21], and the theory has also been used in the context of quantum systems
[22—24] or for the determination of an effective coarse-grained Hamiltonian to be
used in a ¢* RG theory [25]. Nevertheless, in the light of HRT’s high promise
and low penetration into the liquid physics community further study and critical



Introduction

assessment of this theory seem worthwhile, even and foremost in the case of simple
one-component fluids: indeed, it is in this comparatively simple setting that we
may gain important insights into the numerical side of the theory, and barring
special mechanisms relevant to some specific model system only any problems
uncovered here must be expected to haunt more advanced applications of HRT,
too.

In the work to be presented on the pages to follow! we set out to re-implement
HRT independently of earlier programs and to undertake a systematic exploration
of the computational nature of the problem posed by this particular theory; both
the scope of our software and the results it typically yields will be demonstrated by
applying HRT to two suitable types of model potentials, viz. the hard-core Yukawa
(HCY) system and the square-well (sw) fluid; with effectively only one parameter
each to vary, these systems provide convenient and popular test cases of liquid
state theories, and they have been studied extensively. The present contribution,
it should be noted, is the first application of HRT to SWs while this is one of the
preferred models for the authors of the global renormalization scheme mentioned
above [14-16].

Due to the large body of literature available on the HCY fluid and sws the more
recent of which will shortly be presented later on, and in view of some limita-
tions of HRT in its current formulation we cannot expect to gain new insight into
these model systems with a level of precision comparable to that of the more so-
phisticated simulation schemes. Instead, our focus of interest primarily lies on
some aspects of HRT’s numerical side and the role the potential’s range plays; as
far as the latter is concerned, the continuous nature of the HCY potential is in
stark contrast to the finite domain of the sSw interaction, and while the former, a
system previously studied by HRT [28], is expected to be computationally rather
unproblematic, the parametrization of the direct correlation functions in the usual
closure to the theory on the two-particle level is clearly inappropriate for sws in
part of the phase diagram at least; indeed, even for less pronouncedly short-ranged
potentials the computationally attractive but rather simlistic closure used almost
exclusively has repeatedly been invoked as explanation of unsatisfactory aspects
of HRT results [9, 11, 28, 29]. On the other hand, the main justification for using
this particular closure relation comes from the need to avoid explicit Fourier trans-
formations of quantities affected by the renormalized interparticle potential, with
obvious repercussions for the implementation of the core condition. The additional
approximations that this formulation of HRT necessitates raise further questions
that are hardly mentioned in the literature and generally deemed unproblematic;
in particular, the convergence properties of the correlation functions’ expansions
and the rale of certain terms routinely neglected by invoking the so-called de-
coupling assumption are certainly not clear a priori and deserve closer study, the
latter especially on account of the short-rangedness of the Sw potential. Unfor-
tunately, adoption of the decoupling assumption is dictated by the computational
need for an additional approximation regarding some integrals of poor convergence

1 Note that many of our results have also been summarized in the reports [26, 27]; in accordance
with appendix F we will generally not reference these in the following.
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Introduction

whereas thermodynamic consistency mandates violation of this very assumption;
not surprisingly, the resulting mathematical inconsistencies, not even mentioned
in the literature to the best of our knowledge, adversely influence the numerical
results as well as the theory’s range of applicability. The closure and the chosen
renormalization procedure — both coinciding with the usual choices for the kind
of systems we are interested in — are also to blame for other restrictions on HRT’s
possible use: in particular, the presence of discontinuities in the potential is found
to lead to unphysical shifts of the critical temperatures predicted, and we prove
the equations’ unconditional instability for predominantly repulsive inter-particle
forces. By way of contrast, the pathological behavior of the theory’s exact solu-
tion for high-compressibility thermodynamic states, here characterized for the first
time, is linked to the very mechanism that also effectuates the suppression of van
der Waals loops, one of the major feats of HRT, and is thus likely to be a generic
trait of HRT; some of its numerical manifestations will again be discussed in the
context of HCY and SW systems.

All of these issues will be considered in more detail by analytical, semi-analytical
and purely numerical ways in the chapters to follow, and while the computational
challenges it presents are, indeed, considerable, we still find HRT a viable theory
of the liquid state well; however, because of the difficulties inherent in the theory
any single calculation must be considered as of uncertain standing, and it is only
by combining several related calculations and checking the respective solutions’
appropriateness, internal consistency, and mutual compatibility that we are able to
extract reliable and meaningful information from HRT calculations in the theory’s
current formulation.

In the remainder of this work we will first outline the underlying theory in chap-
ter 2, taking care to properly motivate and preliminarily assess the approximations
we introduce and discussing some general traits of the computational model of HRT
so defined. After a short presentation of the physical systems that we consider as
well as two additional types of potentials that we will make use of (chapter 3)
we then give a superficial sketch of our recent re-implementation of HRT in the
usual formulation for simple one-component fluids (chapter 4). Application of our
software to the HCY and sSw fluids then complements our earlier analytical consid-
erations: chapter 5 characterizes the numerical problems that we find and provides
a summary of their manifestations in the HCY and sw systems considered. The
concluding remarks of chapter 6 once more summarize the most important of the
points raised; they are followed only by several appendices where we collect some
material the presence of which seems desirable on account of completeness but
that would only hinder the flow of the exposition in the main text.



II. The Hierarchical Reference Theory for simple
one-component fluids

Before we embark onto our excursion into some aspects of the application of HRT
to simple one-component fluids we first have to familiarize ourselves with said
theory and to motivate the approximate equations to be used in the numerical
implementation of chapter 4, and with the more important of the properties of

HRT some of which are hardly mentioned in the literaturel.

Despite being somewhat dated and not even mentioning the points to be raised
in sections 2.3.2 and 2.4 as well as chapter 5, the review article [2] with its multitude
of references of course remains the definite resource on HRT; in this chapter we limit
ourselves to only a rough sketch of the theory as far as is relevant for the simple one-
component fluids we will consider in chapter 5. In particular, in our work we found
it convenient to restrict ourselves to the case of a spherically symmetric pure two-
body interaction, and we took advantage of the additional simplifications possible
by identifying the reference system with a pure hard sphere system, v'®f = vbs,
as can always be achieved via the well-known Weeks-Chandler-Andersen scheme
[30-32]. Neither of these restrictions is, however, inherent to HRT itself, and the
framework of our software (chapter 4) is in principle well able to accomodate
a more general formulation of the theory if need be, cf. section 4.7. — In a
similar vein, the extensive mathematical apparatus developed for, and applied in,
deriving the basic hierarchy will not be considered, and despite the generality of
HRT’s approach to critical phenomena we will not consider any of the numerous
other physical systems that HRT has been applied to, ranging from discrete 8]
and continuous one component systems [5, 6, 11|, the latter even including ones
characterized by three-body interactions [9, 29], internal degrees of freedom [33],
or non-hard-core reference systems [21], to various mixtures [19-21] and lately

even including quantum systems [22-24].

1 Except, of course, in the articles [26, 27] shortly presenting some of the work documented here.
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The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy

2.1. Introduction of the ()-system and derivation of the
exact hierarchy

The basic ingredient of HRT, already present in its precursor [12], is the gradual
transition from a reference potential2 v™!(r, o) at density p, in our work chosen to
coincide with the hard-sphere potential of diameter o(p),

+oo: 7 <o(p)
0: r>o0(0),

(1, 0) = P17 () — { (1)

to the full potential
v(r, e) = v"(r,0) +w(r, o) (2)

describing the interaction between pairs of particles of a fluid, where any one of
the intermediate potentials serves as a reference system with respect to which the
properties of a successor potential are calculated. The two main differences be-
tween HRT and the theory presented in [12], however, are the differential nature of
this transition (so that X; intermediate systems are to be considered as opposed
to a mere Ng in [12]) and the parametrization of the auxiliary potentials in terms
ref and w effecting the suppression of long-wavelength fluctuations typical of
momentum-space RG calculations [34]. Correspondingly, a cut-off wavenumber Q
varying from infinity to zero is introduced, and for every value of () the potential
v(@) = yref 4 (Q) is defined such that Fourier components k < Q of the perturba-
tional part w(@) of the Q-potential v(?) are strongly suppressed whereas those for
k > @ coincide with those of the original potential w. Consequently, the reference
system and the fully interacting system are recovered in the limits () — co and
Q — 0, respectively:

of v

’ (3)

v =y,
The role of the Q-potential just introduced becomes clear when we consider a
functional expansion in (%) of thermodynamic and structural properties of the
system with pair interaction v(?): as w(Q)(k), k < @Q, is small, any integrals in the
expansion corresponding to graphs with at least one loop are effectively truncated
for £k < @Q; as HRT is constructed in such a way that only graphs with one or
more loops are considered, use of the Q-potential is sufficient to implement the RG
theoretical cut-off.

In principle, the precise manner in which the potential is cut off should not
matter, and one can easily conceive of many different ways of doing so (g. v. sub-
section 2.4.2). On the other hand, for such a procedure to be usable it must not
introduce instabilities when truncating the HRT hierarchy, which is usually done
at the two-particle level. Apart from approaches valid only for special types of

2 For the notation used cf. appendix F; in particular, superscripts signal the system a quantity
is evaluated for and a tilde indicates Fourier transformation.

11



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy

potentials (cf. section C.1), we are aware of only two cut-off procedures suitable
at least for attractive potentials (g. v. sub-section 2.4.1); in our work we opted for
the prescription presented in the review article [2] which seems to have been used
almost exclusively so far [4-6, 11, 28] rather than the smooth cut-off formulation
of [13], the latter being numerically cumbersome and predicting non-universal
critical exponents (g. v. sub-section 2.4.2). Thus we define the Q-potential v(@) =

,Uref +w(Q) by
2@ — w(k): k>Q
(k)_{ 0:k<Q), (4)

and it is convenient to also introduce the symbol

¢(r) = —Bw(r) (5)
where 3 = 1/kg T, T is the temperature of the system considered and kg is
Boltzmann’s constant.

A discussion of some questions regarding the properties of the Q-potential so
defined can be found in section D.1; in particular, a simple calculation shows that
w(@)(r) differs from w(r) by the addition of a convolution integral, viz.

1 0°°<sinQ(r’—r)_sinQ(T’”))r'w(r')dr’ (6)

Q _
w! )(T)_w(T)__E r—r r 4
so that the Q-potential is a rather artificial function in r-space hardly resembling
the full potential except in the limits of eq. (3); furthermore, the range over which
v(@)(r) has to be considered is much larger than that of the original potential v(r),

a property immediately carrying over to related quantities, the direct correlation
functions in particular. As an immediate consequence, numerical Fourier trans-
formations involving the Q-potential or any of the correlation functions for the
Q-system are computationally expensive and must be treated with extreme care;
in fact, they should be avoided if possible at all, with obvious repercussions for
the implementation of the core condition (wv. 1.).

Equipped with this sequence of Q)-systems, the theoretical backbone of HRT is
formed by a perturbative expansion treating the system at any value of () as a
starting point, or reference system, for obtaining the properties of the fluid with
infinitesimally smaller cut-off Q — d@; as is well known from other theories, a re-
organization and partial resummation of the resulting series is necessary in order
to surpass the mean-field level. The procedure for arriving at the final hierarchy,
summarized and discussed in some detail in [2, 4] so that we may confine ourselves
to a mere sketch of the more important of the conceptual steps, is based upon
standard expansion techniques [35] in the grand-canonical formalism; starting with
the grand-canonical partition function of the (Q — AQ)-system3 and the splitting

p(@-AQ) — (@) | ,(Q-2Q)(Q) (7)

3 Note that the HRT expansion (9) is a formally exact result that does not make use of the
notion of a suppression of length scales that underlies the Q-system’s definition (4) but, in
principle, applies to arbitrary physical potentials under rather general assumptions. As we
are interested only in the hierarchy’s application within the framework of HRT, we identify
the reference potential with v(Q)(r) and the target potential with v(Q-AQ) right from the
beginning.

12



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy

of the potential with cut-off ) — AQ), in order to arrive at expansions of the prop-
erties of the (Q — AQ)-system in terms of those of the Q-system at the same
density o rather than at fixed fugacity z the transition from @ to Q — AQ must
be accompanied by a shift in z formally corresponding to the effect of an as yet
unknown external potential acting on the @) system that is implicitly determined
by the condition of equality of the densities; and indeed, in [4] the authors of HRT
provide an expansion of this external potential in a series the terms of which are
naturally interpreted in terms of diagrams [35]. But from the density operator’s
definition as functional derivative of the partition function with respect to In z, and
taking into account that —(3 times the Helmholtz free energy A is just the Legen-
dre transform of the partition function with respect to the density, In Z(Q_AQ)(F')
is equal to §(8 AR2RQ))/§o(F); as In2(@=2RQ) differs from In2(?) only by the
external potential and a term proportional to U(Q_AQ)“(Q)(O) the expansion for
the external potential acting on the Q-system (which is proportional to the differ-
ence of the logarithms of the fugacities) directly translates into an expansion for
AQ-4Q) _ A(Q) In HRT it is customary and convenient to define the n-particle
direct correlation functions as functional derivatives of the free energy with respect
to the density, viz.

L m(-BA)
@ . 7)) =
e (M osTn) = 5oy o)

for arbitrary Q; repeated functional differentiation of the expansion for A(Q—4%Q)
readily yields analogous expansions for the cng), n > 1. In this context it is
important to note that the above definition of the direct correlation functions
differs from the usual one by inclusion of terms corresponding to the ideal gas
limit (given explicitly in eq. (5) of [4]); in particular, 6gQ)(k) includes the term
—1/p so that the Ornstein-Zernike (0%, [36]) equation takes the form

& (k) = —(1/0) — oA (k) &V (k) (8)

where g(Q)(T) = h(Q)(T) + 1 is the pair distribution function of the Q-system.
The expansions for the free energy A(?~2RQ) and the C%Q_AQ), n > 1, so obtained

are, however, still not suitable as a basis for HRT; indeed, in order to allow for
non-classical critical behavior a re-summation has to be performed so that non-
analyticities in the free energy as a function of 3 and ¢ may arise from expansions to
finite order in AQ. To this end, the series for A(?~2®) is ordered by the number of
loops in the corresponding diagrams, and assuming translational invariance chains
of perturbational interactions ¢(@=2Q)(Q) = _34(@-2Q)«(Q) and suitable two-
particle correlation functions of the Q-system (technically, the negative functional

inverse of ch), related to g(Q)(T) or, in Fourier space, to the structure factor) can

13



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy

be summed up: for the free energies this yields the relation

BAQ-AQ) B BAQ 1, 1(Q-A0)(Q)
= 50 (0)
1 / d3k | (1 &(Q—AQ)F(Q)(k)>
B Y (9)
2 J,(2m)* & (k)

1
+509(@ D@ (0) ..,

where the resummation’s vestiges are clearly to be seen from the logarithm ap-
pearing in the integral on the right hand side and the ellipsis corresponds to the
sum of all the relevant diagrams with a minimum of two loops; analogous results
of course apply to the n-particle direct correlation functions.

The goal in developing the formal expansion of eq. (9) is to arrive at differential
equations by taking the limit of AQ — 0 and retaining terms in the expansion
only up to first order in AQ, which turn out to be exactly those displayed in
eq. (9). For this program to succeed, however, both sides of eq. (9) as well as of
its analogues for the direct correlation functions must be continuous in the cut-off
wavenumber even in the limit @ — 0; but from the definitions (7) of $@-A2Q)<(Q)
and (4) of the renormalized potential we immediately see that the zero-loop term
proportional to qB(Q_AQ)‘_(Q)(O) = $(Q-4Q) _ qE(Q)(O) vanishes for Q — AQ > 0
but coincides with (5(0) for Q — AQ = 0. In order to eliminate this discontinuity
we therefore define a modified free energy A(?) by formally subtracting this zero-
loop contribution on both sides of eq. (9), and it is convenient to also treat the
trivial part proportional to ¢(@—2RQ)<(Q) (0) of the one-loop term in the same way;
all in all, A(?) is thus given by

(Q) (@) 2 /. ~
BATND) _ PAZND 2 (5(0,6) - 59 (0,0)) + 2 (4(0.0) - 92)(0,0) (10)

where we have added the density o as an argument for the benefit of later use
within the context of an approximate closure relying on thermodynamic consis-
gQ) is similarly absorbed into the definition
of a modified two-particle direct correlation function

tency. An analogous discontinuity in ¢

C(r,0) = ¥ (r,0) + 6(r, 0) — 69 (r,0), (11)
whereas the higher order correlation functions 01(1Q), n > 1, are free from zero-loop
terms and do not have to be changed. With these definitions, the modified free
energy A(Q)| the modified two-particle direct correlation function C(®) and the
higher-order correlation functions C%Q), n > 1, are all continuous functions of Q
even in the limit () — 0 and can thus be used for the construction of differential
equations; on the other hand, from egs. (10) and (11) it is obvious that their
limits coincide with the physically meaningful unmodified quantities for the fully

interacting system.

14



The Hierarchical Reference Theory 2.1 Q-system and exact hierarchy

Assuming spherical symmetry, it is now simple to obtain the HRT hierarchy#:
combining eq. (4) with the definition (7) of ¢p(@=AR)(Q) a5 the difference of
$(Q=ARQ) and ¢(Q) (v. s.), we see that the integration on the right hand side of
eq. (9) is to be extended over the shell with @ — AQ < k < @ only; but for
k < Q we have EgQ)(k) = CQ) (k) — gzz(k) from eq. (11), and according to eq. (7)
<5(Q_AQ)<_(Q)(k) = qg(k) for Q — AQ < k < Q. Writing d3k as 47 k2 dk by means
of rotational invariance of v, invoking continuity of the integrand and taking the
limit AQ — 0 we thus obtain

i M) _ _1 4m 21, (1 QE(Q, 0)
@ ( v 22 ¢ i C@(Q,0) — 4(Q,0)
Q? C(Q, o)

= — In

4m®  CQ)(Q,0) - 4(Q, 0)
) ~
_ @ (, ¢@o0) |
4 c@(Q, o)
Analogous results can, of course, be obtained for the direct correlation functions
but will not be given here as they will be considered no more in the remainder of
this work; the interested reader may find the first few of these, in diagrammatic

notation, in eqgs. (26) to (28) of [4] or, in conventional notation but for C(?) alone,

in eq. (4.27) of [2]. It is, however, important to note that the expression for

dE%Q)(k, 0)/dQ involves the direct correlation functions from C(?) up to 07(:’3_)2 SO

that the hierarchy of differential equations never terminates; on the other hand,
even though an exact solution of this hierarchy is not available for non-trivial
potentials, as the expansion underlying eq. (9) is formally exact, at every cut-off
Q the isothermal compressibility fiqu) of the )-system as obtained from the volume
integral of the two-particle direct correlation function or by differentiation of the

free energy must coincide, which can be written in the simple form

3 2 @)
¢ (0, 0) = _;92 <ﬁ“4§ (9)> (13)

despite the additional terms introduced in egs. (10) and (11). Also we wish to
stress that all the calculations done so far were performed at fixed density o, and
that the hierarchy comprises ordinary differential equations (ODEs) in @ only; it
is only for the benefit of later application that we included p as an argument to
various functions appearing in egs. (9) to (12).

From among the interesting aspects of the theory the conceptual basis of which
has just been presented we here only want to mention two: first of all, HRT not
only draws considerable inspiration from RG theory, it can also be shown to be
equivalent to an RG theoretical development by Nicoll and co-workers [2]; and

4 Note that it is only now that identification of the reference system in the expansion with any
of the Q-systems and of the target system with a system at slightly smaller cut-off is necessary.
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The Hierarchical Reference Theory 2.2 Approxzimate closure

exponent classical HRT [sing
o 0 —0.07 0.1096(5)
16} 0.5 0.345 0.32653(10)
0 1 1.378 1.2373(2)
) 3 5 4.7893(8)
n 0 0 0.03639(15)
v 0.5 0.689 0.63012(16)

Table 1: The critical exponents for fluids in the three-dimensional Ising universality class as
obtained from mean field theory (“classical” exponents), from HRT with an 0Z ansatz for the

structure factor [2], and from recent 25'2_order high-temperature series expansions [37].

secondly, the equations can be analyzed in the scaling regime which allows one to
demonstrate universality, and with an Ornstein-Zernike ansatz for the structure
factor (so that » = 0) the non-classical critical exponents listed in table 1 are
found.

2.2. Approximate closure

Due to the non-terminating character of the hierarchy the derivation of which
we just sketched, the need arises to introduce some approximate closure relation.
In doing so, it is desirable to retain both the differential build-up of the relevant
quantities mandated by the RG picture and thermodynamic consistency as embod-
ied in the compressibility sum-rule (13); the derivatives with respect to o present
in the latter then mandate the transition from equations at fixed p to a partial
differential equation (PDE) in the (Q, p)-plane with boundary conditions supplied
at two densities, omin and Pomax. In addition, we need to retain the core condition

g Dr)=0, r<o; (14)

indeed it is one of HRT’s main advantages to conserve information on length scales
as diverse as the hard-sphere diameter o(p) of the reference system at density o
and the cut-off wavelength 1/Q allowing criticality to arise from long-wavelength
fluctuations in the limit @) — 0 for low enough temperature.

As noted above and discussed in more detail in section D.1, the long-ranged
nature of w(?) and the correlation functions due to the cutting-off of eq. (4) is a
strong argument in favor of any closure allowing an approximate implementation
of the core-condition without the need for costly Fourier transforms. This is a
likely reason for the up to now seemingly exclusive use of a closure in the spirit
of the Lowest-Order ~y-ordered Approzimation (LOGA, [38, 39]) or the equivalent
Optimized Random-Phase Approzimation (ORPA, [40]) despite this closure’s known
deficiencies [9, 11, 28, 29] (cf. section 2.4). Just as in those approximations we
introduce a set of Q-independent basis functions u,, and corresponding expansion
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The Hierarchical Reference Theory 2.2 Approxzimate closure

coefficients 7(Q) but unlike LOGA/ORPA we add one degree of freedom in order
to be able to accomodate not only the core condition but also thermodynamic
consistency (13) or some other condition (cf. sub-section 2.2.1):

CQ(r, 0) = ¢(r, 0) + 75 (0) wo(r, 0) + K1, 0),
K@) (r, 0) = G (r, 0) + &(r, 0),

G @ (r, o) ZV(Q) r, 0).

(15)

Here, ug(r, ¢) is usually taken to be proportional to w(r, g) (but cf. section A.3)
and normalized to

ﬂo(oa Q) =1, (16)

and only the u,(r, o) for n > 1 are taken to provide a basis for a suitable function
space over [0,0(p)] (cf. section D.2); LOGA/ORPA is recovered by dropping the
Yo-term necessary for thermodynamic consistency (cf. section 2.4).

With these provisions, the problem of implementing both thermodynamic con-
sistency (13) and the core condition (14) reduces to that of an appropriate choice
of the expansion coefficients ’y(Q)( ), n > 0, for every point (Q, ) in the PDE’s do-
main. As first demonstrated in [6] and shown in more detail in section D.2, when
starting with a reference system that already meets both of these requirements
the problem of determining the correct fy(Q)(g) for all @ reduces to that of the
solution of a countable set of ODEs coupled to each other as well as to the HRT-PDE
at every density; with the short-hand notation

3 (Q)

(a quantity that will play an important réle in sub-section 2.2.1 below) and the
definition (D.9) for the auxiliary symbol 7 (Q) denoting a class of integrals extended
over all of Fourier space, these ODEs are conveniently written as

o0 . (Q)
5~ 2@ iyl 0) (o 5. 0)~ ol )3, 0.1) o 5512
= Oé(Q)(Q)j(Q) [’&j(k,@) aO(ka Q)v@] (18)
L@ Q050 .

? CQ)(Q, o) (é(Q)(Q, o) — 95(62,9)> ,

To fully specify the mathematical problem, the PDE must be amended by both
initial and boundary conditions; the former take the simple form of vanishing
expansion coefficients, i. e.

yref(g) = 0, n>0, (19)
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The Hierarchical Reference Theory 2.2 Approxzimate closure

reflecting the reference system’s compliance with both thermodynamic consistency
and the core condition, whereas the question of the boundary conditions to be
imposed upon the solution at high and low density will be discussed only in sec-
tion 4.5.

As eq. (18) stands, it is no more amenable to direct numerical treatment than
the underlying 0z relation (8) and the compressibility sum-rule (13); not only
must this infinite-dimensional matrix equation be truncated to a finite number
1+ N, of basis functions but even then the f—integrals (which, furthermore, turn
out to converge only very slowly) need to be evaluated at every Q and o — a
tedious process no less demanding than the Fourier transformations this approach
is meant to replace. It is only through the adoption of the simple, albeit not
very well justified (g. v. section 5.2) approximation (D.11) for 31A'(Q)[f(k, 0),0]/0Q
detailed in section D.3 that this closure becomes manageable: following the steps
leading up to eq. (D.11), the task of evaluating one of the integrals of eq. (18), or
of eq. (D.8), reduces to only an initial integration for the reference system followed
by the solution of an ordinary differential equation (ODE) coupled to the HRT-PDE
as well as analogous ODEs for all the other integrals of the I-type.

2.2.1. Additional constraints

For future reference, let us shortly contemplate the effect of imposing some addi-
tional constraint on the solution at some density p; in the following it is understood
that the constraint considered is distinct from other conditions in the sense of not
introducing redundancy into the equations. Under mild assumptions always ful-
filled for the cases we will consider, as long as we retain the core condition such
an additional constraint is already sufficient to determine the expansion coefficient
fy((JQ); consequently, thermodynamic consistency can no longer be imposed without
introducing mathematical inconsistencies. By the same token, eq. (18) derived
by incorporating the compressibility sum rule (13) into the core condition (cf.
section D.1) is no longer valid but must be changed to

(Q)
ZI(Q) (ks 0) @n(k, 0), o] 873—62()

0 (Q)(

=-7 [uj (k Q) UO( ) 9)7 Q] Q

L@ @eu@e o,
CD(Q.0) (C(Q.0) - 3(Q.0)

to reflect the transition from eq. (13) to said constraint determining the function

'y((JQ)(Q) appearing on the above equation’s right hand side; furthermore, elimina-
tion of thermodynamic consistency obviously means decoupling the PDE to a set

0) (20)

of ODEs at fixed density. Of course, eq. (18) is again recovered when inserting the

expression (D.10) for 8’)/ /3@ in eq. (20).
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2.2.2. Decoupling assumption

Unfortunately it turns out that a scheme retaining a(?)(p) in eq. (18) for g <
0 < Pmax presents significant numerical problems for all but extremely high tem-
peratures, precluding reaching Q = Qg at least for the potentials that we have
looked at (g. v. sub-section 5.4.1). This is where the so-called “decoupling as-
sumption” comes into play: based upon the different ranges of ug(r) o< ¢(r) and
un(r), n > 1, the authors of [6] argue that terms related to third partial derivatives
of the free energy might be ignored, thus effectively decoupling the long-range be-
havior driven by thermodynamic consistency from the constraint of eq. (14) acting
on very short range®. Consequently they set

a@ () =0, (21)

which obviously eliminates the f—integral on the right hand side of eq. (18); it turns
out that this change, to the best of our knowledge adopted in all later publications
on HRT for simple one-component fluids that aspire to implement the core condition
at all, is often sufficient to allow generating a solution all the way to Q = Qg, the
smallest cut-off considered numerically. While a more detailed discussion of the
decoupling assumption including numerical results will be presented in chapter 5,
here we only point out that in the light of sub-section 2.2.1 eq. (21) is obviously
incompatible not only with the LOGA/ORPA condition

7De) =0 (22)

retained in some numerical calculations for ¢ = gpax (¢. v. section 5.4) but also
with thermodynamic consistency (13) altogether; furthermore, when consistently
applying the approximation of eq. (21), the solution of eq. (15) is uniquely deter-
mined by the core condition (14) alone and the PDE thus reduced to a set of ODEs
no longer capable of yielding clear phase boundaries (cf. section 5.3).

2.3. Reformulation in not-quite quasi-linear form and
behavior of the solution for large isothermal
compressibility

The formulation of section 2.2, treating core condition and thermodynamic consis-
tency along the lines of sections D.2 and D.3, provides us with a set of equations
implementing HRT with the LOGA/ORPA-like closure on the two-particle level that
is, in principle, well suited for numerical processing; but while these expressions

5 But note that the longest-ranged part in ch)(r, o) is the zero-loop term for Q ~ 1/o, v. 1.

section 2.4.
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lend themselves to discretization in a straightforward way (cf. section B.1), it is
computationally much more convenient to cast the PDE in a form superficially
resembling a quasi-linear one [11] so that an implicit finite difference (FD) scheme
requires only the inversion of a tridiagonal matrix. The re-writing we adopted —
detailed in appendix A, very similar to the one of [11] — results in the introduction
of an auxiliary function f(Q, @) via eq. (A.1) so that the PDE implied by egs. (12)
and (13) can be written in the form

0 0 0?
@f(Qa 9) = dOO[fa Q’ Q] + dOl[f’ Qa Q] 8_Qf(Q, Q) + d02[f’ Q7 Q] 8—sz(Q, Q) ’ (23)

with coefficients do; explicitly given in eq. (A.5); note that do; vanishes for density-
independent potential.

Apart from the technical advantages this re-writing affords and the clarification
regarding the admissible basis functions it brings about (cf. section A.3), inspection
of the expressions (A.5) for the PDE’s coefficients do; with the definitions (A.3)
readily yields the information that, for sufficiently small @ and large ¢(Q, p)
exp(f(Q, 0) @3(Q, 0)) as defined in eq. (A.3), the coefficients dy; grow much more
rapidly in modulus than f(Q, ¢) and its derivatives with respect to g, viz.

doi = O(e") for i € {0,1,2},

o' f
do'
of
aQ
the last relation follows directly from eq. (23). This behavior, not easily seen
from the relations (12), (13), and (15) underlying eq. (23), both provides us with
some insight regarding the mechanism leading to the suppression of van der Waals
loops in an implementation like that presented in chapter 4 and allows us to
demonstrate the PDE’s stiffness in the region where the isothermal compressibil-
ity’s divergence builds up. Note, however, that neither of these is directly linked
to the re-formulation of the PDE but merely more conveniently discussed in this
framework as relations analogous to eq. (24) are not readily available in a formu-
lation relying on the modified free energy A(?) (o) rather than f(Q,0): indeed,
the emergence of rigorously flat isotherms in the coexistence region and the cor-
responding direct accessibility of the binodal have long been regarded as among
HRT’s main advantages over other integral-equation based theories, and stiffness is
probably at the heart of the problems preventing [6] from solving the HRT equations
for sub-critical temperatures and its effects were also seen in an earlier version of
our program that did not rely on the rewriting of appendix A (cf. section B.1).

