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Kurzfassung

Die Weiche Materie hat sich in den letzten Jahrzehnten zu einem überaus aktiven

Forschungsfeld entwickelt, das durch einen hohen Grad an Interdisziplinarität gekennze-

ichnet ist: Physiker, Chemiker, Werkstoffkundler, Biologen und Mediziner arbeiten auf

diesem Gebiet eng zusammen. Im Gegensatz zu Systemen der harten kondensierten Ma-

terie, deren physikalische Eigenschaften ausschließlich durch die Elektronenstruktur der

atomaren Bestandteile gegeben sind, werden die Eigenschaften der Weichen Materie von

einer Vielzahl von Faktoren beeinflusst, die durch sehr unterschiedliche Längen- und Zeit-

skalen charakterisiert sind: Dazu zählen etwa das mikroskopische Lösungsmittel (mit seinen

physikalisch/chemischen Eigenschaften) oder die darin gelösten mesoskopischen Teilchen,

deren innere Struktur im Rahmen geeigneter Syntheseprozesse gezielt beeinflusst werden

kann. Während die Gleichgewichtseigenschaften vieler Systeme der weichen Materie mit-

tlerweile sehr intensiv und ausführlich erforscht worden sind, so ist nur sehr wenig über

ihr Verhalten außerhalb des Gleichgewichts bekannt. Ziel dieser Arbeit ist es, mit Hilfe

von Computersimulationen die Nichtgleichgewichtseigenschaften einiger dieser komplexer

Systeme – teilweise unter dem Einfluss äußerer Begrenzungen – zu untersuchen und somit

zu einem tieferen Verständnis dieser Eigenschaften beizutragen. Die im Rahmen dieser

Arbeit behandelten Problemstellungen reichen von stark verdünnten Systemen mit rigiden

und flexiblen Tracer-Partikeln unter Einschluss in Kavitäten bis hin zu dichten Cluster-

Kristallen unter dem Einfluss des strömenden Lösungsmittels. Im Rahmen unserer Ar-

beiten haben wir eine Vielzahl neuartiger und überraschender Eigenschaften entdeckt, wie

zum Beispiel stark verlangsamte Diffusionsprozesse und Scherverzähung, und erwarten ein

weites Spektrum an interessanten, technologisch relevanten Anwendungsmöglichkeiten für

diese komplexen Materialien.





Abstract

During the last decades, soft matter science developed into a highly active research field,

attracting the interest of a vast number of different disciplines, such as chemistry, material

science, biology and medicine. In striking contrast to hard matter systems, whose prop-

erties are essentially fixed by the electronic structure of the atoms, the situation in soft

matter systems, also known as “complex fluids”, is distinctly more involved, since many

different length and time scales are relevant. While the equilibrium properties of many soft

materials have been studied in depth by now, only little is known about their behavior out

of equilibrium. Therefore we have conducted extensive computer simulations to study the

transport and flow properties of selected soft matter systems, in an effort to understand

the non-equilibrium characteristics of these complex systems in a more profound way. The

investigated problems range from dilute systems containing rigid and flexible tracer parti-

cles under confinement to dense cluster crystals under flow. We have discovered a variety

of novel properties such as highly slowed-down, confinement-induced diffusion processes

and shear thickening, and we anticipate a wide spectrum of future applications for these

complex materials.
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1. Introduction

Soft matter physics has gained considerable interest in the past twenty years, and it is among

the fastest expanding branches of the physical sciences. Soft matter systems, also often

refereed to as colloidal dispersions or complex fluids, are composed of mesoscopic particles,

i.e. particles with typical sizes between 1 nm and 1µm, dispersed into a microscopic solvent.

These colloidal particles, in turn, are usually complex aggregates built up from a large number

of atoms or molecules, and can be of various shapes and nature: rigid spherical particles made

of silica or polystyrene, platelets and ellipsoids classify as colloids, as well as flexible fractal

objects such as linear and dendritic polymers.

The concentrated interest this field receives in physics, but also in chemistry and biology,

is mainly due to two reasons: first of all, many substances belong to this class of materials

whose common characteristic is, as the nomenclature suggests, that their rigidity against me-

chanical deformation is dramatically smaller than of atomic materials. Everyday examples

range from naturally occurring systems, such as protein solutions, DNA molecules or blood,

over comestibles, like milk, mayonnaise or ice cream, to all kind of industrial products, e.g.

paint, pharmaceuticals or liquid crystals [1, 2]. Therefore, soft matter plays a key role in

many technological applications and processes. Second, soft matter systems are of utmost

importance in academic research, as their special properties make them valuable model sys-

tems: by suitably changing relevant properties of the suspension, such as the solvent quality,

salt concentration and temperature, or by varying the chemical and physical architecture of

the dispersed particles, it is possible to tune the effective interactions in a well controlled

way, leading to precisely tailored interaction potentials.

Another intriguing characteristic of soft matter systems is that the comparatively large size

of the dispersed particles (compared to their atomic counterparts) facilitates experimental

investigations considerably: in addition to conventional indirect measurement techniques,

e.g. small-angle neutron scattering (SANS) or X-ray scattering [3], the particles’ motions

and behavior can also be observed in real-time via light or video microscopy [4, 5]. This

is usually achieved by labeling the particles with an appropriate photosensitive dye [4, 6].

Furthermore, the advent of optical tweezers enabled experimentalists to easily trap, move

and arrange single particles, and to measure the forces acting between colloids [7–9].

While the overwhelming part of the scientific effort carried out for colloidal systems so far

has been dedicated to the equilibrium properties, much less is known about the behavior of

these system in non-equilibrium scenarios. Therefore, the focus of this work lies on confined
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1. Introduction

and driven complex fluids, in order to contribute to a more profound understanding of the

transport and flow properties of soft matter systems.

Colloidal dispersions and polymer solutions confront fundamental research with a formi-

dable challenge due to the fact that they are non-Newtonian fluids. Consequently, they offer

a wide spectrum of possibilities in rheological applications. Contrary to simple liquids, their

viscosity depends on the applied external stresses, such as shear, pressure gradients or other

external fields. A key role in their rheology is played by the presence of at least two compo-

nents, the solvent and the suspended particles, with vastly disparate length- and time-scales.

In the case of polymer solutions, entanglements between the chains are an additional feature

with very important dynamical consequences. The flow properties of complex fluids become

even more relevant in the modern fields of micro- and nanofluidics, where the narrow geo-

metrical constrictions of the confining channels bring forward novel properties and highlight

the effects of the coupling to the surrounding walls [10, 11]. Some of the most prominent and

widely-discussed rheological properties of non-Newtonian liquids include shear-banding [12],

thixotropy [13], shear-thinning [14, 15] as well as shear-thickening [14]. Such complex fluids

are also relevant for a wide variety of applications in nanotechnology and micropatterning

[16, 17], in microfluidics [18], shock absorption [19], and protective clothing [20]. In addition,

they are also encountered in many biological systems, e.g. in cytoplasm and blood [21].

From the theoretical point of view, the large number of constituent entities poses one

of the key problems, since it is infeasible to employ concepts based on classical statistical

mechanics that take all the degrees of freedom explicitly into account. Instead, the complex

colloidal particles have to be reduced to their most essential features by applying suitable

coarse graining procedures [22–24], that average over the degrees of freedom at the atomic

level. Recently, effective potentials have been derived for selected colloids, e.g. for neutral

and charged star polymers [25–27], microgels [26, 27] and amphiphilic dendrimers [28, 29].

In this work, we employ extensive computer simulations to study the transport and flow

properties of selected soft matter systems. We have chosen these systems motivated in

particular with respect to their realizability in experiments and their relevance as model

systems.

The rest of this work is organized as follows:

Chapter 2 is dedicated to the various simulation techniques employed in this work. First,

we give an introduction to the general concepts, and then we present the specific im-

plementations necessary for the problems at hand.

Chapter 3 introduces the investigated systems and the respective interparticle potentials.

In this chapter we also discuss their relevance as model systems and their realizations

in experiments.

4



Chapter 4 presents the results concerning the diffusion and translocation in porous materi-

als. We first study the diffusion of rigid tracer particles in a confined, periodic envi-

ronment, and then extend our studies onto the flow induced translocation of polymers

through narrow channels.

Chapter 5 is dedicated to the flow behavior of cluster crystals. We first study the response

to shear flow, and then go over to analyze the behavior under pressure driven flow.

Chapter 6 contains a brief summary of the results and provides the conclusions drawn from

this work. Furthermore, we present a short outlook on future work.
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2. Simulation Techniques

Since it is in general impossible to determine the properties of complex molecular systems

analytically, computer simulations are often the mean of choice to evaluate the physical

properties. Such computational experiments are very similar to their real-life counterparts,

since their cycle of work includes also preparation, equilibration and measurement steps. In

fact, some of the most common mistakes that can be made when performing a computer

experiment are very similar to the mistakes that can be made in real experiments, e.g. an

inadequate preparation of a sample or an accidental manipulation of an observable.

The key quantity of a numerical simulation is the Hamiltonian function H({ri}, {vi}),
which describes the total energy of the system:

H({ri}, {vi}) =
N
∑

i=1

mv2
i

2
+ U({ri}). (2.1)

Here, the {ri} and the {vi} represent (in general) the positions and velocities of the N

particles of our system. The first term in Eq. (2.1) is the kinetic energy, whilst the second

term represents the potential energy of the system. For dilute and weakly interacting systems,

many body effects are usually negligible, and it is therefore sufficient to express U by pairwise

interaction potentials (see Chapter 3 for the system-specific details). In the vast majority of

cases, the solvent molecules are not explicitly treated but are instead included as a continuous

effective medium in the formulation. However, in this work, the cases of both implicit and

explicit solvents have been studied, and the reader is referred to Section 2.3 for a more

detailed description of the solvent dynamics.

2.1. Molecular Dynamics

Molecular dynamics simulations (MD) are a widely employed technique to compute the equi-

librium and transport properties of classical many-body systems. This is an excellent ap-

proximation for a wide range of materials, since quantum effects can be neglected for heavier

atoms and molecules. Thus in this context “classical” means that the motion of the con-

stituent particles obeys the laws of classical mechanics. In what follows, we choose the

micro-canonical ensemble for convenience. Hence, the total energy E, the volume V and

the particle number N are strictly preserved. In molecular dynamics, the trajectory of each
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individual particle can then be obtained by solving Newton’s second law:

d2ri
dt2

=
Fi

m
= − 1

m

N
∑

j 6=i

∇U(|ri − rj|), (2.2)

where t denotes the time and Fi the force acting on particle i. However, since computers

cannot solve differential equations analytically per se, a suitable numerical algorithm has to

be chosen from the wide repertoire of existing methods. In this work, we opted for the so-

called Velocity-Verlet algorithm which, in contrast to the much simpler Euler method, offers

greater numerical stability as well as time-reversibility and phase space preserving properties.

The basic idea of this algorithm is to discretize the time t by first writing down the two first-

order Taylor expansions for the positions ri(t) and velocities vi(t), both each at time t+∆t/2

and t +∆t. Then these expressions are merged, yielding the following equations:

ri(t+∆t) = ri(t) + ∆tvi(t) +
∆t2

2
ai(t) +O(∆t4), (2.3)

vi(t+∆t/2) = vi(t) +
∆t

2
ai(t) +O(∆t4), (2.4)

vi(t+∆t) = vi(t+∆t/2) +
∆t

2
ai(t) +O(∆t4), (2.5)

where ai denotes the acceleration of the i-th particle. Observables are calculated in MD

simulations via time averages. If the correctness of the ergodic theory is assumed, then the

time averages obtained in a conventional molecular dynamics simulation are equivalent to

ensemble averages. However, it is often more appropriate to perform simulations in other

ensembles such as the canonical ensemble, since real life experiments are performed rather at

constant temperature T than at constant energy.