= O(°) for i € {0,1,2}, (24)

= O(e');

2.3.1. Suppression of van der Waals loops

Interest in the case of large ¢(Q, o) mainly derives from relation (A.4): as the
isothermal compressibility k7 of the fully interacting system must diverge in
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the phase diagram’s coexistence region®, so must appendix A’s £(0, p) and, from
eq. (A.3), f(0,p); continuity of the limit @ — 0 (cf. egs. (11) and (10)) then
brings about that £(Q, ¢) and f(Q, 0) must be large already for non-vanishing but
sufficiently small cut-off (), while the RG mechanism with its suppression of long-
wavelength fluctuations as implemented via eq. (4) precludes any divergences for
Q # 0. In this and the following sub-section we will restrict ourselves to close-
to-critical and subcritical temperatures only and concentrate on that part of the
(Q, o)-plane where ¢ is large and eq. (24) applies.

Let us consider f(Q, o) at some fixed, non-vanishing and not too large” value
of the cut-off ): in the following we take the potential’s p-dependence to be
sufficiently small to allow us to ignore the dop;-term in eq. (23); furthermore, for
sake of argument we assume that f(Q, g) is a smooth function of p that remains
small for most of the density interval [0, omax| but becomes large for intermediate
0. Note that the assumption of smoothness is not justified for the PDE’s true
solution (cf. sub-section 2.3.2); on the other hand, when relying on a FD scheme
akin to that of chapter 4, for any practical density grid the numerical procedure
can only produce an approximate solution that does not properly reflect the true
solution’s irregular behavior in the p-domain and again appears sufficiently smooth
(cf. section 5.5, table 5.4 in particular). Strictly speaking some of the arguments
put forward in this sub-section thus apply only to a FD approximation to the
PDE rather than to the PDE itself. Under these assumptions, inspection of the
coefficients (A.5) shows that both dyo and dos are negative whereever f(Q, o) and,
hence, the Q-system’s isothermal compressibility are large. Then, as |02 f/00?| is
assumed small, wherever f(Q, o) is sufficiently large already, df = (9f/0Q) dQ =
—(0f/0Q)|dQ| > 0 and f further increases to ever larger values as @) decreases
towards @ — 0. On the other hand, for the kind of f(Q, o) assumed, 8 f/90* < 0
for most of the density interval where f is large, with a change of signs only where
f falls off to small values again; consequently, the doz-term in eq. (23) reduces
|0f /0Q| where f is largest and enhances it closer to the edge of the region of
large f, thereby effectively safeguarding that |02 f/00?| remains rather small, as
assumed; at the same time, the boundary between the regions of large and small
f becomes ever more sharply defined.

Taken together the above considerations not only show that, indeed, the result
of following the discretized HRT equations all the way to Q — 0 is certainly free of a
van der Waals loop; furthermore, it is not difficult to see that binodal and spinodal
coincide under the smoothness assumptions stated, i. e. that 1/ K,S? ) 1 /&(0, o) is
continuous at o, and g;.

6 Recall that, in three dimensions, binodal and spinodal as predicted by HRT coincide, i. e.

1/[43,(19) remains continuous at the phase boundary. The boundaries of the density interval of

(0)

diverging Kp ' are naturally identified with the densities py and g; of the coexisting vapor and
liquid, respectively. _

Typically, @ must be smaller than the location of the first minimum of ¢(k,g); there is,
however, some numerical evidence for a much larger range of validity in the systems discussed
in chapter 5.
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2.3.2. Stiffness for large isothermal compressibility

As already mentioned, however, the PDE’s true solution is certainly not smooth
on the scales considered numerically for close-to-critical and sub-critical tempera-
tures. In the following we will demonstrate the PDE’s pathological behavior in the
region of large f(Q, p); in doing so we restrict ourselves to even smaller ) than
in sub-section 2.3.1, viz. to so low a @ that @g(Q, 0) may be replaced by unity
by virtue of this basis function’s normalization (16); extension of the argument to
a larger @-range is cumbersome but straightforward and cannot be expected to
yield qualitatively different results.

As before, we base our considerations upon the orders cited for the various terms
in the PDE (23); furthermore, for the time being we only consider an ODE at some
fixed density o, which is possible without loss of generality as the exact solution of

the PDE exists and could, in principle, be imposed as discussed in sub-section 2.2.1.
According to eq. (24), df/dQ is of order O(¢') and can thus be written as

df(Q)
dQ /9do(@). (25)

where the order given for dj is valid only with the assumption of sufficiently small
@ mentioned earlier; note that a negative sign of dy corresponds to the rise of
f(Q) expected as Q approaches naught from above. But as the exponential in the
above relation’s right hand side cannot vanish, it may also be read as a definition
for do(Q) in terms of the exact solution f of the HRT-PDE; on the other hand, with
the do(Q) so obtained eq. (25) is also an exact ODE for f(Q, 0), and imposing a
correct starting value for f at some cut-off Q' the solution at any other cut-off Q
is trivially obtained as

(@) =—In <6_f(Q') - /Qdo(q) dq) :

!

As stated already at the beginning of sub-section 2.3.1, f(Q) must be large but
finite for non-vanishing () but diverge in the limit () — 0; inspecting the argument
of the logarithm in the above solution, these requirements are readily translated
as

Q !
/ do(q) dg < e~ f(@7),

!

Q
; — .~ f(@")
élino o do(qg)dg =€ .
Thus the mean of do(Q) over the interval |0, Q[ is —1/(Q £(Q)), while |do(Q)] it-
self still is of order unity; these statements are compatible only if dg is a rapidly
oscillating function of @), with both amplitude and period no larger than approxi-
mately 1/(Qe(Q)). Reverting to the HRT-PDE and the auxiliary function f(Q, o)
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we conclude that f(Q, o) as a function of @ also oscillates rapidly on a scale of
the order of 1/(Q¢(Q, 0)) but with both the average slope and an upper bound
for the oscillations’ amplitudes growing like 1/Q; this erratic behavior immedi-
ately carries over to the solution’s p-dependence due to the estimate of eq. (24)
for 9f(Q, 0)/00.

The PDE’s stiffness so demonstrated is, of course, a major obstacle in the nu-
merical implementation of HRT, especially in view of the diverging upper bound
on the oscillations’ amplitudes; the above considerations, however, are rather gen-
eral and rely only on some general properties of HRT in the current formulation as
applied to one-component fluids, viz. divergence of the isothermal compressibility
in the coexistence region, continuity of the limit ) — 0, and suppression of diver-
gences for () > 0; only the remaining ingredient essential to our reasoning, viz. the
behavior of the ratio of the Q- and the p-derivatives as the divergence in the com-
pressibility builds up, while obvious in the formulation of eq. (23), could only be
obtained by reasoning about third- and second-order derivatives of A(?) (o) rather
than first- and second-order ones if we were to repeat the arguments without re-
sorting to the re-writing of appendix A — after all, f is basically the modified free
energy’s derivative with respect to (). Still, this last aspect is intimately linked to
the continuous build-up of the isothermal compressibility for small Q) so that none
of the properties we invoked appear specific to the closure adopted or any of the
other approximations introduced so far, and stiffness must be expected to arise in
other formulations and more advanced applications of HRT, too.

2.4. Further considerations regarding the choice of
closure

Before setting about the implementation of the theory just sketched, let us pause
for a moment to reflect some more upon the properties of the closure adopted
without taking recourse to our numerical results: first of all, it is instructive
to write the LOGA/ORPA-ansatz (15) for the true two-particle direct correlation
function rather than for C(Q); from eq. (11) we immediately find

SV (r, 0) = & (r, 0) + ¢ D(r, 0) + 152 (0) uo(r, 0) + Y D (0) un(r, 0);
n=1

for the moment adopting the LOGA/ORPA condition (22) and ensuring the core
condition by an appropriate choice of the other expansion coefficients this is im-
mediately recognized as the well-known LOGA /ORPA closure for the Q-system with
potential vl 1 w(Q).

{ 9 (r, 0) = &5 (r,0) — Bw@(r,0), > o(0)
g0 =0, r<o(o).
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But as soon as we relax the condition of vanishing 7(()Q)(g), with the usual choice®

of ug(r, 0) < w(r,p) the direct correlation function acquires a contribution from
the full potential w(r, o) rather than from w(®)(r, o) alone. This is certainly in-
appropriate for a description of the Q-system, especially as the derivation of the
exact HRT hierarchy in section 2.1 clearly treats the Q-system, despite its artificial
potential, as a real physical system and not just as a formal device in the con-
struction; indeed, the expansion (9) that all of HRT is based upon remains valid
for any choice of reference and target system provided the potentials’ difference is
non-singular. — As a corollary we note that, from section D.1, the longest ranged

gQ)(r, o) by far is not the term ’)/((JQ)(Q) uo(r, o) used for implement-

component of ¢
ing thermodynamic consistency but rather the convolution integral resulting from
the renormalization (4) of the potential, an observation that casts some doubt on
the decoupling assumption’s justification first presented in [6] and re-iterated ever

since (g. v. section 5.2).

Let us now assume that a given potential v(r) vanishes identically beyond some
finite interparticle distance (as is the case for the square well and multi-step sys-
tems to be introduced in chapter 3), or else that it decreases sufficiently rapidly
for large r to ensure convergence of the relevant integrals® (like, e. g., the expo-
nential in eq. (3.2)): then, from the closure (15) we immediately conclude that
gQ)(r, o) exist throughout the @Q-system’s phase
diagram, which is clearly at variance with the correct behavior near the critical

all moments of C(?)(r, g) and of ¢

singularity [41]. While existence of all moments of C(?)(r, p) is obvious from the
short-rangedness and regularity of the terms in eq. (15), for the analogous conclu-

gQ) at non-vanishing ) we need to also

sion regarding the physically meaningful ¢
invoke eq. (11) in conjunction with the relation of any function’s moments to the
derivatives of its Fourier transform with respect to the wavenumber k at k£ = 0;
application to the zero-loop terms in the definition of C(?) then yields the desired

result.

2.4.1. Instability for repulsive potentials

Another aspect of the closure (15) that can easily be seen is the instability of
the PDE for repulsive potentials, a restriction only hinted at in [2], v. i.; as the
core condition cannot be expected to be relevant in this context, for simplicity’s
sake we adopt the approximation of vanishing LOGA/ORPA function, i. e. we set
Q(Q)(r, o) = 0 or, equivalently, N.. = 0. The HRT equations then provide a PDE

As noted in appendix A, ug(r, g) does not have to be strictly proportional to w(r, g) as long as
it meets the requirements laid out in section A.3; but even then similar considerations apply
unless we adopt Q-dependent basis functions, a possibility more general than the ansatz of
appendix A.

As we will shortly see, for the following considerations it is sufficient that all moments of v(r, g)
exist, which, it should be noted, is not the case for, e. g., a Lennard-Jones potential.
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(Q)( ): By differentiating the compressibility sum rule (13) in the form

V(Q)( )= — 3_2%

0 002 1%
with respect to Q as well as eq. (12) twice with respect to p and equating the
resulting expressions for —a(Q)(g) we readily obtain this PDE, viz.

nl) @ o <1 $(Q; o) >
20 in? 9g? &(Q, 0) + 3(Q, 0) + 7P (0) 10 (Q, 0)
©)

Let us now assume that, at some stage of the computation, v, (o) differs from

for ~,

- 6r26f(0’ Q) - (;;(0, Q) ’ (26)

the above PDE’s true solution by only a small amount 57(Q)( ); performing the
corresponding substitution

%7 () = 1 (0) + %7 (o)
expanding up to first order in d¢ and simplifying we find the PDE governing -y,
viz.
9675 (0) _ Q*$(Q; 0) (@, ) < 5757 () )
o ar? 90* \C@(Q,0) (CD(Q 0) - #(Q, 0))

For the HRT-PDE to be stable d&y(Q)( ), the total change of 57(Q)( ) as the cut-
off is lowered from @Q to Q+dQ = Q—|dQ| at constant density, must counteract the

perturbation 57(Q)( ), 1. e. d&y(Q)( )/57(Q)( ) must be negatlve as ddfy(Q)( ) =

(35’yéQ)( )/0Q) dQ, this is equivalent to positive 357@)( )/570 ( ) 0Q. Assum-

ing that nyé )isa sufficiently well-behaved!? function of o, for low enough density
the second p-derivative is dominated by the ideal-gas term —1/p in C (@) for o — 0

we may therefore neglect <;~5(Q, 0) in the denominator and move J'y(Q) out of the
derivative; the remaining differentiation of the ideal-gas direct correlation func-
tion is trivial, and dropping manifestly positive factors we immediately find that
gZ)(Q, 0) Uo(Q, @) > 0 is a necessary but not sufficient condition for stability, which
is just another way of stating that the signs of &(Q, o) and of %y(Q, ) should
coincide, cf. [2] (p. 264). Note, however, that eq. (26) relies on the normalization
(16) of up; combining this with the condition for stability just found, we conclude
that the HRT-PDE with a closure of the type of eq. (15) is unconditionally unstable
for repulsive potentials, 7. e. for systems where the volume integral of the pertur-
bational part of the potential, @(0, g), is positive, contrary to what is claimed in
[21].

Concluding this short discussion of the problem’s stability we should stress that
our reasoning pertains to the PDE itself rather than to the related ¥D equation
(FDE) obtained by discretization as discussed in chapter 4; consequently our con-
clusions are independent of the properties of the density grid used in the numerical
work, and the only p-scale relevant here is the separation p from the ideal gas sin-
gularity at o = 0. Also, w(0) < 0 is only a necessary but by no means sufficient
condition for the PDE’s stability.

10 1n particular, it should be continuous and non-singular for ¢ — 0.
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The Hierarchical Reference Theory 2.4 Choice of closure

2.4.2. Motivation for using the LOGA /ORPA-like closure

As we have seen, the closure (15) suffers from various defects: in addition to
the clearly unphysical traits (dependence of the @Q-system on the full potential,

gQ) for all @)-systems and all thermodynamic states,

existence of all moments of ¢
v. 8.), its inability to treat repulsive potentials — a restriction not expected on the
basis of the derivation of the HRT equations — seems particularly unattractive;
still, it is this closure that has been used almost exclusively so far even though it
has repeatedly been blamed for sub-optimal results obtained in HRT calculations [9,
11, 28]. There are, however, good reasons why application of eq. (15) is worthwhile
even though any other closure popular in liquid state theory such as, e. g., the
hypernetted chain (HNC) approximation could concievably be used!! in very much
the same way in which LOGA/ORPA provides the conceptual basis for eq. (15). The
most important reason seems to be that its use is computationally feasible while
other approximations incur substantial difficulties: with eq. (15) the PDE is stable
at least for many attractive potentials, the FDE allows generating some solution all
the way to very small () in remarkably many cases despite the PDE’s stiffness for low
temperatures (g. v. section B.1), and a convenient approximate treatment of the
core condition without the need for costly and complicated Fourier transformations
is available (cf. sections D.2 and D.3); indeed, the latter can hardly be expected
in a more realistic ansatz for C(?).

In addition, the form of the zero-loop terms in eq. (11) makes it natural to
choose a closure expressing the two-particle direct correlation function ch)(r) of
the Q-system as the sum of the correct limiting term for r — oo, i. e. ¢(Q) (r), and
a simple expression of shorter range; the transition to C (Q)(T‘) then only involves
exchanging the long-ranged summand ¢(?)(r) by ¢(r). In this context, however,
it should be noted that egs. (10) and (11) are direct consequences of the definition
(4) of the Q-potential: if instead we define a cut-off procedure that does not
introduce a discontinuity in ITJ(Q)(O, o) at Q@ = 0, the HRT-PDE might just as well

gQ) even though the

be formulated in terms of the original quantities A(?) and ¢
modified functions may still provide some technical advantages [13]. However,
for cut-off procedures like that of the smooth cut-off formulation [13] of HRT or,
e. g., ones that replace the discontinuity of eq. (4) by a continuous function over
a limited k-range (so that, other than in [13], 3A(Q)(g)/3Q does not involve an
integral over all of Fourier space), in the light of the findings reported in [13] we
must expect the critical exponents to turn out non-universal and to depend on

the details of the definition of the renormalized potential. On the other hand, we

11 Formally, it is only necessary to include an additional degree of freedom in the ansatz for
ch) (r, 0) corresponding to the 'y(()Q) (o)-termin eq. (15), provided c@) (0, o) invertibly depends
on the corresponding parameter; as mixed closure theories typically involve some switching
parameter [1], some of these might even be applied without further modifications. For practical

applications, however, both stability and regularity properties would still have to be discussed.
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The Hierarchical Reference Theory 2.4 Choice of closure

should recover potential-independent critical exponents when defining, e. g.,

i ERE

even though they might differ from those listed in table 1; however, as this defi-
nition obviously cannot be used to implement the suppression of long-wavelength
fluctuations typical of RG theory it will come as no surprise that reasoning anal-
ogous to that of sub-section 2.4.1 readily shows the PDE following from a LoGA/
ORPA-like closure on the two-particle level to be unstable except maybe for highly
contrived potentials.

All in all, despite the closure’s undisputable short-comings (v. s.) its adoption
is almost dictated by the need to avoid explicit Fourier transformations and the
requirement of stability of the PDE; consequently, the remainder of the work re-
ported here will be based upon the formulation of HRT presented in sections 2.1 to
2.3, with egs. (4) and (15) at its very core. Still, even within this framework there
is ample freedom regarding the details of the equations to be solved numerically;
this will be discussed in the superficial sketch of our software in chapter 4 and put
to good use in chapter 5.
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I1I. The physical systems considered and their pair
potentials

Let us now shortly introduce the physical systems that we will apply the theory just
outlined to and present some of the literature data that will be used in assessing
the method’s numerical qualities: in particular, we here define the SW and the HCY
fluids, while other potentials of limited interest for the remainder of this work are
only shortly touched upon. Note that the full set of parameters defining a given
type of interaction is displayed here but suppressed in most of the remainder of this
work (cf. sub-section F.1.1); also, the reference system unvaryingly identified with
a pure hard-sphere fluid (g. v. section 4.7) has already been defined in section 2.1’s
eq. (2.1). Some seemingly awkward signs in the parametrizations were adopted
for reasons of compatibility with the literature.

3.1. Square wells

Throughout our numerical work on HRT, the primary test case for the imple-
mentations to be presented in chapter 4 as well as appendices B and C was the
density-independent sw fluid of range A\ given by

vsw[—e,)\,o'] (T’) _ vhs[o’] (T’) + wsw[—e,)\,a] (7‘),

—€: r<Ao 1
wsw[—e,)\,a](r) :{ ( )

0: r>A\o,

the perturbational part of which has

sin\ock—AokcosAok
13

wsw[—e,/\,a](k) — _4Arme

as its Fourier transform.
As noted in chapter 1, after fixing the p-independent hard-core diameter o and
the well depth € as units of length and energy, respectively, we are left with the
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Physical systems and potentials 3.1 Square wells

potential range A as the only free parameter; in this work we will study values of
A from slightly above unity up to 3.6. With just one parameter, viz. A, to vary,
SWs obviously make for a convenient test case of HRT and, indeed, of liquid state
theories in general, and they can also be considered as among the simplest model
systems exhibiting phase separation; consequently, a great many simulational and
theoretical efforts have been directed at this system and studies of its phase be-
havior abound [14, 15, 42-52]. But square wells are also of interest in their own
right, serving as — albeit somewhat crude — models of a wide variety of phys-
ical systems including, e. g., >He, Ne, Ar, H,, CO,, CH,, CyHg, n-pentane and
n-butane [14, 16, 17] while current interest in this system derives mainly from the
finding that square wells capture the essential features of the interactions found in
colloidal systems [53-57]; also, the recent, very accurate simulation study [52] of
the system with A = 1.5 confirmed and quantified the presence of the Yang-Yang
(YY) anomaly expected and experimentally found for asymmetric fluids [58, 59].

3.1.1. Non-HRT results on the critical point of square wells of

variable range

For comparison purposes we compile in tables 1 and 2 the critical temperatures T,
and densities g, of various square well systems as obtained from simulations (table
1) or by purely theoretical means (table 2); the data given have been published
within the last decade.

Of the simulation based results included in table 1, only those of [47] for A €
{1.25,1.375,1.5,1.75,2} were obtained by molecular dynamics (MD); most of the
other simulation studies rely on one or the other variant of the Monte Carlo (McC)
method: Among these, the Gibbs ensemble MC (GEMC) calculations of [42] set out
to determine critical exponents, 3 in particular; that work’s finding of 5 ~ 1/2 for
A = 2 as opposed to the expected 3 ~ 1/3 (cf. table 2.1) found for A up to 1.75
prompted re-examination of the square well fluid with A = 2 by GEMC augmented
by finite-size scaling (Fss) techniques [43], refuting the mean field value for the
effective exponent. — Especially in the critical regime, grand canonical Mc (GcMmC)
simulations incorporating histogram re-weighting and Fss offer some advantage
over GEMC due to the latter’s restriction to fixed temperature; such an approach
has been applied to square wells with A = 1.5 and 3 in [44]; a more elaborate
GCMC scheme not biased towards but confirming the Ising universality class and
taking into account the YY anomaly has recently been applied to A = 1.5 [52], v. s.
Yet another method goes under the name of thermodynamic- or temperature-and-
density-scaling MC (TDSMC); it was applied to the case of A = 1.5 and analyzed
in terms of an effective Hamiltonian in [45, 46]. — Also included in table 1
are the results of [48], employing an MC scheme modified to take advantage of
a speed-up possible by combining simulation data with an analytical ansatz for
the chemical potential; the efficiency of this approach originally devised to study
phase separation allows a large number of systems to be considered. (The error
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Square wells

Physical systems and potentials 3.1
A kg T.(\)/e€ 0. 0> method

1.05 0.3751(1) 0.496(26) | mod. MC [48]

1.1 0.4912(4) 0.458(9) mod. Mc [48]

1.15 0.5942(35) | 0.434(1) mod. McC [48]

1.2 0.692(1) 0.415(3) mod. Mc [48]

1.25 0.764(4) 9.370(23) | GEMC [42]

0.78 — MD [47]
0.7880(6) 0.392(1) mod. Mc [48]

1.3 0.8857(7) 0.370(1) mod. Mc [48]

1.375 0.974(10) 0.355(45) GEMC [42]
1.01 — MD [47]

1.4 1.076(8) 0.329(1) mod. Mc [48]

1.5 1.2179(3) 0.3067(4) | aomc [52]
1.2180(2) 0.310(1) GoMe [44]
1.219(8) 0.299(23) | GEMC [42]
1.222 — TDSMC [45, 46|
1.226 — TDSMC [45, 46]
1.246(5) 0.329(6) TDSMC [45, 46]
1.27 — MD [47]
1.302(8) 0.322(5) mod. Mc [48]

1.65 1.645(5) 0.282(3) mod. Mc [48]

1.75 1.79 — MD [47]
1.811(13) 0.284(9) GEMC [42]

1.8 2.062(8) 0.249(3) mod. Mc [48]

2 2.61 — MD [47]
2.648(14) 0.249(8) GEMC+FSS [43]
2.666(85) 0.238(81) GEMCHFSS [43]
2.678(27) 0.244(8) GEMCHFSS [43]
2.6821(8) — GEMC+FSs [43]
2.684(51) 0.235(82) | GEMC-FSs [43]
2.721(89) 0.228(85) GEMCHFSS [43]
2.730(14) 0.235(8) GEMCHFSS [43]
2.764(23) 0.225(18) | GEMC [42]
2.778(7) 0.241(1) mod. Mc [48]

2.2 3.80(1) 0.258(1) mod. Mc [48]

2.4 5.08(2) 0.267(1) mod. Mc [48]

3 9.87(1) 0.257(1) GCMC [44]

Table 1: The critical temperature T and critical density oc of square well systems for various
values of A\ as predicted by simulations and simulation-based theoretical analyses, and the cor-
responding references. The acronyms used for labeling the method employed in obtaining these
results are given in sub-section 3.1.1 of the text, ¢. v. appendix F.

bounds given for these “modified MC” results in table 1 have been obtained from

the numbers displayed in [48] for different parameter settings.)
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Physical systems and potentials

3.2 Hard-core Yukawa fluid

A kg T.(\)/e€ 0. 03 method
1.125 0.587 0.71 APT2 [50]
1.25 0.751 0.253 HSVDW [49]

0.850 0.48 APT2 [50]
1.375 0.978 0.253 HSVDW [49]
1.08 0.36 APT2 [50]
1.5 1.249 0.253 HSVDW [49]
1.33 0.29 APT2 [50]
1.625 1.61 0.26 APT2 [50]
1.75 1.859 0.253 HSVDW [49]
1.93 0.24 APT2 [50]
1.85 2.23 0.23 APT2 [50]
2 2.506 0.253 HSVDW [49]
2.79 0.23 APT2 [50]

Table 2: The critical temperature T and critical density oc of square well systems for various
values of A as predicted by purely theoretical means, and the corresponding references. The
acronyms used for labeling the method employed in obtaining these results are given in sub-
section 3.1.1 of the text, ¢q. v. appendix F.

The theoretical predictions for the critical temperature listed in table 2 comprise

a second-order analytic perturbation theory (APT2, [50]) applicable to 1 < A < 2

and claimed accurate for A\ > 1.4 as well as the hard-sphere van der Waals (HsSvDw,

[49]) equation of state (E0S). In addition, though not listed in table 2, we have

utilized the non-square-well-specific Okumura-Yonezawa (0Y) estimate for (. of
[60], viz.

kB Tc

€

2
— 0.203 ?ﬂ A3 —0.273,

primarily as a starting point when looking for the critical temperature in our HRT
calculations.

3.2. Hard-core Yukawa fluid

Another potential we considered is the density-independent HCY potential para-
metrized as

vhcy[—eo,—e,z,a] (T’) — vhs[cr] (T’) + whcy[—eo,—e,z,a] (’I’),

—€p r<o
whcy[—eo,—e,z,a] (T) _ 5 0 (2)
—€—e
r

—z(r—o) . r>o,

where the parameter —e¢g, the value of w(r) inside the core, defaults to the contact

value —e = wP(o+), a choice actually dictated by numerical stability require-
ments in practical calculations (cf. section 4.3). Such a dependence of HRT’s results
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Physical systems and potentials 3.2 Hard-core Yukawa fluid

kg T.(\)/e 0c 03 method
1.193 0.326 MHNC |28
1.199 0.312 GMSA |28
1.21 0.28 MHNC |68
1.212(2) 0.312(2) MC [67
1.214 0.312 HRT [28
1.219 0.314 SCOZA H28]

Table 3: The critical temperature T and critical density g of the HCY system with z = 1.8/0
as predicted by simulation and purely theoretical means, and the corresponding references. The
acronyms used for labeling the method employed in obtaining these results are given in section 3.2
of the text.

on the perturbational part of the potential inside the core may be unexpected at
first, but bear in mind that even in the exact HRT hierarchy without any approx-
imations and with arbitrary cut-off procedure the renormalized potential w(Q)(r)
outside the core will depend on w(r) inside the core, and with the cut-off method of
eq. (2.4) any discontinuities of w(r) will feature prominently! in the Fourier trans-
forms; only in the limit ) — 0 are the exact results guaranteed to only depend on
v(r) rather than on w(r), but so low a @ is unattainable at least numerically if?
€0 7 €.

In comparison to sws, the HCY fluid will play only a minor réle in the pre-
sentation in the later chapters of this work; the reason for this is the richer set
of numerical difficulties displayed by sws as opposed to the HCY system, where
the same considerations (with the exception of those of section 5.6) apply as in
SWs but are less of a reason for concern due to the usually much less pronounced
defects of the solution obtained. As far as assessing HRT as a general theory of
the liquid state is concerned, the HCY fluid is of interest mainly because it allows
direct comparison [28] with the Self-Consistent Ornstein-Zernike Approzimation
(scoza, [61-63]) by Stell and Hgye as application of that theory benefits greatly
from an analytical solution to the mean spherical approximation in the case of
an HCY system; other than that, a direct comparison of HRT and SCOZA has only
been performed for the three-dimensional lattice gas model isomorphic to the Ising
model [64, 65].

For comparison purposes, in table 3 we again compile some results on the critical
point’s location for the system with inverse screening length z = 1.8/0; the data are
taken from [28] and comprise that contribution’s results as obtained from scoza,
the generalized mean spherical approximation (GMSA), the modified hypernetted

Take into account that, from section D.1 and the obvious continuity of the convolution integral

of eq. (2.6) for finite @, the renormalized potential w(Q) (r) is bound to sport exactly the same
discontinuities as w(r) itself except in the limit of @ — oco; put differently, the cut-off procedure
(2.4) only affects the potential’s continuous component. The same, by the way, is also true for
the smooth cut-off formulation of [13].

Of course, similar considerations apply to other potentials just as well. In the light of this
discussion it might be worthwhile to consider the numerical properties of HRT when confronted
with a different form of the HCY potential that even remains differentiable at r = o.
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Physical systems and potentials 3.3 Other potentials

chain (MHNC) approximation and HRT3, as well as MC simulations with Fss [67]
and a variant of MHNC relying on Verlet-Weis results for the bridge functions [68].

3.3. Other potentials

Two more types of potentials will briefly be mentioned below; the first of these,
viz. the general multi-step potential vSt’(r), can be obtained as a superposition of
a finite number of square well potentials with common hard-sphere diameter o,
1. e.

vst'[(—61,/\1),(—62,)\2),...;0'] (’I") — vhs[cr] (’I") + wst'[(—51,)\1),(—52,)\2),...;0'] (7‘)

)
wt [(80A): (=82.22),50] (1) — Zwsw[—&-,/\i,a’] (r), (3)
1<y
with a suitable set I of indices; this obviously defines a piecewise constant function
vanishing for r > max;c; A;, with jumps of height §; = vSt’()\,-—}-) — vSt’()\,'—) at
each of the \;. A more natural parametrization uses the sequence of constant
values €; of the potential, . e. ; = vS*(\;—),

,Ust[(el,)\1),(52,/\2),...;0'] — ,Uhs[cr] (’I’) + wst[(el,/\l),(ez,)\2),...;0'] ’

€1 : r < )\1
wStl(enAa)s(e2,22)550] — ) g, Ny <r < A;, where {i —1,i} C T (4)
0: 7 >max\;;
i€l

of course, the ¢; are related to the §; in a straightforward way.

Yet another potential that will be useful in sub-section 5.2.1 is what we call the
“core” potential v°°*® obtained by restricting one of the more realistic types of
interaction like those defined in this chapter to within the hard-sphere diameter
o: for arbitrary function ¢ (r), we define the corresponding core potential as

Ucore[¢(r),0'] (’I") — ,Uhs[cr] (T’) + wcore[l/;(r),a] (’I") ,

weerel¥(r)7] (r) =9(r)©(c —r). (5)

core

As can easily be seen, v = vP%; but applying the cut-off Q as in eq. (2.4) we

obtain
lim vcore(Q) — vhs
Q—o0
lim v°°r¢(Q) = yhs (6)
Q—0
,Ucore(Q) + Uhs, 0<Q< oo,

which allows for simple reasoning the conclusions of which are of some relevance
for very short ranged potentials (cf. sub-section 5.2.1).

3 Using what is referred to as the “original implementation” in chapter 4; these calculations
were carried out with a setting of Ncc = 5 [66], but g. v. section 5.2.
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IV. Implementation of HRT for simple
one-component fluids

From the discussion of chapter 2 it should be clear that HRT holds high promise
for the study of, among others, simple one-component fluids especially in the two-
phase region where it renders Maxwell constructions obsolete, or in the critical
region where the theory produces a true singularity characterized by non-classical
critical exponents without loosing information on short length-scales as is often
the case in RG theoretical methods. Still, adoption of this theory by the liquid
physics community has been lagging, and while this reluctance to adopt so pow-
erful a tool may partially be attributed to the theory’s inherent difficulties and
high computational cost, lack of an easy to use yet flexible, well-documented im-
plementation of HRT may also have played a rale. To fill this gap we have written
softwarel suited as a general framework for the exploration and application of HRT
to simple one-component fluids with hard sphere reference systems with various
combinations of physical systems, approximations, and solution algorithms; to-
gether with appendix C the present chapter will provide a short overview of our
implementation, its facilities and limitations.

4.1. General characteristics and comparison with earlier
programs

Of course, the software to be presented here is not the first implementation of HRT
for simple one-component fluids: indeed, there has been a series of earlier programs
[6, 9, 13] by the authors of the theory and their collaborators, but it was the one
used in [11, 28], henceforth referred to as the “original” implementation, that was
a vital step in demonstrating the viability of HRT for continuous systems below
the critical temperature; though never published or formally released, it has been
circulating among interested physicists for quite some time, serving as a valuable
resource for us, too, as it solves in its own way some of the problems inherent to

1 Available on the world wide web from http://purl.oclc.org/NET/ar-hrt-1/.
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Implementation of HRT 4.1 General characteristics and other programs

the theory in the formulation chosen; also, we point out that the current version
of our software which we will be concerned with in the remainder of this chapter
evolved through various stages shortly presented in appendix B, each of which
provided us with a host of new insights into the theoretical, numerical and practi-
cal aspects of applying HRT to the systems considered (cf. chapter 3). Still, there
are good reasons for producing yet another implementation of the theory, and in-
deed does the one at hand differ from its precursors in many respects: adoption
of a meta-language in our version, programming style, and documentation-to-code
ratio may be most obvious, number and nature of hard-coded limitations (e. g.
the number of basis functions in the closure), important details of the numerical
procedure (e. g. the manner of discretization, a general preference for analytic
expressions over interpolation on grids, and some basic control of error terms and
convergence checks with clearly defined criteria to be met or explicitly overridden)
and a possible speed gain through generation of customized code (cf. section C.1)
might be less apparent. Most importantly, though, the original implementation’s
structure makes experimentation with different combinations of approximations,
PDE solving algorithms, parameter settings and physical potentials rather cum-
bersome; in contrast, the fully modular approach adoption of a meta-language (cf.
section C.1) allowed us to take seems far better suited to a more general survey of
HRT’s numerical side.

In addition to the necessary flexibility of our software, great care has been taken
to ensure the numerical soundness of every step in the calculation and hence of
the results produced; as a secondary goal we also strive for efficiency of the im-
plementation but without sacrificing correctness, which entails an almost uniform
distribution of the generation of numerical errors necessarily arising from finite-
precision arithmetic and a FD approximation to the underlying PDE over all of
the problem’s domain. To this end we introduce one central parameter, e, char-
acteristic of the maximum relative error introduced at any step; together with a
number of criteria relying on €4 this parameter governs virtually all of the nu-
merics. Where the mathematical structure of the HRT-PDE or limited computer
resources necessitate a deviation from the criteria usually employed to maintain
the numerical quality indicated by ey this is made explicit (v. i. sub-section 4.6.2),
as are all the other approximations entering the calculation.

On a more technical note, in view of the well-known advantages of this program-
ming language for numerical work that we did not want to forgo, we decided to
strive for an implementation in fully standards-conforming [69] Fortran-90; the
only non-standard feature we make use of is the availability of the special values
NaN and +Inf for numerically undefined values and signed overflows, respectively,
as defined in the IEEE floating-point standard [70]. These requirements should not
pose a serious restriction for our software’s prospective users: after all, Fortran-
90 compilers have been available for a wide range of platforms for several years,
and the desired floating-point behavior can usually be requested — albeit at a
small performance penalty — via compiler switches; also, the next revision of the
Fortran language informally known as Fortran-2000 (due in 2004) is set to in-
clude a formal specification on floating-point exception handling [71], which will
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Implementation of HRT 4.2 Computational framework

probably spur compliance with [70] on an even wider range of platforms. — But
despite the chosen language’s indisputable merits, experience with prior versions
of our code (cf. appendix B) taught us that the kind of flexibility we need can-
not be accommodated within the rather rigid framework Fortran-90’s modules
with their one-way flow of information provide. Instead we opted for the simple
meta-language arfg? for self-configuring construction of code customized to the
chosen combination of approximations and the physical system at hand, at the
same time enhancing readability and maintainability of the source and encourag-
ing modularization; for a more detailed discussion of this approach, the numerous
technical advantages it affords, and of the meta-language itself we refer the reader
to section C.1.

4.2. The program’s computational framework

As a direct consequence of the adoption of a meta-language our software is more
appropriately described as a collection of mutually compatible building blocks
rather than as a monolithic program so that the details of the numerical proce-
dure are best left to these; however, for the combination of different selections of
implementations of these parts to jointly define a valid numerical realization of
the theory outlined in chapter 2 all of the code must adhere to a common view of
the computation.

Most obviously, we have to make the transition from the PDE’s domain, viz. the
infinite strip [0, 00) X [@min, Omax), tO a discrete mesh defined by a finite number of
discrete points in a finite part [Qo, Qo] X [Omin, Omax) Of the (Q, p)-plane. Evidently,
the placement of these “nodes”, as we shall call them, is of utmost importance for
the quality of the discretization so that it is only natural to define €4, the central
parameter governing all of the numerics, in terms of the properties of this mesh:
the coarser a mesh we choose, the larger ex will be.

The locations of the nodes can, in principle, be chosen freely® and should be
left to the corresponding parts of the program; we do, however, require the nodes’
data structures to be organized in doubly linked lists roughly (v. i.) corresponding
to Q-systems at different densities the properties of which are to be determined in
parallel. As for the cut-offs @ of the nodes in such a list, we cannot assume them
to coincide even though this is usually the case except for a low-density boundary
at o = 0, nor is there any reason to rule out a corresponding p-dependence of
Qo or (), the boundaries of the Q-interval considered numerically. On the other
hand, as far as the densities of the nodes are concerned, implementation of the core
condition via the truncated egs. (2.18) and (D.11) makes anything but constant

2 Available on the world wide web from http://purl.oclc.org/NET/arfg/.

3 Consequently, when we discuss step sizes AQ and Ap of the FD scheme, both quantities, viz.
the change AQ < 0 in Q from one node to the next at the same density and the spacing Ap
between adjacent densities are, in general, to be taken to depend on both @ and g even though
we do not explicitly show this dependence.
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Figure 1: Schematic of the grid used in the discretization of the PDE (cf. section 4.5). Assuming
use of the three-point approximation for the second derivatives in the o-direction, the discretiza-
tion is generated from an expansion around the intersection of the thin horizontal line with the
line of constant density joining the nodes labeled (i2). — According to the general model of the
computation discussed in section 4.2, a node list’s Q-values may be p-dependent, whereas the
o-values must coincide in all three node lists, though they need not be equispaced.

(though not necessarily equispaced) density values impractical; if the grid is to be
refined for low (), additional nodes must be inserted at the same densities in all
the node lists in the calculation. After initialization of the nodes’ data structures,
solution of the PDE proceeds by applying a (possibly iterated) predictor-corrector
scheme to generate an approximate solution for the nodes most advanced towards
Q = 0 from the information available through the node lists at higher @; in the
interest of the code’s simplicity, the number of node lists has been fixed to exactly
three (g. v. fig. 1) which is sufficient for the determination of appropriate step
sizes AQ by estimating selected quantities’ curvatures in the ) domain. Note,
however, that this choice, convenient as it is for the work we have undertaken,
poses an upper limit on the order in AQ of the discretization and thus presents
one of the hard-coded limitations of our program, v. s. section 4.7.

Other aspects characteristic of our software are the amount of modularity it
provides and the roéles assigned to the program’s modular constituents: indeed,
most of the mutually compatible and freely exchangeable building blocks that are
combined to implement a particular set of approximations to the theory outlined in
chapter 2 directly correspond to the underlying physical and mathematical notions;
the resulting natural organization of the code cleanly separating conceptually un-
related approximations is a direct consequence of our adoption of a meta-language
and the use of automatic code generation techniques. Note, however, that it is
possible only because there is no simple mapping from “main parts”, as we shall
call them henceforth, to Fortran-90’s rather inflexible modules from which they
must be distinguished clearly: every main part may give rise to any number of
modules and may incorporate all the information available within the code base.

In the following sections we take a closer look at some of the main parts, their
physical meaning, the algorithms and approximations they implement, and at some
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of the information they make available to the other parts via the facilities sketched
in section C.1; we will, however, exclude from this discussion the program’s in-
frastructure, e. g. the facilities for logging, for reading and parsing of options files,
handling of node lists as well as the definition of a versatile, lossless and storage-
efficient albeit platform dependent file format for the results at Q = Q. In a
similar vein, we only mention the assortment of accompanying tools for reading
these files and dumping their content in human-readable or Mathematica-usable
form, for locating the critical point or calculating phase diagrams. Thus only main
parts potential, reference, ansatz and solver — note that we use mono-spaced
font for the main parts’ names — remain to be discussed:

4.3. Main part potential: Properties of the interaction
of the fluid’s particles

First and foremost, we obviously have to provide the necessary information on
the fluid’s potential v = v™f + w and its properties: this is the purpose of main
part potential. Just as the full potential is a sum of a reference part v™! and a
perturbational part w, the functions and parameters to be provided by this main
part fall into two distinct categories, pertaining to either v**f or w; in addition, as
the temperature enters the calculation only as a pre-factor to w, viz. via ¢ = —Bw,
the inverse temperature 3 is also defined here.

As far as the reference system is concerned, restriction to hard spheres (cf. chap-
ter 2, ¢. v. section 4.7 below) means that only a function returning the hard sphere
diameter o(p) and a flag indicating any deviation of o(p) from the unit of length
need to be made available. — A similar parameter pertaining to the perturba-
tional part w of the potential, viz. a flag indicating any density-dependence of w,
also plays an important réle in many parts of the program as substantial simpli-
fications? and, in many cases®, significant speed-ups by caching previous results
are possible whenever gzg(Q, o) only depends on Q. In addition, at every cut-off Q
the program must have access to the Fourier transforms w(Q, o) and qE(Q, 0) as

well as the derivatives agg(Q, 0)/0Q and 9" <(,Z~5(Q, g))m /0™, whereas powers of

the volume integral, gz~5(0, 0)", and their derivatives 9" (&(0, g))m /8™ obviously

do not depend on @; here, m and n are appropriate integers known during code
construction. — Even though not used by our program directly, it is customary
to also implement the functions w(r) and ¢(7); not only do these functions allow

4 Note that most of this simplification automatically follows from using a standardized interface

for accessing the exported functions as explained in section C.1; in particular, the code has
to explicitly take into account the potential’s p-independence only in rare circumstances, e. g.
when installing caching or when switching to a more efficient algorithm altogether.

This obviously depends on the pattern of accessing and initializing nodes, and on the com-
putational cost of evaluating the relevant functions as opposed to mere lookup and test for
equality; for a hint on the implementation of the simple one-shot cache cf. section C.1.
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for simple tests of the internal consistency of the description of the potential, they
also come in handy for additional evaluations, especially for Fourier transforma-
tions like those needed to get g(?)(r, o) from C@) via the 0z relation (2.8), cf.
section 5.2.

For the benefit of the PDE-solving algorithm, this main part also has to set a
parameter A[, indicative of the potential’s range and related to the maximum

relative curvature of the second Q-derivative of gz;(Q, 0), defined in such a way
as to coincide with X for the sw potential v5%[=¢*?] given in eq. (3.1): indeed,
as discussed in chapter 3 it is this system that most of the work reported here
has focused on; apart from sws, the HCY potential vhe¥l—€0:—6:2:0] of eq. (3.2) and
the multistep potentials of section 3.3 have been implemented, in the latter case
automatically transforming vSt(—&A1):(m€x2,32),50] f o, (3.4) into the computa-
tionally more convenient vs':,[(51’)‘1)’(52”\2)"“;"], cf. eq. (3.3). In all these cases we
have implemented density-independent potentials only even though the remainder
of the program is able to handle p-dependent interactions just as well; also, in
the calculations reported here the diameter o of the hard-sphere reference part
(vref = vhs[”]) and the strength € of the attraction have invariably been chosen as
units of length and energy, respectively.

As all of these potential types consist of an attractive tail attached to an in-
finitely repulsive core, the splitting of v into a reference part v'ef
bational part w is uniquely determined outside the core; on the other hand, in
the case of the HCY fluid any mismatch between €y and € dominates W™ (k, o)
for large k and is found to render unstable at least the numerics, and the same is

and a pertur-

also expected whenever some potential introduces a length-scale close to or even
smaller than o so that there is little room for variation of w(r) inside the core,
either. Also recall from sub-section 2.4.1 that an attractive potential (negative
w(0, p)) is a necessary though not sufficient condition for the stability of the PDE
itself.

4.4. Main part reference: Hard-sphere reference system

Due to the specialization of v™f to hard spheres, the reference system enters the
expressions of chapter 2 only through the direct correlation function cif, imple-
mentation of which is the task set for main part reference. Not surprisingly, it
turns out to be the simplest part of our program: it uses information only from
main part potential, viz. the function o(p) and the flag regarding the hard sphere
diameter’s rdle as unit of length, and apart from initialization code only functions
for the evaluation of ¢*f(Q, 0) and 8¢5 (Q, 0)/9Q have to be exported.

In our program we have so far included two different versions implementing the
Percus-Yevick (PY) approximation [72] and the Grundke-Henderson (GH) descrip-

tion® [73]; the latter is very similar to the widely used Verlet-Weis [74] parametriza-

6 As [73] is more concerned with an approximation for the bridge function rather than the direct
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tion of the hard sphere correlation functions in that it builds upon the PY results
but is usually taken to present a superior approximation insofar as it implements
consistency of both the virial EOS and the compressibility EOs with the well-known
Carnahan-Starling result [75]. Note that all results reported here have been ob-
tained using the GH-c"f: in a theory relying on internal consistency conditions like
eq. (2.13) as heavily as HRT, the thermodynamic inconsistency present in the PY

solution seems particularly undesirable (g. v. section B.1).

4.5. Main part ansatz: Discretization, boundary
conditions, and other approximations

Main part ansatz where all the approximations on the physical and mathematical
level are combined to jointly define a reasonable numerical model of HRT is at the
very core of the PDE-solving machinery: for the potential the perturbational and
reference parts of which are described in the previous two sections, the HRT-PDE
is discretized and solved according to a given set of approximations and on the
mesh defined by the node-lists served by main part solver (v. i. section 4.6).
More precisely, ansatz provides a set of facilities in the form of subroutines with
standardized interfaces on the m4-level of arfg (cf. section C.1) implementing the
various stages of the computation, viz. initialization of the node lists at Q = Qo
and subsequent solution of the FDE in a predictor-corrector full approximation
scheme. Note, however, that the code must accommodate the possibilities of both
iterating the corrector step (which may allow attaining the numerical quality in-
dicated by €4 with somewhat larger step sizes, thus speeding up the calculation)
and of discarding part of the solution should e4-based criteria not be met; to aid
solver in these decisions, care has to be taken to detect and signal numerical
anomalies. Once a step’s results have been accepted, ansatz may perform ad-
ditional manipulations of the data structures: most importantly, for reasons of
both simplicity of the code and efficiency of the discretization the re-scaling of all
quantities affected by exponentiation of f necessary whenever f is large (cf. our
discussion of the PDE’s stiffness and the suppression of van der Waals loops in
chapter 2) is adjusted only when the last corrector’s result has been accepted.
Due to the eminent réle the consistency condition (2.13) plays in constructing
a closure to the underlying ODE (2.12), the PDE (2.23) for f(Q, o) is of first or-
der in ) and of second order in p; assuming the lowest possible number of nodes
in the discretization (extension to higher order is straightforward) and a rectan-
gular arrangement of the nodes we therefore need at least a 2 x 3 set of nodes.

correlation function we had to re-derive and to re-write the GH results in a form more suitable
for the task at hand. In doing so we were led to a slightly different form of [73]’s expression
(18) for the parameter m that might point to a mis-print of that equation; the results we used
in our calculations can be obtained from those of [73] by changing the sign of the integral over
the PY pair distribution function and by replacing the effective Py hard-sphere radius by its
GH value on the left-hand side of the equation which then reads 12nC/m o2,
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According to the general model of the computation presented in section 4.2, how-
ever, we instead keep a third node list in order to allow monitoring of second
Q-derivatives; this still allows us to reach a classical consistency order two in AQ
even on a non-rectangular mesh while our discretization is of first order only in
Ap due to asymmetry of the 3 x 3 grid schematically presenting in fig. 1 the most
general constellation of nodes compatible with the general model of the compu-
tation given in section 4.2. Locally, the FDE is derived from an expansion about
the midpoint of the nodes labeled (22) and (32) in the schematic 1, evaluating the
second p-derivative in eq. (2.23) along the line of constant @ through this point
(thin horizontal line in fig. 1) by estimating the data at the intersection with the
lines of constant density by interpolants defined from node triples (¢1) and (¢3), re-
spectively; the resulting FD approximation is applied to every set of three adjacent
node-triples, substituting suitable boundary conditions at omin and omax.

As indicated in fig. 1, @ is not necessarily constant along a given node list,
whereas the stability of the numerical scheme may impose certain geometrical
constraints regarding the possible locations of the nodes, e. g. for ensuring that
the Courant-Friedrichs-Lewy criterion [76] is met or for maintaining convexity of
the remaining integration region; a suitable representation of these constraints is
exported and must be taken into account by main part solver. If the latter decides
to insert nodes at intermediate densities, the code for initializing the inserted data
structures and for interpolating appropriate quantities is negotiated between the
main parts, depending upon the order of the interpolation formulae available. A
further consequence of having non-constant () is that some parts of the density
range may reach ) ~ Qg earlier than others, which is regularly the case at least
for the boundary condition at g,;,, = 0; in this case, the corresponding nodes are
locked, preventing further modification, and all of the converged nodes except those
necessary for providing a boundary condition for the remaining density interval
(g. v. section 4.7) are removed from the node lists available to main part ansatz.

In addition to the discretization of the HRT-PDE (2.23) discussed so far, the im-
plementation of the core condition along the lines of chapter 2 and sections D.2
and D.3 is also of interest. Relegating discussion of the choice of appropriate basis
functions u,, 1 < n < N, to section C.2 we only point out the extremely slow
convergence of the i—integrals (D.9) that have to be evaluated at Q = Q; fur-
thermore, as the integrand is temperature dependent for k£ > ()., these integrals
have to be evaluated for every isotherm — a problem that might be sidestepped
by adopting the original implementation’s strategy of consistently using the re-
sults for Q — oo rather than those valid at Q. for initialization even though
such an approach introduces an artificial discontinuity at Q = Q... Also, with
the usual choice of Q., ~ 10?/0, integration merely up to k = Q.. can hardly be
deemed sufficient; an appropriate upper integration limit can instead be found by
comparing the integrand’s asymptotic behavior with €.

For the benefit of the rest of the PDE solving machinery, main part solver (v. i.
section 4.6) in particular, ansatz also has to identify quantities suitable both
for monitoring convergence of the full approximation scheme and for choosing
appropriate step sizes AQ and Ap, to provide code fragments for the inspection
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of nodes in various stages of the computation as well as to export a description of

the boundary conditions at on,;n, and omax including mandatory settings for either

of these parameters if necessary; in particular, most implementations of ansatz

require g, = 0 in order to be able to use the result (A.2) brought about by
~ref

the divergence of the ideal-gas term —1/p in ¢5*' as a Q-independent boundary
condition for f.

It is this main part where different approximations related to conceptually sep-
arated aspects of HRT like initial and boundary conditions, the manner of dis-
cretization, the implementation of the core condition, the formulation of the PDE
or any additional approximations must be combined to jointly define a reason-
able computational model of the PDE; note that a higher degree of modularization
separating all of the aspects mentioned that we here decided to implement only
together proves to be impractical and leads to the dreaded proliferation of largely
incompatible modules known from a previous version of our program, the very
experience that led us to adopt a meta-language in the first place (cf. section B.2).
In the course of our investigations into HRT’s numerical side we produced a multi-
tude of versions (g. v. sections 2.4 and 5.4.1) only a selected few of which we will
make use of in the remainder of this work: While mathematically inconsistent,
both the re-implementation of the original program’s approximations for the core
and boundary conditions and the approach combining the PDE with a(?) = 0 at all
densities including g,ax retain thermodynamic consistency at least in some approx-
imate way (cf. our discussion of the decoupling assumption in sub-section 2.2.2);
we have also implemented the two possible approaches at least mathematically
meaningful, viz. the thermodynamically inconsistent ODEs directly following from
decoupling (g. v. section B.3) and the PDE resigning on the core condition for the
benefit of the compressibility sum rule (2.13) with the LOGA/ORPA prescription

7((,Q)(gmax) = 0 as high density boundary condition.

4.6. Main part solver: Criteria for positioning of nodes

If main part ansatz is to provide a discretization on whatever mesh is handed to
it, it is the task set for solver, the last of the main parts to be discussed in this
chapter, to define this very mesh and to keep track of the numerical solution’s
quality. Based primarily upon the value of ex but also taking into account other
options as well as compile-time parameters (cf. section C.1) and respecting any
restrictions exported by ansatz, step sizes AQ and Ap have to be chosen and
checked for compatibility with the solution generated, iterating or discarding steps
if certain criteria are not met; whenever ansatz signals an exception — usually an
overflow in ¢(Q, o) or numerically undefined f(Q, o) — the last step is discarded,
accepting the data in the node list corresponding to labels (2:) in fig. 1 as the best
approximation to the solution for ) — 0. At the same time, care has to be taken
to locate and identify any problems in the solution, i. e. parts of the (Q, o)-plane
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where the solution found does not appear smooth on the scales set by the step
sizes, the most basic assumption underlying any FD calculation; whenever this
assumption no longer holds, the algorithm will react by locally reducing AQ and
Ap, inserting node triples (cf. section 4.5) in order to achieve the latter. — Once
we find any nodes already holding the final results for their respective densities”
they must be taken care of as discussed in section 4.5; integration of the PDE is
ended when there is a node with Q < Qo for every density in the calculation,
or when ansatz requests an end either because an error condition has occurred
(v. s.) or because the current node list is sufficiently close to Q@ = Qo already.
— As noted in section 4.2, the intimate link between this main part’s task and
the numerical quality of the solution generated makes it natural to here define €4,
the central parameter governing the numerics, and it is this part of the program
that relies upon €4 and the associated criteria the most; other main parts use ex
for little more than for switching between full analytic expressions and asymptotic
expansions, a slightly atypical example of which is to be found in section C.2.
One last aspect of this main part common to both of the implementations dis-
cussed below regards the choice of Qo: As the only reasonable initial condition
for the core condition assumes that the structure at Q. is basically the same as
that for Q@ = oo (so that ch‘”) = cgoo) = c&*f or, equivalently, 'yT(LQ“’) = 77(100) =0,
n > 0) and the same set of parameters is used for the initialization of nodes at
Q = Qo +|AQ)], the nodes labled (17) in fig. 1 in the first step, too, it is preferable

to have ayﬁf?)(g)/a@ =0 at Q@ = Quo; from eq. (2.18) one immediately concludes
that this is equivalent to W (Q) = 0 whenever using the decoupling assumption.
It is left to main part ansatz to decide whether Q.. should be determined in
this way, thereby necessarily introducing p-dependent Q.. when dealing with a
o-dependent potential; if so, provisions have been made to ensure that Qo (p) is
continuous.

4.6.1. Monitoring the solution

Of the two implementations of this main part, one has been written in the hopes of
being able to avoid the problematic region of large f(Q, o) altogether, as is indeed
possible for some similar PDEs (g. v. section 5.5). This implementation makes full
use of €4, relying on numerous criteria to control the calculation; in the following
discussion the notation pz[f] refers to customization parameters that should usually
be taken as real numbers of order unity. In most cases they are used as pre-factors
to €4 so that increasing me] relaxes the constraint imposed by the corresponding
criterion; the pivotal parameter ey itself is defined via

N, — (Qmax - Qmin)2 (1)
e €. ple] ’
# PN,

7 Note that this will be the case already after the first step for the nodes at g.,;, provided
eq. (A.2) is used as the low-density boundary condition.
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where N, +1 is the number of density values spanning the range from o t0 Omax
in the equispaced p-grid we always decided to start with; the above relation reflects
the importance of second p-derivatives for the numerical quality of the solution of
the PDE3, the correlations of the truncation errors of the three-point FD estimator
for these derivatives as well as the static nature of this set of densities due to the
f—approach to the core-condition.

Once €4 has been fixed, the system is ready to start determining appropriate
step sizes AQ; in particular the assumption that the potential v(r, o) introduces
length scales only in the range from () to Ap(0) o(0), where A[ is related to
the second and fourth derivatives of o(k, p) with respect to k (v. s. section 4.3),
places an upper bound on the admissible step sizes, viz.

A
1264 P

Ay o(0)

AQ <

On the other hand, for a FD scheme to be meaningful at least a certain number
of bits must remain significant in evaluating the differences, which implies a lower
bound on A(Q proportional to ), and the solution has to be smooth on the scales
defined by the mesh, which also rules out abrupt changes in the step sizes; con-
sequently, the ratio of two consecutive A(Q) steps at the same density is restricted

to lie between pféi] and 1/ pféi]. In a similar vein, considering smoothness in the
o-direction we have to postulate that (Q22) + Q(32))/2 is greater than either of
Q(31) and Q(33), where the labels coincide with those of the nodes of fig. 1; this
condition, unlike the other rules mentioned so far, does not limit the step sizes
AQ at any density ¢ but rather determines whether Ap should be reduced by the
insertion of nodes at an additional density. But the most important criteria for
choosing AQ come from monitoring the solution generated: for every monitored

quantity x we make sure that

1 821‘ [AQ]
25| AQ < \expz 7,
zllq ‘3622 #
where
= k 2
lzllq g;aglx( ,0)] (2)

is the usual maximum-norm on the interval |@Q, oo[; the quantities taken for z are,
of course, chosen by ansatz (v. s. section 4.5), and a usual selection is z(Q, p) €

{f(Q, 0), 1//€(Q)(Q, g)} so that aspects of the solution related to both thermo-

dynamic and structural properties of the fluid are monitored. A different set of
quantities y, also chosen by ansatz and usually comprising just y(Q, ¢) = f(Q, o),
is used to monitor the convergence of the predictor-corrector scheme and to de-
termine whether or not the corrector should be iterated: denoting the absolute

8 A conclusion based upon tests performed with the program of section B.1.
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difference of consecutive approximations of y divided by ||y||o by Ay, iterations

are performed until Ay < ex p?[f onv], and the ratio of two consecutive step sizes is

[aQ]
bounded from above by (ex pg[,AQ])l/ (2+p1"it )/\/A(l)y, where Ay is Ay evalu-
ated after the first corrector step. According to simple heuristic arguments regard-
ing the convergence of corrector iterations and ignoring the effect of other criteria,

an average of pg\%?] calls of the corrector can be expected to solve the difference

equations to within €4, and a setting of pgétQ] > 1 may significantly speed up the

calculation by allowing larger steps to be taken without loss of accuracy.

After finding and tentatively using a candidate AQ we still have to check that
the assumptions leading to that particular choice for AQ actually hold; to this
end we re-evaluate all the criteria with the obvious exception of the one involving
AMy after the predictor and discard the step unless a slightly smaller step size,
viz. AQ p[AQ] (0 < pg?sﬂrd < 1), passes the tests. If no step size can be found

discard
satisfying all the constraints, the calculation is terminated.

4.6.2. Pre-determined step sizes

While the above set of prescriptions for finding suitable node locations has proved
indispensible in understanding the behavior of the PDE’s solution, the oscillatory
nature of f(Q, p) invariably linked to the build-up of the isothermal compressibil-
ity’s divergence for sub-critical temperatures (cf. sub-section 2.3.2) prevents its
use for B 2 [B.: considering even the modest value f ~ 103, 0 AQ would have
10° | 10439 which is obviously completely useless for any
practical implementation. Thus, even though it means loosing control over the

to be smaller than e~

level of accuracy in the solution, we have also implemented a version of main part
solver with predetermined step sizes that just happen to often be sufficient for
reaching ) = Qg even well below the critical temperature while reproducing the
overflow necessary for xkr’s divergence in a density interval the edges of which may
then be identified with the coexisting phases’ densities o, and ;. Recalling the
behavior of f wherever it is large we obviously have to drastically reduce AQ as
we approach Qg; for this we use the very prescription introduced by the authors of
[11] and evidently underlying all later published HRT calculations: at any density o
the Q-values are written in the form In (1 + exp (Q;o —1 AQ‘OO)) with successive
integers 7 and a parameter Q._ adjusted to yield the correct starting value Q (o).
Apart from the determination of step sizes €y is still very much in control of the
numerical processing and plays an important role in the calculation.

4.7. Limitations inherent to our software

From the preceding superficial sketch of our implementation of HRT in conjunction
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with the discussions of appendix C, section C.1 in particular, it should be clear that
we have produced a rather general, flexible and extensible framework well suited
to the systematic investigation of different approximations’ effects in numerical
calculations; also, the reader will not have failed to notice the natural separation
of the code according to the underlying physical and mathematical notions that
is mirrored in both the ease with which our code’s capabilities can be extended
by alternative implementations of the main parts and in the simplicity of the
software’s use (cf. section C.1).

On the other hand, there are a number of limitations present that prospective
users should be aware of; due to the flexibility of our approach, however, some of
them are related only to specific implementations of the main parts whereas others
are inherent to the view of the computation underlying all our code.

The most poignant restriction on our software’s range of applicability comes
from the specialization to the case of a spherically symmetric pure two-body inter-
action with a hard-sphere reference part (cf. chapter 2): also taking into account
rotational degrees of freedom would, of course, dramatically increase both the
complexity of the program and the computing resources necessary, and while ap-
plication of HRT to systems with three-body interactions has been demonstrated
in [9] the necessity to include all many-body forces already in the reference part
makes such an approach appear cumbersome and rather less attractive; identifi-
cation of the reference fluid with pure hard spheres, a restriction not present in
the original implementation of HRT, seems justified in the light of the substan-
tial simplification it brings about. Of these extensions, only the elimination of
rotational symmetry of the interaction mandates an alternative implementation
of one of the main parts, viz. ansatz, only and could thus be incorporated into
our implementation without much hassle; both of the other changes indicated,
viz. three-particle potentials or non-hard-core reference system, require changes to
main parts reference and ansatz and therefore cannot be accomodated within
the framework laid out in the preceding sections without hampering the possibility
of freely combining any of the main part versions into a reasonable computational
model of some approximation to HRT as presented in chapter 2.