2.2. Brownian Dynamics

The Brownian dynamics (BD) simulation technique describes inherently a system in the

canonical ensemble and addresses the problem of timescale separation that arises when one

species of particles in the system is much faster than another. This is for instance the case

when the solvent is no longer treated as a continuous medium but rather as a bulk of discrete

particles. This can be a serious problem in pure MD simulations, since the short time-steps

needed to handle the fast motion of the solvent particles are not compatible with the very

long runs needed to allow the evolution of the slower modes. Given that the fast motions

are often not of any interest, an approximate approach may be adopted. Hence, the solvent

particles are not taken into account explicitly in simulation, but instead their effects upon
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2.3. Multi-Particle Collision Dynamics

the solute are represented by a combination of random forces and frictional terms. Newton’s

equations of motion are thus replaced by the so-called Langevin equation:

dri
dt

=
1

mξ

N
∑

j 6=i

Hij [−∇U(|ri − rj|)−mai(t) +wi(t)], (2.6)

with the frictional coefficient ξ. In this equation, Hij is the so-called hydrodynamic interac-

tion tensor between solute particles i and j, and is set equal to the identity matrix (Hij = I)

when hydrodynamic interactions are ignored [30]. Moreover, the total force acting on each

colloid is supplemented by a Gaussian noise field wi(t) that mimics the random collisions with

the solvent molecules. The statistical properties of the noise are given through its average

〈wi(t)〉 = 0 and variance 〈wi(t)wj(t
′)〉 = 2kBTH

−1
ij δ(t− t′).

A straightforward method of conducting such Brownian dynamics simulations based on

Eq. (2.6) has been proposed by Ermak et al. [31–33], where the equations of motion are

integrated over a time interval ∆t under the assumption that the stochastic forces wi(t)

remain approximately constant:

ri(t +∆t) = ri(t) + c1∆tvi(t) + c2∆t2ai(t) + rG, (2.7)

vi(t +∆t) = c0vi(t) + c1∆tai(t) + vG. (2.8)

The coefficients read c0 = e−ξ∆t, c1 = (1 − c0)/(ξ∆t) and c2 = (1 − c1)/(ξ∆t) while rG and

vG denote random variables drawn from a bivariate Gaussian distribution with zero mean

values and variances given by:

σ2
r = ∆t

kBT

mξ

(

2− 3− 4e−ξ∆t + e−2ξ∆t

ξ∆t

)

, (2.9)

σ2
v =

kBT

m

(

1− e−2ξ∆t
)

. (2.10)

It is worthwhile noting that for smaller values of the friction coefficient ξ → 0 the dynamical

aspects dominate and Newtonian mechanics is recovered since Eqs. (2.7) and (2.8) then turn

into a simple Taylor series.

2.3. Multi-Particle Collision Dynamics

The theoretical analysis of hydrodynamic interactions (HI) can be of outstanding impor-

tance and an interesting task, as these interactions build the foundation of many physical

phenomena. Yet their study is also highly challenging, due to the large length- and time-

9



2. Simulation Techniques

scale separation between the solvent and the embedded solute particles. In such mesoscopic

systems, hydrodynamic interactions often play a substantial role, e.g. for the conformational

dynamics of biopolymers [34], the rheological properties of colloidal suspensions [35–37] or

polymers in solution [38–44]. However, a simple continuum description based on the Navier-

Stokes equation is not sufficient in many situations, since molecular-level details, like thermal

fluctuations, play a central role in determining the dynamic behavior. On the other hand,

atomistic MD simulations retain too many (unneeded) microscopic degrees of freedom, con-

sequently requiring very small time steps in order to resolve the high frequency modes.

Thus, the difficult task is to find a mesoscopic model that balances the aforementioned

shortcomings by incorporating the essential dynamical properties, and yet being simple

enough to be simulated over long time ranges and on long distance scales. Considerable

effort has been devoted to the development of such mesoscale simulation methods, and Dissi-

pative Particle Dynamics (DPD) [45–47], Lattice-Boltzmann (LB) [48–50], andMulti-Particle

Collision Dynamics (MPCD) [51, 52] became the most prominent techniques. Essentially,

all these approaches are alternative ways of solving the Navier-Stokes equation and its gen-

eralizations.

In this work, we have opted to employ a hybrid simulation approach, in which standard

molecular dynamics simulations for the solute are combined with the MPCD technique for

the solvent. One important feature of the MPCD algorithm is that the dynamics is well-

defined at any arbitrary time step. In contrast to pure MD or DPD simulations, which

approximate the continuous-time dynamics of a system, the time step does not have to be

small. Another crucial advantage of this approach is, that macroscopic transport properties

can easily be extracted in an analytic way, and that the simulation technique is meanwhile

well-documented (for an extensive overview, see for instance Ref. [53]).

MPCD is a mesoscopic, particle-based simulation method, consisting of alternating stream-

ing and collision steps, where the Ns solvent particles are assumed to be non-interacting.

Instead, the coupling between the solvent and solute particles is realized through momen-

tum exchange. During the streaming step, the solvent particles of unit mass m′ propagate

ballistically over a period of ∆t:

r′i(t +∆t) = r′i(t) + ∆tv′
i(t), (2.11)

where r′i(t) is the position and v′
i(t) the velocity of the i-th solvent particle at time t. In

the collision step, the solvent particles are first grouped into collision cells and then undergo

stochastic collisions with particles within the same cell:

v′
i(t+∆t) = uj(t) +Ω(α)[v′

i(t)− uj(t)]. (2.12)

10



2.3. Multi-Particle Collision Dynamics

Here, uj denotes the center of mass velocity of the j-th collision cell, and Ω is a norm-

conserving rotation matrix around a fixed angle α, which reads:

Ω(α) =







cosα+ ζ2x(1− cosα) ζxζy(1− cosα)− ζz sinα ζxζz(1− cosα) + ζy sinα

ζyζx(1− cosα) + ζz sinα cosα+ ζ2y (1− cosα) ζyζz(1− cosα)− ζx sinα

ζzζx(1− cosα)− ζy sinα ζzζy(1− cosα) + ζx sinα cosα+ ζ2z (1 − cosα)






, (2.13)

with ζx, ζy and ζz being the components of the unit vector ζ̂ along the rotation axis. Ihle et

al. have demonstrated in Ref. [54] that it is advisable to choose the direction of the rotation

axis randomly. In our implementation, we determine the components of ζ̂ by picking random

numbers from a uniform distribution on a spherical surface S
2 via [55]:

ζx = 2x1

√

1− x2
1 − x2

2,

ζy = 2x2

√

1− x2
1 − x2

2,

ζz = 1− 2(x2
1 + x2

2),

(2.14)

with x1, x2 ∈ [−1, 1] and x2
1 + x2

2 < 1. The size of the MPCD collision cells, a, determines

the spatial resolution of the HI, and must be set appropriately for each problem. The mean

free path of a solvent particle is then given by λ ∼ ∆t
√
T , and it has been shown in Ref. [56]

that Galilean invariance is violated for λ < a/2. Therefore, all lattice cells are shifted by a

randomly chosen vector, drawn from a cube with an edge length in the interval [−a/2,+a/2]

before each collision step.

The flow properties of liquids are essentially determined by their transport coefficients.

Among these are, for example, the dynamic viscosity η and the diffusion coefficient D. Fur-

thermore, in many situations we are concerned with the ratio of the inertial force to the

viscous force, the former characterized by the fluid density ̺s. This ratio is characterized

by the kinematic viscosity ν = η/̺s. In MPCD, the relation between these macroscopic

rheological properties and the microscopic evolution described by Eqs. (2.11) and (2.12) is

well-defined, and can be expressed in an analytic fashion.

The total dynamic viscosity η of the pure liquid is the sum of two contributions, namely

the kinetic viscosity ηkin and the collisional viscosity ηcol. The kinetic transport has its origin

in the movement of the particles, as they always carry a certain fraction of momentum and

energy with themselves. For this reason ηkin is the dominant part in η for small rotational

angles α and long mean free paths λ. On the other hand, the particles can also exchange

momentum and energy during the collision steps, and hence ηcol plays an important role for

large α and small λ. For the dynamics of liquids, the latter contribution bears particular

relevance, whereas for gaseous media the kinetic transport is the dominant factor. Analytic

11
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expressions have been derived for these two contributions by means of a gas kinetic approach

in Ref. [51] and they read:

ηkin =
kBT∆tρs

a3

(

5ρs
(4− 2 cosα− 2 cos(2α))(ρs − 1)

− 1

2

)

, (2.15)

ηcol =
(1− cosα)

18a∆t
(ρs − 1), (2.16)

where ρs denotes the number density of the solvent particles. In order to verify these identi-

ties, simulations under Poiseuille flow have been carried out and η has been calculated from

the resulting velocity-field profile (the reader is referred to Section 2.3.1 for a more detailed

discussion). In Figure 2.1, both the theoretical values and the corresponding simulation

results for η are depicted and very good agreement between them can be seen. Here, the

blue curve corresponds to Eq. (2.15), while the red curve represents Eq. (2.16); it immedi-

ately stands out that the ratio between the kinetic and the collisional contribution depends

considerably on the model parameters α and λ.
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Figure 2.1.: Contributions to the dynamic viscosity η for a MPCD-liquid. Left panel: α
dependence of η at λ = 0.2 and ρs = 5. Right panel: λ dependence of η at
α = 130 and ρs = 10.

Whereas the above-described rules governing the solvent dynamics are general, the sim-

ulation of specific flow profiles requires special care and will be discussed in the ensuing

subsections. For such driven flows, one important measure is the so-called Reynolds number,

Re, which is a measure of the ratio of the inertial forces to the viscous forces. In general, Re

can be written down as:

Re =
vL

ν
(2.17)

where v and L are characteristic velocities and length scales of the system, that depend

on the precise problem. The Reynolds number is also often used to characterize different
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2.3. Multi-Particle Collision Dynamics

flow regimes, such as laminar flow, where viscous forces are dominant and the solvent layers

smoothly propagate well separated from each other, or turbulent flow, which is dominated

by inertial forces resulting in chaotic eddies, vortices and other flow instabilities.

2.3.1. Simulation of Poiseuille Flow

Poiseuille flow, enclosed by two parallel plates positioned at x = 0 and x = Lx, is driven by

a pressure gradient parallel to the flow direction, and is slowed down by viscous drag along

both plates, so that these forces are in balance. Under such conditions, a parabolic velocity

profile builds up:

v(0)z (x) =
̺sg

2η
(Lx − x)x, (2.18)

where the superscript denotes the velocity profile of the pure solvent, as opposed to the one

when solute particles are present. The strength of the gravitational field can be varied by

tuning g. The parabolic velocity profile vanishes at x = 0 and at x = Lx, and attains its

maximum value, v0, at the middle of the channel (x = Lx/2), viz.:

v0 =
̺sgL

2
x

8η
. (2.19)

Figure 2.2 shows a schematic representation of such a setup, and several methods exist for

creating such a flow, for instance forced, gravitational, and surface-induced approaches. The

Figure 2.2.: Schematic representation of the simulation setup for Poiseuille flow, indicating
the flow (z) and gradient (x) directions.

forced flow has been considered in Refs. [51], [52], and [57], where the pressure gradient is

mimicked by hanging a virtual pump to the inlet of the channel. However, it has been shown

in Ref. [58] that this approach has several drawbacks: first of all, a considerable deformation

of the velocity-field and density profiles can occur at the inlet and outlet of the channel. In

addition, a gradual density drop of particles along the channel length can be noticed. Hence

these perturbations lead to a severe reduction of usable space in the simulation box.
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2. Simulation Techniques

The use of gravitationally driven flow, which is adopted in this contribution, does not

distort the velocity-field and density profiles, and therefore no artificial tricks are needed

to suppress the above mentioned inhomogeneities. The external force acting on the unit

volume of the fluid is given by F = ̺sgẑ, where g is the acceleration constant, controlling

the magnitude of the pressure drop. The effect of F can easily be incorporated into the

streaming step as follows:

r′i(t+∆t) = r′i(t) + ∆tv′
i(t) +

∆t2

2
gẑ, (2.20)

v′
i(t +∆t) = v′

i(t) + ∆tgẑ, (2.21)

and a steady Poiseuille flow builds up self-consistently after a short time when no-slip bound-

ary conditions are applied at the surface layers. For planar walls coinciding with the bound-

aries, such conditions are conveniently simulated by employing a bounce-back rule, i.e., the

velocities of particles that hit the walls are inverted after the collision. However, for a more

general setup the walls will not coincide with, or even be parallel to the cell boundaries. Fur-

thermore, partially occupied cells can also emerge from the cell-shifting, which is unavoidable

for small mean free paths λ. In Ref. [57] it has been demonstrated that the bounce-back rule

has to be modified in such a case. Indeed, it is well visible from Figure 2.3 that the velocity

profile does not extrapolate to zero at the walls under conventional bounce-back conditions.

0 3 6 9 12 15
0.0

0.5

1.0

1.5

2.0
 Extended bounce-back boundary conditions
 Simple bounce-back boundary conditions

 
 

v z
(x

)  
[

/
]

x  [ ]

Figure 2.3.: Velocity-field profile in z-direction along the x-axis for a channel of volume V =
15×15×25 and solvent density ρs = 5. The open circles represent the results for
simple bounce-back boundary conditions, while the full circles show the modified
boundary conditions, see the text and Eq. (2.22).
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2.3. Multi-Particle Collision Dynamics

One possible solution is to refill all those cells that are cut by the walls and therefore

obtain a number of particles nj smaller than the average number navg of the bulk cells. The

velocities of these virtual particles are then drawn from a Maxwell-Boltzmann distribution of

zero average velocity and the same temperature T as the fluid. But since the sum of random

vectors drawn from a Gaussian distribution is again Gaussian-distributed, the individual

velocities never have to be determined explicitly. Instead, the average velocity uj appearing

in Eq. (2.12) can be modified as follows:

uj =

∑

i v
′
i + vG

navg

, (2.22)

where the components of vG are normally-distributed with variance (navg −nj)kBT and zero

average. This additional term successfully addresses the spurious wall-slip, as can be seen

by the very good agreement between the theoretical predictions and the simulation results

shown in Figure 2.3. Moreover, we can now utilize the corrected velocity profile to determine

the dynamic viscosity η:

η =
̺sgL

2
x

8v0
. (2.23)

Finally it should be noted that the computation of η in these non-equilibrium conditions is

much more precise than by means of the Green-Kubo relation in equilibrium [59], since time

correlation functions represent the average response to the naturally occurring (and hence

fairly small) fluctuations in the system properties. The signal-to-noise ratio is particularly

unfavorable at long times, where there may be a significant contribution to the integral

defining a transport coefficient. Moreover, the finite system size imposes a limit on the

maximum time for which reliable correlations can be calculated. The idea behind non-

equilibrium methods is that a much larger fluctuation may be induced artificially, and the

signal-to-noise level of the measured response are improved dramatically. Thus, by measuring

the steady state response to such a perturbation, problems with the long-time behavior of

correlation functions are avoided.

2.3.2. Simulation of Shear Flow

In fluid dynamics, shear flow refers to the laminar flow of a viscous fluid in the space between

two parallel plates, which are moving relative to each other with a constant velocity (see

Figure 2.4). The flow is driven by virtue of viscous drag force acting on the fluid and the

applied pressure gradient parallel to the plates. This type of fluid flow is also referred to as

Couette flow. In experiments, Couette flow is usually realized inside a small gap between

two counter rotating concentric cylinders. However, such co-axial cylinder devices have both
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2. Simulation Techniques

Figure 2.4.: Schematic representation of the simulation setup for shear flow, indicating the
flow (z), gradient (x) and vorticity (y) direction.

curvature and finite geometry, where the latter gives rise to an increased drag in the wall

region. Thus, the execution of such experiments is generally nontrivial.

In our simulations, shear flow with shear-rate γ̇ = 2vS/Lx was incorporated into the system

by rescaling the center of mass velocities of the collision cells close by the shear plane to ±vS

[35]. The force needed to accelerate these boundary particles to the desired velocity vS is

called the mean shear force FS, and it can be determined by summing over all necessary

momentum transfers:

FS =
1

∆t

〈

Ns
∑

i=1

m′
i∆v′

i +

N
∑

i=1

mi∆vi

〉

. (2.24)

From this quantity we can then compute the shear stress σxz of the system, i.e. the component

of the stress coplanar with the system cross section, as σxz = ẑ · FS/(LxLy).

We have favored this approach over other methods, such as the Lees-Edwards boundary

conditions [60], because the employed boundary conditions resemble more the actual exper-

iment and lead to a spontaneous development of the desired linear velocity profile. Since

in our approach the velocity profile is not externally imposed, but completely self-emerging,

we can also observe phenomena such as wall-slip, nonlinear velocity-, or density-profiles. In

addition, shearing only the fluid and not the colloidal dispersion as a whole works as well

for dilute dispersions [42, 44], but for dense systems, this approach is not suitable since the

resulting viscosity is much too small [36]. In fact, what one measures in this case is the flow

of the fluid streaming around the solute particles like a flow through a porous medium.

2.3.3. Coupling between Solvent and Solute Particles

In MPCD simulations, many different approaches exist for coupling a suspended solute parti-

cle to the surrounding solvent, and for an extensive overview we refer the reader to Refs. [41]

and [53]. A commonly used method is to sort the solute particles into the collision cells, and

include their velocities in the rotation step [38]. Although this approach seems oversimplified
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2.3. Multi-Particle Collision Dynamics

at first glance, it has been shown in Ref. [39], that the dynamics of polymer chains are cor-

rectly reproduced. This technique has been employed for the simulation of, amongst others,

star polymers [42], dendrimers [44], and cluster crystals [61]. However, the disadvantage of

this method is that only the fluid particles within the same cell are taken into account for the

coupling. This in turn implies, that in order to affect the same area of the flow field like in

reality, one has to choose the cells to be of the same size as the colloidal particles. Thus the

flow field around the colloidal particle cannot be resolved in detail, and neither the fact that

colloidal particles push away the solvent nor depletion and lubrication forces can be repro-

duced at any level. A second possibility is to couple the solvent and solute particles through

repulsive central forces [52]. However, such a force has to be rather strong to prohibit the

solvent particles of penetrating the colloids. Therefore, when implementing this procedure,

a small time step ∆t is required in order to resolve these interactions correctly, and a large

number of MD time steps are needed during the streaming step. Another drawback of this

approach is that only slip boundary conditions can be modeled with central forces. This

deficiency can be easily understood on the basis of the following example: first, assume a

buoyant colloidal particle that is surrounded by resting solvent particles, and then spin the

colloid without moving it from its original position. If the solvent particles are now coupled

to the colloid only by a central force, they will not react to this rotation, since the mutual

distances remain unchanged. In reality however, the surface of a colloid is never perfectly

smooth, and therefore the solvent close to the colloid will be dragged along. The detailed

molecular origins of these boundary conditions are subtle problems, and for a recent review

of the extensive literature on this subject see Ref. [62].

In this work, we have coupled the colloids to the solvent particles through the exchange

of both linear and angular momentum during the streaming step, following the procedure

put forward by Inoue et al. [63]. First we check after each streaming step whether the new

position of the i-th solvent particle lies within a colloidal particle. If this is the case, we

stochastically deflect the solvent particle from the colloid and transfer the momentum. In

what follows, we will discuss this procedure in more detail.

Figure 2.5(a) depicts the collision process between a point-like solvent particle and an

impenetrable colloid, located at rj . At start time t, the solvent particle is located at r′i(t)

and propagates ballistically over a period of ∆t. Along its trajectory, it crosses the surface of

the colloid at the point r̃′i. In order to calculate the exact time and position of the collision,

we first write down the equation of a sphere, centered at rj:

|r− rj |2 =
σ2

4
, (2.25)
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2. Simulation Techniques

Figure 2.5.: Schematic representation of the collision process between a solvent particle with
index i and an impenetrable colloid j with diameter σ. The vector r′i(t) denotes
the position of the solvent particle at time t, while rj(t) denotes the position of
the colloid. The vector r̃′i (red arrow) shows the point of impact in the case of
the (a) exact and (b) approximate calculation (see text).

and then of a linear trajectory in space, starting at r′i:

r = r′i +∆tv̂′
i, (2.26)

where σ is the diameter of the colloid and v̂′
i denotes the normalized velocity of the solvent

particle. Merging equations (2.25) and (2.26) yields:

∆t̃1,2 = − (r′i · v̂′
i − r′i · rj − v̂′

i · rj)±
√

(r′i · v̂′
i − r′i · rj − v̂′

i · rj)2 − r
′2
i − r2j + σ2/4. (2.27)

If we now take the smaller value of the ∆t̃’s and insert it back into Eq. (2.26), we get the exact

point of impact r̃′i = r′i +∆t̃v̂′
i. However, this procedure is computationally quite expensive,

and it has been shown in Refs. [35, 40] that such a detailed description is not necessary.

Instead, it is sufficient to place the solvent particle on the line to the colloidal center and

move it with its new velocity half of a time step. This approximation is schematically shown

in Figure 2.5(b), and r̃′i is then simply given by:

r̃′i = rj +
σ

2

r′i − rj
|r′i − rj |

= rj +
σ

2
ên, (2.28)

Next, the momentum between the two particles has to be exchanged. This can be achieved

by applying the extended bounce-back collision rule (see preceding subsection). However,

Padding et al. have shown that these boundary conditions result in rotational frictions that

turned out to be too large [40]. This discrepancy might stem from the fact, that the colloidal

particles can move, and therefore have a local temperature, in contrast to the immobile walls

considered in Ref. [57].
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2.3. Multi-Particle Collision Dynamics

Alternatively, the solvent particles can be scattered from the colloidal target in a stochastic

way, where upon collision, the particles are assigned random normal and tangential velocities

v∗i,n and v∗i,t respectively (relative to the velocity of the colloid) [35, 40, 63]. These velocities

have to be chosen in the following way: since there are no solvent particles within the colloidal

particle, and the velocity distribution next to a colloidal particle should be independent of any

neighboring particles, the velocity distribution for the deflected solvent particle has to be the

same as if the space inside the suspended particle was filled with the solvent. Then, one could

evaluate the velocity distribution of the scattered solvent particles by taking the distribution

of the imaginary solvent particles passing through the colloid surface. Unfortunately it is a

nontrivial task to determine this distribution analytically for a curved surface. However, if the

mean free path of the solvent particles is small compared to the diameter of the suspended

colloids, then we can safely assume the colloid surface to be an infinitely extended plane.

Within this approximation, the probability distributions for the new velocities read:

p(v∗i,n) = m′βv∗i,n exp
(

−m′βv∗2i,n/2
)

, (2.29)

p(v∗i,t) =
√

m′β/(2π) exp
(

−m′βv∗2i,t/2
)

, (2.30)

with inverse temperature β. Then the final velocities of the solvent particle i and the colloid

j after the collision read:

v′
i(t+∆t) = vj(t) + Lj(t)× [r̃′i − rj(t)] + v∗i,nên + v∗i,têt, (2.31)

vj(t+∆t) = vj(t) +
m′

m
[v′

i(t)− v′
i(t+∆t)] , (2.32)

Lj(t+∆t) = Lj(t) +
m′

I
[r̃′i − rj(t)]× [v′

i(t)− v′
i(t+∆t)] , (2.33)

with the normal and tangential unit vectors ên and êt, the colloid’s angular velocity Lj and

moment of inertia I = 2m(σ/2)2/5.
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3.1. Inverse Opals

A porous material consists of at least two immiscible phases of which one is usually a contin-

uous solid material, the matrix, which surrounds the second phase of finely dispersed voids,

containing a liquid, gas, or vacuum. Generally, two different classes of porous materials can

be classified: if the void phase is comprised of disconnected and individually separated cavi-

ties, the material represents a foam structure. On the other hand, if the voids are connected

to each other, the material represents a sponge structure or a so-called porous network.