As noted already in section 4.2, fixing the number of node lists to exactly three
certainly renders discretizations of high order in AQ based upon simple Taylor
arguments impractical; still, not only are such an approach’s merits not clear [77],
it is also certainly possible to implement the handling of additional node lists
without incurring too severe a performance penalty.

As far as the solver of sub-section 4.6.1 is concerned, we should point out that
this version of the code is not ready to deal with more than one density interval
where no solution has been obtained yet; still, such a situation might only arise
through violation of the Courant-Friedrichs-Lewy criterion [76] and would almost
certainly induce instability of the FDE, nor do we expect such a situation to arise
due to the way the PDE’s stiffness arises (cf. section 5.5).

The last class of limitations that we should mention is a number of hard-coded
expansion orders: as noted, e. g., in sections A.4 and C.2, in a number of cir-
cumstances evaluation of some quantities via the full analytical expressions is nu-
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merically inappropriate except under certain conditions, and series expansions are
typically applied when these are not met; with the notable exception of section C.2,
while the criteria for switching between the methods of calculating an expression
generally depend on €4, the expansion orders are typically hard-coded rather than
dynamically adjusted to reflect the calculation’s level of accuracy, which may cause
floating-point problems for extremely small values of €.

4.8. Default parameter settings

Unless otherwise noted, all of the calculations reported in this work have been
performed on an equispaced density grid of N, = 100 density intervals spanning
the range from ppmin = 0 to Omax = 1/03, corresponding to a value of ex = 10~2;
N.. was usually set to 7; and the pre-determined step sizes started from AQ =
—1072/0 at Q. = 80/0, plunging to a mere —5-107%/o when approaching Qo =
10~%/0; the preferred ansatz inconsistently applies the decoupling assumption
for omin < © < Omax but consistently uses it as a boundary condition for the
PDE at gpax. — When locating the binodal via the divergence of the isothermal

compressibility /-engO) we did not require an actual overflow to occur but instead

(Qo)
T

looked for a k..°°’-ratio at neighbouring densities exceeding 10%, which is a rather

reliable indicator for the binodal’s location as /{gﬂQO) typically jumps by far less than

two or by at least some twenty orders of magnitude within one Ap; the reported
values for p, and g; are the mid-points of the density intervals so found. In principle
this allows us to locate the coexisting densities and the critical temperature and
density to arbitrary precision, even though the computational cost rises sharply
with falling €.
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V. Aspects of the numerical solution of the HRT
equations for simple one-component fluids

In the preceding chapters we had to introduce a number of approximations some of
which may seem rather less justified; their respective importance for and bearing
on our program’s predictions of structure and thermodynamics of simple liquids
now remain to be assessed. As an exact solution with which to compare numerical
results is lacking for non-trivial systems, for HRT in the formulation of chapter 2
as implemented by our software package (chapter 4) to be considered a reliable
tool well applicable to realistic physical potentials it is necessary to demonstrate
the limited effects variations in the numerical recipe have and to compare the
results obtained with those available by other means for certain potentials. To
this end in the sections to follow we will make use of the systems discussed at
some length in chapter 3, viz. the HCY fluid with z = 1.8/0 and sw systems
of variable well width, varying the parameter A\ from slightly above unity up to
3.6; as mentioned in section 3.2, the former of these is expected to be largely
unproblematic numerically whereas the pronouncedly short-ranged sws should
bring out the difficulties inherent in HRT much more clearly.

Of course, it is to be understood that any of the deficiencies of the solutions
numerically obtained or of the PDE solving process only relate to an implemen-
tation along the lines of chapters 2 and 4 and not to HRT proper; however, for
reasons discussed in chapter 2 and section 4.7 alternative formulations almost cer-
tainly render the numerics far more demanding and open up a whole new suite
of problems regarding the numerical implementation’s soundness, especially when
involving Fourier transforms of cut-off affected functions (cf. section D.1).

5.1. Insensitivity of the critical density

An important trait that is found for all the systems and parameter settings we
considered is that the critical density o. is hardly affected by a variation of the
numerical recipe and is, in fact, virtually always in good to excellent agreement
with the data presented in chapter 3; consequently, in the considerations of the
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sections to come p. will usually not be referred to explicitly. Insensitivity of
oc is clearly illustrated by this chapter’s tables 1 to 3 as well as figs. 2 and 3;
furthermore, as is apparent from fig. 4, HRT is even able to reproduce the marked
rise in p. predicted by [42, 48, 50| for A\ — 1+ as opposed to the rigorously constant
value in [49] despite the theory’s short-comings for very short-ranged potentials.
The reasons for p.’s insensitivity will at least partially become clear at the end of
section 5.5 when we consider the effect of inappropriately large step sizes on the
binodal’s location.

5.2. Implementation of the core condition by coupled

ODEs

Ever since application of HRT to continuous fluids started the implementation of
the core condition has been a major issue; indeed, it is no coincidence that several
studies [5, 8, 20, 33] primarily concerned with the RG aspect of the theory chose
to completely eliminate it. When applying HRT as a regular liquid state theory,
on the other hand, this is not an option: as we shall see in section 5.3, too great
is the effect this may have on both correlation functions and phase behavior. As
mentioned already in chapter 2, this is a likely motivation for the adoption of
the closure (2.15) and variants thereof for non-hard-sphere reference systems [21]
despite its known deficiencies [9, 11, 28] as it allows a computationally manageable
approximate treatment of the core condition without the need to explicitly perform
costly Fourier transformations (g. v. section D.1).

For the moment setting aside the question of thermodynamic consistency that
will be considered in section 5.3 below, . e. accepting any 'yéQ)(g) that decou-
pling or some other condition may yield (cf. sub-section 2.2.1), there are two
important approximations that cannot be avoided in an approach based upon
section D.2: truncation of the ODEs implementing the core condition to a finite
number N.. + 1 of basis functions and expansion coefficients, and elimination of
the non-local contribution to the slowly converging j—integrals’ Q-dependence ac-
cording to section D.3. With these we will concern ourselves in this section.

5.2.1. Inadequacy of the implementation for very short ranged

potentials

For a first orientation and to demonstrate that the combination of these two ap-
proximations may, indeed, pose a problem let us shortly consider the rather arti-
ficiall system characterized by the potential v°°*¢(r) defined in (3.5): as, say, the
correlation functions of the exact solution of the HRT evolution equations in () are

1 Contrived as it may be, this type of potential could also be used for a rather stringent check
on the approximations’ internal consistency: as any potential v°°"¢(r) and consequently ug(r)
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functionals of the total potential only, eq. (3.6) implies that cgo) = cgoo) = &ty

taking into account the zero-loop term of eq. (2.11) and the initial condition (2.19)
we easily find the expansion coefficients’ limits

lim 7{?(e) =0, n>0,
Q—oo

and

lim 3 5\ (o) un(0) = ~¢(r) = +Bw(r);

Q—0

for a perturbational potential ¢°°* constant inside the core, 7. e. for

w(r) = wcore[—e,a] (T’) — Al_i}IIll_*_ wsw[—e,)\,a] (7,) — Zlinc}o whcy[—e,—e',z,a] (T’) , (1)

and assuming ug < w (g. v. section A.3) the latter relation readily reduces to?

lim 7% (0) = —(0),

Q—0

(2)
lim ~(@) (o) = > 1.
dim, (0) =0, n >

For generic intermediate value of (), on the other hand, none of the %(lQ) (0),n>1,
may vanish as their evolution is driven by the projections of w(Q)(T) inside the

core onto the basis functions u,(r), n > 1.

When testing eq. (2) numerically we cannot expect the fy,(LQ), n > 1, to vanish

exactly for Q = Qg, but at least their final values should be considerably smaller
than their maxima in the course of the evolution from @ = Q. to Qq; solving
the ODEs following from the consistent imposition of the decoupling assumption
(cf. section 4.5; N .. = 5, other parameters as in section 4.8) at some fixed den-
sity o, however, clearly shows that these conditions are met not even remotely,

producing a '7SQ°) off by several orders of magnitude and expansion coefficients

’Yr(zQU) (Q)

‘, n > 1, not appreciably smaller than maxgc(g,,0..] "yn ‘ except for very

high temperature. Note that the only approximations to the core condition that
enter these calculations are truncation of eq. (2.18) to a finite value N.. = 5 of
basis functions and that of neglecting the non-local contribution to eq. (D.11);
such a failure to reproduce the correct behavior seems particularly troubling in
view of eq. (2), and indeed do we see grave defects in the numerical solution for
very short ranged sw fluids (v. i.).

have unique expansions in the basis provided by the un(r), n > 1, with expansion coefficients
vn and ug,, respectively, for any n in the range 1 < n < N¢c the sum of coefficients vy, +

Yo Uon + 'y,(LQ) should be independent of the potential in the limit @ — 0.

Note that the first of the relations (2) holds despite the assumed proportionality of ug and w
due to continuity of the limit @ — 0; from a consideration of the functions for @ = 0 alone,
on the other hand, only the limit of yg ug(0) + v1 w1(0) can be established.
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There is, however, one more point that has to be addressed in this context, viz.
the réle of the decoupling assumption3: According to sub-section 2.2.1, the condi-
tion of vanishing a(?) (o) in the calculations just outlined simply takes the place of
thermodynamic consistency and thus should not directly affect the core condition;
on the other hand, from eq. (D.10) and with the normalization of eq. (C.1) the sum

Ym0 7,(1Q)(g) should be independent of Q so that, strictly speaking, decoupling is

incompatible with an evolution from 7T(LQ°°) =0,n >0, to 'y((JQO) # 0, 'yT(LQO) =0,
n > 1. Of course, from the arguments given in [6] for adopting the approximation
of eq. (2.21) failure is to be expected for very short-ranged potentials (but cf. sec-
tion 2.4); still, we think that the approximations of finite N.. and of eq. (D.11)
have no less a share than decoupling in causing gross violation of eq. (2), and a
numerical calculation is not possible within the formulation of HRT outlined in
chapter 2 except with these approximations and when eliminating either the core
condition or the a(?) (o) term in eq. (2.18): if we want to use HRT as a general tool
for the study of phase transitions in simple fluids we have to gauge the severity of
the restrictions brought about by this numerical necessity and to investigate their
dependence on the potential’s range (v. 1.).

All in all, this sub-section’s considerations at the very least demonstrate the
need for further discussion of the importance of the approximations considered in
this section.

5.2.2. N..-dependence of critical and phase behavior in the HCY
fluid

As far as the need to replace eq. (2.18) by only a finite number of equations
involving a finite number of terms each is concerned, it is important that N,
should actually be rather small (as was the case in the preceding sub-section) if
evaluation of the slowly-convergent i'(Q)—integrals at ) = Qs is not to dominate
program execution time; on the other hand, for an implementation of the core
condition as outlined in chapter 2 to be reasonable at all — especially as the
ansatz consistently applying the compressibility sum-rule instead (cf. section 4.5)
allows for much more rapid calculation of realistic phase diagrams without the
need for mathematically inconsistent assumptions —, convergence of the procedure
towards a solution of eq. (2.8) in the presence of a hard core, i. e. compliance with
the core condition (2.14), must be considered and the dependence of the quality
of the results on N.. must be investigated.

As a first test regarding the number of basis functions to keep in the calculation
let us have a look at the critical and phase behavior of the HCY system with

3 Note that it is equally easy to solve the equations following from consistent application of
the LocA/oRPA-condition (2.22) instead of the decoupling assumption (2.21); however, as this
entails a significant change in the structure of the matrices in eq. (2.18) according to sub-
section 2.2.1 this, too, would provide us with only a rather tenuous link to typical numerical
calculations. Still, we expect the results and conclusions to be very similar to those obtained
in this section.
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Nec kg T./€ 0. 0> 0,(3=0.9/¢) o3 01(B=0.9/¢) 0>
— | 1.20244(56) | 0.325(30) 0.115(5) 0.565(5)

1 1.21847(58) | 0.315(30) 0.105(5) 0.575(5)

2 | 1.21731(58) | 0.315(10) 0.105(5) 0.565(5)

3 | 1.21615(58) | 0.315(30) 0.105(5) 0.565(5)

4 | 1.21615(58) | 0.315(30) 0.105(5) 0.565(5)

5 1.28740(32) | 0.320(15) 0.075(5) 0.645(5)

6 1.32402(34) | 0.325(30) 0.055(5) 0.685(5)

7 | 1.31653(34) | 0.330(25) 0.065(5) 0.675(5)

8 | 1.29358(65) | 0.320(35) 0.065(5) 0.645(5)

9 1.27300(63) | 0.315(20) 0.075(5) 0.615(5)

Table 1: Dependence of the inverse critical temperature 3¢ = 1/kpg T¢, coexisting densities

ov and g at 8 = 0.9/¢, and critical density gc of the HCY fluid with z = 1.8/ on the number
of basis functions. The results reported have been obtained from PDEs retaining N¢c + 1 basis
functions or (first line) not implementing the core condition at all; other parameters and main
part versions were chosen as in section 4.8. We have checked that the differences summarized
here cannot be explained by the Ncc-dependence of the upper integration limits in evaluating

the 7(Qoo) -integrals.

z = 1.8/0 when varying N in the range N.. € {0,...,9} as summarized in table
1; note that the coexisting densities listed belong to the subcritical isotherm at
B = 0.9/¢, a temperature sufficiently far away from the critical one so that the
differences in p, and p; are not merely to be attributed to the differences in 3. but
not too low so that the distortion of the binodal in the boundaries’ proximity (cf.
section 5.4) is of no concern yet. — As can be seen from table 1, inclusion of the
core condition is of vital importance in determining the fluid’s phase behavior, and
there is a considerable amount of variation in the results, the critical temperature
in particular; the amount of variation seen, however, drops markedly once we
eliminate the essentially constant? results for 1 < N.. < 4, 7. e. when we consider
N¢e > 5 only, which is a first indication for the minimum number of basis functions
necessary for a suitable description of the hard cores’ repulsion. Also, comparing
the critical temperatures in table 1 with the literature data on the system at hand
listed in table 3.3 we find that our implementation’s predictions for 1 < N, < 4
fall precisely into the same range as those of that table and, for N.. € {3,4}, are
quite close to the Mc simulation result of 7. = 1.212(2)e/kp; however, as we will

4 Note that the relative differences of the results in the parameter range Ncc < 4 including those
where the core condition is not implemented at all are compatible with the “typical accuracy”
of one per-cent repeatedly claimed by the authors of the theory and their collaborators [2].
We should also point out that as of fall 1998 the original implementation was not equipped to
perform any calculations with higher than fourth-order polynomials, corresponding to N¢c < 5,
and the recent calculations of [28] were performed with N¢c = 5 [66]. — As for the immediate
reason for the near-constancy of the results for low N¢c, the core condition can drive the
evolution of the expansion coeflicients V(Q)(g) only if the function space chosen is sufficient
to accommodate a reasonable approximation to the true direct correlation function, which is
the case at Ncc = 5 for the first time at high densities (v. 4.); the solution’s behavior at low
density, on the other hand, is dominated by the ideal gas term —1/g which explains why the
largest change in HRT’s results occurs at N¢c = 5 rather than at Nec = 7.
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see shortly, that very same N .-range is characterized by gross violation of the core
condition due to an insufficient number of basis functions retained in the truncated
eq. (2.18). As we further increase N so that the core condition is obeyed to a
certain extent (v. i.), T, rises dramatically to values far outside the range quoted
n [28]; while the trend of decreasing T, evident for N.. > 7 indicates that HRT
might match the McC predictions for N.. ~ 15, we have not performed these cPU
intensive calculations.

Similar but more detailed information may be gleaned directly from the final

values of the expansion coefficients w(lQo): both for the expansion (2.15) to converge

and for the truncation of G(?) to just a few terms to be admissible, the fy,(lQ)

obviously have to be quite small for high enough n and indeed must tend to zero
sufficiently fast for n — oco. Inspecting the %(LQo) as generated by our program with

the basis functions of section C.2 and taking into account that max,cjg o un(r) =

Up(0) xn+2,n > 1, not only the 'y,(LQO) themselves but also the respective terms’

contributions to the two-particle direct correlation functions markedly drop in
magnitude and become rather small for n > 5 at high density and for n > 7 at
low density, irrespective of the temperature used.

The real test for applicability of eq. (2.18) after truncation and of the ad hoc

approximation (D.11) is, of course, the pair distribution function g{%°)(r) itself as

obtained from the final values of the expansion coefficients 'yr(lQO) vta the Ornstein-

Zernike equation (2.8). In order to separate these effects from other problematic
aspects of HRT’s numerical side we again turn to the ODEs consistently employing
the decoupling assumption; the results obtained within this approach, explicitly
performing the inverse Fourier transformation to get the pair correlation function
g(QO)(r) from é(QO)(k:), largely confirm our earlier findings from the 'yT(LQO)(g): In-
side the core, the g(QO)(T) so obtained generally takes on rather large values for
small » while remaining within a few percent of the contact value g(QU)(a+) for
larger 7 up to o—; upon increasing N.. the magnitude of g(QO)(r) for r close to
o is hardly reduced in general but the r-range of rather small g(?°)(r) is instead
extended to ever smaller r. Just as expected from the direct inspection of the
final values ’y,(IQO)(g) (v. s.), at high density there is no substantial improvement
in g(QO)(r, o) within the core for N.. > 5, nor for N.. > 7 at low density; on the
other hand, whenever f(Qo, o) is large (corresponding to the critical region or the
coexistence region in implementations relying on a PDE) the core condition is but
poorly met. — As an aside we note that solving the PDE without implementing
the core condition at all (first line in table 1) may, of course, result in arbitrarily
large g(20)(r) within the core: e. g. for 3 = 0.7/e and o = 0.9/03, g(?)(r) = —3.26
inside the core while the contact value is g(QO)(U—I—) = +1.91.

All of these findings indicate that we needs must keep the core condition in
the calculation due to its bearing on the phase behavior predicted®, and that N,
should probably be chosen no less than 7 (corresponding to a 6*® order polynomial

5 This is somewhat at variance with earlier findings [11] indicating only a modest influence of
the core condition upon the results, a finding expressly referred to in [20].
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A=15 A=2.0 A=3.0

N kg T./€ 0c 03 kgT./e o.0° kgT./e oco
0 | 1.209437(36) 0.315(15) | 2.66095(13) 0.260(20) | 9.89103(30) 0.260(10)
1 | 1.100663(35) 0.290(20) | 2.68249(11) 0.255(15) | 9.89994(48) 0.260(10)
2 |1.203326(35) 0.205(15) | 2.68629(11) 0.260(10) | 9.90089(48) 0.260(10)
3 |1.200152(35) 0.295(15) | 2.68608(11) 0.260(10) | 9.90089(48) 0.260(10)
4 [1.197136(35) 0.295(15) | 2.68566(11) 0.255(15) | 9.90089(48) 0.260(10)
5 | 1.287443(40) 0.300(20) | 2.52736(10) 0.250(10) | 9.73708(46) 0.255(15)
6 |1.098329(29) 0.280(09) | 2.74240(11) 0.275(15) | 9.82207(47) 0.260(10)
7 | 0.984757(47) 0.275(15) | 2.91476(12) 0.290(20) | 9.86750(48) 0.260(10)
8 | 1.070878(28) 0.285(15) | 2.74483(11) 0.275(15) | 9.77332(47) 0.255(15)
9 |1.216333(36) 0.300(20) | 2.74969(11) 0.275(15) | 9.88751(48) 0.260(10)
10 | 1.207583(36) 0.300(10) | 2.93759(13) 0.290(10) | 9.74820(46) 0.255(15)

Table 2: Dependence of the critical temperature T, and density g of various square well
systems on the number Nc¢c + 1 of basis functions retained in egs. (2.15) and (D.8). For N¢c > 0,
the decoupling assumption was imposed as high density boundary condition, whereas the LocA/

ORPA-condition 'y( )(gmax) = 0 served the same purpose for Ncc = 0; other parameters were
chosen as 1nd1cated in section 4.8.

in r for C (Q)(T’) inside the core) even though systematic shortcomings in the pair
distribution function ¢(@°) (r) itself cannot be avoided in an implementation relying
on egs. (2.18) and (D.11) even for higher N..; on the other hand, N.. = 5 may
still be sufficiently accurate for some applications while the near-constancy of the
results for N.. < 5 listed in table 1 indicates that we cannot expect to obtain
significantly better results with such a low number of basis functions than in an
ansatz not taking into account the core condition at all, which runs much faster
and at least does not rely on inconsistent assumptions (cf. sub-sections 2.2.1 and

4.5).

5.2.3. N..-dependence of critical and phase behavior in the SW
fluid

So far we have found that a minimum of N.. + 1 = 7 + 1 basis functions must be
kept for the approximations of finite N.. and of eq. (D.11) to yield satisfactory
pair distribution functions of the fully interacting system despite residual defects.
In order to assess the generality of this result we have repeated the analysis of
sub-section 5.2.2 for SWs at selected values of \; doing so provides us with a first
hint on the potential range dependence of the effects found in the HCY fluid with
z = 1.8/0 before.

From table 2 where we compile the critical temperature and density for various
square well potentials as functions of the number N.. 4+ 1 of basis functions in
the closure (2.15), just as in sub-section 5.2.2 we find virtually constant critical
temperatures for 1 < N.. < 4; on the other hand, the amount of variation seen
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upon further increasing N.. strongly depends on A, which immediately carries
over to the pair distribution function g(QO)(r, 0) and its compatibility with the
core condition: For A = 3, the longest ranged potential considered in table 2,
g(QO)(r, 0) = 0, r < o, holds reasonably well except very close to » = 0 even for
N¢. = 1; when increasing the number of basis functions all the way to N.. = 10,
the pair distribution function has to be corrected for very small r only, yielding a
|9(29) (7, p)| that remains bounded by some 10~2 of the contact value g(?°) (o4, o)
for all » < o; the correspondingly only small change in g(?°) (r, o) and C(R°)(r, o) is
reflected in the near-constant predictions for 3. evident from table 2. Similarly, for
A € {1.5,2} and within the N..-range considered, the implementation of the core
condition does not convincingly improve except for supercritical temperatures and
intermediate densities; this time, however, the pair distribution functions remain
far from compatible with the core condition even for N.. = 10, and neither (3. nor
g(@)(r, ) itself nor, for that matter, the final values of the LOGA/ORPA expansion

coefficients 7.2 (0) indicate that the expansion (2.15) for C(?) (k, o) might be close
to convergence. But if the quality of g(QO)(r, o) improves only little if at all, the
remaining deficiencies are probably to be blamed on the approximation (D.11) for
the poorly convergent integrals’ derivative with respect to @) rather than on an
insufficient number of basis functions.

As far as our results’ compatibility with the literature data of tables 3.1 and
3.2 is concerned, for the A\ values considered we find only marginal agreement
with simulation and purely theoretical results: indeed, for A = 1.5 not even one
of the HRT values for the critical temperature falls into the range predicted by
simulations, whereas the situation is clearly® better for higher . Also, it strikes
as peculiar that in all three of the systems listed in table 2 it is the results for
N¢c. = 9 that compare with literature results most favorably; on the other hand, as
this does not correspond to what is found in the HCY system of sub-section 5.2.2
this seems a particularity of the sw system and has not been investigated any
further.

But table 2 demonstrates not only the A-dependence of the results’ sensitivity
to the number N.. + 1 of basis functions retained in the truncated eq. (D.8)
when varying N, in the range 0 < N, < 10: on the one hand, the critical
temperature and density predicted for A\ = 3 seem trustworthy on account of the
small differences apparent from table 2, the pair distribution function’s compliance
with the 0z relation (2.8), and its fair agreement with simulation results (v. s.); on
the other hand, for A = 1.5 and, to a much lesser degree, for A = 2 the amount of
variation in T, precludes accurate determination of the critical temperature. This
is a first indication of the range of potentials that the theory is able to handle:
square wells with A\ = 3 can be dealt with quite reliably whereas problems cannot
be denied for A = 2, and A = 1.5 seems largely out of reach for HRT in the present
formulation; this also corresponds to what we will find in section 5.6 below.

6 Unfortunately, we have only one data point with which to compare our results for A = 3; on
the other hand, the rather small amount of variation seen here (especially when considering
relative differences, which are at around one per-cent for N¢c > 5 as compared to 7 and 24
per-cent for A = 2 and 1.5, respectively) inspires some confidence in the values obtained.
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5.3. Decoupling assumption and lack of thermodynamic
consistency

As we have seen in sub-section 5.2.3, a likely reason for our implementation’s
failure to comply with the core condition for sws with A € {1.5,2} is not so much
the low number of basis functions but rather the approximation (D.11) for the
slowly converging j'—integral’s ()-dependence; on the other hand, as stressed by
the authors of [6] upon jointly introducing these two assumptions, the decoupling
assumption (2.21) is on the same level of approximation as that of neglecting the
non-local term in 8Z(Q) [¥(k,0), 0] /0Q. It thus seems pertinent to also consider
the effect that additional approximation may have on the results, ever more so
as retaining both the core condition (the importance of which we demonstrated
in section 5.2) and the compressibility sum-rule (2.13) (which is vital for HRT’s
ability to provide clear phase boundaries, v. i.) is possible only when restricting
use of eq. (2.21) to the evolution equations for the expansion coefficients, i. e. in
order to get rid of the f—integral on the right hand side of eq. (2.18).

But if such a procedure is to be considered harmless, the results so obtained
must not differ much from those following from consistent application of eq. (2.21)
to the closure (2.15) along the lines of sub-sections 2.2.1 and 2.2.2. Turning to the
HCY system of section 3.2, a potential sufficiently long-ranged so that the argu-
ments for this assumption’s validity given in [6] are applicable, we have performed
these calculations and summarized them in fig. 1: as is apparent from the plot, the
isothermal compressibilities are very different even for super-critical temperatures
so that we cannot rule out a non-negligible effect on the structural and ther-
modynamic properties predicted; most importantly, the ODEs cannot reproduce
well-defined phase boundaries, they clearly violate thermodynamic consistency,
and they even yield slightly negative inverse compressibility 1/x7 in what would
otherwise be the coexistence region. On the other hand, preserving the structure
of the PDE so that thermodynamic consistency is at least partly implemented by
the PDE’s coefficients do; of eq. (A.5) — which is the case for three of the im-
plementations of main part ansatz discussed in section 4.5, only one of which
is mathematically consistent at the expense of eliminating the core condition —
seems sufficient to remedy these deficiencies; at any rate, we have to accept the
decoupling assumption as indispensable for the implementation of the core condi-
tion.

As far as the sw fluid is concerned, similar calculations as those summarized
in fig. 1 reveal that the decoupling approximation’s effects are qualitatively un-
changed; furthermore, as v°¥(r) vanishes identically beyond r» = Ao the assump-
tions invoked in the arguments of [6] as motivation for neglecting a(Q)(g) in
eq. (2.18), viz. the potential’s range being much larger than the hard core diameter
o, appear even less justified, and combining the analysis of sub-section 5.2.3 with
the calculations summarized in fig. 1 we conclude that decoupling poses certainly
no less a problem for Sws than for the HCY potential considered before.

56



Aspects of the numerical solution 5.4 Density grid and boundary conditions

- 5 =0.9/e

P kT

B
O N W UTO ~J00©O O N WER IO ~J00 OO ) WhR UL ~J 00 O
T T T T
DR
R
o

ja)

0.1 02 03 04 05 06 07 0.8
po’

Figure 1: Comparison of the inverse compressibility of the HCY system with 2=1.8/0 as obtained
from the ODEs following from the decoupling assumption a(Q)(g):O (thin lines) and from a
PDE inconsistently applying this approximation to the evolution of the core condition expansion
coefficients ng) only (thick line). The parameters of the calculation coincide with those of

section 4.8, where the criterion for identifying the critical temperature 3.=0.759497(24)/¢ is also
documented.

5.4. Density grid and boundary conditions

As we have just seen, it is of utmost importance to retain the g-derivatives char-
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acteristic of a PDE in the equations or else we cannot hope to obtain clear phase
boundaries; on the other hand, these differentiations have to be performed nu-
merically as part of the FD scheme adopted, and the terms corresponding to the
FD approximation to the operator (02/90?) have been found the primary limiting
factor for the quality of the numerical solution (cf. sub-section 4.6.1). It is thus
pertinent to shortly investigate the properties of the set of density values in the
calculation, the number N, + 1 of densities (or, equivalently, the parameter e
defined in eq. (4.1)), the width Ap of the density steps, and both location gmax
and nature (cf. section 4.5) of the high density boundary condition in particular;
indeed, for any practical step size Ap the near-discontinuity of the solution close
to the coexisting densities p, and g; at sub-critical temperatures and small @Q is
bound to render three-point formulae inappropriate for estimating 02 f/90?; simi-
lar considerations also apply to the region of large f(Q, 0) (cf. sub-section 2.3.2)
and close to the boundaries (v. i. sub-section 5.4.1).

From fig. 1 we also readily find that ODEs substituting an approximate relation
like, e. g., eq. (2.21) for the compressibility sum rule (2.13) cannot reproduce the
singularities characteristic of the coexistence region; on the other hand, at the
boundaries of the PDE’s domain the second-order p-derivatives of eq. (2.13) can-
not be evaluated accurately so that we have to rely on an approximate ODE of
this kind at @max (setting gmin = 0 provides us with a convenient and numerically
largely” unproblematic low density boundary condition, cf. section 4.5). But not
only the solution obtained at p,,.x i1s thus forced to lie outside the coexistence
region: nearby densities are similarly bound to sport finite and, in fact, rather
small f(Qo,e) due to the continuity enforced by the PDE. If this is not to un-
duly influence the phase behavior found (v. i.), the coexisting densities p, and
o; must maintain a separation of at least several density grid spacings Ap from
the boundaries at omin and pmayx; consequently, 8 should never exceed some maxi-
mum value, 8 < Bpax, and for the systems considered here and the typical choices
for omin and pmax the binodal’s proximity to the low density boundary renders
Bmax largely density grid- and ex-independent. — Not to be confused with B,
is the lowest temperature kp/Bmax,# numerically accessible to the program with
pre-determined step sizes: this is the temperature below which the program of
chapter 4 never reaches Q ~ Qo (cf. section 4.6) or produces abnormal results
(v. i.); note that Bpax 4 may be larger or smaller than (., depending on the
chosen combination of physical potential, approximations in the formulation used
(the boundary conditions in particular), and the choice of parameters affecting the

numerical work.

7 Care has to be taken when evaluating some of the g-derivatives of eq. (A.5) for o — 0;
in particular, only inverse powers of direct correlation functions are amenable to numerical
differentiation without incurring substantial truncation error.
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5.4.1. The boundary condition’s significance for the square well
fluid

Not surprisingly, the problems of the numerical procedure related to the density
grid chosen again show up much more clearly in sws than in the comparatively
long-ranged HCY system with z = 1.8/c0, so that we discuss the related effects
in the context of sws only, highlighting any differences found in the HCY fluid in
sub-section 5.4.2 below.

Numerically, there are two ways for the implementation of chapter 4 to fail in
progressing to QQ = Qq, both, of course, easily detected by the “monitoring” variant
of our code as described in sub-section 4.6.1, viz. due to the solution’s pathological
behavior wherever f(Q, o) is large (v. i. section 5.5) or because of inappropriate
boundary conditions at high density; as for the latter — an issue intimately linked
to the decoupling assumption (v. s.) —, the immediate reason for the program’s
failure is a near-discontinuity in the numerical solution close to the boundary.

5.4.1.1. Mismatch at the high-density boundary

Both?® to understand how such a solution betraying the most basic assumption un-
derlying any FD scheme may arise and to put into perspective the different bound-
ary conditions routinely used in the original implementation and in our software
let us for the moment set aside the decoupling assumption or any other approx-
imations; we also demand that the low density boundary be located at g, = 0
so that the boundary condition there reads f(Qo,0) = 0 (cf. eq. (A.2)). Applying

HRT with the closure (2.15) to some model potential v(r), at any point (Q, o) in the
(Q)( ),

interior of the PDE’s domain the core condition uniquely determines the ~

n > 1, for given ’y(Q)( )
by imposing thermodynamic consistency? as embodied in the compressibility sum-

; for o < omax this expansion coeflicient is then determined

rule (2.13). For ¢ = pmax, on the other hand, we are in principle free to use any
suitable approximation for the structural and thermodynamic properties of the
Q-system and to calculate f(Q, omax) from said approximation via the defining
relation (A.1) and eq. (2.12), thereby providing the necessary boundary condi-
tion for the PDE (2.23); for practical reasons, however, it is desirable to use the
same LOGA/ORPA-form for the @Q-system’s direct correlation function at gmax as
in the rest of the problem’s domain so that, in particular, the LOGA/ORPA pre-
scription (2.22) is a natural choice of boundary condition. In general, however,
due to the PDE’s diffusion-like character any condition imposed at pn.x that is

8 In addition to the effects of the boundary condition to be discussed in this sub-section and

present at any ), note that accordlng to eq. (A.3) (b(Q, o) = 0 implies £(Q, ¢) = 0; thus, from
the explicit expression for the PDE’s coefficient dyy given in eq. (A.5) both for @ — 0 and at
a root of the Fourier transform of the perturbational part of the potential the parabolic PDE
degenerates into a hyperbolic one and is of mixed type for small &(Q, o) — a situation almost
certainly characterized by non-differentiable solutions [77].

This is the conceptual basis of the decoupling assumption (2.21).
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incompatible with the solution for ¢ < pmax by necessity induces a corresponding
near-discontinuity in f(Q, o) close to the boundary; within the framework of an FD
scheme this is reflected in a mismatch of f(Q, omax) and the solution at densities
close by, i. e. f(Q, Omax — ¢ Ap) for small i > 1, and the mismatch’s severity may
serve as a natural measure for the inappropriateness of the boundary condition at
Omax 1N relation to the approximations applied at densities in |omin, Omax|-

In a numerical realization of this scheme, however, at least the approximations
discussed in section 5.2, viz. truncation of eq. (2.18) to a small number of ba-
sis functions and elimination of some integrals according to eq. (D.11), have to
be adopted; but even for rather high A\ (and for the HCY fluid just as well) the

structural changes in the matrices of eq. (2.18) brought about by the condition of

vanishing ’YSQ)(QmaX) at the high density boundary give rise to a rapidly growing

mismatch!? and the calculation founders after only a few steps when Q is still
close to Q. In an attempt to remedy this situation without incurring the disad-
vantages adoption of the decoupling assumption in the interior of the PDE’s domain
brings about we also studied numerous variations of main part ansatz (and the
analogous program parts of the implementation sketched in section B.2) imposing,
e. g., vanishing first- or second-order p-derivatives of various components of the
solution vector at p.,.x; none of these, however, succeeded in reducing the mis-
match to the point of allowing us to advance the solution to cut-offs significantly
lower than @.,, which once more illustrates the severity of the approximations
discussed in section 5.2.

Unless we are ready to abandon the core condition altogether we thus have
no choice but to adopt the decoupling assumption (2.21); but according to sub-
section 2.2.1 the condition of vanishing a(Q)(g), when applied consistently, de-
couples the HRT-PDE to a set of ODEs at fixed density only, which, unfortunately,
removes all traces of thermodynamic consistency from the equations and thereby
precludes obtaining clear phase boundaries (v. s. section 5.3). Together with the
large amount of mismatch whenever a(Q)(Q) is not taken to vanish identically in
the interior of the PDE’s domain (v. s.), this is the reason for restricting applica-
tion of the decoupling assumption to the implementation of the core condition only
while retaining the structure of a PDE so that the compressibility sum rule (2.13)
is still partially implemented for gmin < @ < Omax via the expressions (A.5) for the
PDE’s coefficients dy; despite its incompatibility with decoupling; at opmax, how-
ever, again any approximation allowing calculation of f(Q, omax) may be used so
that it is tempting to once again resort to the LOGA/ORPA-condition of vanishing

'y(()Q)(QmaX) or variants thereof as in the original implementation.

But due to the decoupling assumption’s possibly large effect (v. s. section 5.3),

any boundary condition that does not incorporate a(Q)(Qmax) = 0 — and bear

in mind that ’YéQ)(Qmax) and Ot(Q)(Qmax) cannot both vanish at the same time for

generic cut-off ) — will once again incur a fatally large mismatch; if, however, we
must resort to decoupling anyway, it seems preferable to consistently apply it at

10 Except, of course, for extremely high temperatures like 3 € ~ 10720 that will be excluded from
further considerations.
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0 = Omax, t00, rather than to inconsistently combine it with a condition alien to the
theory, especially as this has the added advantage of allowing matrices of the same
structure to be used both within the PDE’s domain and at the boundary: after
all, a discontinuity in the terms of eq. (2.18) is likely to introduce an additional
mismatch in the numerical solution. In the original implementation, it should
be noted, uniform structure of the matrices is achieved in a manner involving an
even greater number of inconsistent assumptions, viz. by invoking decoupling for
all densities including gmax for the core condition only while using the LoGa/

ORPA condition ’Y(()Q)(Qmax) = 0 to determine f(Q, omax); in addition, it retains

the compressibility sum-rule (2.13) incompatible with any of these conditions in
the interior of the PDE’s domain. On the other hand, as our implementation of
main part ansatz combining the core condition with decoupling as high-density
boundary condition to the PDE (2.23) does not make use of eq. (2.22), only two
conflicting assumptions enter calculations adhering to the choices of section 4.8..

In the numerical work we find that a mismatch of the kind just outlined is present
whenever the calculation proceeds via mathematically inconsistent or conflicting
approximations; as we shall see in section 5.6 below, in the case of square wells with
their comparatively short potential range the associated problems are so severe as
to render Bmax,# rather small and to make it drop even below 3. for most of
the A interval from 1 to 2 (cf. section 5.6). At intermediate to large @, and not
considering peculiarities brought about by the PDE’s stiffness for Q < 10/0 and low
enough temperatures, the mismatch of some component of the solution vector!?! is
an oscillating function of () the amplitudes of which are largely constant or growing
as ) decreases, depending both on the quantity considered and the potential used
in the calculations; in particular, f(Q, omax) is always found to oscillate out of
phase with respect to f at densities close by, which immediately carries over to
other components of the solution as well.

Considering the fully interacting system, . e. @ = @Qp, and thus obviously
restricting ourselves to 8 < [Bmax,#, the final mismatch is typically reflected in
an increase by one order of magnitude in the three-point FD estimate of, e. g.,

11 Specifically, for several quantities z(Q, o) (the approximation of which obtained in the numeri-

Q)
#,x

the relative difference of the solution obtained at the boundary and an o-th order extrapolation
from results at adjacent densities, skipping the first s ones, . e. by

cal process we denote by x(Q, ¢)) and small non-negative integers o and s we defined 0,56 as

o 5@ _ x(Q, omax)

= wlmax) 4
#,z o,sm(Q, Qmax)
o
052(Q,0) = Y o0s7i(Q) e,
1=0
0,s%(Q, 0max — 1 Ap) = x(Q, omax — 1 Ap), s<i—1<s+o;

we analyzed 0,55;83: for o € {1,2}, s € {0,1}, and identifying z(Q, o) with f(Q, o), I(”,(Q)(Q, 0)

and Ine(Q, @) in turn for several settings of €4, different boundary conditions, and both sub-

and super-critical temperatures.
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Figure 2: The binodal of the square well system with A=1.5 as obtained for different values of
ex and gmax, cf. the discussion in sub-section 5.4.1. Most strikingly, there are large differences
in the binodals (including the critical temperatures and, to a lesser degree, even the critical
densities) under variation of these parameters. Note that, for clarity’s sake, only a selection of
the calculated isotherms is shown.

102 f(Qo, 0)/00?| right at the boundary over the near-constant values at slightly
lower densities; apart from a positive correlation with €4, the mismatch’s severity
is qualitatively unaffected by a change in parameters of the numerical procedure or
the choice and location of the boundary condition as long as sufficient separation
of the boundaries and the binodal is maintained, while changing the model poten-
tial may significantly alter the picture (v. i. sub-section 5.4.2). At least part of the
reason for the almost uniform amount of mismatch in f(Qo, 0) close to the high
density boundary, furthermore corroborated by the finding of smaller mismatches
upon decreasing €, is the obvious precondition of the isotherm’s calculation ac-
tually having reached @Q = Qo: indeed, if the mismatch ever gets too large, the
numerical procedure will founder one way or another (cf. section 4.6) already at
Q > @Qo. Note that an implementation insisting on some level of convergence of
the FDEs will never accept even the small mismatch seen for square wells at @
only slightly less than @ ,; on the other hand, when resigning on control of the
numerical scheme’s convergence (cf. sub-section 4.6.2), the PDE’s stiffness is the
limiting factor for Bmax,# as evidenced by the distribution of the last @) values in
the calculation (v. i. section 5.5).

5.4.1.2. Location of the high-density boundary

Another effect worth mentioning in connection with the boundaries is the influence
their locations, viz. 9min and omax, may have on the results, the binodal and the
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Figure 3: The binodal of the square well system with A=3 as obtained for different values of e
and gmax, cf- the discussion in sub-section 5.4.1. Note that for this rather long-ranged system
(unlike fig. 2) the critical point’s location is virtually unaffected by variation of these parameters.
Also, imposing the boundary condition at gmax=0.5/0> clearly induces a shift in g, to higher
and, to a lesser degree, in o; to lower values even well above the temperature where p; gets close
to omax, which is readily interpreted as an effect brought about by stiffness (cf. section 5.5), and
the shift in the binodal’s vapor branch decreases somewhat as ey is lowered from 0.01 to 0.005.
Again, for clarity’s sake, only a selection of the calculated isotherms is shown.

critical point predicted in particular: as mentioned earlier, the need of resorting to
an ODE at the boundaries prevents nearby densities from entering the coexistence
region, which may considerably distort the binodal; furthermore, very small g.,.x
may also allow one to reach ) = Qo at higher 3, thus effectively raising Bmax,#
while lowering (;,.x. From the results for sws with A = 1.5 displayed in fig. 2 we
immediately conclude that, indeed, the amount of distortion seen in the binodal
may be considerable, and furthermore there is nothing in the theory or the numer-
ical solution that helps us single out any one of the four curves displayed as most
trustworthy. On the other hand, the much longer ranged potential used for fig. 3,
viz. SWs with A = 3, leads to binodals in fair agreement at least as regards the
critical point’s location, just as expected on the basis of table 2; imposition of the
boundary condition at the rather low value of pmax = 0.5/0%, however, induces
shifts in the coexisting densities g, and, to a lesser degree, g; towards smaller
phase separation at temperatures only slightly below T,., i. e. at temperatures
where the binodal still keeps considerable distance from the boundaries. In this
case, the results’ apparent stability under variation of €4 for gmax = 1/0° clearly
inspires some confidence in those curves representing the “true” HRT binodal of the
system at hand. — Taken together, the data of figs. 2 and 3 further corroborate
sub-section 5.2.3’s preliminary conclusions on the A\ range accessible to HRT in the
formulation of chapter 2; they also illustrate the importance of always combining
several related calculations if reliable information is to be extracted from numerical
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boundary B=0.9/€
N condition kpT./e€ 0c 03 0y 03 003
| WD (omax) =0 | 1.20254(13) | 0.330(20) | 0.115(5) | 0.565(5)

7 | 739 (omax) =0 | 1.31678(15) | 0.325(15) | 0.055(5) | 0.675(5)
7 | a@(omax) =0 | 1.31678(15) | 0.325(15) | 0.055(5) | 0.675(5)

Table 3: Critical temperature T and density oc as well as the coexisting densities o, and
o at B = 0.9/¢, for a HCY potential with z = 1.8/0 as predicted by various combinations of
approximations and boundary conditions at omax = 1/03; again, the results reported have been
obtained from PDEs retaining Ncc + 1 basis functions or (ﬁrst line) not implementing the core
condition at all.

application of HRT.

We should also point out that sometimes the expectation of the binodal keep-
ing a separation from the boundary of several Ap at least does not hold, and a
preposterous two-phase region appears very close to gmax or, very rarely, close to
Omin; €. g., for A = 1.88 and 3 = 0.392/¢ the equations can be solved all the way
down to Q = Qo = 107%/0, predicting an unrealistic two-phase region extend-
ing from 0.845/03 to 0.995/03, and two examples can also be seen at rather low
temperatures from the binodals obtained by setting opa.x = 0.5/ for A = 1.5 as
displayed in fig. 2. It is again by varying parameters in the numerical procedure
and by looking at isotherms at slightly different temperatures that such results can
be rejected as unphysical without taking recourse to, e. g., simulation results; the
mechanism responsible for large f(Qo, o) close to the boundary is, of course, eas-
ily clarified: combining the abnormally large second p-derivatives following from
a mismatch at the boundary with the PDE (2.23), the dgo-term in 9f(Q, 0)/0Q
will also be large, and depending on the signs of the coefficients we may well be
able to enter the region of large f(Q, g) at low enough @Q so that the reasoning of
sub-section 2.3.1 applies.

5.4.2. Hard-core Yukawa fluid

Let us now shortly outline the differences seen when going from sws to the HCY
fluid with z = 1.8/0; not surprisingly, the numerical problems are much smaller
here, and Bmax,# exceeds Bmax by far: for some parameter settings and with
the ansatz not implementing the core condition the mismatch’s severity is so
small that even the monitoring variant of main part solver (cf. sub-section 4.6.1)
can successfully be used in a large part of the PDE’s domain. Similarly, limiting
ourselves to ex < 0.02 and with the same ansatz we find that neither the critical
point nor the binodal predicted appreciably depend upon N,, nor does f(Qo, o)
some 3Ap outside the coexistence region; also, the results are largely independent
of the location pmax of the high-density boundary as well as of the boundary
condition chosen there (yéQ) =0 vs. a@ = 0) provided gpax is well above g, as
evidenced by the data collected in table 3.
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Just as expected from our lengthy discussion of the choice of boundary con-
dition for sws in sub-section 5.4.1, if we do not adopt the decoupling assump-
tion of vanishing a(?)(p) the mismatch at the boundaries is again so severe as to
prevent the numerical calculation from going significantly below ). ; but inspec-
tion of the solution at high ) as generated when choosing the same high-density
boundary condition as the original implementation, viz. the LOGA/ORPA relation

7((,Q)(gmax) = 0, as opposed to decoupling itself clearly shows the latter approach’s
preferability: inconvenient as the mismatch discussed in this section may be, it
once more turns out a sensitive indicator of the assumptions’ inconsistency.

5.5. Thermodynamic states of high compressibility: the
region of large f(Q, o), stiffness, and pre-determined
step sizes

As evidenced by the data presented in the preceding section and in keeping with
section 5.1, HRT’s estimates for the critical density present little to no difficul-
ties for both of the model systems considered, nor is there any mention of such
difficulties in any of the other publications on this topic that we are aware of; in-
deed, apart from the solution’s defects close to the boundaries just discussed, the
theory’s numerical problems primarily lie in the solution’s pathological small-Q
behavior for close-to-critical and sub-critical temperatures that we will summarily
refer to as the PDE’s stiffness in the following; we now turn to the correspond-
ing features of the solution numerically obtained, which will provide us with a
signature of the problem readily detected by the monitoring variant of our code
(cf. sub-section 4.6.1); we also note in passing that the effects of stiffness will be
evident from section 5.6’s application of HRT in its current formulation to sws of
quasi-continually varying range parameter \.

From sub-section 2.3.2 it should be clear that the HRT-PDE’s true solution eludes
reliable numerical realization for high compressibility states, i. e. for sub-critical
or close-to-critical temperatures and densities close to g, or the interval [g,, o];
in particular, while e still characterizes the level of accuracy in auxiliary calcula-
tions, the same can no longer be true for the accuracy of the PDE’s discretization
as this would require step sizes AQ so small as to cause floating point underflow
upon evaluating, e. g., Q — (Q — AQ), thus rendering FDs numerically insignificant.
In this respect we thus have to give up our strategy of controlling the numerical
procedure so as to locally ensure a quality of €4 at least, turning to pre-determined
step sizes AQ (cf. sub-section 4.6.2) in addition to fixed Ap (to which similar con-
cerns apply, cf. sub-section 2.3.2) instead; on such a coarse mesh of (Q, p)-points,
however, the PDE’s true solution cannot be represented adequately, and the nu-
merical approximation for f(Q, o) obtained from the FDE the PDE is mapped onto
cannot be trusted to faithfully represent even the average behavior of f(Q, o).

65



Aspects of the numerical solution 5.5 Region of high compressibility and large f

07 | g —oumse | 08 | 000 | rour | roee
0.06 1.046 10* 7.092 1.083 2.185 5.317
0.15 4.36110* 7.100 1.083 2.186 5.321
0.25 6.31110% 7.102 1.083 2.186 5.322
0.34 6.82210% 7.103 1.083 2.186 5.322
0.45 5.87010% 7.103 1.083 2.186 5.321
0.61 0.960 10* 7.092 1.083 2.185 5.316

Table 4: The final values of the auxiliary function f(Q, o) for various densities in the coexistence
region as obtained with different sets of step sizes AQ for the isotherm at 8 = 1/e of the sw
system with A = 1.5 in an implementation of main part ansatz not implementing the core
condition (other parameters as in section 4.8); here, the symbol rg is used to denote the ratio

(f(Qo, 0)| AQ|oo z_a/o.)/(f(QO, o)l AQ|oo :_b/a). With these settings, the coexisting densities
are gy = 0.05(1)/o and g; = 0.62(1)/0, and f(Qq, ¢) takes on its maximum at o = 0.34/0.

Most strikingly, the ratios displayed are close to constant except right next to the binodal; if the
f(Q, 0) numerically obtained were to represent an average over the true solution’s oscillations

these ratios should all be unity. Also note that 82f(Q0, g)/892 is rather small, just as expected
from, and assumed at somewhat higher cut-off ) in, sub-section 2.3.1.

This inadequacy of the step sizes is reflected in various peculiarities of the solu-
tion obtained in the numerical procedure; indeed, when monitoring the evolution
of f(Q, o) and the core condition coefficients %(1(,2) (o), our code readily detects the
plummeting step sizes necessary and, when forced to use pre-determined step sizes,
signals the incompatibility of the behavior seen with the assumption of smoothness
underlying FD schemes. Another telltale sign is iterated corrector steps’ failure to
converge when f(Q,p) is large: even though implicit schemes like the one we
employ are the standard treatment for stiff systems, the rapid growth of the oscil-
lations’ amplitudes (cf. our estimates in sub-section 2.3.2) renders the non-linear
FDEs themselves unstable under iteration; only when resigning on any control of
the numerical error and refraining!? from iterations of the corrector step do the
step sizes AQ chosen allow one to force advancing @ all the way to Q¢ in remark-
ably many cases.

Considering the FDE’s solution in that part of the (Q, o)-plane where the isother-
mal compressibility’s divergence builds up, we always find smooth functions of @
and p that are in gross violation of the behavior of the PDE’s solution demonstrated
in sub-section 2.3.2; one might therefore hope that the function obtained numeri-
cally presents an average over oscillations. It is, however, easy to see that this is
not so, or else the solution obtained at any fixed value of the cut-off ) would have
to be largely independent of the step sizes used in obtaining them; numerically,
however, we find that, say, f(Qo, 0) not only sensitively depends on the step sizes
inside the coexistence region, it does so in a very distinct pattern, too: With the
version of main part solver discussed in sub-section 4.6.2, for any () the step sizes
AQ are fully determined by the Q.. and the step size for infinite cut-off, AQ|s ;

12 Or, for that matter, when fixing the number of iterations beforehand, without taking heed
of questions of convergence; on the other hand, in this case the standard argument against
iteration of the corrector step applies [78].
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considering the final values of f as a function of AQ|, and p, while f typically
varies by half an order of magnitude between the center and the boundaries g, and
o1 of the region of large f, it markedly depends on the initial step sizes AQ| , and
the ratios of the f values obtained with different AQ|,, are virtually independent
of13 p. Such a behavior, illustrated for a particular isotherm of the sw fluid with
A = 1.5 in table 4, is readily explained in a two-tier model of the computation: as
stiffness typically sets in only for @ < 8/0, in any of the cases considered in the
table the step sizes chosen are viable for most of the Q-interval [Qo, Q], 7. e. for
Q down to, say, some cut-off Q; that should not depend too sensitively on AQ|s
due to the oscillatory nature of f and the still rather large cut-off; however, as
the solution is forced to proceed beyond @ the FDE’s solution can no longer serve
as an appropriate approximation for the HRT-PDE, and the following evolution is
driven by the number of steps'4 and the corresponding @ values, with the largely
AQ| -independent f(Q1, o) as starting value. Note that this model is also able
to explain a small AQ-dependence of the critical temperature like the one of the
data of fig. 3 (not to be seen on the scale of the plot), whereas the tremendous
differences in the critical point’s locations in fig. 2 are due to other effects to be
discussed in section 5.6 below.

So far we only discussed the relation of the FDE’s solution to that of the un-
derlying PDE in the region of large f(Q, p); on the other hand, due to the dpi-
and dgz-terms in eq. (2.23), the PDE’s stiffness and the related problems in that
region have a direct bearing on the solution outside the coexistence region. Un-
fortunately, the influence of the fundamental discrepancy of the solutions of the
PDE and the FDE, respectively, whereever KSWQ)(Q) is large on the data produced
outside the coexistence region is not assessed easily; and even though the numeri-
cal predictions there turn out rather insensitive to variation of parameters of the
numerical procedure we expect a gradual but non-negligible distortion!® of the
binodal, increasing with falling temperature. But if the solutions for o & [0, 0i]
are hardly affected by the vastly differing numerical approximations for f(Qo, o)
within the coexistence region, this is indicative of effective boundary conditions
arising at the coexisting densities due to the very large second-order p-derivative
in eq. (2.23) there; consequently, it should in principle be possible to avoid en-
tering the region of large f(Q, o) altogether even though the PDE’s characteristics
are the lines of constant ) and such an approach must therefore be at variance

13 Note that these calculations cannot directly be repeated for the ODEs obtained by imposing
some constraint like, e. g., the decoupling assumption or the LOGA/ORPA condition on the
solution as discussed in sub-section 2.2.1: not only &(Q, 0) becomes negative in what would
otherwise be identified as the coexistence region as can be seen from fig. 1, even (Qq, @) does
so that f(Qq, ¢) and, consequently, the free energy cannot be real for these states. This also
precludes any use of this peculiar AQ|co -dependence, an otherwise quite sensitive indicator
for the onset of stiffness, as a means of extracting information on the system’s phase behavior
from calculations via ODEs.

14 Also, the numerical estimates for 82f(Q, 0)/8Q? in the region of large f(Q, o) are found to

roughly correlate to 1/( AQ|oo )2, which corresponds to an essentially exponential growth with

the number of steps.

In addition to the effects of numerical differentiation wvia three-point formulse close to the

solution’s near-discontinuities at the coexisting densities.

15

67



Aspects of the numerical solution 5.5 Region of high compressibility and large f

with the Courant-Friedrichs-Lewy criterion (cf. sub-section 4.6.1). An immedi-
ate consequence of this effective-boundary-condition interpretation is that the two
branches of the binodal are numerically decoupled, which is borne out by the pre-
liminary!® finding of differing pressures at the coexisting densities; of course, both
branches of the binodal must meet, and the corresponding limits of the pressure
along the branches must coincide, for 3 — [.; note that this irregularity of the
pressures provides further evidence for a distortion of the HRT-binodal of the kind
just indicated.

As a corollary we note that the effective phase decoupling scenario just developed
also casts some doubt on HRT’s ability to deal with systems exhibiting more than
one liquid-vapor transition, 7. e. where the region of large f consists of two or
more lobes in the (Q, g)-plane: For one, if we try to avoid the region of the
PDE’s stiffness, the corresponding loss of convexity of the remaining integration
region almost certainly induces instability in the FDE. On the other hand, if we
adopt a rectangular grid and force the solution to advance to smaller ) as in
most of the applications of HRT presented in this study it seems likely that the
same mechanism sets in that we find to give rise to the situation postulated in
sub-section 2.3.1 in the first place: for the systems with only one critical point
and intermediate () we typically find several small patches of the PDE’s domain
where f is rather large (one of which will often be located close to the high density
boundary due to the mismatch discussed in sub-section 5.4.1); as @) decreases there
is a clear tendency for these patches to either die out or to shift, spread and join
until for sub-critical temperatures we are left with exactly one density interval of
high isothermal compressibility. In this context we should also mention that we
were unable to apply even the ansatz not implementing the core condition to the
multi-step potential vs* with parameters e; = —¢, 0 < €3 < €, € > 0, A\ = 1.25,
A2 = 1.5 [79].

Returning to the theme of the step sizes’ inappropriateness, given the sheer
numbers — according to section 4.8, for Q close to Qo we have |AQ| ~ 107%/c
whereas table 4’s data and the estimates of sub-section 2.3.2 demand step sizes
much smaller by some 10® to 10 orders of magnitude — it is certainly astonishing
that we are able to reach rather small @ in so many calculations even though
implicit FD schemes’ stability properties are generally considered excellent; on
the other hand, while the re-scaling of quantities affected by exponentiation of f
certainly allows us to deal with the tremendous magnitudes that have to be con-
sidered in the calculation, according to section 4.5 the scaling factors are adjusted
only after the last corrector step, and they are the same for all three node lists.

16 These calculations were performed with version 2 of our software (cf. section B.2) for sws with
A = 1.5 and N¢c = 5, and the pressure was calculated by differentiation of the free energy;
these results await confirmation and further investigation in other model systems with the
more advanced possibilities the program of chapter 4 provides. Also note that the difficulties
associated with the core condition (v. s. section 5.2) preclude accurate determination of the
pressure from the virial route. Of course, in an implementation like the one discussed in
section B.1 not relying on the re-writing of appendix A the pressure obtained by differentiating

A(Qo) (0) cannot differ, but then again that version does not allow one to force the solution to
advance towards @ = Qg so that sub-critical temperatures are not accessible, By # < Be.-
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While obviously justified for any appropriate step size AQ, for the pre-determined
step sizes we employ this smoothness- and regularity-assumption is certainly not
met and it will come as no surprise that overflows or numerically undefined values
sometimes occur at ) > Qo; as discussed in conjunction with main parts ansatz
and solver (sections 4.5 and 4.6, respectively), the calculation is then terminated
and the data at the last @ before the numerical exception occurred are taken as
the final results for the isotherm at hand. If, indeed, stiffness is the limiting factor
for the numerical procedure’s ability to reach Q = Q, the lowest ) values in the
calculation must be sufficiently small so that we are already in the region of large
f, the maximum of f(Q, p) should be at intermediate densities rather than close
to the boundaries, and we will generally see the program halt at higher cut-off
for lower temperature; taken together these criteria allow us to distinguish be-
tween the mismatch discussed in sub-section 5.4.1 and the effects of stiffness as
the immediate reason for the program’s halt (v. s.).

In concluding this section we should point out that stiffness’ effects are qualita-
tively very much the same for both sws and for the HCY fluid considered earlier;
quantitatively, however, the numerical problems associated with the PDE’s stiffness
are much more severe for narrow wells so that Bmax,# < (8 for many SW systems
with A < 2; these effects, however, cannot be discussed without reference to the
réle discontinuities of w(r) play.

5.6. Discontinuities in the potential’s perturbational
part

For the case of HCY fluids with variable inverse potential range parameter z, the
authors of [28] found a systematic degradation of HRT’s performance comparable
to that of GMsA with growing z, 7. e. when going to ever narrower potentials; in
particular, they studied zo € {1.8,4,7,9}, and for all these systems except the
longest ranged one, viz. the one with z = 1.8 /0 also considered in the present study,
the critical temperature predicted by HRT was consistently found to be too high.
It may therefore, and in view of some of the limitations of the theory expected for
genuinely short-ranged potentials (¢f. chapter 1, g. v. section 2.4), be interesting
to also consider sws of varying range parameter A, which furthermore will serve
to illuminate the decisive roéle played in the numerical process by discontinuities.

For a first orientation, let us look at the results summarized in fig. 4 (g. v. sec-
tion E.1), where the critical temperature T, and density g. are shown as functions
of \; the underlying calculations have been obtained with the parameters chosen as
indicated in section 4.8. With the exception of some spurious results at A ~ 1.10,
wherever 3. < Bmax,# the critical temperature generally compares quite favorably
with the data of tables 3.1 and 3.2; from the calculations we have performed for
a large number of systems in the range 1 < A < 3.6 and ignoring some isolated
results, a critical point is found for 1.06 < X < 1.24, for 1.45 < X < 1.53, and for
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Figure 4: The critical temperature T. (upper panel) and critical density o. (lower panel) of
square well systems for A ranging from close to unity up to 3.6 as obtained from calculations with
the parameter settings of section 4.8; also included are the non-HRT predictions listed in tables
3.1 and 3.2, labeled by the acronyms introduced in sub-section 3.1.1 and already used in those
tables. ¢. v. appendix F. The ticks on the top border of the figure’s frame indicate the A values
considered; of the 200-odd systems we studied, B ax,4 €Xceeds B¢ only in the A ranges indicated
in section 5.6 or for some isolated A values outside those ranges. To facilitate comparison, both
HRT and literature results on the critical temperature for A close to 1.1, 1.5, and 2 are shown at
larger scale in insets. In the lower panel, the bars show the coexisting densities found according
to the prescriptions of section 4.8 for the highest-temperature sub-critical isotherm calculated
in locating the critical temperature; this explains the apparent differences in o.’s accuracy. The
smallest o. intervals shown coincide with the spacing Ap=10"2/5% of the density grid. The
HRT-results used in this plot are given in section E.1.