In this work, we focus on nanometric porous networks, which offer, due to their highly

accessible surfaces, specific properties concerning adsorption, mass and heat transport, and

spatial confinement. Such a well-ordered structure can be fabricated by employing a colloidal

dispersion as a template material (see Appendix C.2 for a more detailed description of the

fabrication process). The most common type of colloidal crystals formed by self-assembly of

monodisperse particles has a face-centered cubic lattice symmetry with the highest crystalline

packing density of 74% volume filling. In this packing geometry, one sphere is in direct contact

with 12 surrounding spheres. After the subsequent removal of the template, these contact

points lead to orifices between the spherical voids (removed particles) in the resulting replica

and consequently ensures an open, fully continuous three-dimensional network. Such porous

systems are often referred to as inverse opals (abbreviated as i-opals in what follows), and

can be characterized by the cavity radius R and pore diameter L. The angle of aperture is

then defined as ϑ0 = arcsin
(

L
2π

)

, and the distance of the opening as h =
√

R2 − L2/4.

Samples / Sizes iO180-12/15 iO180-10/15 iO130-9/11

Thickness d [µm] 7.4 4.6 5.0
R [nm] 75 75 55
L [nm] 60 50 45
L/R 12/15 10/15 9/11

Table 3.1.: Geometrical characteristic dimensions (cavity radius R, pore diameter L) for the
inverse opals with thickness d.

Three different inverse colloidal crystals (i-opals) were fabricated. Table 3.1 summarizes the

characteristic dimensions, cavity radius R and hole diameter L, obtained from the scanning
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electron microscopy (SEM) images (see Figure C.1 in the Appendix C.2) of the i-opals along

with their thickness d.

The three systems are characterized by different constraining geometries, expressed in the

ratio L/R whose values can be varied by changing either the hole diameter at constant

void radius (in the case of iO180-12/15 and iO180-10/15) or both in the case of iO130-9/11

membrane. For better comprehension, we provide a schematic representation of such a system

in Figure 3.1.

Figure 3.1.: Left panel: schematic representation of a tracer particle within a confining
capped sphere with one opening. Right panel: actual inverse opal cavity em-
ployed in the simulations.

It is immediately apparent, that the confinement can induce restricted motion of diffusing

molecules or particles in solutions inside an inverse opal. Depending on the size and the

type of the mobile species even the entire diffusion mechanism may change. In this work, we

model the particle-wall interactions via a shifted Yukawa-like potential:

U(r) = U(x) = ǫ
e−κx/a

(x− a)2
, (3.1)

where ǫ is the energy factor, κ is the inverse screening length, a is the radius of the tracer

particle, and x denotes the shortest distance between the particle’s center and the inverse

opal, as shown in the left panel of Figure 3.1.

Let us briefly discuss the choice of the functional form and the values of the numerical

parameters involved in the particle-wall interaction employed in Eq. (3.1) above. The main

requirement for this potential is that it has to capture the effects of confinement. In this

sense, and in the absence of any microscopic information on the form of the interaction,
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3.1. Inverse Opals

the simplest choice would have been the hard-wall potential, which would diverge at x = a

and vanish for all values x > a. However, such a choice is on the one hand impractical for

BD simulations, since it would require the performance of costly, event-driven simulations,

and on the other hand rather unrealistic, since it is expected that residual forces (dispersion,

electrostatic etc.) are indeed present between the tracer and the confining walls. At the same

time, we wish to keep the modeling as simple as possible. We therefore resort to capture

with the interaction potential only the salient, key characteristics, namely:

1. The divergence at x = a which is guaranteed by the denominator, (x−a)2, in Eq. (3.1).

2. A screened “electrostatic” nature, which is captured by the exponentially damped nu-

merator, e−κx/a.

3. The independence of the interaction on the particle size a, which is guaranteed by

Eq. (3.1) since, when the particle-wall distance x is expressed in units of a, the inter-

action takes a universal, a-independent form. In this way, we minimize the number of

fit parameters and the effects of confinement are all captured in the ratio a/R, which

does not explicitly enter the form of the interaction for distances x > a.

There are two parameters that have to be fixed, the strength ǫ and the dimensionless inverse

decay length κ. For the former, we choose a value ǫ = 5, which corresponds to interaction

energies of the order kBT when the particle center lies a few particle radii away from the

wall. On the other hand, κ is employed as the only fit parameter, under the assumption that

the interaction becomes vanishingly small when x exceeds several particle radii. Comparison

with experimental results (see Section 4.1) led us to fixing κ = 0.35, which corresponds to

a decay length of about three particle radii, consistent with the underlying idea of putting

focus onto confinement, as was mentioned above.

In our modeling, we have not taken hydrodynamic interactions explicitly into account, and

focused instead on a combination of overdamped dynamics with the effects of the confining

cavities. Nevertheless, the influence of hydrodynamics are implicitly included in the simula-

tions through the fitting of κ. Indeed, the fact that βU(r) decays over roughly three particle

radii, which is typical for the HI between a sphere and a plane, indicates that, additionally

to the short-ranged steric and electrostatic interactions, hydrodynamics do play an impor-

tant role. However, this simplified approach is clearly justified in two distinct limits. For

a/R ≪ 1, the physical size of the particle is so small that explicit hydrodynamic interactions

are indeed negligible. For a → L/2, the dominant effect bringing about the delay in the

particle diffusion is the bottleneck caused by the hindrance of the tracer to pass through the

connecting pores between two spherical cavities of the inverse opal. To keep the modeling
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as simple as possible and to bring forward the effects of the confining walls, we have thus

chosen not to model HI explicitly for all intermediate sizes of the tracer particle as well.

The remarkable agreement between experimental and simulation results offers a posteriori

justification for our approximations. We emphasize that the same interaction and numerical

parameters were used to model all experimental results.

3.2. Linear and Branched Polymers

A polymer is a macromolecule, which consists of many branched and linked molecules, where

the single components of this construct are called monomers. A well known example is

polyethene typically consisting of 102 to 104 ethene groups, which after polymerization form

single C-C bonds around which the polymer can freely rotate (see Figure 3.2). Another

Figure 3.2.: The atomic structure of a polyethene molecule, where the rotational freedom
around each C-C bond is illustrated by the circular arrows (a). Schematic rep-
resentation of the entire, flexible polymer chain (b).

example is DNA with its double-helix structure, in which two strands are connected through

hydrogen bonds. DNA molecules can consist of up to 1010 monomers, and would span over

1m in an unfolded state. The persistence length of such polymers, i.e. the length over which

correlations in the direction of the tangent are lost, is very short (on a length scale of 1 nm).

Therefore, such flexible polymers are not elongated in solution but rather form randomly

curled coils.

Semi-synthetic polymers entered the scene on the verge of the 19th century with viscose,

a chemically modified variant of cellulose. Entirely synthetic polymers were developed in

particular after the acceptation of Staudinger’s hypothesis that polymers consist of cova-

lently bonded, linear chains of monomers [64, 65]. A very peculiar type of synthetic polymers

are the so-called dendrimers, which are macromolecules with defined architectures that are

synthesized by iterative controlled reaction steps [66]. The conformation of subsequent gener-

ations on a trifunctional monomer core results in a treelike structure. Hence, these polymers
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have been termed dendrimers - from the Greek word “δένδ̺oν” for tree. A typical example

of a fourth-generation dendritic structure is shown in Figure 3.3.

Figure 3.3.: Structure of a fourth-generation dendrimer (courtesy of Ed de Jong).

Even though the first dendrimers have been prepared as early as 1978 by Vögtle et al.

[67], this field received only little attention until 1990 when Tomalia et al. indicated a large

number of possible applications of such molecules [68]. Ever since, the research on dendrimers

has been a highly active field. First, their peculiar architecture establishes them as hybrid

model systems between polymer chains and hard colloids in terms of both the sphericity

and compactness of their conformations. Furthermore, it has been shown in Ref. [24] that

dendrimers exhibit a similar softness in their effective interactions.

In order to analyze the behavior of dendrimers from a theoretical point of view, it is

necessary to design a proper model system. The simplest case is that of ideal dendrimers,

namely, dendrimers that consist of non-interacting and point-like monomers. At a first glance

this model seems unrealistic as it does not bear much resemblance with a real dendrimer.

Nonetheless, this model still represents a useful reference system in which many interesting

quantities, such as the radius of gyration [69, 70] and the form factor [71], can be calculated

analytically.

In good or athermal solvent conditions however, the steric excluded-volume interactions

between the monomers have to be taken into account, since it is expected that these will

lead to significant swelling and alterations in the configuration of the polymer. The first

studies on this subject were performed by de Gennes and Hervet [72]. They considered

flexible trifunctional monomers with very long spacers in an athermal solvent and obtained

a density profile with a global minimum at the center and a monotonic increase towards
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the outer regions (shell) of the polymer. Such a density distribution is known as the dense-

shell or hollow-center model. However, their force-balance calculations assumed implicitly

that each successive generation of monomers occupies a concentric shell of its own, which

lies at a farther radial distance from the dendrimer center than the preceding one. Hence,

the finding of the hollow-center does not come as a surprise. These authors also discovered

that the radius of gyration scales with Rg ∼ N1/5, yielding an effective fractal dimension of

df = 5 for dendritic structures. Since this value exceeds the spatial dimension, it follows

that a limiting generation number exists, beyond which no perfect dendrimers can be grown

anymore. Although these results caused some initial excitement, more recent simulations

and experiments demonstrated that the dense shell model is not valid [73]: due to thermal

fluctuations of the monomer groups, a considerable degree of backfolding occurs, causing an

increase in the monomer density at the center of the macromolecule (dense-core). Thus, the

apparent dense shell picture seen in Figure 3.3 is misleading if it is interpreted literally: the

chemical endgroups do not lie in the outer region of the dendrimer, but rather fluctuate and

are allowed to explore the inner parts of the molecule as well.

The issue of dendrimer conformations becomes even more complex when charged or poly-

electrolyte dendrimers are considered. Such charges on the building blocks of, e.g. PAMAM

(polyamidoamine) dendrimers can be manipulated by changing the pH of the solution or by

the addition of salt. Theoretical and experimental research has already been done in this

area [74, 75] with the finding that in the case of monovalent monomers, the size and the

conformation of a dendrimer is almost completely insensitive to changes of the pH value.

Yet, a considerable stiffening and stretching of the bonds occurs when the dendrimer carries

divalent chargeable groups, which release two monovalent counterions per site [76]. Thus,

dendrimers are of enormous practical interest since this possibility to switch from dense-shell

to dense-core configurations and vice versa establishes them as promising candidate carrier

molecules for drug delivery [44, 77, 78].

A common approach for physically modeling the configuration of polymers is to treat

the individual monomers (Kuhn segments) as spherical beads interacting by potentials that

depend on their mutual spatial separation. Such a bead-spring model reduces the complex

chemical structure of polymers to an extremely simple representation. Although such a model

seems oversimplified at first, it is still able to capture the essential physical properties of the

original systems, but at significantly reduced computational costs.

In this work, we consider two different types of pair interactions between the individual

monomers. The first contribution models the short-range excluded-volume interactions be-

tween the monomers. This purely repulsive interaction can be parameterized, for instance,
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by a simple, shifted and truncated Lennard-Jones potential, which reads:

Umm(r) =







4ǫ
[

(

σ
r

)12 −
(

σ
r

)6
]

+ ǫ, r ≤ rcut

0, r > rcut
(3.2)

with r = |ri − rj| denoting the separation between the monomers i and j, whose position

vectors are ri and rj, respectively. In this equation, the parameter σ relates to the diameter

of a monomer, and ǫ specifies the strength of the interaction. Furthermore, we have chosen

the cutoff distance in Eq. (3.2) as rcut = 21/6σ, rendering the monomer-monomer interaction

purely repulsive and thus suitable for an effective description of athermal solvents.

The second interaction potential models the chemical links between bonded monomers. In

this work we opted for the so-called finitely extensible nonlinear elastic (FENE) potential,

UFENE(r), which is given by [79]:

UFENE(r) =











−U0

(

r0
σ

)2
ln

[

1−
(

r
r0

)2
]

, r ≤ r0,

∞, r > r0

(3.3)

where the location of divergence at r0 determines the maximum bond length between two

monomers; it can be used along with U0 to tune the stiffness of bonds between the monomeric

units. In our simulations we have chosen U0 = 5.0 and r0 = 4.0, leading to rather soft and

elastic connections. This is the same model used for dendrimers under shear in Ref. [44].

The effective potential between two adjacent polymer beads, Ueff(r) = Umm(r)+UFENE(r), is

shown in the left panel of Figure 3.4.