A > 1.939; calculations with N.. = 5 (summarized in section E.2) yield analogous
results, with 8. < Bmax,# in a somewhat larger part of the parameter range, viz.
for 1.09 < XA < 1.58 and for A > 1.896, but will not be considered in the following
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Figure 5: The core-condition function 5(Q)(Q,g) for g=0.3/0'3, B=0.2/¢ and for two different
ranges A of the square well potential, on arbitrary scales; the horizontal lines correspond to
the ideal gas value —1/p. Note that for A=3 (upper curve) the peak of every single one of the
function’s swings is partially reduced, just as expected for a superposition of terms involving
periodic functions of Q o and 3 Qo, respectively; the same happens less than half the time —
and at rather high Q only — for A=2.9 (lower curve). We have excluded the data for Q<10/o
so that the effects of the PDE’s stiffness are still negligible; the underlying calculations have
been performed by solving the ODEs corresponding to consistent application of the decoupling
assumption at the density indicated.

in view of the considerations of section 5.2 and of other defects that turn out to
be larger than for N.. = 7, the amount of variation in the critical temperature for
narrow wells in particular.

For the moment setting aside the data for A < 1.939, HRT’s predictions for the
critical temperature are in generally satisfactory agreement with the 3.(\)-curve
expected from the simulation-based and purely theoretical results presented in
sub-section sub-section 3.1.1. Embedded into this regular overall behavior of (.
as a function of A, however, we find a number of depressions and elevations of 3.,
some of which cannot be seen on the scale of the plot fig. 4 but from the numeric
results only; others, however, are so strong as to render the critical temperature
a non-monotonic function of A, which is certainly not expected on the grounds of
the literature presented in sub-section 3.1.1, the data of [48-50] in particular.

In the light of section 5.5 it is of course tempting to simply attribute this behavior
to the difficulties previously discussed, especially since the critical point is located
in the region of large f(Qo, 0) by definition; the peculiar distribution of A-values
affected, however, suggests that these problems of the numerical procedure are
triggered or modulated by a special mechanism. Indeed, a closer look at the core
condition function C (Q)(Q, o) for fixed density p reveals, for every single one of
the \ values implicated that we checked, that the combination of terms pertaining
to w(r) or vhs(r) alone (of ranges Ao and o, respectively) regularly and quite
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frequently reduces the amplitude of this function’s swings about the ideal gas
value of —1/p; the same happens only occasionally for A-values removed from these
irregularities, a pattern consistent to the point of allowing one to quite reliably
determine whether or not a given A is affected by these shifts of 3. from a plot of
C (Q)(Q, o) for p ~ p. alone; two typical examples at similar A\ values illustrating
this point are shown in fig. 5. In that plot’s curve corresponding to A = 3 it is
very clear that every oscillation of the reference-system part corresponds to three
oscillations of the perturbational part of C(@) that partly cancel where the former
would otherwise have its maximum; the regularity with which this occurs is, of
course, a direct consequence of \, the ratio of the two characteristic lengths present
in the model, being integer. Slightly generalizing this reasoning, it will come as no
surprise that most of the irregularities occur when A is close to a simple fraction:
among the shifts in 7. most obvious in the plot 4 are those where A is close to 2,
2%, 2%, 2% and 211—2, and in retrospect it seems justified to also include the small
parameter range around A = 1% in this list, v. i.; the effect is less obvious from
fig. 4 but still discernible at 2%, 2% and 2%, whereas for 2% and 2% it is so small as
to make the plot of 5.()\) appear smooth while the irregularities are still evident
from the numerical values; also note that, once again, o. is hardly affected.
Taken together all these observations seem to point to the interplay of the two
different lengths special to the model and the resulting partial oppression of a
significant portion of the extrema of ¢ (Q)(Q, o) that cause the discrepancy of HRT
and literature results for the critical temperature around certain A values; this
interpretation is corroborated by the finding that an interpolation of HRT’s pre-
dictions from A values nearby is usually well compatible with the data presented
in sub-section 3.1.1. Even though we currently cannot pinpoint the precise mech-
anism by which this unphysical behavior of HRT arises and, in particular, cannot
distinguish between the closure’s inadequacy and the PDE’s stiffness as the main
culprit — though the latter is certainly implicated to some degreel” —, two con-
clusions may be drawn quite safely: for one, these shifts in the critical temperature
are not an issue as long as we stay clear of values of A 2 2 that are close to sim-
ple fractions or other special values (a condition to be checked by considering the
effect of varying A in a narrow range around the value of interest), or else as long
as we restrict ourselves to A 2 2.7 where the effects are rather small; and sec-
ondly, it is only in the presence of discontinuities in the potential’s perturbational
part that certain lengths feature prominently!® in the relevant functions’ Fourier
transforms and can so give rise to problems of the kind outlined above. In any
case, however, the numerical effects discussed in sections 5.2 to 5.5 above are,
in principle, always present; the special mechanism outlined in this section only
highlights these effects’ severity and thus acts as a magnifying glass of sorts for the

17 Take into account that, from eq. (A.3) in appendix A, &(Q, o) = —J)(Q, Q)/é(Q)(Q, o) so that
a reduction of |C~(Q)(Q, @) + 1/p0| can conceivably modulate both the cut-off for the onset of
the growth of f(Q, o) following from the discrepancy of the PDE and the FDE as well as that
function’s starting value, denoted @ and f(Q1, 0), respectively, in section 5.5.

18 Recall that the cut-off procedure (2.4) only affects the potential’s continuous component, as
shortly discussed in chapter 3.
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uncertainty in the results brought about by the corresponding difficulties of the
numerical procedure. In order to avoid at least this mechanism from setting in it
is thus preferable to avoid systems with discontinuities in w(r) like, e. g., SWs or
the multi-step potential defined in section 3.3; fortunately this still leaves most of
the potentials popular in liquid state physics like the HCY fluid or Lennard-Jones
systems, to both of which HRT has been applied in the original implementation [5,
6, 11, 13, 19, 21, 28, 80, 81].
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VI. Concluding remarks

In the course of the last few chapters we have mainly been concerned with a
rather detailed study of a number of traits characteristic of the application of
HRT to one-component fluids, both in a general setting (cf. chapter 2) and in
the numerical treatment of selected model systems (cf. chapter 5). As this study
draws to an end, however, it is only fitting to pause for a moment and once more
contemplate the major points we raised. We then see a theory, rich in promise
and attractive in its generality but still not in wide-spread use, that presents itself
as a unified framework for the description of thermodynamic systems throughout
their phase diagrams; its key ingredient is the combination of perturbation- and
integral equation theory with RG-theoretical ideas via a sequence of renormalized
potentials.

In order to allow application to specific physical models and to extract both
universal and non-universal information from the theory it is, of course, necessary
to close the formally exact but non-terminating hierarchy of ODEs underlying all
of HRT at some order of the perturbational expansion; in principle there are many
suitable approximations, and when combined with thermodynamic consistency as
expressed in the compressibility sum-rule (2.13) they typically give rise to partial
integro-differential equations. In the case that we concern ourselves with, viz. that
of simple one-component fluids interacting via purely additive, spherically sym-
metric pair potentials with infinitely repulsive cores, there is one such ansatz that
has been used almost exclusively, viz. the LOGA/ORPA-style closure of eq. (2.15)
that we, too, decided to adopt in our work. The formulation we rely on is thus
largely the same as that of earlier applications, but we take care in motivating
the introduction of the various approximations and discuss their relative merits.
Among the most important of our analytical and semi-analytical results on the
resulting equations — all of which are borne out by the numerics — are those
regarding the PDE’s stability and the build-up of divergences of the isothermal
compressibility: in particular, HRT is found unable to deal with predominantly
repulsive potentials in the formulation of chapter 2, and the mechanism leading to
a suppression of van der Waals loops is shown to be linked to the PDE’s stiffness
in the critical region or when describing phase coexistence; furthermore, grave
problems are shown to be likely to arise for very short-ranged interactions.
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In order to put into perspective and to gauge the relevance of these rather
general concerns regarding the theory’s applicability we turned to two types of
model potentials, viz. the HCY potential with inverse screening length z = 1.8/
as well as a large number of sw systems with range parameter A varying from
extremely narrow wells up to A = 3.6. By way of experimentation we were then
able to identify three major issues affecting the computational realization of HRT
in its standard formulation: An important one that should not be taken lightly
without at least checking its implications for a particular system is the necessarily
approximate treatment of the core condition by ODEs coupled to the HRT-PDE at
every density o; in addition to some systematic shortcomings in the pair distri-
bution functions that we found in all the systems we looked at, the numerical
problems associated with adoption of eq. (D.11) alone are so severe as to necessi-
tate elimination of other terms related to third-order partial derivatives of the free
energy. While this so-called decoupling assumption provides a partial remedy for
some of the problems linked to the core condition, decoupling by necessity intro-
duces both mathematical and thermodynamical inconsistency into the equations;
in particular, well-defined phase boundaries are strictly incompatible with a full
implementation of decoupling, and imposition of a boundary condition at the high-
est density pmax in the calculation gives rise to an unphysical near-discontinuity
of the solution there reflecting the lack of internal consistency in the approxima-
tions made and the condition imposed at ppa.x. Other than these two problems
that are likely to be linked both to the closure adopted and the continuous (:. e.,
non-discrete) nature of the physical systems considered, the equations’ stiffness
for high-compressibility states seems deeply rooted in HRT; in the one-component
fluids under consideration here this leads to a pathological behavior of the solu-
tion wherever the auxiliary quantity f(Q, o) is large and the RG-theoretical cut-off
Q sufficiently small, a behavior that cannot be matched with practical step sizes
in an FD scheme and brings about considerable uncertainty regarding the results
obtained numerically and their validity. Not the least, even if the data outside
the coexistence region turn out rather stable under variation of the computational
strategy or the parameters it depends upon we still have to anticipate the possi-
bility of a systematic distortion of the binodal and other defects, in addition to
what problems an inappropriate choice and location of the high-density boundary
condition may bring about. Interestingly enough, the presence of discontinuities
in the potential’s perturbational part makes for some peculiar effects in, e. g., the
critical point’s location that might be used as a diagnostic tool for the level of
confidence that should be attributed to numerical results in view of the unavoid-
able stiffness of the PDE and the corresponding FDE in part of the phase diagram.
— All these effects, it should be noted, to some degree depend on the potential’s
range, . e. on the parameters z and A for the HCY and the SW case, respectively.

From the preceding remarks we find that HRT, a theory successfully applied to
a number of different systems by various authors, clearly has its share of numer-
ical difficulties; as a consequence, every single calculation must be regarded as of
uncertain standing, and it is only through the combination of meticulous scrutiny
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of a set of related calculations that meaningful and reliable information can be
extracted from HRT calculations.

Such a program is, of course, greatly facilitated by the availability of a fully
modular implementation of HRT in several variants of its usual formulation like
the one we have written. In doing so we have gone to great lengths to ensure the
numerical soundness of each and every step in the calculation except where this
is not compatible with the PDE’s nature; as secondary design goals we have also
striven for efficiency, ease of use, and a natural organization of the program, which
has only been possible through the adoption of a simple meta-language and code
construction techniques. Not only should our software provide the liquid physics
community with a versatile tool for the systematic exploration and application
of HRT to a variety of systems, it has also proved essential in understanding both
numerical and analytical properties of the equations at hand; indeed, several of the
issues mentioned above were first found in the numerical work when monitoring
and assessing the evolution of the solution throughout the numerical process. As
discussed in some detail in the text, the same approach also provides us with
distinct signatures for the problems we found as well as with a means of detecting
them.

All in all this puts us into a position where we are confident of our ability to apply
HRT in a numerically meaningful way to a variety of physically significant systems
and to use the tools and techniques we developed to extract relevant information
from these calculations; the possibilities here range from the rapid determination
of approximate binodals including the liquid-vapor critical points in an ansatz not
implementing the core condition all the way to extensive numerical work employ-
ing several variations of the theory’s formulation as well as a host of checks to
gauge the the level of confidence to be attributed to the results obtained. Despite
the considerable computational challenges encountered we thus find that HRT is,
indeed, capable of providing reliable structural and thermodynamic information
on liquid-vapor transitions in simple one-component fluids even in the immediate
vicinity of the critical point.
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A. Rewriting the partial differential equation in
not-quite quasi-linear form

In order to facilitate the numerical treatment of the PDE implied by egs. (2.13) and
(2.12), it is advantageous to adopt a re-formulation in terms of an auxiliary quan-
tity f(Q, o) rather than the modified free energy .A(?)(o): the resulting PDE (2.23)
superficially resembling a quasi-linear one (cf. section A.1) allows implementation
of an implicit finite-difference scheme by simple inversion of a tri-diagonal matrix
instead of more cumbersome and slower iterative procedures; also note that, de-
spite complete mathematical equivalence, the PDE’s formulation plays a réle in
the numerical algorithm’s ability to enter the region of the PDE’s stiffness with
pre-determined step sizes.

This re-writing, leading up to eq. (2.23) and to be detailed here, is character-
ized by a certain amount of arbitrariness that can be used to optimize the final
expressions with regard to their numerical properties at the cost of repeatedly
performing the time-consuming calculations for various ansatzes for f(Q, ¢); and
even though the calculations themselves are straightforward, intermediate results
soon become unwieldy, making experimentation with different definitions for f
rather cumbersome. It is precisely in a situation like this that computer algebra
systems (CASs) may be put to particularly good use: not only is it much more
convenient to check the validity of high-level commands for the symbolic manip-
ulation of the complicated expressions arising than to actually follow these steps,
but the necessary experimentation reduces to mere re-evaluation of the re-writing
procedure starting with a modified initial definition of f. Considering these ad-
vantages, much of the re-formulation’s presentation in this appendix is devoted to
the use of the popular cAs Mathematica [82] for implementing and analyzing the
steps leading to eq. (2.23); the reader should, however, keep in mind that the code
given here is not meant to be optimally efficient but favors clarity over speed; the
experienced user will no doubt easily spot unnecessarily slow calculations. — In
this appendix’s remainder, input into Mathematica is given in mono-spaced font
whereas the program’s output (as obtained with version 4) is shown in slanted

mono-spaced font.
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Mathematica arguments symbol
c 3 ¢

ct ] - Cij
cRO 1 &t —o
cRef 2 ¢ref
dij - dij
eny 2 A
eps 2 €

f 2 f

g 3 g
go 2 9o
gammaO 2 Yo
phi 2 )
phi0 1 bo
u0 2 ’&0
u0divphi 2 iio/ ¢

Table 1: Correspondence of identifiers used in Mathematica code and the symbols used in
conventional notation (eq. (3) in this appendix; g. v. appendix F); in the above table, ¢ and j are
to be replaced by suitable one-digit integers. The number of arguments the Mathematica symbols
listed expect is indicated in the second column; these functions enter the calculations with either
the density p alone, with both Q and p, or with the full triple of (Q, Q, ¢) as arguments; also note
that the distinction of superscripts (Q), indicating quantities to be evaluated for the Q-system,
and of function arguments @, where ) plays the more general réle of a wave number coinciding
with the cut-off, is inappropriate in the Mathematica code due to the peculiar behavior of D[]
when operating on expressions of the form x[Q][Q,rho]. — In addition to the Mathematica
symbols listed above, we also use variables with names of the form dQnRhomx to indicate the
partial derivative 87 1T™z /8™ QO™ o of x, suppressing QO or RhoO as well as the digit 1 after Q.

A.1. Basic relations and introduction of auxiliary
function f(Q, )

Much of the following exposition is vastly facilitated by introduction of various
rules implementing trnasformations corresponding to the basic relations underly-
ing HRT in the formulation chosen; among these, and with the notational corre-
spondences listed in table 1, the LOGA/ORPA-ansatz (2.15) for C~(Q)(k, 0) is written
as:

rC = c[Q_,k_,rho] :> cRefl[k,rho] + philk,rho] +
gammaO[Q,rho] uO[k,rho] + g[Q,k,rho];

As the all-important compressibility sum rule (2.13) involves C(?) (0, o) and setting
a wave number to zero means loosing one argument, we introduce some additional
symbols for Fourier transforms evaluated at zero momentum; note that the only
condition imposed upon basis function ug(r, @) at this point is the normalization
condition uo(0, o) = 1, cf. eq. (2.16):
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glQ-,0,rho] := g0[Q,rhol;
phi[0, rho.] := phiO[rho];
u0[0, rho]l := 1 (* Four[u 0] (k=0) == 1 *) ;

cRef[0, rho] := cRO[rho];

Also, arithmetic with derivatives is facilitated by introduction of special symbols
named according to the rules given in conjunction with table 1:

Derivative[1,0] [phi] := dQphi;
Derivative[0,1] [phi] := dRhoiphi;
Derivative[0,1] [dRholphi] := dRho2phi;
Derivative[0,2] [phi] := dRho2phi;
Derivative[1,0] [cRef] := dQcRef;
Derivative[0,1] [cRef] := dRhoilcRef;
Derivative[0,1] [dRholcRef] := dRho2cRef;
Derivative[0,2] [cRef] := dRho2cRef;
Derivative[1,0] [u0] := dQuoO;
Derivative[0,1] [u0] := dRho1luO0;
Derivative[0,1] [dRho1u0] := dRho2u0;
Derivative[0,2] [u0] := dRho2uO;

The list egs is now defined to hold the fundamental relations that our re-writing is
based upon: definition of C(Q)(Q, o) according to eq. (2.15), the HRT result (2.12)
for 3A(Q)(g)/8Q, and the compressibility sum-rule (2.13):

eqs = {
c[Q,Q,rho] == (c[Q,Q,rho] /. xC),
Derivative[1,0] [eny] [Q,rho] ==
Q*Q/(4 Pi~2) LOg[i-Phi[Q,rho] /c [Q,Q,rho]] s
Derivative[0,2] [eny] [Q,rho] == -(c[Q,0,rho]l/. xC) }

{c[Q, Q, rho] == cRef[Q, rho]l + g[Q, Q, rho] + phi[Q, rho] +

> gammaO[Q, rho] u0[Q, rho],
2 philQ, rhol
Q Logl[l - ————————-—— 1
(1,0 c[q, Q, rho]
> eny [Q, rho] == ————————mmmommmm ,
2
4 Pi
(0,2)
>  eny [@, rho] == -cRO[rho] - gO[Q, rho] - gammaO[Q, rho] - phiO[rho]}

In order to make the transition from the PDE as implied by the above relations
into a form numerically more tractable (falsely labeled “quasi-linear” in the lit-
erature [11], v. 4.), it might seem most natural to define f(Q, o) as equal to the
logarithm in eq. (2.12); however, to avoid spurious singularities at roots of qz, f
has to be multiplied by a term of order (9((;;2) at least, and an extra term must be
added. As for the factor, note that our choice of 42 o (;32 allows for a reduction
of the number of floating point operations necessary when evaluating the final ex-
pressions (5) for the coefficients dp; when compared to the factor <52 adopted by
[11], the first reference to acknowledge the necessity to adopt such a re-writing.
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(Previous work re-cast the PDE as a flux-conserving one but was unable to en-
ter the critical region [6].) The term to be added is still largely undetermined
but is written as a product of & and a regular function extral[] of é&f(Q, o) and
G (Q)(Q, o) alone, the simplest choice possible; note that the final result for the the
additional term is largely determined by the choice of the pre-factor for f. — As
stated before, experimentation with more general definitions of f(Q, o) is possible
by mere modification of the following statement and subsequent re-evaluation of
the remaining steps.

ansatz =
Log[1-phi[Q,rhol/c[Q,Q,rho]] ==
£[Q,rho] u0[Q,rho]l"2 + phi[Q,rho] extralcRef[Q,rhol, gl[Q,Q,rhol];
(rAnsatz = Simplify[Solve[ansatz, c[Q,Q,rho]l]1[[1,1]1]1]) // InputForm

cl[Q, Q, rho] ->
-(phi[Q, rho]/(-1 + E~(extral[cRef[Q, rhol, g[Q, Q, rho]l*phi[Q, rho] +
f[Q, rho]*u0[Q, rho]"~2)))
|

This ansatz must, of course, be inserted into into the set of equations considered
earlier; furthermore, it is convenient to define £(Q, o) as the exponential appearing
in the expression for C(?)(Q, p):

(eqsAnsatz = (eqs /. rAnsatz // Simplify) /. Log[Power[E,x_.]] -> x) // InputForm

{0 == cRef[Q, rho] + gl[Q, Q, rho] + phi[Q, rho] +

phi[Q, rho]/(-1 + E~(extral[cRef[Q, rhol, gl[Q, Q, rholl*phi[Q, rho] +

£[Q, rho]*u0[Q, rho]l~2)) + gammaO[Q, rhol*u0[Q, rho],

Derivative[1, 0] [eny]l[Q, rho]l ==

(Q-2*(extral[cRef[Q, rhol, gl[Q, @, rhol]l+*phil[Q, rho] +

f[Q, rhol*u0[Q, rho]~2))/(4%Pi"2),

cRO[rho] + gO[Q, rho] + gammaO[Q, rho] + phiO[rho] +

Derivative[0, 2][eny][Q, rho] == 0}

rEps = E"(b_. Evaluate[Cases[rAnsatz, E"a_ -> a, Infinityl [[1]]1]) :>
eps[Q,rho] "b;
rrEps = RuleDelayed @@ {eps[Q-, rho_], rEps[[1]] /. _Optional -> 1};
|

In order to make the transition from two equations, viz. egs. (2.12) and (2.13),
to a single PDE of the form of eq. (2.23), the compressibility sum-rule (2.13) is

used to eliminate the LOGA/ORPA-coefficient 7(()Q)(g):

rElim = Solve[Select[eqsAnsatz, !FreeQ[#,Derivative[0,2]]&],
gammaO[Q,rhol] [[1,1]]
eqsElim = Simplify[eqsAnsatz /. rElim]

gammaO[Q, rho] ->

(0,2)
> -cRO[rho] - gO[Q, rho] - phiO[rho] - eny [Q, rho]

The PDE is now obtained by postulating interchangeability of partial derivatives
acting on A@) i. e. by equating the expressions 8 (82A(Q)(9)/829) /0Q and
0? (8A(Q)(g)/3Q) /%0 for eq. (2.17)’s @ (p); after the following commands
defining quasilin as the difference of these expressions, the PDE is equivalent
to the condition of vanishing quasilin:
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Rewriting the PDE A.2 Coefficients of the PDE

dQeny = Solve[Select[eqsElim, !FreeQ[#,Derivative[1,0]]1&],
Derivative[1,0] [eny] [Q,rho]][[1,1,2]];
dRho2eny = (Solve[Select[eqsElim, !'FreeQ[#,Derivative[0,2]]&],
Derivative[0,2] [eny] [Q,rho]][[1,1,2]]) // Simplify;
quasilin = Expand[(D[dQeny, {rho, 2}] - D[dRho2eny, QI)
/. rEpsl;
|

With the last step, the modified free energy .A(?)(p) has been eliminated from the
PDE and replaced by f(Q, ¢); the new formulation involves the following derivatives

of f:

Union[Cases[quasilin, Derivative[_][£f]1[_], Infinity]l]

(0,1) (0,2) (1,0)
{f [Q, rho], £ [@, rho], f [Q, rhol}

All in all, the following derivatives are present in the new formulation of the PDE:

Union[Cases[quasilin, Derivative[__]1[_.J[-_], Infinity]]l /.
£ [Q,rho] :> £ /. £.[Q,Q,rho] :> f /. £_[cRef,g]l :> f

(0,1) (0,1) (0,2) (0,2) (1,0) (1,0)
{extra , T , extra , T , extra , T ,

(1,0) (1,1) (2,0) (0,0,1) (0,0,2) (0,1,0) (1,0,0)
> go , extra , extra > 8 s g s 8 > 8
|

Presence of second-order p-derivatives on functions other than f clearly makes the
PDE in this formulation, just as the form used in [11], not fall into the quasi-linear
class despite reiterated claims to the contrary; fortunately this is an issue of little
practical relevance.

A.2. Coefficients of the PDE

With the representation of the PDE obtained so far, we can easily extract from
quasilin the explicit expressions for the coefficients c;; for writing the PDE in the

form Zi]’ Cij (8i+jf/3iQ8jg) =0

c02 = Coefficient[quasilin, Derivative[0,2] [£]1[Q,rho]l];

c01 = Coefficient[quasilin, Derivative[0,1][£]1[Q,rho]l];

c10 = Coefficient[quasilin, Derivative[1,0] [£][Q,rhol] // Together;
c00 = Select[quasilin, FreeQ[#,Derivativel[_][£1]1&];

These expressions, cgg in particular, are rather unwieldy; may it suffice to demon-
strate that they, indeed, represent the full PDE:

Expand[quasilin - (
c02 Derivative[0,2] [f][Q,rho] +
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Rewriting the PDE A.3 Coefficients dg; for small q;

c01 Derivative[0,1][f]1[Q,rho] +
c00 +
c10 Derivative[1,0][£f]1[Q,rhol)] // Simplify

In the numerical implementaton, however, the PDE is more useful when 9f/9Q is
isolated; the coeflicients do; for expressing the PDE as 9f/0Q = ). do; (Bif/agi)

are, of course, related to c19 and the cg; in a straightforward way:

d02 = Together[-c02/c10];
do1 = Together[-c01/c10];
d00 = Together[-c00/c10];

Note that this simplistic approach to the re-writing, though well suitable for dg,
and dpq, can be used for dgg only in fairly recent versions of Mathematica and
on sufficiently fast hardware; a more efficient way of performing the necessary
calculation and simplification should be obvious.

A.3. Coefficients dj; for small &5

In order to fix the still unknown function extral[], we now analyze the coefli-
cients dg; just found for small qB(Q, 0); it is this analysis, performed for various
ansatzes for f, that leads to the requirements quoted earlier. The following series
expansion (including terms only up to order O(¢°)) for extracting the coefficients’
singularities is one of the most demanding calculations in this re-writing of the
HRT-PDE:

ser = (Normal[Series[#, {phil[Q,rho],0,0}]1]& /@
(Simplify[

{d02, do1, do0} /. rrEps /.

u0 :> (phil[##] uOdivphi [##]&)
1)) /. Explb_. extral__]] :> ExpExtra”b;

While the first two coefficients, 7. e. dgs and dgo; actually vanish for ¢ — 0, the
limit of dyo is a complicated expression depending on extral[] and still containing
¢ with exponents -2 and -1:

ser[[{1,23]1]
{0, o}

s = ser[[3]];
Cases[s, philQ,rho]l"b_. -> b, Infinity]



Rewriting the PDE A.3 Coefficients dg; for small q;

{1: -2, 1, _1}

Now the reason for introducing the function extral] becomes clear: together with
the pre-factors quoted earlier, it allows the removal of any singularities in dgg. —

There are two candidates for extra[] that eliminate terms of order O(¢~?):

sol2 = (RuleDelayed @@ {#[[1,1,0]], Function @@ ({Liste@e@(#[[1,1]1]),
Evaluate[#[[1,1]1]1/.#1} /.
£_[Q,rho]:>f /. £.[Q,Q,rho] :> £)})& /@
Solve[Coefficient[s, phi[Q,rho]l, -2] == 0,
extra[cRef[Q,rho],gl[Q,Q,rhol]]

{extra :> Function[{cRef, g}, 0],

> extra :> Function[{cRef, g}, ---—------ 1>

The first of these, i. e. vanishing extral], is, however, not sufficient to also remove
the first-order pole:

Coefficient[s, phi[Q,rho], -1] /. sol2[[1]]
(-12 Pi dQuo[Q, rho] f[Q, rhol uOdivphil[Q, rho]l +

2 3
> 4 Pi dQphil[Q, rho] f[Q, rhol] uOdivphil[Q, rhol ) /

2 3
> (4 Pi u0divphil[Q, rho] )

Unless the ansatz for f was not sufficiently general in the first place, we thus
have to accept the second solution for extral]; this, however, entails a further
restriction, in addition to the normalization condition @y(0, ) = 1 given earlier,
of the basis functions ug(r, o) admissible:

(Coefficient[s, phil[Q,rho], -1] /. sol2[[2]] // Simplify)
((-dQuo[Q, rho] + dQphi[Q, rhol] uOdivphil[Q, rhol)

2 2
> (1 + 2 cRef[Q, rhol f£[Q, rho] uOdivphil[Q, rho] +
2
> 4 cRef[Q, rhol £[Q, rho] gl[Q, Q, rho] uOdivphi[Q, rho] +
2 2
> 2 f[Q, rho] glQ, Q, rho] uOdivphil[Q, rhol )) /
2 3

v

(2 (cRef[Q, rho] + gl[Q, Q, rho]l) wuOdivphil[Q, rho] )

Of the three solutions for the ratio u0divphi[Q,rho] of 4o (Q, ¢) and ¢~3(Q, 0), two
have non-vanishing imaginary part and still depend on f(Q, o), while the third
one yields:

84



Rewriting the PDE A.3 Coefficients dg; for small q;

Select[
Solve[(Coefficient[s, philQ,rhol, -1] /. sol2[[2]] // Simplify)==0,
u0divphil[Q,rho]l],
FreeQ[#,f]&]
dQuo[Q, rhol

{{u0divphil[Q, rho] -> ------——--——-—- 3}
dQphi[Q, rho]

Note that this result, easily re-written as

1 0(Q,0) 1 04(Q,0) -
W(Q,0)  9Q $(Q,0) 9Q (60

in conventional notation, does not imply strict proportionality of @g and ¢; rather,
Uy X qg must hold only up to terms of order O(qg) This freedom might, of course,
be exploited to arrive at basis functions ug(r, 0), and, by virtue of eq. (2.15), of
direct correlation functions C(?)(r, ), of longer range than ¢(r, p); it is, however,
hardly conceivable that such a strategy might advantageously by applied with-
out introducing an additional, computationally unattractive o-dependence, not to
mention the basis functions’ ) dependence one would naturally want to introduce

in such a more general closure. Thus, in our work we fix ug as strictly proportional
to ¢ so that iig/¢ is a constant, viz. —1/¢(0, p):

rU0 = {u0 -> (phil#1,#2] / phiO[#2]%),
dQuo -> (dQphi([#1,#2] / phio[#2]%&),
u0divphi -> (1/phiO[#2]&)};

rExtra = sol2[[2]]

extra :> Function[{cRef, g}, ---—-——--- ]
—CRef - g

(Coefficient[s, phil[Q,rho]l, -1] /. sol2[[2]] /. xUO // Simplify)
0

The last of these command confirms that the terms of order (9(9;5—1) do, indeed,
cancel; consequently, the ansatz by which we introduced f is sufficient to avoid
spurious singularities in the PDE’s coefficients dy;. With these results, the definition

of f(Q, o) reads

$(Q,0) \ _ i _ $(Q,0)
In (1 - m) = .f(Qa Q) UO(Q, Q) 7I€(Q)(Q, 0) ) (1)

a result very similar to that of [11]. Taking the ideal gas limit and considering the
divergence of the term —1/p in é™f we readily find that both f and its derivative
with respect to p vanish,

2f(Q, o)

89 =0, (2)

=0

F(Q,0) =
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Rewriting the PDE A.} Final results

the former of which is a convenient low-density boundary condition most versions
of our program rely on; indeed, as eq. (2) provides us with two conditions this
in principle already suffices to determine the PDE’s solution up to high density,
even though such a use is computationally clearly unattractive. Introducing the
short-hand notations (with the obvious superscripts and arguments omitted)

e=1— = :e’cl~‘g+:"‘f> E=¢e—1
Cc@Q)
é f (K@)° (3)
Ty = ——= Tf=———="
(@) 2

&0 = &(07 Q) QO = Q(Q) (Oa Q) )

egs. (2.12) and (1) can be written more succinctly as

d [BAQ) Q2
@ ( v (Q)> = 472 1n€(Q,g),
6(Q,0  _
FQ(Q,0) —£(Q, 0) .

Restricting ourselves to the fully interacting system, 7. e. to the limit ) — 0 so
that C(?®) — ¢, and A@) — A, and taking into account the 0z relation (2.8), the
isothermal compressibility xr is easily found to be

1 _92 H2 (ﬂA(O)>

0 B2\ V
_ Q/B (4)
1+ 0h(9(0, p)
_2°9(0,0)
B&(0,0) ’

note that a divergence of /@SFQ) in the limit @ — 0 is thus only possible if accom-
panied by a corresponding divergence of f(Q, 0) in the same limit.

A.4. Final results

Even though the PDE’s coefficients are now fully determined, they — and dgo in
particular — are still not in a form usable but demand further simplification. This
straightforward but rather tedious process will not be detailed here; suffice it to
say that CAss again prove very helpful in manipulating the complex expression
trees representing the coefficient functions. — Reverting to conventional notation
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and dropping the obvious arguments and superscripts, our final results for the dy;
are

p _+a_g5< b2 _E(Q)§2$g_ﬁ>+3/§(Q) (52553_ 32 )
00 8Q \ K@) 42 & B é 0Q \e¢® (K@)*¢
- 3221% Q? 52f§£0 - 32%) Q2 22 (Z)o - ag”(()Q) 52 ¢~>o (5)
0%  An?e 2 00% 4r2 e §2 0Q e¢2 "’
dug Q* & Q2 é?
dor = — —— ——=, dog = ————~.
8@ 7r25¢ 47T2€¢0

In the light of our previous analysis of these coefficients’ behavior in the limit
é — 0, great care must be exercised when evaluating the dg; for small b; noting that
(g2 QE%/&QZ;S) — (ggg/(lé(Q)V <;~3), the coeflicient of 3I€(Q)/8Q in dgg, can be written in
terms of the (9¢/0Q)-coeflicient, in the numerical implementation the calculation
of these terms proceeds via the fifth-order Taylor expansion

B K@ o

K@g:  egt ¢
:_; 2 (1 4 2 2. (K(Q) 2
(IG(Q))?’ <¢0(12+ f)+ ¢(I\“ ) f

W=

4 72 2 4
+x¢¢0(20160 + 2_143:]‘ + lewf)

+ a5 (KO) £ (ohs + & w?)) +0(zf),

and £/ 6, another quantity of order (’)(QEO), is evaluated as

1
=== (14 (3 +zp) +al (2 +2p) + 25 (& + o5+ 2 27)
+ag (s + 2y +327) + 23 (s + o + i+ w)))

+ O(z3) -

| ™

Note that even though the criteria for switching between the full analytic expres-
sions and said expansions depend on €, the expansion orders are not increased
for very small values of €4, which is one of the few hard-coded limitations of our
program (cf. section 4.7).

In this appendix we have shown some details of the transition from the com-
bination of egs. (2.12) and (2.13) to the PDE (2.23) superficially resembling a
quasi-linear one; only use of the CAS Mathematica allowed us to focus the pre-
sentation of the PDE’s re-writing on the general procedure and to emphasize the
deliberate choices made as opposed to mere conclusions following from them; in
particular, it should be clear that there is ample room for variation of the precise

87



Rewriting the PDE A.} Final results

form of the ansatz (1), and we have given our reasons for the specific choices we
made. The final results (3) for the coefficients clearly show that in the case of o-
independent potentials — and only these have been considered in this work despite
our program’s ability to deal with p-dependent potential — substantial simplifica-
tion ensues, resulting in significant speed-ups of the numerical procedure: in that
case, none of the basis functions depend on the density, which allows for simpler
data structures and for caching of intermediate results.
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B. Overview of previous versions of the
implementation of HRT for simple
one-component fluids

Most of the calculations presented in this work have been performed within the
framework provided by the implementation of chapter 4, i. e. with version 4 of
our program; occasionally, however, we will also reference results obtained, or
conclusions reached, with earlier versions. Therefore it is pertinent to give a short
overview of these programs, their main characteristics and differences, as well as
their relation to the software’s final form.

As a general note regarding all three of the versions sketched in this appendix,
the implementations touched upon here differ from that of chapter 4 in the basis
functions they use (cf. section C.2), and their inflexible and unnecessarily compli-
cated code-structure (most obvious in version 2) betrays the programmer’s former
object-oriented background [83] (cf. the discussion of our adoption of a meta-
language in chapter 4); other than the implementation of chapter 4, there is no
intent to make the ones discussed in this appendix generally available. All ver-
sions (including version 4) are written in Fortran-90, striving for full standards
[69] compliance.

B.1. Version 1: Non-linear PDE for the modified free
energy

This initial implementation of HRT differs from its successors (as well as from what
is referred to as the original implementation in chapter 4) in that it does not rely on
the re-writing of the PDE in the form (2.23) superficially resembling a quasi-linear
one (cf. appendix A); instead, egs. (2.12) and (2.13) were subject to discretization
in a straight-forward way, with the core condition implemented along the lines of
section D.2 with the approximations of section D.3. Due to the markedly non-
linear character of this PDE for the modified free energy A(Q)(g), convergence
of an implicit finite-difference full-approximation scheme can only be ensured by
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Previous program verstions B.2 Version 2: PDE for f(Q, )

iteration of the corrector step; the need to keep the number of corrector iterations
as low as possible without compromising the numerical procedure’s convergence
first led to the introduction of the central parameter ey and early versions of a
number of the criteria summarized in section 4.6. The PDE’s numerical treatment
relied on a second-order three-level predictor-corrector scheme similar to that of
the original implementation: in particular, in the step leading from @ to Q@ — AQ,
the predictor produced an estimate for the solution at cut-off Q@ — 1AQ only; as
this is obviously inconvenient in iterations of the corrector step, later versions
switched to a two-level algorithm, where the predictor step estimates the solution
at @ — AQ directly.

As far as the reference system’s description is concerned, in this version of the
program only the PY approximation was implemented; there was some numerical
evidence of this resulting in a smooth additional contribution to the isothermal
compressibility x7 as evaluated by differentiation of .A(?) (o) while the binodal (or
o1 at least) could still be made out from k7’s near-discontinuity.

Incidentally, this first version was already fully capable of handling square wells
with A = 1.5, the primary test case for all the programs presented in this ap-
pendix, for super-critical temperatures, even though the computational cost was
prohibitive (typically on the order of one hour of CPU time per isotherm for low-
precision calculations on an alpha workstation). Upon increasing 8 beyond its
critical value 3., then estimated at around 0.85, however, the ex-based criteria
led to dramatically falling step sizes AQ), which is a clear indication of the PDE’s
stiffness not being an artifact of the rewriting of appendix A; other than in the
formulation first adopted in version 2 and used ever since, an attempt to force the
solution’s advancement towards Qg via pre-determined step sizes produced numer-
ically undefined results only, :. e. the IEEE floating-point standard’s special values
of NaN or +Inf [70]. It was also with this implementation that the core-condition
function C(?)(Q, o) was first considered, cf. section 5.6.

B.2. Version 2: Not-quite quasi-linear PDE for an
auxiliary quantity

Version 2 differs from its predecessor mainly in the adoption of the re-writing of
appendix A (although in a somewhat simpler form considering density-independent
potentials only) and the corresponding transition from the modified free energy
A(Q)(g) to the auxiliary function f(Q,e); it was within the framework provided
by this implementation that some of the problems discussed in chapter 5 were first
uncovered and partly understood [84]. Just as version 1, this version, too, made
use of Fortran-90’s built-in module system to enhance re-usability and flexibility
of the program; but as experimentation with different approximations and re-
factoring of some of the program’s functionality continued, the need to accomodate
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vastly different data structures became obvious, prompting the proliferation of a
large number of partly incompatible module versions.

The discretization of the PDE again relied on an iterated predictor-corrector
full-approximation scheme; despite the PDE’s being of first order in ) and the use
of a rectangular (Q, p)-grid in a two-level scheme, in order to be able to apply
ex-based criteria for assessing or choosing the step sizes in the —@Q direction from
second-order derivatives we had to retain the solution at a third ) value in the
calculation; by way of contrast, version 4 needs three node-lists in order to acco-
modate the possibility of a more general grid underlying the numerical calculation
(cf. section 4.2).

The main conclusions drawn from experimentation with version 2 concern the
problematic nature of the decoupling assumption (cf. section B.3) and of the
boundary conditions as well as the numerical inaccessibility of the true solution in
the region of large f(Q, o) in the PDE’s domain. On the other hand, this program
first allowed us to generate some solution all the way down to @ = Q¢ even below
the critical temperature, albeit only when imposing the decoupling assumption
and resigning on the local error’s boundedness in the finite difference scheme; as
can be seen from [84], it also became apparent that square wells could be treated
for some \ values only [84].

B.3. Version 3: ODEs following from consistent
application of the decoupling assumption

Other than versions 1, 2, and 4, version 3 of the program was never meant to
implement HRT in a generally usable form; rather, its only point was to investigate
the decoupling assumption’s effects and to demonstrate its importance. To this end
we implemented the solution of the ODEs following from consistent application of
the decoupling assumption (2.21), cf. sub-section 2.2.2. Apart from minor changes
concerning some of the ex-based criteria and the choice of basis functions (cf.
section C.2), this version is fully equivalent to, and superseded by, one of the
ansatzes discussed in section 4.5.
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C. Implementational Details

In this appendix we want to shortly discuss some specialized aspects of the im-
plementation of HRT presented in chapter 4; in particular, we highlight the role
of the meta-language in our software and some of the facilities this offers for its
potential users, and we give the explicit expressions for the set of basis functions
Un, n > 1, we use in the computations and compare it to some alternatives.

C.1. The arfg meta-language

As shortly mentioned in section 4.1, some of the most attractive features of our
software have become possible only by our adoption of the simple meta-language
arfg! constructed from readily available text-processing and scripting tools: In
particular, this allows us to code in a manner not unlike the “literate programming”
style pioneered by Knuth [85], although the pipelined nature of the system we use,
originally inspired by Engelschall’s wml system?, more closely resembles Ramsey’s
noweb [86]. But where the traditional literate programming tools emphasize the
production of high-quality documentation (“weaving”) and constructing the code
(“tangling”) is seen as a rather trivial task, for arfg the focus is on flexible con-
struction of code customized to the chosen combination of approximations and the
physical system at hand instead; the resulting Fortran-90 code is not meant for
human inspection, and no pretty printing is performed.

As expected from this similarity to literate programming, the overall effect of
adopting a meta-language is to enhance readability and maintainability of the
source, at the same time encouraging modularization while providing us with
enough flexibility to generate efficient and reliable Fortran-90 code that takes
into account as much information about the properties of the physical system as is
feasible; furthermore, the free flow of information and the self-configuring nature of
the code (v. ¢.) make it much easier to maintain consistency within the code base

1 Available on the world wide web from http://purl.oclc.org/NET/arfg/. More precisely,
arfg is a framework for the definition of a customized meta-language that co-evolved with the
implementation of chapter 4 into its current state.

2 Available from http://www.engelschall.com/sw/wml/.
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and to introduce non-trivial changes3. As an added bonus, the expressive power of
more modern programming or scripting languages provides a means of overcom-
ing some of the limitations inherent to Fortran-90, mitigating its austerity to a
certain extent.

The meta-language arfg itself is just a simple script written in Perl that does
little more than feed the current source file, together with appropriate definitions,
to a UNIX pipeline consisting of an arbitrary re-writing filter, GNU’s m4 macro
processor, a diversion filter for accumulation and re-ordering of text blocks, and
the eperl interpreter for embedded commands in the Perl language; the latter
relies on the budding cAs yacas? for simple auxiliary calculations. With these
tools, code construction usually proceeds by repeated application of the arfg-script
to all source files until the output files — typically Fortran-90-code, interfacing
information, include files, and customized scripts for compiling of the resulting
program — no longer change; re-configuration of the software thus only means
selection of the desired components followed by re-construction and re-compilation
of the Fortran-90 code. As a consequence of this organization none of the main
parts can make any assumptions about the internal workings of any other main
part, and the code produced must be generic with respect to any information
not available via either the program’s general design as sketched in section 4.2 or
the interface provided by the code, usually in the form of m4 definitions. This
also means that optimizations valid only for special combinations of main parts
have not been implemented; such a situation might arise, e. g., for an ansatz (cf.
section 4.5) implementing the core condition via the truncated eq. (2.18) if the
f—integrals turn out to allow an analytical short-cut only for a certain choice of
potential (cf. section 4.3; v. i. section C.2).

In order to provide a solution to this problem we have introduced a hook-
mechanism reminiscent of that found in other programs but resolved during code
construction rather than at run-time: wherever a hook has been declared in the
arfg-source, arbitrary replacement text may be inserted at the m4 step. In combi-
nation with automatic declaration of hooks during the initial re-writing step and
with arfg’s subsequent filters, they provide an extremely powerful and versatile
tool, opening up a wide range of possibilities: most obviously, already quite simple
hook definitions allow for, e. g., insertion of test code, additional evaluations and
logging of selected quantities as well as the implementation of installation- and
site-specifics, which allows one to deal, e. g., with non fully standards compliant,
inefficient or otherwise deficient Fortran-90 compilers; slightly more advanced def-
initions may result in small-scale program transformations like the introduction
of explicit caching of numerical results or the transformation of loop bodies into
internal subroutines to prompt timely garbage collection should this be necessary.

In addition to the far-reaching code manipulation facilities offered by hooks,
there are numerous parameters, usually endowed with reasonable default values,
that may be used to customize specific aspects of the program; these fall into

3 In this context the ability to maintain test code in the same source file as the implementation
it is to act on proves particularly valuable.
4 Available from http://www.xs4all.nl/"apinkus/yacas.html.
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two groups: the “compile-time parameters” — e. g. the number N.. + 1 of ba-
sis functions wu, in eq. (2.18) or settings that are unlikely to be changed once a
satisfactory value has been found — are specified as m4 definitions and thus have
to be processed during code construction, whereas the “options” — most promi-
nently the temperature, ex, and the potential’s parameters — are read from files
at run-time. — Especially in a setting as variable as the one afforded by the arfg-
approach to our implementation the main parts of which may freely be combined,
anything less but thorough documentation is bound to render any results unus-
able in the long term; consequently, a suitable description of the program including
both compile-time parameters and relevant options is generated automatically and
stored together with the isotherm data produced. In a similar vein, it is important
to assist the user in dealing with this system, in particular as far as selection of
appropriate options and interpretation of error messages is concerned: to this end,
well-documented templates for the options files are produced, and any run-time
error messages include both the Fortran-90 program unit and the arfg source
file where it occurred.

C.2. The basis functions

According to section D.2 there is ample freedom in choosing the basis functions u,,,
n > 1; in particular, there is no use for orthogonality properties per se, and regu-
larity considerations in r space are of only minor interest — they play a role only
for assessing convergence of the expansion (2.15) of C(?)(r, o). All this amounts
to the impression that the original implementation’s choice of affine transforms of
the Legendre polynomials might not be a particularly fortunate one.

As long as we deal with hard-sphere reference systems only, in view of the
considerations of section D.2 it is natural to ask for the set {u1(r),...,un_(r)} to
span the space of polynomials of order up to N..—1 so that u,(r) will generally be
a polynomial or order n — 1 in r; but whereas different sets of polynomials do not
alter the function space, their choice has implications for the numerical properties
of the matrix equations implementing the core condition (cf. sections D.2 and
D.3), as well as, to a certain extent, for the convergence of the lA'—integrals to be
evaluated at Q = Qo (cf. section 4.5).

In our work we considered two different definitions of the u,, n > 1: in the
program’s versions summarized in appendix B as well as in some very early im-
plementations of version 4’s main part ansatz not considered in section 4.5 we
adopted basis functions orthonormalized in ]0, o[ with respect to the weighting
2: according to simple heuristic arguments this enhances the diagonal
elements of the matrices in the truncated eq. (2.18) relative to the off-diagonal

function r

elements which might help in ensuring existence of a solution. Unfortunately,
however, this choice of basis functions turns out to be insufficient to render the
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matrices diagonally dominant due to the (@ (k, ¢) @, (0, ))-term in eq. (2.18); fur-
thermore, the matrices’ entries vary by several orders of magnitude which brings
about additional numerical problems.

Based upon these experiences, in the software of chapter 4 we adopted a differ-
ent and computationally more convenient set of basis functions instead, choosing
un(r, o) simply proportional to 7"~! and normalizing it to @,(0,0) = 1. These
functions are easily evaluated in r space, and the normalization condition renders
evaluation of G(?) (0, 0), a term in the coefficients dy; of eq. (A.5), particularly sim-
ple; also, all the entries of the matrices of eq. (2.18) are usually of the same order
of magnitude, allowing Gaussian elimination with full pivoting to be used without
the need for a re-scaling of the equations. — Dropping the obvious argument p,

with the ansatz
r

Un (1) = un (o) (—)n_l O(c—r),

o
,(0) =1,

(1)

a simple calculation based upon eq. (F.1) and using eq. (2.633.1) of [87] easily
yields® u, (o) = (n +2)/ 47o? as well as the Fourier transform

B n+2 nm -~ n! e g
un(k) = W 7’1,' COSs 7 — par m (O'k) J COS <0’k ‘|‘ ?) )

an expression used for ok > n only for numerical reasons. For smaller k£, we rely
on the expansion

: = (W 2
in(k) = (n+2) Y g ey (R

=0

truncating the series to IV,, terms, where N,, is the smallest number such that

n+ 2 ’I’L2N"+2 - (]
n+ 2N, + 4 (2N, + 3)! = #PN.
with a customization factor p[ﬁ:] of order unity. Of course, analogous results
may be derived for the basis functions’ derivatives with respect to k. Note that
the asymptotic behavior of the @, (k) for large k allows an analytic short-cut in
the f—integrations of eq. (2.18) for certain forms of the Fourier transform of the
perturbational part of the potential for & — oo (g. v. section C.1); e. g. for sws
we can replace the large-k part of such an integration by a single evaluation of the
sine-integral si(k) at finite k only (cf., e. g., eq. (2.642.7) of [87]; for the numerical
evaluation of si(k) by continued fractions cf., e. g., [78]).

5 Note that max,.c[o,o] Un (r) = un(o) x n + 2, which must be taken into account when using

the maximum norm for discussing convergence of the expansion (2.15) for the direct correlation
function.
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D. Mathematical Supplement

In this appendix we spell out in detail some auxiliary calculations that would only
hinder the flow of arguments in the main text, the presence of which nevertheless
seems desirable for completeness’ sake. The sections are given in no particular
order.

D.1. The Q-potential in r-space

Much of the motivation for using the closure (2.15) despite its known and fre-
quently referred-to short-comings is related to the artificial shape, and long-ranged
nature, of the Q-potential defined in eq. (2.4). In order to see how this long-
rangedness arises, for an arbitrary function (r) in real space we ask for the
function ¢(Q)(r) obtained by this cut-off procedure. Taking into account eq. (F.1)
in applying eq. (2.4), we obviously have

@Z(k) = 4% /drrz,b(r) sin kr ,
@ (k) = (k) Ok - Q), (1)
Y@ (r) = . /dkkzZ(Q)(k) sin kr .

0

With Fourier’s theorem and the identity ©(k— Q) = 1—0(Q — k), the last integral

becomes

00 Q
Y@ (r) = 2% /dkkzﬁ(k) sin kr — /dklmz(k) sin kr
wer , .
) Q
=%(r) - 55 /dkkgﬁ(k) sin kr ;
0
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inserting the expression (1) for ¢(k) in the last expression and assuming inter-
changeability of the integrations, we then obtain

Q oo
4
Y@ (r) —p(r) = ~ 55 /dk: /dr' r’ (r') sinkr sin kr’
m
0o 0
2 T i
=—— [dr' " (r") [dk sinkr sinkr’
r
0 0
L 9 2
= dr' v (") [dk (cosk(r’ —r) — cosk(r' + 1))
r

_ 1 ' (') sinQ(r' —r) _ sin Q(r' +r)
mr o r=r  r4r
0

v TV
“peak” “regular”

where we have used the trigonometric relation 2 sina sinb = cos(a—b) —cos(a+Db).
(Eq. (2.6) is obtained by replacing the general function 1 by the perturbation part
w of the potential in the last expression.)

From eq. (2) the limits of eq. (2.3) are apparent: for @ — 0, both sines obviously
vanish, whereas for Q — oo the first of these (labeled “peak”) reproduces the 4-
function necessary for vanishing () while the second one (“regular”) vanishes
again. For an intermediate value of @), however, it should be clear that the peak
of width ~ 1/Q coming from sin(Q (' — 7)) /(' — r) makes ¥(?)(r) a long-ranged
function in r space, rendering Fourier transformations unattractive at least for
very small @), i. e. in that part of the HRT evolution where criticality is recovered;
on the other hand, due to the peak’s height’s proportionality to (), in an approach
relying on boundedness of relative errors by some small constant e we can expect
to be able to restrict calculations in r space to a finite interval even in the limit
Q — 0.

To make this expectation somewhat more explicit, in the following we look at

gb(Q)
R, i. e. for a functlon ¥ (r) that may be neglected for » > R without incurring a

the contribution 2. coming from the “peak” term for a function 4 (r) of range
relative error larger than €4; our aim is to estimate the range R of T/J(Q)(T) SO
that ’l,b(Q)(T‘) must be considered on the grounds of €4 only for r < R(@). To this
end, in the convolution integral eq. (2) we neglect the “regular” term as well as the
contributions coming from the “peak” term outside of the main maximum, and we
make the simple approximation of replacing the main peak of sin(Q (r'—)) /(7' —r)
by a rectangle of equal width and area:

W:Q@ [ p—k (3)
r—r 2 Q
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With this and restricting integration to ¢’s domain, viz. » < R, only, we have

Q T
4= -2 faruey Lo (1w -r- 7)
P ) Q

min(R,r+ &)

:_% / &' v (r')

max(0,r— %)

where the integral is taken to vanish if r— (7/Q) > R; again, for Q — oo we readily
find 7,[J( eax — —f. For very small Q, on the other hand, the integral’s bounds are,
of course, 0 and R; assuming that ¢ does not differ wildly from its mean value for
r € [0, R], neglecting 1(?)(r) is compatible with €4 for r > R where R(?) x Q
is obtained from

(Q —0) (5)

(but note that the neglected terms, the “regular” contribution to ¥(?)(r) in par-
ticular, enforce R(?) > R).

The behavior for intermediate values of ) is, of course, more complicated;
shortly before the integration region of eq. (4) spans the whole of [0, R], how-
ever, we must have r — (7/Q) > 0 and r + (7/Q) > R for r > R(?). Inserting this
into eq. (4), by a reasoning analogous to that leading to eq. (5) we immediately

find
R

Q ro Q 2 (Q) LR A
727TR(Q) dr'r 47TR(Q) Q° — (R — 6) =€y . (6)
R _ =
Q
This is a quadratic equation for R(?) in terms of R and €4; ignoring terms of
order O(,/€x) and depending on the value of @, the R so found lies between
R+ (7/Q) and 7/Q, where the latter applies to very small Q.

With these approximate results for ¢( peak We are now in a position to find an

explicit estimate for the maximum value of R(?) as Q is varied from +oco to 0: the
transition from intermediate @, where eq. (6) applies, to the regime of eq. (5) takes
place when the integration’s lower bound in eq. (4) for evaluating ¥(?)(R(®)) first
becomes 0, and the estimates for R(?) as obtained from eq. (5) or from eq. (6) will
then coincide. We thus have

T Q R?
_47'('6#

max R(@) =
0<Q< o0

Y

Q|
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which is easily evaluated tol

R
max R@) = .
0< Q<00 2\ /€4

(7)
Taking into account that ey is supposed to be a small quantity hardly greater
than 10~ 2 in typical calculations, we thus see that (%) (r) is indeed not only much
longer ranged than ¢ (7) but has to be considered over an 7 range much larger than
the domain of v(r) if numerical errors resulting from the truncation of Fourier
transformations in r space are not to render the results’ accuracy incompatible
with ex.

Thus it seems that an implementation of HRT in a formulation relying on Fourier
transforms to implement the core condition might well be feasible, at least for
modest values of ex; but in such an approach not only the cut off potential w(@
but also more complicated functionals of w(?) must be accomodated, and some
of these are by necessity affected by at least partial cancellation?; this makes
it impossible to determine the domain of integration in Fourier transformations
beforehand in a way analogous to the estimates leading up to eq. (7). If, indeed,
such an approach were to be used in HRT, it is not obvious how one might ensure
local errors to remain bounded by €4 without providing for potentially repeated
adjustment of the parameters of the Fourier transform in accordance with the
results of monitoring the behavior of appropriate functions for large r, thereby
rendering Fast Fourier Transform libraries, and the excellent FFTW code [88] in
particular, largely useless. Furthermore, as the properties of the full potential on
length scales comparable to o must not be lost, the step size Ar remains fixed
throughout the calculation so that a change in the r range considered is invariably
accompanied by a corresponding change in the number of function values in the
calculation, a procedure not necessarily unproblematic; also, the question of an
appropriate choice for the grid for representing ﬁ(Q)(k) in Fourier space has not
been addressed so far.

Thus, while a formulation of HRT with a closure depending on quantities both
in real space and in Fourier space can conceivably be implemented, the long-
rangedness introduced by the cut-off procedure defined in eq. (2.4) certainly ren-
ders the numerics much more involved and opens up a whole new suite of problems
regarding Fourier transformations of cut-off affected quantities; at present, and in
the light of the limitations of HRT in its current formulation as highlighted in
section 2.4 and chapter 5, it is not clear that the improvements from the more
appropriate closure relations then possible can be expected to justify the imple-
mentational effort.

L In eq. (7), the factor 1/2 is, of course, completely insignificant and a mere artifact of the crude
approximation of eq. (3).
2 Consider, e. g., the modified direct correlation function in the critical region.
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D.2. Implementation of the core condition and
thermodynamic consistency by ordinary
differential equations

With the ansatz of eq. (2.15), implementation of both the core condition (2.14)
and thermodynamic consistency as embodied in the compressibility sum-rule (2.13)

(@ , n > 0; as was first

reduces to the correct choice of the expansion coefficients ~y,
shown in [6], for the LoGA /ORPA-like closure this can be achleved without relying
on costly and precarious Fourier transformations (cf. section D.1). In this section
we present an analogous scheme, closely following but somewhat extending the
calculations first reported in [6] and later generalized to non-hard sphere reference
systems [2, 29]; just as [6] we start by assuming that both conditions, viz. egs. (2.14)
and (2.13), already hold for the reference system; furthermore, in the following we
take convergence of sums and integrals as granted so that we may freely change the
order of these operations as well as of any derivatives; infinite sums are interpreted
in the obvious way; and the space spanned by the basis functions u, (7, ), [{un}| =
Np, is required to be sufficiently general (v. i.); note that the general result is not

compatible with only a finite number N.. of these basis functions.

As the core condition must be met for Q@ = co (or, numerically, for @ = Q),
this will also be the case if, and only if, the pair distribution function’s derivative
with respect to @ also vanishes for all » € [0, 0(p)[; with the 0Z relation (2.8) in the
form h(@®) = —(1/0) — (1/0? (Q)) and swapping the integration from the inverse

Fourier transform and the differentiation with respect to @ this readily yields

(@) T
3g (r,0) i/dk k sin kr
0

aQ aQ (Q) k Q)
- - 0 (@ -t :
= dkksmkr%< (k, Q)) , r<o(o);
0

as the above involves the derivative of a term affected by the discontinuity of
) (cf. the definition (2.11) of C(Q)), we have to distinguish two parts of the

integration domain:

4

{5(Q)(k, 0) —d(k,0) k< Q
k,Q):

C(k,0): k>Q,
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so that
9 (@ -1_ e(Q — k) Ok —Q) \ C(k,o)
ag( o) = ((5<Q><k, 0 dke) @k g))2> 9Q
$(Q, 0) -
" C@(Q,0) (COQ,0) — 3(Q,0)) k- Q)
_ 1 9C () (k, o)
(k) 0@
N $(Q,0) 5k — Q).

¢Q(Q,0) (C(Q,0) — $(Q,0))

From eq. (2.15), however, the Q-derivative of €@ is easily evaluated to

8C~(Q)(k,g) _ iﬁn(k,g) 8,),(Q)( )

aQ — aQ ) r < O(Q) b
and combining all these expressions and interchanging integration and summation
we obtain
9 (Q) iy ki, (k
78 ()/dk: ~(c§)( ’g)2sinkr
n=0 Q (02 (k, 9))

- Qd(Qo)
CQ(Q,0) (C(Q,0) — ¢(Q,0))

sin Qr, r < o(p).

In this equation, the free variable r appears as sin Qr on the right hand side but
under the integral, as sin kr, on the left hand side; in order to extract the ODEs

(Q)( )
J > 1, and integrate over 0 < r < o(p); by once more changing the order of the

for the expansion coeflicients +. , we now multiply both sides by3 47 ru;(r),

integrations and taking into account eq. (F.2) we immediately recover the Fourier
transform of u;:

(Q) k? @ Uj 7 Q Up, (ka Q)
dk (Q)
(&9 (k, 0))?

L @*3(Q.0)%(Q0) is1
C@(Q,0) (CQ(Q,0) - 4(Q,0) 7

3 Note that, in the limit of short potential range, i. e. for the potential v“°*®(r) considered in
sub-section 5.2.1, with the usual choice of ug o w the following considerations are valid also
for 5 = 0.
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Thus we arrive at the result that the core condition is completely equivalent to
the combination of

g (r, 0) = 0 for r < (o) and

(@)1 _ 97\% (o)
T@) 7 (k (K Zm A&
nz:% [4;(k, 0) in (K, 0), o] 80 (8)
_ @ $(Q,0) #(Q 0) P> 1
2m? C(@)(Q,0) (CV(Q, 0) — 6(Q, 0)) B
the symbol 7 so introduced — a convenient notation we will heavily rely on in

section D.3 — we define as

272 ) (&2 (k, 0))*

j(Q) [w(ka Q)a Q] = (9)

where 1¢(k, 0) is an arbitrary spherically symmetric function (extension to non-

rotationally invariant ¢(E, o) is straightforward [26, 27] but will not be considered
here; note the discontinuity at &k = @ in the 7 (@)_integrand due to the presence of
EgQ) rather than the continuous C(?), v. i. section D.3).