In addition to these intramolecular forces, the polymer interacts with the system boundaries

(i.e. the channel walls) via the potential Uwall(x), which is given by:

Uwall(x) =
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3
πǫ
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]

, x > (2/5)1/6σ,
(3.4)

for a wall lying in the (y, z)-plane at x = 0. The total external potential, caused by two walls

separated by D is thus given by Uext(x) = Uwall(x) + Uwall(D− x). The attractiveness of the

potential can be adjusted by the parameter λw. In the right panel of Figure 3.4, we show

plots for the extreme cases λw = 0.0 (purely repulsive) and λw = 1.0 (attractive wall) for a

slit-like channel of width D = 4.0.

The linear polymers are then created by a three-dimensional self avoiding random walk.

For dendrimers, we use the same approach but start with a central pair of joined monomers,
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Figure 3.4.: Left panel: effective interaction potential Ueff(r) between two adjacent polymer
beads. Right panel: the external wall potential acting on a monomer of the
polymer, for a channel with width D = 4.0, see Eq. (3.4). The choice λw = 0.0
mimics purely repulsive walls, while λw = 1.0 adds a long-ranged attractive tail
to the potential.

the so-called zeroth generation G = 0. A successive layer of monomers is then formed

by connecting two additional beads to each outer monomer of generation G. Thus, the

functionality of the dendritic structure is f = 3, and the number of monomers N(G) taking

part to a given generation G follows a simple power law, i.e. N(G) = 2G+2 − 2.

The analysis of the shape and size of isolated dendrimers plays a key role in understanding

not only the properties of the molecules themselves but also the thermodynamics of concen-

trated dendrimer solutions in a coarse-grained approach [24]. A convenient measure for the

overall size of polymers is given by the so-called radius of gyration RG, defined as:

R2
G =

1

N

〈

N
∑

i=1

(ri − rc)
2

〉

, (3.5)

where rc denotes the center of mass position and 〈· · · 〉 the statistical average over all con-

formations. In order to quantify the structural properties and the alignment of polymers in

flow, we consider the average gyration tensor of the molecule, Gαβ , defined as:

Gαβ =
1

N

N
∑

i=1

〈ri,αri,β〉 , (3.6)

where ri,α is the α-component of the position vector of the i-th monomer relative to the

center of mass, and α, β ∈ {x, y, z} denote Cartesian coordinates. This quantity is directly

accessible in scattering experiments, and it is obvious that its diagonal components, Gαα, are
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the squared radii of gyration in α direction. The bulk values of the gyration radii for the

systems simulated in this work are summarized in Table 3.2.

Polymer architecture N RG [σ]

Linear 32 3.85± 0.65
Linear 62 5.63± 0.94
Linear 92 7.19± 1.24
Dendritic (G2) 14 1.62± 0.03
Dendritic (G3) 30 2.18± 0.04
Dendritic (G4) 62 2.78± 0.04

Table 3.2.: The radii of gyration for linear and dendritic polymers considered in this thesis.

3.3. Cluster Crystals

Statistical-mechanical studies of freezing have traditionally relied on model systems with very

simple unbounded repulsive forces. Frequently occurring examples are the hard sphere model

and inverse-power pair potentials. These elementary cases have led to valuable insights into

the freezing behavior of monatomic substances. Yet, much less is known about interaction

potentials that are bounded, thus allowing full and multiple particle overlap. Though surpris-

ing and unphysical at first glance, this condition is fully legitimate and natural for fractal,

polymer-based colloids.

Many different realizations exist for such bounded potentials, but the arguably best known

representatives are the Gaussian core model (GCM):

UGCM(r) = ǫ exp
[

− (r/σ)2
]

, (3.7)

and the penetrable sphere model (PSM):

UPSM(r) =







ǫ, r < σ

0, else
. (3.8)

In his seminal work from 1976, Stillinger studied the phase diagram of the former [80], and

observed a first order phase transition from the fluid to a crystalline cubic phase with a singly

occupied lattice, when the GCM-system was compressed at constant T . Upon further increase

of the density, and depending on the temperature, the system might undergo a structural

phase transition, but eventually, the solid will melt again. Therefore, this behavior is called
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3. Investigated Systems

“re-entrant melting” (see left panel of Figure 3.5). Surprisingly, the PSM-system exhibits

a completely different phase behavior, as illustrated in the right panel of Figure 3.5: upon

increasing the density at fixed temperature, homogeneously sized clusters of overlapping

particles begin to form which arrange themselves in an ordered phase.
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Figure 3.5.: Schematic representation of the topology of the phase diagrams of the Gaussian
core model (left panel) and the penetrable sphere model (right panel). Lines show
the phase boundaries for the liquid (solid black) and the solid phase (dashed red).
The gap in-between denotes the coexistence region. While the GCM shows re-
entrant melting below an upper freezing temperature Tf , the PSM freezes at all
temperatures into crystals with multiply occupied lattices sites.

The fact that the GCM and the PSM belong to the same class of bounded, purely repulsive

interactions, yet react in such a contrary fashion to an increase in density, immediately asks

for an explanation. In order to elucidate this discrepancy, we first reformulate both Eq. (3.7)

and Eq. (3.8) within the framework of the so-called generalized exponential model with index

n (GEM-n):

UGEM-n(r) = ǫ exp [− (r/σ)n] . (3.9)

As can be seen in Figure 3.6, the potential interpolates smoothly, via the index n, between

the Gaussian core model (n = 2) and the penetrable sphere model (n → ∞). Obviously, the

main difference between both model potentials is the value of n, i.e. the steepness of the

interaction, which should therefore play a crucial role.

Indeed, Likos et al. established a criterion to decide whether clustering or re-entrant

melting will be observed in a system where particles interact via ultrasoft, purely repulsive

potentials [81]. Based on the analysis of the behavior of the structure factor within the mean

field approximation (MFA), the criterion applies to all bounded pair interactions U(r) which

decay sufficiently fast to zero, such that they are integrable and their Fourier transforms
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Figure 3.6.: Four members of the GEM-n family: the GCM (n = 2), the GEM-4, GEM-8
and the PSM (n = ∞).

exist. Under these conditions, there are two possibilities for the functional form of the

Fourier transform Ũ(k), where k is the wave number:

• Ũ(k) is a non-negative and monotonically decaying function, i.e. Ũ(k) ≥ 0 for all

k. In what follows, we will refer to such potentials as Q+-potentials, and a system of

such particles will show re-entrant melting. The fact that the Gaussian function is an

eigenfunction of the continuous Fourier transform induces that the GCM belongs to

this class of potentials.

• Ũ(k) oscillates, and attains negative values for certain ranges of the wave number k.

Such potentials are called Q±-potentials in what follows, and are expected to lead to a

clustering behavior. The PSM is a representative of this interaction class.

Now, in order to determine to which class a potential belong, an explicit evaluation of Ũ(k)

is not required. Instead a sufficient condition can be deduced along the following lines [82]:

we start from the inverse Fourier transform of a (bounded) pair potential U(r):

U(r) =
1

2π2

∫ ∞

0

sin (kr)

kr
Ũ(k)k2dk. (3.10)
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Then, the second derivative of U(r) at r = 0 is given by:

d2U(r = 0)

dr2
= − 1

6π2

∫ ∞

0

Ũ(k)k4dk. (3.11)

Thus, if the left hand side of Eq. (3.11) is larger than zero, then Ũ(k) must necessarily have

negative parts and U(r) is a Q±-potential.

Returning to the GEM-n interaction class at hand, the second derivative of UGEM-n(r)

reads:
d2UGEM-n(r)

dr2
=

ǫn

σ2
exp

[

−(r/σ)2
]

[

n
( r

σ

)2(n−1)

− (n− 1)
( r

σ

)n−2
]

. (3.12)

This expression reveals that the transition from the Q+ to the Q± class precisely occurs at

n = 2. Hence, for sufficiently high densities, all systems interacting via a GEM-n (with n > 2)

potential will form cluster crystals. One peculiar property of these cluster crystals is, that

their lattice constant is entirely independent of the particle density ρ. Instead, the occupancy

per lattice cite, NC , scales linearly with ρ. A rigorous theoretical explanation of this effect

has been provided in Ref. [82] and confirmed by Monte Carlo simulations in Ref. [83]. At the

freezing transition, a clustering system adapts its lattice constant a in such a way that the

modulus of its shortest reciprocal lattice vector coincides with the wave number kmin, where

kmin denotes the position of the first negative minimum of Ũ(k). This value depends neither

on the density ρ nor on the temperature T , but solely on the functional form of the pair

potential U(r). Thus a ∼ kmin holds for the lattice constant, and for the occupation number

NC ∼ ρ, respectively.

Cluster crystals can be realized by using, e.g., suitably synthesized amphiphilic dendrimers

of the second generation (G2) as penetrable, soft colloids [28]. The ability of such molecules to

spontaneously cluster in the fluid phase has recently been demonstrated by monomer-resolved

computer simulations [29].

Hence, the interior of the clusters locally resembles a semi-dilute polymer solution and

features a local viscosity, ηC , which exceeds that of the surrounding solvent, η. This viscosity

mismatch ∆η = ηC − η is not explicitly taken into account in the simulation model, in which

the dendrimers are coarse-grained by means of their effective interaction potential and are

thus modeled as point particles. This simplification does not affect the validity of the physical

results (see Chapter 5), as will be demonstrated in what follows.

To begin with, we show that the viscosity difference ∆η is minimal. Huge viscosity mis-

matches are commonly encountered in concentrated solutions of long linear polymers, and

they are predominantly caused by entanglements between these molecules. In contrast, the

dendrimer models relevant to this work are free of entanglements. Indeed, the G2-dendrimers
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at hand have a very small number of total monomers, N = 14, and furthermore, the number

of monomers along any linear strand of the same, Ns, is even smaller, Ns = 6 [28]. As

such, the entanglement length Ne is always of the same order as Ns, and hence, even in the

absence of shear, entanglement does not play a role in setting a distinct, slow time scale for

the dynamics. The rapid disentanglement of neighboring strands is further facilitated by the

fact that the arms of the G2-dendrimers are fully flexible.

Since the polymer dynamics is disentangled, we are able to employ now standard results

from the theory of semi-dilute, disentangled polymer solutions, to estimate the above men-

tioned viscosity difference ∆η. We take arguments from the results for linear chains, and we

assume as an estimate Rouse dynamics, though the Zimm model leads to very similar results.

Standard analysis of polymer dynamics leads to [84]:

∆η ∼= Nφη, (3.13)

where φ = (π/6)ρσ3 is the monomer volume fraction. Typical values of monomer fractions

at clustering are φ ∼= 0.1 or less [29]. With N ∼= 10 for the G2-dendrimers, we obtain:

∆η ∼= η. (3.14)

The small N -value for the cluster-forming dendrimers, that bring about an experimental

realization of our system, is the key in (a) avoiding entanglements and (b) making the internal

viscosity of the dendrimers of the same order as that of the solvent. Thus, there is minimal

mismatch between the two quantities, as readily seen in Eq. (3.14) above, and therefore the

dynamics are not significantly slowed down when one particle moves through another.

Finally, if any discrepancy exists between the two viscosities, it will only lead to a delay

of the transient dynamics, i.e. to a prolongation of the time needed to break the clusters

under the application of steady shear (see Chapter 5). Whichever internal time scale τint

is associated with the dissociation of the soft colloids from the cluster they populate at

equilibrium, the time scale of action of the flow, τshear ∼ 1/ω, is infinite for the case of steady

external shear (oscillatory shear frequency ω = 0).
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4. Diffusion and Translocation in

Porous Materials

Mass transport has attracted strong interest since the first observation of Brownian motion

in the 19th century. Diffusive and driven particle transport are ubiquitous in nature and

are at work in many processes and applications including bio-related fields [85, 86], energy

conversion and storage (fuel and solar cells) [87], separation membranes [88] and microflu-

idics [89, 90]. With increasing complexity of such novel devices it becomes evident that

mass transport has to be understood on a variety of time and length scales. Alongside with

the elucidation of the diffusion law [91–93] comes the increase in interface and geometrical

constraints of the motion [94]. Constrained macromolecular transport underlies many sep-

aration methods [95, 96], plays an important role in intracellular and extracellular particle

transportation [97] and, in addition, it has important ramifications of fundamental scientific

interest [78]. Therefore, extensive research across different disciplines [30, 97] and diverse ma-

terials [91, 92, 98] was devoted in establishing diffusion laws and relationships to geometrical

and topological characteristics of the diffusing species and medium.