So far we have only made use of the core condition, and only r values inside
the core have entered the derivation of eq. (8); however, under the assumptions
stated at the beginning of this section ug(r, o) has an expansion inside the core in
terms of the u;(r, 0), j > 1, and the generalized matrix equation just derived (or
its truncation to N + 1 basis functions) cannot be invertible. On the other hand,

the one additional real parameter can easily be fixed by imposing an additional

constraint on the expansion coeflicients 'y,gQ)(g), n > 0; for the HRT-PDE with
the closure (2.15) it is, of course, the compressibility sum-rule (2.13) itself that

provides the information necessary to uniquely determine all the 7,(1Q)(g), n > 0,
provided the w,(r), n > 1, are linearly independent in ]0,0(p)[; inserting the
definition (2.11) into eq. (2.13) we find

5 ~re 7 — ~ 82A(Q) o

L(Q) (0’ Q) =Cy f(07 Q) + ¢(07 Q) + Z ’71(1Q) (Q) Un (07 Q) = _72() )
n=0 89
and again assuming that this already holds for the reference system it is sufficient to
consider the above relation’s derivative with respect to (. Thus the compressibility

sum-rule (2.13) turns out completely equivalent to

B aZAref(Q)

éref(o, Q) = 8792 and

- (10)
0% (0 _ _ (@) 02 (o)
W__a (Q)_Zwun(ovg)a
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where we have made use of the normalization (2.16) and the symbol a(?)(p) of

eq. (2.17). — Eq. (10) now allows us to eliminate ’y(gQ)(g) from the core condition

(8), which directly leads to eq. (2.18), while the initial condition (2.19) merely
expresses the equivalence of the reference system with the system at infinite cut-
(o0
2

: ref
off, 1. e. c ot

By following the derivation of egs. (8), (10) and (2.18), we also find what prop-
erties the set of basis functions must have in addition to the u;(r, ¢) vanishing

),

for » > o(p) and j > 1; these requirements turn out to be remarkably moderate:
indeed, for the combination of egs. (8) and (10) to uniquely determine all the ex-
pansion coefficients it is sufficient that the u;(r, 0), j > 1, be linearly independent
on ]0,0(p)[; neither normalization nor orthogonality are required, and the latter
concept is not even defined so far as we have not cared to introduce an inner
product in the function space at hand. On the other hand we need a metric if
we want to speak of convergence of the expansion (2.15) for C(?)(r, ), and for its
validity the space spanned by the u;(r, ), j > 1, must lie dense in some appro-
priate Banach space over |0,0(p)[, a natural choice being Ly(]0,0(p)]). It is thus
sufficient to let u;(r, ), j > 1, be a polynomial of degree j — 1 within the core; the
remaining considerable amount of freedom can still be used to optimize the basis
functions’ numerical properties, cf. section C.2.

Another point worth making concerns the way a description of the reference
system that is not thermodynamically self-consistent may be used in HRT: While
approximations like, e. g., the Percus-Yevick one do yield vanishing g(Q)(r, o) for
r < o(p) as called for by eq. (8), they fail to also meet the requirements of eq. (10);
on the other hand, as the derivation of the matrix equation (2.18) detailed in this
section hinges on the compressibility sum-rule’s validity for the reference system
we immediately conclude that the free energy for infinite cut-off @ (or at finite
Q = Qw, for that matter, taking into account the zero-loop terms of eq. (2.11))
should be obtained by the compressibility route so that the pre-condition of eq. (10)
holds again.

D.3. Approximation for ()-dependence of core-condition

integrals

Considering the ideal-gas term —1/p in 5gQ) and large k only it is evident that the

oscillatory nature of the basis functions’ Fourier transforms u, will immediately
carry over to the integrands of the Z(?)-terms in egs. (2.18) and (8), rendering
these integrations slowly convergent and certainly no less problematic than the
Fourier transformations they allow to avoid. In this section we want to discuss
an approximation that makes an implementation along the lines of section D.2
feasible by bringing the number of f(Q)—integrations necessary down to only one
per density; that even the remaining initial integration still takes up a considerable
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fraction of the program’s execution time in a typical application of the implemen-
tation sketched in chapter 4 (unless an analytical short-cut is taken, v. 7., ¢. v.
section C.2) dramatically underlines the practical importance of adopting such an
approximation.

This approximation is simple enough: rather than re-evaluating the 7(@)_inte-
grals for every @, it is sufficient to calculate only the derivative with respect to
Q) and integrate the resulting ODEs alongside the HRT-PDE; assuming interchange-
ability of differentiation and integration and taking into account the integrand’s

~(Q)

discontinuity at k& = ) due to the appearance of ¢,*’ instead of the continuous

C(@Q) from eq. (9) we easily find

T @[y (k, ), o]
0Q

a0 (o o6-0)
2% 9Q \ (C@)(k, )_¢3(k,g))2 (é(Q)(k,Q))2

0

/dk k2 (K, 0) ( —20(Q — k) —2 ®(k—Q)> 0C Dk, o)
- = + —
212\ (CD(k,0) - d(k,0))°  (CD(k,0)°)  9Q

0

k? (K, o) 1 _ 1 -
+0/dk = ((é(@)(k,g)—é(l@,g))z (é(Q>(k,g))2> 5(k — Q)

— _9 ZI(Q) aQ un(kag)’ ] 8'77(1Q)(Q)
éQ)(k, 0) 9Q

@ 209000 - (5@0)
2 (¢@re, 9))2 (€9(Q,0) - (0, 9))2

+ 9(Q)

where 1 (k, o) once more plays the réle of an arbitrary spherically symmetric func-
tion and we have used eq. (2.11) to evaluate the Q-derivative of C(?) in the last
step. Of these terms, the one stemming from the change in the discontinuity’s
location, dubbed the ‘local’ contribution in [6], is easily evaluated at any Q as it
involves functions evaluated at £k = @ only; by way of contrast, the ‘non-local’
term related to the expansion coefficients’ change again involves an integral of the
same type as before. Note that the latter will, in fact, converge somewhat more
readily than 7(?) [1, o] itself due to the large-k behavior of the factor @, (k, o) in the
integrand; still, its evaluation will just the same be plagued by near-cancellation
of the integrand’s oscillations’ contributions, and performing the integrations at
every () would incur prohibitive computational cost. — Even though it is far from
clear that the 7(?)-term’s magnitude is small when compared to that of the local
term, it is convenient to adopt the strategy first introduced in [6] and seemingly
unvaryingly used ever since when implementing the core condition and thermody-
namic consistency along the lines of section D.2, i. e., to simply drop the non-local
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term with its numerically expensive and cumbersome integrations, leading to the
approximation

0 209(Q.0 Q0 - (4(Q0)) 2

on2 /- 2 /. - 2"
(€9(@,0)" (C9(Q0) - 3(Qs0))
(11)
Of course, eq. (11) is not well justified a priori; as pointed out in [6], it is
only by checking that the resulting pair distribution function g(Q)(r, 0) remains
small within the core — which is feasible only in the limits of eq. (2.3) due to the
long-rangedness of the ¢(?)(r, o) for intermediate Q (cf. section D.1) — and by
independently verifying thermodynamic consistency that the above approximation
may be found admissible (g. v. section 5.2).

0 -
@I(Q)W(k, 0), 0] = ¥(Q, 0)

In the above calculation we have used an arbitrary function (k, ) for 7(Q)
to operate on, whereas only certain combinations of the basis functions’ Fourier
transforms are considered in egs. (2.18) and (8); it is well conceivable that these
integrals may be amenable to an analytical short-cut so that the numerical inte-
gration has to be extended over only a small k-range. E. g., for the basis functions
of section C.2 this is the case whenever the leading term in w(k, ) (and thus,
of basis function g (k, 0)) is of the form sin(ak + b)/k?; replacing EgQ)(k, o) by
—1/p and considering leading terms only, for large k& the integral can formally
solved and evaluated numerically by the use of a continued-fractions series for the
sine integral function. Still, such an approach obviously depends on the potential
chosen (which has certain implications for the implementation of chapter 4, cf.
section C.1), and even where the analytical short-cut is available, its applicability
only for large k renders this mode of evaluation still too costly to repeat at every
step in @ and p.

Also we should point out that, with the usual choice of Q., ~ 10?/0, extending
the initial integration only up to k& = Q) is completely unsatisfactory and can-
not be expected to lead to an acceptable implementation of core condition and
thermodynamic consistency.
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E. Tables

On the pages to follow we collect some of the numerical results we obtained in

tabular form.

E.1. Critical temperature and density for square wells

of variable range with 7 4+ 1 basis functions

In this section we present the critical temperature T, and critical density o. of
square well systems for various values of A as predicted by HRT with N.. = 7
(other parameters as in section 4.8). These are the data underlying fig. 5.4, cf. the

discussion in section 5.6.

A kpT./e€ 0c 03
1.06 | 1.247607(49) | 0.415(25)
1.065 | 1.116157(22) | 0.430(20)
1.07 | 0.983168(38) | 0.445(25)
1.09 | 1.304243(35) | 0.450(30)
1.1 1.1359488(47) | 0.460(20)
111 | 1.0342880(46) | 0.450(20)
113 | 1.0969009(50) | 0.470(10)
114 | 0.9328253(47) | 0.480(20)
115 | 1.239469(31) | 0.430(20)
116 | 1.1441553(49) | 0.420(10)
117 | 1.095618(37) | 0.455(15)
118 | 0.971344(31) | 0.460(20)
119 | 1.058746(31) | 0.420(20)
1.2 0.9638977(44) | 0.415(15)
121 | 0.959198(31) | 0.460(20)
122 | 0.8355684(43) | 0.490(10)
1.24 | 1.003369(49) | 0.415(15)
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Tables E.1 Square wells with variable A and Nee = 7

A kpT./e€ 0c 03
145 | 0.938257(24) | 0.300(10)
1.455 | 0.935561(50) | 0.295(15)
146 | 0.932264(29) | 0.295(15)
1.465 | 0.9280290(47) | 0.300(10)
148 | 0.985574(46) | 0.280(10)
1.485 | 0.99222(25) 0.280(20)
149 | 0.999573(37) | 0.275(15)
1.495 | 1.007487(46) | 0.275(15)
1.5 1.015479(49) | 0.275(15)
1.505 | 1.023449(50) | 0.275(15)
151 | 0.920114(37) | 0.275(15)
1.515 | 0.933961(50) | 0.270(10)
152 | 0.939642(25) | 0.270(10)
1.525 | 0.94567(25) 0.270(20)
153 | 0.952011(31) | 0.265(15)
1.535 | 0.960687(50) | 0.265(15)
1.91 | 0.421395(11) | 0.270(10)
1.92 | 0.410502(11) | 0.270(10)
1.939 | 0.399557(11) | 0.270(10)
194 | 0.398622(11) | 0.270(10)
1.941 | 0.397687(11) | 0.270(10)
1.942 | 0.396741(11) | 0.270(10)
1.943 | 0.395785(11) | 0.270(10)
1.945 | 0.393867(11) | 0.270(10)
1.946 | 0.392913(11) | 0.275(15)
1.947 | 0.391033(11) | 0.270(10)
1.948 | 0.390958(11) | 0.275(15)
1.949 | 0.389981(11) | 0.275(15)
1.95 | 0.388988(11) | 0.275(15)
1.951 | 0.387993(11) | 0.275(15)
1.952 | 0.386980(11) | 0.275(15)
1.953 | 0.385967(11) | 0.275(15)
1.954 | 0.384935(11) | 0.275(15)
1.955 | 0.383903(10) | 0.280(10)
1.956 | 0.382871(10) | 0.280(10)
1.958 | 0.380773(10) | 0.280(10)
1.959 | 0.379705(12) | 0.280(10)
1.96 | 0.378640(10) | 0.280(10)
1.97 | 0.381476(10) | 0.275(15)
1.975 | 0.385001(10) | 0.270(10)
198 | 0.380143(10) | 0.270(10)
1.985 | 0.359343(10) | 0.280(10)
1.99 | 0.3541496(99) | 0.285(15) | (contd.)
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Tables E.1 Square wells with variable A and Nee = 7

A kpT./e€ 0c 03
1.995 | 0.3487383(98) | 0.285(15)
2.0 0.3430749(97) | 0.290(10)
2.005 | 0.3417560(97) | 0.200(10)
2.01 | 0.3353786(96) | 0.295(15)
2.015 | 0.3530471(95) | 0.275(15)
2.02 | 0.3489358(94) | 0.280(10)
2.025 | 0.3447285(94) | 0.280(10)
2.03 | 0.3337710(93) | 0.285(15)
2.035 | 0.3347087(92) | 0.280(10)
2.04 | 0.3208508(91) | 0.285(15)
2.05 | 0.3321901(90) | 0.275(15)
2.06 | 0.3236569(89) | 0.285(15)
2.07 | 0.3054373(87) | 0.295(15)
2.08 | 0.2949694(86) | 0.315(15)
2.09 | 0.3121407(85) | 0.280(10)
2.1 0.3047839(83) | 0.285(15)
212 | 0.2971047(81) | 0.285(15)
2.14 | 0.2820428(78) | 0.295(15)
2.16 | 0.2801630(76) | 0.280(10)
218 | 0.269303(13) | 0.290(10)
2.2 0.2634137(79) | 0.285(15)
2.21 | 0.2584991(92) | 0.290(10)
2.22 | 0.2473085(70) | 0.300(10)
2.23 | 0.2566864(92) | 0.275(15)
2.24 | 0.2524211(95) | 0.280(10)
2.25 | 0.2448761(92) | 0.285(15)
2.26 | 0.240805(10) | 0.285(15)
2.28 | 0.2325036(64) | 0.285(15)
2.3 0.2334408(62) | 0.275(15)
232 | 0.2234691(60) | 0.275(15)
233 | 0.2234528(92) | 0.275(15)
234 | 0.2173783(59) | 0.275(15)
236 | 0.2112648(57) | 0.275(15)
238 | 0.2075895(56) | 0.270(10)
2.4 0.2017438(54) | 0.270(10)
2.42 | 0.1974284(53) | 0.270(10)
2.44 | 0.1908109(52) | 0.275(15)
2.46 | 0.1871306(50) | 0.270(10)
248 | 0.1784964(49) | 0.275(15)
2.5 0.1780193(48) | 0.270(10)
252 | 0.1705328(47) | 0.270(10)
254 | 0.1647649(45) | 0.275(15)
2.55 | 0.1635040(55) | 0.275(15) | (contd.)
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Tables E.1 Square wells with variable A and Nee = 7

A kpT./e€ 0c 03
2.56 | 0.1610674(44) | 0.275(15)
257 | 0.1587360(55) | 0.270(10)
258 | 0.1564089(43) | 0.275(15)
2.59 | 0.1559131(49) | 0.270(10)
2.6 0.1537577(42) | 0.270(10)
2.62 | 0.1499922(41) | 0.270(10)
2.64 | 0.1460387(40) | 0.270(10)
2.66 | 0.1401607(39) | 0.275(15)
2.68 | 0.1402388(38) | 0.270(10)
2.7 0.1349930(38) | 0.270(10)
272 | 0.1345349(37) | 0.270(10)
274 | 0.1202534(36) | 0.270(10)
2.75 | 0.1276306(61) | 0.270(10)
2.76 | 0.1278133(35) | 0.270(10)
278 | 0.1252788(34) | 0.270(10)
2.8 0.1224374(34) | 0.265(15)
2.82 | 0.1190511(33) | 0.270(10)
2.84 | 0.1171284(32) | 0.265(15)
2.86 | 0.1152180(31) | 0.265(15)
2.88 | 0.1123890(31) | 0.265(15)
2.9 0.1111786(30) | 0.260(10)
2.92 | 0.1087431(30) | 0.260(10)
2.04 | 0.1067793(29) | 0.260(10)
2.96 | 0.1051046(28) | 0.260(10)
2.08 | 0.1029332(28) | 0.260(10)
3.0 0.1013445(27) | 0.260(10)
3.025 0.0989655(31) 0.260(10)
3.05 | 0.0067575(46) | 0.260(10)
3.075 | 0.0046991(31) | 0.260(10)
3.1 0.0934158(46) | 0.255(15)
3.125 | 0.0908478(31) | 0.255(15)
3.15 | 0.0879250(23) | 0.260(10)
3.175 | 0.0869965(31) | 0.255(15)
3.2 0.0848534(23) | 0.250(10)
3.225 | 0.0823944(31) | 0.255(15)
3.25 | 0.0810376(24) | 0.255(15)
3.275 | 0.0784332(31) | 0.255(15)
3.3 0.0764185(24) | 0.255(15)
3.325 0.0748260(31) 0.255(15)
3.35 | 0.0735220(24) | 0.250(10)
3.375 | 0.0710968(31) | 0.260(10)
3.4 0.0697437(24) | 0.260(10)
3.425 | 0.0680145(31) | 0.255(15) | (contd.)
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Tables E.2 Square wells with variable A and N¢ec = 5

A kpT./e 0c 03
3.45 | 0.0662378(24) (10)
3.46 | 0.0656219(31) (15)
3.47 | 0.0650055(31) (15)
3.48 | 0.0643829(31) (15)
3.49 | 0.0638092(31) (15)
35 | 0.0631128(24) (10)
351 | 0.0625702(31) | 0.260(10)

(31) (10)
(31) (10)
(15) (10)
(24) (10)
(15) (10)
(15) (10)
(15) (10)

1
1
1
1

3.52 0.0619354(31
3.53 0.0613312(31
3.54 0.0607468(15
3.55 0.0601831(24
3.56 0.0595261
3.58 0.0586105

5
5
3.6 0.0572647(15

E.2. Critical temperature and density for square wells
of variable range with 5+ 1 basis functions

We here list the results on the critical temperature’s A-dependence in sws as ob-
tained with N.. = 5 (other parameters as in section 4.8) as well as estimates of the
reciprocal of Bmax,#, the lowest temperature where the program terminates nor-
mally, where available. The reader will notice not only that a larger fraction of the
parameter range 1 < A < 2 is accessible to HRT than for N.. = 7 (cf. section E.1)
but also that the fluctuations in the critical temperatures are considerably higher.
In the light of section 5.6 the behavior of Bmax,# around A ~ 1.7 is of particular
interest, and the small-\ data, showing dramatically falling Bmax,# for A — 1+,
provides some support for the considerations of sub-section 5.2.1.

) kpTe/e 1/ Brmax, # €
1.01 — 3.414(45)
1.02 — 1.574(54)
1.03 — 0.9884(38)
1.04 — 0.861(16)
1.05 — 0.7232(41)
1.06 — 0.6739(41)
1.07 — 0.6432(32)
1.08 — 0.563088(16)
1.09 | 0.5303591(17) | 0.5255(39) (contd.)
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Tables E.2 Square wells with variable A and N¢ec = 5

A kpT./e€ 1/Bmax,# €
1.095 | 0.56064(15) —
1.1 0.592238(18) -
1105 | 0.62573(19) -
1.11 0.663002(88) | 0.47(16)
1.12 0.75075(23) | 0.379(56)
1.1225 0.581899(81) —
1125 | 0.592354(63) —
1.13 0.613467(68) —
1.135 | 0.635316(81) | 0.598(27)
1.14 0.658241(74) —
1.15 0.708210(80) —
1.16 0.76849(37) | 0.590(35)
1.18 0.784135(61) | 0.57(15)
1185 | 0.81496(33) —
1.19 0.84992(10) | 0.650(59)
1.195 | 0.887887(77) | 0.690(24)
1.2 0.93015(11) —

1.205 0.977566(94) | 0.750(83)
1.2075 | 0.78558(30) —

1.21 0.795868(82) —
1.22 0.838574(84) | 0.583(83)
1.23 0.886407(94) —
1.24 0.943005(98) —
1.26 0.95179(10) —
1.27 1.01017(10) —
1.28 1.07919(10) —
1.29 1.16129(13) —
1.2925 | 1.18416(34) —
1.295 0.965582(91) | 0.741(92)
1.3 0.984485(87) —
1.32 1.07380(10) —
1.34 1.07236(11) 0.87(13)
1.36 1.17318(10) —
1.38 1.087623(85) —
1.4 1.15735(11) —
1.41 1.19872(34) —
1.42 1.24397(10) —
1.43 1.19174(34) —
1.44 1.228172(92) —
1.45 1.26693(39) —
1.46 1.305492(99) —
1.47 1.20562(33) —

1.48 1.23139(17) — (contd.)
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Tables

E.2 Square wells with variable A and N¢ec = 5

A kg T./€ 1/Bmax,# €
149 | 1.25888(35) —
1.5 1.28732(17) -
152 | 1.29559(17) -
1.54 | 1.33876(18) —
1.55 | 1.35624(35) —
1.56 | 1.33770(16)

157 | 13550117) | 1.008(91)
1.575 | 1.36448(17) | 1.019(93)
1.576 | 1.36599(17) | 1.181(69)
1.578 | 1.36902(17) | 1.181(69)
158 | 137218(17) | L181(69)
1.59 1.3832(96)
1.6 — 1.468364(65)
1.608 — 1.49403(74)
1.616 - 1.8071(10)
1.625 - 1.9392(94)
1.65 — 2.289(13)
1.675 — 2.494(14)
1.7 - 2.7686(11)
1.725 — 2.891(17)
1.75 — 2.972(17)
1.775 — 2.793(15)
1.8 — 2.7153(16)
1.82 - 2.786(17)
1.84 - 2.588(11)
1.86 — 2.401(13)
1.88 — 2.2920(68)
1.89 - 2.174(14)
1.895 2.088(13)
1896 | 2.13667(21) | 1.94(19)
1.807 | 2.13847(21) | 1.94(19)
1.808 | 2.14029(21) | 1.94(19)
1.9 2.14415(11) | 1.94(19)
1.92 | 2.18060(86) | 1.59(22)
1.94 | 2.27428(88) | 1.68(25)
1.96 | 2.31621(86) —
1.97 | 2.33803(87) -
1.98 | 2.36061(89) -
1.99 | 2.4996(10) —
2.0 2.52733(25) —
2.02 | 2.5860(10) -
2.04 | 2.7041(11) -
206 | 2.7748(11) —
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Tables

E.2 Square wells with variable A and N¢ec = 5

A kB Tc/e 1//6max,# €
2.08 | 2.9519(12) —
2.1 | 3.03503(30) —
2.2 | 3.6959(31) —
2.3 4.41721(49) —
2.4 | 5.22450(57) —
25 | 5.887(21) —
2.6 | 6.66916(76) —
2.7 | 7.44070(83) —
2.8 8.18652(87) —
2.9 8.92347(96) —
2.94 | 9.2563(39) —
2.96 | 9.4069(40) —
2.98 | 9.5890(40) —
3.0 | 9.7371(10) —
3.02 | 9.9620(42) —
3.04 | 10.1193(43) —
3.06 | 10.3178(44) —
3.1 10.6301(11) —
3.2 11.7840(12) —
3.3 12.9604(14) —
3.4 14.2922(15) —
3.5 15.8032(17) —
3.6 17.4047(19) —
3.7 | 19.1095(21) —
3.8 | 20.7190(22) —
3.9 22.4488(25) —
40 | 24.1788(26) —
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F. Notation, Conventions, and Abbreviations

In this appendix we summarize the mathematical, notational and presentational
conventions used throughout this text, complete with pointers to the symbols’
definitions and short descriptions, as well as some of the abbreviations used.

Much of the presentation below is in tabular form but interspersed in the text;
in these lists, the first column gives the quantity to be defined, the second col-
umn (which may be missing) references the equation introducing it, and the third
provides a short description of the quantity under consideration.

F.1. Notation

F.1.1. Modifiers for symbols

In view of the pivotal réole a hierarchy of physical systems plays for the develop-
ment of HRT it is natural to modify a given symbol’s meaning by various super-
and subscripts indicating the system or the thermodynamic state it refers to; in
particular, for any quantity x, the following quantities are defined:

Ty quantity x in the context of numerical evaluation

x three-dimensional Fourier transform of x

T x at the system’s critical point

Ty x at the binodal’s vapor branch

x; x at the binodal’s liquid branch

xY x for the system indicated by y; in particular, as special
cases we have:

z(Q) x for the system with cut-off @

x" x for the system with potential v

Consequently, 2*? and (@) are equivalent. — Among the labels that can take

the place of y in the above list, the following are used frequently:
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Notation, Conventions, and Abbreviations F.1 Notation

ref (2.1) reference system

hs (2.1) hard sphere system

core (3.5) system where w vanishes for r > o

SW (3.1) square well system

st (3.4) general multi-step system

st/ (3.3) general multi-step system (different parametrization than
for “st”)

hcy (3.2) hard-core Yukawa system

Note that the parameters these potentials depend on may be added in brackets;
for the parameters appropriate for some of the potentials listed above, see the
respective defining equations.

F.1.2. Symbols

The following sub-sections list those of the symbols used in the text the definition
or meaning of which might not be self-evident, even though their use is standard
practice for the most part; we do, however, leave out some symbols that are used
only in a short passage and should thus easily be identified from context. Note
that these symbols may still be modified according to sub-section F.1.1 where this
makes sense, and that different entities of the same kind may be distinguished by
indices.

F.1.2.1. Greek symbols

« (2.17) auxiliary quantity, related to third-order partial derivative
of A; table 2.1 only: critical exponent.

I6] 1/kp T table 2.1 only: critical exponent.

Bmax maximum 3 amenable to HRT

Bmax,# maximum [ accessible to the implementation of chapter 4

~y table 2.1 only: critical exponent

Yn (2.15) expansion coeflicients in closure

AQ step size in Q

Ap step size in p

AQ| limit of the pre-determined step sizes for infinite cut-off

in the implementation of main part solver discussed in
sub-section 4.6.2

) Dirac generalized function; parameter of potential vSt’;
table 2.1 only: critical exponent.

Yo sub-section 2.4.1 only: a hypothetical small error intro-
duced in g
€ energy-like potential parameter
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Notation, Conventions, and Abbreviations F.1 Notation

€4

€ (A.3)
g (A.3)
n

C)

KT (A4)
A

e

o (2.1)
6 (2.5)
Y

pivotal parameter governing the numerics, characteristic
of maximum relative error admissible in any step
auxiliary quantity

e—1

table 2.1 only: critical exponent.

Heaviside function

isothermal compressibility

dimensionless potential parameter indicative of the range
in r-space of some component of the potential

table 2.1 only: critical exponent.
particle number density
hard-core diameter

—Bw

an arbitrary function

F.1.2.2. Hebrew symbols

No
Ny

cardinality of Z
cardinality of R

F.1.2.3. Latin symbols

A
A (2.10)
C (2.11)
Cn

do (2.25)
do; (A.5)
f (A.1)
g

h

1 (D.9)
k

kg

Nec

NQ

free energy

modified free energy

modified c,

n-particle direct correlation function

sub-section 2.3.2 only: auxiliary function related to the
total derivative of f(Q, o) with respect to Q, of order O(1)

for large ¢(Q, o).
coefficients of the PDE in the form (2.23)

auxiliary function for re-writing the HRT-PDE in a form
superficially resembling a quasi-linear one

pair distribution function

total correlation function

short-hand notation for certain integrals in Fourier space
with discontinuous integrand

wavenumber

Boltzmann’s constant

number of basis functions vanishing outside the core

the number of g-intervals in the density grid, which is one
less than the number of p values considered
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Notation, Conventions, and Abbreviations F.2 Mathematical conventions

o(--+) terms of the order indicated

Dy customization parameters of the numerical procedure for
controlling some quantity = via some criterion identified
by the label y

cut-off wavenumber

smallest ) considered numerically

o

8

largest @@ considered numerically
distance
the set of reals
thermodynamic temperature
(C.1) basis functions in the expansion (2.15) for C.
interparticle potential
(2.2) perturbational part of potential v(?)

B E S8 T ITOLOD0

section 4.6 only: a quantity monitored for choosing and
assessing step sizes AQ

section 4.6 only: a quantity monitored for assessing con-
vergence of corrector steps and indirectly affecting step
sizes AQ

z the set of integers

N

z inverse screening length of Yukawa potential; section 2.1
only: fugacity

F.1.2.4. Miscellaneous

axb proportionality of a and b

a=—=b replacement of a by b

[a, b] closed interval extending from a to b
la, b] open interval extending from a to b
2]l (4.2) Loo-norm of z on |Q, oo|

As far as the notation for intervals is concerned, there are, of course, also the
mixed cases not mentioned in the above list.

F.2. Mathematical conventions

One important convention regards the choice of constants in Fourier transforma-
tions; restricting ourselves to the spherically symmetric case in three dimensions,
for any function ¢ (r) we define the Fourier transform (k) as

B(k) = 4% /0 () sin(kr) v dr (1)

117



Notation, Conventions, and Abbreviations

F.3 Abbreviations

thus, the inverse transform is

Y(r) = ! /Ooo¢(k) sin(kr) k dk.

22y

F.3. Abbreviations

In the text we make use of a number of abbreviations, some of which are specific
to this work while others are generally accepted in English prose or for the field
of liquid theory but may be unfamiliar to some readers.

APT2
CAS
cf.

e. g.
et al.
EOS
FD
FDE
FSS
GCMC
GEMC
GMSA
GH
HCY
HRT
HSVDW
1. €.
LOGA
MC
MD
MHNC
ODE
ORPA
(004
OZ
PDE
PY

q- v.
SCOZA

second-order perturbation theory
Computer algebra system

confer, compare

ezempli gratia, for example

et alit, and others; et alibi, and elsewhere
equation of state

finite difference

FD equation

finite size scaling

grand-canonical MC

Gibbs-ensemble MC

generalized mean spherical approximation
Grundke-Henderson

hard-core Yukawa

Hierarchical Reference Theory
hard-sphere van-der-Waals

1d est, that is

Lowest-Order y-Ordered Approximation
Monte Carlo

molecular dynamics

modified hypernetted chain

ordinary differential equation

Optimized Random-Phase Approximation
Okumura-Yonezawa

Ornstein-Zernike

partial differential equation
Percus-Yevick

quod vide, which see

Self-consistent Ornstein-Zernike approximation
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Notation, Conventions, and Abbreviations F.J Presentation

SW square well

TDSMC thermodynamic- or temperature-and-density scaling MC
URL uniform resource locator

v. 1. vide infra, see below

viz. videlicet, that is to say, namely

v. 8. vide supra, see above

vS. versus, against, compared to

YY Yang-Yang

Note that the plural of an abbreviation is consistently formed by appending -s.

F.4. Presentation

Equations, tables, and figures are numbered on a per-chapter basis, and references
to them are displayed in the form (c.n), where c references the chapter and n is
the number within the current chapter; for references within the same chapter,
only the number n is shown. The same applies, with the obvious modifications,
to appendices, where ¢ now is an uppercase letter.

References to the literature are indicated as (lists of) numbers in brackets, re-
ferring to the bibliography (appendix G). Note that, as much of the work reported
here is in the process of also being published as [26, 27|, we generally do not include
references to those.

Mono-spaced font is generally used for the main parts of our software (cf. chap-
ter 4), for the names of programming languages and computer software, and in
representing the dialog with the Mathematica CAS in appendix A.
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