The advent of powerful experimental techniques allowing single molecule detection, the fab-

rication of patterned nanostructures with build-in spatial constraints, and the development

of computational tools conveyed the exploration of transport dynamics in complex environ-

ments [89, 91, 93, 99, 100]. The earlier experiments [90, 94] on large DNA molecules for direct

visualization indicate that switching from disordered to patterned media hold promise for a

better understanding of the diffusion fundamentals and improved performance of devices

for the different applications. The strategy to use patterned systems to obstruct particle

transportation has been implemented through micro-fabrication of fluidic devices [89, 90]

and colloidal templates [94], respectively, for size dependent trapping and diffusion through

molecular size obstructions. Extension to nanoporous systems was exemplified in surfactant-

templated mesoporous silica for diffusion and interaction-controlled mass transport [98] and

drug-delivery [85, 100].

However, unique assignment of the role of geometrical and topological characteristics of pe-

riodic nanostructures on the basic diffusion mechanisms is more suitably performed on simple

rigid probes rather than on long biopolymers with configurational freedom and complex in-

teractions with the walls of the patterned media. Therefore, we studied the tracer diffusion of

spherical quantum dot particles (abbreviated as QDs) confined in a three-dimensional inverse
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opal with well-defined highly ordered structure and different geometrical constraints using the

single molecule technique of fluorescence correlation spectroscopy (FCS) [98, 101–104]. Addi-

tionally, we have performed Brownian dynamics simulations and compared our results to the

experimental findings to better understand the diffusion process in the confined environment.

In the second part of our studies, we extended this problem to flexible polymers flowing

through narrow channels. This subject has recently attracted considerable attention due to

its relevance concerning, for example, biological applications of microfluidics [105], sequenc-

ing DNA by passing it through nanopores [106, 107] and the passage of biomolecules through

membrane channels [108]. Accordingly, a great deal of experimental, theoretical and simula-

tional effort has been devoted to it, and we refer to Ref. [109] for a list of relevant references.

In most cases, a flat membrane with a single opening is considered, with a linear polymer

chain translocating from one side to the other. The driving forces behind this phenomenon

can have a multitude of physical origins, including a chemical potential gradient across the

partition [110–112], external fields, such as voltage [113], or preferential adsorption of the

chain on one side of the membrane [109, 114].

The process by which a polymer moves through a narrow channel can be divided into

three stages. First of all, the polymer must find the opening, second it must squeeze into

the constriction, and only then can it move through the micro-channel. Here, the issue of

interest is whether the external current is strong enough to cause insertion, and then how

the polymer propagates within the constriction. We first derive an analytic expression for

the threshold flux, needed to push a dendrimer into a narrowing in Section 4.2.1. Then we

present the results from our computer simulations in Section 4.2.2, and compare them to the

predictions from theory.

4.1. Confined Diffusion in Periodic Porous

Nanostructures

The diffusion of several fluorescent probes (see Table C.1 in the Appendix C.1) in inverse

opals was studied experimentally by FCS. The method is based on measurement of the

fluctuations of the fluorescent light intensity caused by the excursion of fluorescent probes

through an extremely small observation volume (< 1µm3) defined by the focus of a confocal

microscope. This technique has been recently utilized to probe one-dimensional diffusion

of molecular and macromolecular tracers in nanoporous alumina membranes [115, 116] and

three-dimensional diffusion of molecular tracers in silica inverse opals [117]. The former has

simply shown the feasibility of the technique to measure the retarded mobility inside the

nanopores, while the very recent study in large void opals reported on complex non-Fickian
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diffusion. The autocorrelation function G(t) was measured in the free solution and for the

different confinements, and the key finding was that the restricted environment exerted a clear

slowdown effect on the center of mass motion of the tracer particles. These experiments have

been carried out by the group of Prof. George Fytas at the Max Planck Institute for Polymer

Research in Mainz, and at the Foundation for Research and Technology in Heraklion, and

for a more detailed description of the experiment, the reader is referred to the Appendix C.

In what follows, we will discuss and theoretically rationalize the experimental observations.

We make use of the Einstein-Stokes equation to relate the short-time diffusion coefficient

DS to the drag coefficient ξ = 6πηa, which leads to the relation:

DS =
kBT

ξ
. (4.1)

We verified the correct implementation of our BD algorithms by measuring the mean-square-

displacement of a free particle (vanishing deterministic force on the particle, F(r) = 0), cal-

culating the long-time diffusion coefficient Dfree via the relation 〈∆r2(t)〉 ≡
〈

[r(t)− r(0)]2
〉

=

6Dfreet, and checking that Dfree = DS. In other words, for free particles long- and short-time

diffusion coefficients coincide.

The coincidence of the long- and short-time diffusion coefficients is no longer valid anymore

in the confined case. Instead, the long-time diffusion coefficient D strongly depends on the

ratio L/R, which together with the number of openings per void (twelve for our i-opals)

determines the size of the permeable surface. In addition, the tracer-to-cavity size ratio,

a/R, is expected to have a clear influence on diffusivity as well, so that we end up with a

long-time diffusion coefficient D = D(L/R, a/L). This coefficient is highly correlated to the

escape probability, and we can distinguish between two extreme cases: if the penetrable area

approaches the surface area of the void (that is the theoretical limit in which no solid surface

would exist anymore), then we would end up with D = DS. The opposite extreme case would

be an escape volume that is vanishingly small, i.e. if there were no openings in the cavity.

In such a situation, the diffusing particle would never be able to escape its confining volume.

Additionally, the tracer size plays also a significant role concerning the diffusion process: first,

it directly influences the short time diffusion coefficient in Eq. (4.1) and thus the velocity of

the diffusing tracer; second, the larger a is chosen, the smaller one can consider the escape

area to become at fixed L and R, until it vanishes completely at a = L/2. A sketch of the

diffusion process for two different tracer sizes is shown in Figure 4.1.

Following the present information from the experiments, we have chosen values of the par-

ticle radius belonging in the interval a/R ∈ [0.01, 0.30], which approach the aforementioned

case a → L/2 at the upper limit. In order to analyze this transitional regime, we mea-
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Figure 4.1.: A sketch of the process of multiple collisions that a tracer particle undergoes
against the cavity walls before it escapes to the neighboring cavity. For small
ratios a/L between particle size and cavity openings, panel (a), a small number
of bounces suffices but for large ones, panel (b), a large number of collisions with
the walls takes place before the particle escapes.

sured the mean escape time 〈τesc〉 of the embedded particle from the cavity of the inverse

opal, where the brackets 〈. . . 〉 denote an ensemble average over different realizations of the

thermal fluctuations. The diffusion through the inverse opal can then be seen in a coarse-

grained fashion in time, as a random walk on a lattice of step ∼ R and waiting time 〈τesc〉
on each lattice site, leading to an expression for the long-time diffusion coefficient D, which

is well-known from the theory of random walks, namely, 6D = R2/ 〈τesc〉.
In the case of a free particle of radius a, the expected escape time from a cavity of radius

R can be written as 〈τesc〉 = τfree, where:

τfree =
R2πηa

kBT
. (4.2)

Eq. (4.2) immediately leads to Dfree ∼ a−1, as experimentally found for the tracer diffusivities

in the free solution (note that the sphere of radius R in Eq. (4.2) is fictitious). Moreover, we

define a timescale τ0, which is independent of the particle size and it corresponds to the time

needed for a free particle of radius R to escape from a “cavity” of the same size, viz.:

τ0 =
R3πη

kBT
. (4.3)

The advantage of setting τ0 as the unit of time in our simulations is that we can directly

compare the expectation values of the escape times 〈τesc〉 for arbitrary combinations of the

parameters a/L and L/R and immediately translate ratios of the same into the slowdown

factor, which is the quantity measured in the experiments. Note also that in this way, we can
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rewrite Eq. (4.2) as τfree = aτ0/R, which is exact for a free particle. To gain a feeling about

orders of magnitude, we quote a typical value of τ0 ≈ 1ms for a setup in which R ≈ 100 nm

in aqueous solvent and at room temperature. Finally, we note that the above considerations

hold only if the long-time motion of the particle is indeed diffusive, i.e., if the mean-square

displacement scales linearly with time, an assumption that will be shown to hold in what

follows.

The comparison between the experimental diffusion times is visualized in Figure 4.2. Here,

the slowdown factor ζ is plotted against the ratio a/R, which is a measure of the confinement,

and for the three different L/R-values. The delay factor is calculated as ζ ≡ 〈τesc〉 /τfree in

the BD simulations and ζ ≡ τ(in i-opals)/τ(in free solution) in the FCS experiment. The

two main experimental findings are discussed in what follows.
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Figure 4.2.: The slowdown factor ζ for the i-opals as a function of the reduced radius a/R:
symbols denote experimental data, continuous lines simulation data. The right
vertical axis shows the value of the exponent χ in the time dependence of the
tracer mean square displacement.

First, even in the limiting case a ≪ R, the value ζ0 of the slowdown factor remains strictly

larger than one, implying that even in the ideal, point-particle case (a/R → 0), a confined

probe is slower than a free one. Though the strict case is problematic from a mathematical

point of view, since the particle would formally experience vanishing friction with the solvent

[see Eq. (4.1)], the finding is physically intuitive: a free and a confined point particle need the

same time to reach a distance R via diffusion but whereas the free particle then immediately

“escapes”, the confined one will only do so if it happens to hit the cavity at the opening,

otherwise it will remain confined and will attempt to escape with subsequent diffusive motion.
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In this respect, we expect the quantity ζ0 to become insensitive to the particle size and to

depend mainly on the ratio L/R, albeit in some weak fashion. From the simulation, and

if we were indeed in the limit in which the ratio a/R was so small as to be irrelevant, we

would expect ζ ≈ ζ0 to drop monotonically with the ratio L/R, which is not yet the case for

the smallest values, a/R = 0.01 considered there. Therefore, the particle size is still relevant

and so we can conclude by extrapolation that the limiting value ζ0 should depend rather

weakly on the opening-to-cavity ratio L/R. In fact, the simulated ζ0 = 1.7 (iO180-12/15)

and ζ0 = 1.9 (iO180-10/15) follow this anticipated trend.

These values capture well the experimental ζ0 = 1.80± 0.06, for the smallest tracer, T1.3.

In the case of the third i-opal (iO130-9/11), for which an anomalous diffusion is observed (see

below), the simulations overestimate the experimental value by about 20% (c.f. Figure 4.2).

This deviation, though still within fairly good limits of agreement, could easily be taken care

of by employing slightly different parameters for the diffusant-wall interaction. However, for

reasons of consistency and parsimony, we refrained from doing so in the modeling at hand.

In this context, we note that the translational motion for all four tracers in i-opals with

a/R < 0.14, realized with the same cavity radius R = 75 nm (Table 3.1), is well described

by a normal Fickian diffusion as in the free solution. The simulated results for the structural

characteristics of these two i-opals denoted by the continuous solid lines in Figure 4.2 provide

a good description of experimental data. For stronger confinement realized with the iO130-

9/11 i-opal, the experimental G(t) for the QD deviates from a single Fickian diffusion which,

however, nicely holds for the molecular T1.3 tracer. For this i-opal, G(t) for the QDs can be

best fitted by a single non-Fickian process [118] taking into account the blinking effect (see

Appendix C.3). The exponent χ < 1 in Eq. (C.4) denotes a sub-diffusional behavior for the

mean-square displacement, and is plotted in Figure 4.2.

The deviation from the simple Fickian diffusion increases with a/R and the dynamic frus-

tration is manifested in the enhanced reduction of the particle diffusivity as seen in Figure 4.2.

The simulations can capture this strong slowing down using the same particle-wall interac-

tions but adjusting the geometrical confinement, i.e. decreasing the ratio L/R by about 10%

from 9/11 to 8/11. As a matter of fact, the simulations can also capture this strong slow-

ing down at the experimentally assessed value of L/R = 9/11, but allowing for a stronger

repulsion with the wall of T9.8 than for the other two i-opals.

The nature of the diffusive process is, as mentioned above, characterized by the exponent

χ in 〈∆r2(t)〉 ∼ tχ; whereas χ = 1 characterizes the usual, Fickian diffusion, the cases

χ < 1 (χ > 1) correspond to subdiffusive (superdiffusive) behavior [119, 120]. The key in

determining the value of the exponent χ above lies in the form of the probability distribution

function p(τesc) of the escape time τesc from a cavity of size R. Indeed, the total time t
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is the sum of a large number of independent and identically distributed random variables

τesc; the asymptotic behavior of p(τesc) for large values of its argument determines then the

stable distribution of their sum. In particular, subdiffusive behavior will result if p(τesc) has

a power-law tail of the form [121, 122]:

p(τesc) =
tα0

τ 1−α
esc

, (4.4)

with an arbitrary time constant t0 and α ∈ (0, 1). On the contrary, any probability distribu-

tion that decays to zero faster than that of Eq. (4.4) above as τesc → ∞, will lead to normal

diffusion, i.e. χ = 1.
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Figure 4.3.: The probability distribution p(τesc) of the escape times τesc as obtained in the
Brownian dynamics simulations for three different combinations of system pa-
rameters (points). Also shown are the fits by decaying, single exponentials,
Eq. (4.5) (lines). Inset: semi-logarithmic plot, emphasizing the quality of the fit
for large values of the abscissa.

Computer simulations offer the possibility to measure the probability distribution p(τesc)

by performing statistics on the escape time from the cavity. We have done so for all parameter

combinations studied in our system and we show representative results in Figure 4.3. As can

be seen there, the distribution is exponentially decaying and can be very well fitted with the

functional form:

p(τesc) =
1

τc
exp

(

−τesc
τc

)

, (4.5)

with a characteristic time constant τc that depends on the parameters L/R and a/L, and thus
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sets the characteristic escape time from the cavity. This functional form can be understood

when the escape processes are considered as a sequence of independent yes/no (i.e. escape/no

escape) random trials, each of which yields success with probability p∗. Due to the high

symmetry of our system, the probability p∗ is approximately proportional to the ratio between

the penetrable area and the surface area of the void. In the limiting case of a → L/2, p∗

becomes very small and the diffusion through the i-opals can be regarded as a Poisson

process, i.e. a stochastic counting process of single, rare, events which occur random in

time. The corresponding probability distribution is characterized by an exponential decay

[c.f. Eq. (4.5)], and describes for instance the decay of radioactive isotopes [123, 124].

i-opals and tracer particles 〈τesc〉 [τ0] τc [τ0]

iO130-8/11, a/L = 0.4 573.2± 32.9 568.4± 20.7
iO180-10/15, a/L = 0.4 182.3± 9.0 188.0± 5.3
iO180-12/15, a/L = 0.4 130.2± 7.6 124.6± 2.4

Table 4.1.: The waiting times for a confined tracer particle. The first column shows the char-
acteristic parameters of the i-opal (physical system), the second the expectation
value of the escape time τesc as obtained from the simulation and the third the
value of the corresponding time constant τc, obtained by fitting the distribution
p(τesc) with an exponential, Eq. (4.5) of the main text.

In Table 4.1, we summarize the results for three representative systems, and we show

in particular the numerical values obtained for the expectation value of the escape time,

〈τesc〉 obtained directly from the simulations, and for the time constant τc, obtained from the

representation of the data by Eq. (4.5); due to uncertainties in the numerical experiment,

both quantities carry error bars. For a random variable τesc following the distribution of

Eq. (4.5), the equality 〈τesc〉 = τc should hold. A comparison between the values in the

second and third columns of Table 4.1 shows that, within error bars, this equality is indeed

well-satisfied. There is thus overwhelming evidence from simulation that the distribution

of escape times is indeed decaying to zero much faster than the family of distributions of

Eq. (4.4) (which imply χ < 1), and thus the diffusion process in the regular, periodic i-opal

should be normal, Fickian diffusion with an exponent χ = 1.

Though this is in agreement with experiment for all other cases of tracer particles and

confining structures, there is a discrepancy with the observed anomalous diffusion experiment

for the most confined case of QDs in iO130-9/11 i-opal. We believe that the subdiffusive

exponent measured in the experiments for the last case is only an apparent one and that the

process is strictly diffusive. The reason for the appearance of an exponent χ < 1 (which,

in addition, seems also to depend on the tracer size) probably lies in the presence of at
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least two simultaneous diffusion processes, a faster and a slower one, caused by inevitable

polydispersity in the opening size L. Indeed, as long as the particle radius is much smaller

than the opening, through which escape from the cavity takes place, polydispersity should

not have any measurable effect. However, as the limit a → L/2 is approached from below,

any polydispersity in the opening size can have drastic effects, since the escape time grows

very fast (see Figure 4.2) and eventually diverges at a = L/2. Tight confinement and tracer-

wall interactions realized in mesoporous silica channel systems render the structure of the

molecule trajectories very heterogeneous as was recently revealed by wide-field fluorescence

microscopy [85]. The assumption, therefore, of the existence of two subprocesses, a fast and

a slow one, caused by polydispersity, which gives rise to an apparent subdiffusive behavior at

intermediate times, is supported by the fact that the phenomenon becomes visible only for

large values of the tracer size. Evidently, normal diffusion should settle-in at sufficiently long

observation times. An alternative explanation would be the existence of attractive patches

(“trapping sites”) within the cavities of the i-opal, in which tracer particles occasionally reside

for long times. However, such an effect should also be visible in the diffusive behavior for

small radii, which is not the case. Therefore, the polydispersity scenario is the most realistic

assumption for the explanation of the apparent χ < 1 exponent.

4.2. Flow Induced Polymer Translocation through

Narrow and Patterned Channels

4.2.1. Theory of Injection Thresholds

This part of the thesis is mainly concerned with injection of dendrimers in narrow channels,

whereby we will be making systematic comparisons with linear polymers as well, to establish

the salient similarities and differences between the two. The lateral opening (width D) of the

channel will be thereby of the order of the dendrimer size, the latter being typically quantified

via the radius of gyration RG. Whereas for widths considerably larger than the dendrimer

size its transport through the channel is guaranteed, the same is not true if D < RG. Here,

we anticipate the existence of a threshold for the current, below which no translocation takes

place. In the following, we estimate this value and we establish that it is independent of

the dendrimer’s degree of polymerization. We limit ourselves to low-generation dendrimers

(G = 2− 4), which can be described as “compact objects”.

We commence with a short summary of known results about the (flow) injection of fractal

and deformable objects, such as polymers, into narrow channels: Di Marzio and Mandell

showed, within the framework of a simplified model, that a first-order translocation phase
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transition occurs for chains when N → ∞ [125]. An issue that has been discussed at great

lengths within the context of translocation is the scaling of the passage time through the hole,

and its dependence on N and the external fields imposed on the setup. Different theories and

approaches have been put forward. Computer simulations by Milchev et al. [109] confirm

the prediction of Chuang et al. [126] that the translocation dynamics of self-avoiding chains

is anomalous, with the passage time scaling as ∼ N2ν+1 (ν ∼= 0.59 is the Flory exponent for

self-avoiding chains) below the adsorption threshold and as ∼ N1.65 above it. The case of

unbiased translocation has also been recently studied by simulations [127]. A closely related

problem is the escape of a polymer chain through a long channel, for which the driving force

can be either a chemical potential imbalance [112, 113] or, as in the present work, solvent

flow.

Generally, a flexible linear polymer in a dilute solution enters a pore of diameter D < RG

only when it is pushed into the narrowing by a solvent flux J that exceeds a certain threshold

value Jc. Here, the flux J is the total current, defined as the volume of solvent passing through

a cross-section of the channel in the unit of time. The value of the threshold flux, Jc, has

been derived for linear and for randomly branched polymers in Ref. [128] by using Flory-type

scaling arguments, based on the blob model for polymers [129], with the result:

Jc ≃
kBT

η
. (4.6)

This finding is quite surprising, since it is, completely independent of the number of monomers

N and the internal polymer structure.

In the following, we employ a similar approach in order to determine the injection threshold

in the case of regularly branched polymers, i.e. dendrimers, where no simple blob model is

applicable, because of their peculiar architecture and the ways their monomers order. In par-

ticular, it has been found by extensive simulations [130] that for low-generation dendrimers,

G = 2 − 4, the size RG scales with the number of monomers N as RG ∼ N1/3. This is

reminiscent of a compact object, akin, e.g., to linear chains in a poor solvent, but the situa-

tion is more subtle because low-generation dendrimers are nevertheless soft and deformable

[73, 131, 132]. At the same time, since there are clear steric limitations in an object for which

the number of monomers grows exponentially with the generation number, there is no formal

N → ∞-limit for dendrimers, at least not for a spacer length of unity between successive

generations. As a result, the gyration radius of low-generation dendrimers is of the same

order as the monomer length, see Table 3.2 of this work and Ref. [130].

We aim at employing a Flory-type theory for dendrimers under flow, analogous to that

put forward in Ref. [128] for randomly branched polymers, and which modified the original,
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slightly flawed arguments presented in Refs. [133] and [134]. The first task thereby is to

formulate the form of the theory for dendrimers in the bulk. Here, the problem already

arises that if one follows the standard route and writes down an elastic term of the form

∼ kBTR
2/R2

0, R0 ∼ lnN being the ideal dendrimer size, the aforementioned correct scaling

RG ∼ N1/3 for low-generation dendrimers does not come out. Therefore, we follow a heuristic

modification: instead of using the ideal dendrimer size, R0, in the denominator of the elastic

contribution, we introduce an arbitrary length scale Rx, which scales as Rx ∼ Nx, with an

as of yet undetermined exponent x. Accordingly, we write a Flory-type reduced free energy

as the sum of the elastic and excluded-volume terms as:

βFFl(R) =
NR2

R2
x

+
N2a3

R3
. (4.7)

Notice the additional factor N in the elastic energy, which arises from the peculiar dendritic

architecture and reflects the fact that a typical number of N chains are deformed when a

dendrimer has linear size R. This N -factor plays a role analogous to the functionality f of

f -armed star polymers. Minimization with respect to R yields RG ∼ N (1+2x)/5 and requiring

that this relation reproduces the correct simulation result [130], RG ∼ N1/3, yields x = 1/3.

Alternatively, one could have argued that the first and second term on the right-hand side

must have the same N -exponent when R ∼ N1/3, namely they must be a linear function of

the degree of polymerization.

We now turn to the situation in which a dendrimer is pushed by a current J in front of

the opening of a narrow channel of width D, schematically depicted in Figure 4.4. Note

Figure 4.4.: A partly injected dendrimer inside a narrow channel with width D.

that since dendrimers are small objects, a hierarchy of length scales a ≪ D ≪ RG is not

possible and we rather have a ∼ D < RG. However, we will keep the discussion general

in what follows and maintain both length scales, a and D, as independent parameters in
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the scaling argument to follow. Under the conditions depicted in Figure 4.4, it can happen

that the dendrimer only partially penetrates the channel, having a penetration length y and

P < N of its monomers inside. Similarly to the approach in Ref. [128], we first estimate the

dependence of y on P by writing down an expression for the free energy of the confined part

in analogy with Eq. (4.7), i.e.:

βF (y) =
y2

R2
x(P )

+
P 2a3

yD2
, (4.8)

where Rx(P ) ∼ P 1/3. In comparing Eq. (4.8) with Eq. (4.7), note the absence of an additional

factor P in the elastic energy of the former, since we anticipate that only a few monomers are

confined in the partially injected state and thus there is no reason to believe that P chains

are compressed. Minimizing Eq. (4.8) with respect to y we obtain the scaling relation:

y

D
≃
( a

D

)5/3

P 8/9. (4.9)

The specific volume ξ3(y) available to each of the P confined monomers is given by the

space-filling condition:
a3

ξ3(y)
=

Pa3

yD2
. (4.10)

Using Eqs. (4.9) and (4.10), we readily obtain:

ξ(y) = y1/3D2/3P−1/3 = a

(

D

a

)3/8(
D

y

)1/24

. (4.11)

It follows that ξ(y) has a slow decrease as y grows. Within the confined part, there exist

yD2/ξ3(y) monomer blobs, each of which can be assigned a free energy cost of kBT . Coun-

teracting to it there is a hydrodynamic contribution from the drag of the flowing solvent,

resulting in the total free energy F(y) that has the form:

F(y) = Fconf(y) + Fhyd(y) (4.12)

= kBT
yD2

ξ3(y)
−
∫ y

0

fhyd(y
′)dy′, (4.13)

with the hydrodynamic force fhyd being expressed as a Stokes drag per monomer, yielding:

fhyd(y) ≃ ηξ(y)v(D)
yD2

ξ3(y)
, (4.14)

where v(D) = J/(πD2) is the local solvent velocity. Introducing the expression (4.11) above
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and carrying out the algebra, we obtain the scaling laws:

Fconf(y) ∼= kBTa
−15/8D3/4y9/8, (4.15)

and:

Fhyd(y) ∼= −ηJa−5/4D−5/6y25/12. (4.16)

Evidently, the sum of Eqs. (4.15) and (4.16), seen as a function of the confinement length y,

initially grows with y, since Fconf dominates for small y-values, but eventually drops because

Fhyd takes over for large y values. The total curve has a maximum at the position y∗ and the

value F(y∗) corresponds thereby to a “suction free energy barrier” that must be overcome

before the whole of the molecule is inserted into the channel. From Eqs. (4.15) and (4.16)

the value y∗ is easily calculated as:

y∗ ∼=
(

kBT

ηJ

)24/23

D

(

D

a

)15/23

. (4.17)

The resulting free energy barrier height reads as:

βF(y∗) ∼=
(

kBT

ηJ

)27/23(
D

a

)60/23

. (4.18)

Suction occurs when the barrier height is of order of the thermal energy kBT , thus setting

βF(y∗) ∼= 1 in Eq. (4.18) above, we obtain the critical suction current Jc as:

Jc
∼= kBT

η

(

D

a

)20/9

∼= kBT

η
, (4.19)

the last equality following from the aforementioned fact that D ∼= a. Thus, similarly to

linear and randomly branched polymers, we find that also for dendrimers the critical current

is independent of the degree of polymerization, a result that has been confirmed in our

simulations, see Section 4.2.2 below. However, and in contrast to those two other polymer

classes, the penetration length y∗ at J = Jc is of order a and, according to Eq. (4.9), the

number of sucked monomers there is of order unity. Due to the dendrimer architecture, a

state in which a subcritical current causes a significant part of the molecule to be within the

channel, whereas the rest remains outside, is not feasible for dendrimers: suction of a few

monomers is sufficient to deform the whole molecule accordingly and to bring about injection

of the same in the channel.

The small value of the critical penetration length y∗ is a peculiarity of the dendritic ar-

chitecture and the compact character of the molecule. Indeed, squeezing a few (terminal)
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monomers of the dendrimers within the channel has the effect of “flattening” a part of the

dendrimer lying outside the channel as well, so that most of the molecule is already deformed

and can be pushed into the channel. The same property lies in the heart of the apparent

paradox that Jc grows with D, see Eq. (4.19) above. To understand this, it must be noted

that, according to Eq. (4.17), the critical penetration length y∗ grows with D as well, so that

the same penetration for a wider channel causes less deformation of the molecule and thus

its shape is not suited to suction. A stronger current is thus needed to push part of the

molecule in the channel and to cause significant deformation to the remaining part outside

the channel, so that the latter can get squeezed into the pore as well. However, these findings

are only valid for low generation dendrimers with spacer lengths equal to one. For dendrimers

of higher generation and/or larger spacer lengths, we do not expect these arguments to hold

anymore, and it is possible that Jc will then depend on details of the molecular architecture.

4.2.2. Comparison between Theory and Simulation

We begin with the question regarding the critical current Jc, with the purpose of checking

the main finding of the theoretical approach, Section 4.2.1, stating that Jc is independent of

the molecular weight. For this purpose, we have conducted a series of simulations for a given

total time and counted the fraction of instances for which the molecules passed through. We

carried out all simulations in a cubic box of volume V = 30 × 30 × 110. Walls were placed

in the gradient direction, while periodic boundary conditions were applied in the flow and

vorticity direction. Additionally, we separated the system via a slit-like channel of length L

and diameter D. The temperature was set to T = 1.0, the solvent density to ρs = 5, and the

size of the MPCD collision cell to a = σ. In Figure 4.5 we show the system geometry as well

as the color-coded velocity-field in the flow-gradient plane. Here, both the no-slip boundary

conditions along the channel walls and the parabolic shape of the profile in the center of the

channel are clearly visible.

In Figure 4.6 we plot the translocation probability pℓ(g) through a slit of width D = 2.0,

as a function of the acceleration constant g, for linear polymers and dendrimers of various

sizes. For each parameter set, we have performed 50 simulations of ℓ = 107 time steps. The

results in Figure 4.6(a) pertain to linear polymers and provide an independent confirmation

of similar findings by Markesteijn et al. [135], obtained by means of Lattice Boltzmann

techniques, whereas results in Figure 4.6(b) refer to dendrimers. We see a smooth transition

from pℓ(g) = 0 to pℓ(g) = 1 as g increases. At this point, we would like to emphasize that the

continuous nature of pℓ(g) is only due to the finite number of time steps in our simulation.

Furthermore, we see that in both cases the probability is completely independent of N ,

which is in full agreement with previous results [128, 135] as well as our own theoretical
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Figure 4.5.: Color-coded velocity-field profile in the flow-gradient plane in a system with
L = 50.0, D = 6.0 and g = 0.05. The length of the arrows is proportional to the
local speed of the solvent particles.
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Figure 4.6.: Translocation probability p through a slit of width D = 2.0 for polymer chains
of different length (a) and dendrimers of different generation number (b).
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prediction. When the results for linear polymers and dendrimers are compared, it is visible

that the threshold flux is slightly higher for dendrimers, which is due to their more compact

structure. Furthermore, we suspect that Jc would become larger if the dendrimer’s degrees

of freedom were restricted by internal bond and torsion angles. However, once the molecule

is sucked into the channel, the increased rigidity of the polymer should accelerate its motion

through the channel, thereby shortening the translocation times.

We now generalize the discussion to consider channel widths D that are both smaller and

slightly larger than the dendrimer size. Once the macromolecule has entered the channel, the

main quantity of interest is the translocation time τ ∗, i.e. the time needed for the polymer to

traverse the channel. In Figure 4.7 we show τ ∗ as a function of the channel width D for both

linear and regularly branched polymers; the simulation has been performed at g = 0.05 and

averaged over 50 runs. When the translocation time of the whole molecule is considered, i.e.
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Figure 4.7.: Translocation time τ ∗ of a linear polymer and a G4-dendrimer with each N = 62
beads as a function of the channel width D. The simulation has been carried out
at g = 0.05 for a channel of length L = 30.0.

the time span between the entry of the first bead and the exit of the last bead, dendrimers have

a slightly smaller passage time. This is again due to their rather compact structure, whereas

linear polymers can be stretched rather easily in the flow direction, and hence more time is

needed until all monomers have passed through the narrowing. However, these differences

vanish completely when the center of mass is considered instead of the whole polymer. To

better analyze the differences between linear polymers and dendritic structures, it is useful

to have a look at their individual flow behavior through the narrowing. In Figure 4.8 we
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show the position of the polymer’s center of mass in flow direction z as a function of time

t for channels of length L = 30 and various widths D. Since we are mainly interested in

the impact of the confinement, we only plot the regime between channel start (z = 40) and

channel end (z = 70). The simulations have been performed at g = 0.05 and each curve has

been averaged over 25 measurements. Here it is well visible that, although the translocation
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Figure 4.8.: The z-position of the center of mass inside a channel of length L = 30.0 at
g = 0.05 for a polymer chain with 62 beads (a), and a dendrimer of fourth
generation (b). For a better comparison, we have also included the z-position
of the other macromolecule in the narrowest channel (dashed line). The arrows
indicate the position where these two curves cross.

times τ ∗ of linear and regularly branched polymers are almost identical, their detailed flow

behavior is nevertheless quite different. Dendritic structures exhibit a much broader regime of

ballistic propagation (translocation with constant speed) than chain polymers with the same

monomer number N . The reason for this behavior is that, although the linear polymer’s

center of mass has already entered the channel, a significant part of the polymer is still

outside the capillary and needs to be sucked in. This leads to an overall hindrance, which

manifests itself in the lack of linear part in the curves t(z) for linear chains.

Turning our attention to the molecular deformations inside the channel, we have measured

the diagonal components Gαα of the average gyration tensor, Eq. (3.6), as a function of the

channel width D. In this way, we can quantify the impact of the constriction on the polymer

shape. Results of the simulation, with g = 0.05 and L = 80.0, are shown in Figure 4.9.

Surprisingly, even for large channel widths, D > 2RG, neither Gzz nor Gxx approach the

equilibrium (bulk) radius of gyration (RG = 2.78 ± 0.04). Instead, the dendrimer becomes

elongated along the z-axis by a factor of approximately 1.5 and subsequently shrinks in x-

direction by about the same factor. This deformation is due to the two-dimensional parabolic
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Figure 4.9.: Diagonal components Gαα of the average gyration tensor as a function of the
channel width D for a G4-dendrimer with N = 62 beads. The simulation has
been carried out at g = 0.05 for a channel of length L = 80.0.

flow profile of the solvent, and as a first approximation, the solvent flow can be considered

as a superposition of two opposite shear flows, which act on the polymer. In such systems,

deformation has been observed both for dendrimers [44] and other soft macromolecules [42,

136]. For linear polymers, such an analysis is less interesting, since they are stretched rather

easily along the flow direction and almost reach their maximum extension.

Consistently with the above discussion, we have observed in our simulations that the poly-

mer flows equidistant to both channel walls, where it is also exposed to the strongest fluid

current. This centering is due to the hydrodynamic interactions mediated by the solvent

and has been already observed in previous simulations [137]. By adding an attractive part

to the wall potential, i.e. turning into the case λw = 1.0, one could expect that it is possi-

ble to “drag” the polymers towards the channel walls and thereby slow down their motion

(translocation) inside the channel, since the fluid velocity is much smaller in the vicinity of

the channel walls. In Figure 4.10, we show the translocation time τ ∗ of a polymer chain

in the case of purely repulsive, and partly attractive walls. Although a small retardation is

measurable, the impact is far from being significant in the case of linear polymers and almost

nonexistent for dendrimers. Details of the wall-monomer interactions seem to be immaterial,

at least as long as the walls are smooth.

Real walls on the other hand are rarely smooth and at the nanoscale atomic details become

relevant. Of particular interest in this work is the possibility to decorate the walls with
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Figure 4.10.: Translocation time of a linear polymer (a), and a G4-dendrimer (b) with each
N = 62 beads as a function of g. The simulation has been carried out for a
channel of width D = 4.0 and length L = 30.0.

attractive patches. This can be achieved either with chemical patterning of the walls or,

more importantly, through insertions of suitable entities, such as peptides intruding rigid

bilayer membranes, as demonstrated in the recent work of Smith et al. [138]. Accordingly,

instead of a homogeneous attraction, we cover the channel walls with Np line-like, highly

attractive patches. In Figure 4.11 we show the color-coded potential landscape both in the

simple, purely repulsive case, and in the case of repulsive walls covered with the line shaped

patches. The patches could model “docking sites” at which a dendrimer should temporarily

reside, with the purpose of delivering an encapsulated cargo at the appropriate place, whereas

the solvent (blood) flow should carry away the remaining molecule at longer times.

Due to the discontinuous shape of the potential, its gradient leads to a non-zero con-

tribution in the flow-direction, which results in a severe sticking of the polymers. This is

especially evident in the case of linear polymers, where the polymer almost completely aligns

against one channel wall and thus only experiences a very weak solvent flow, see Figure 4.12.

Dendrimers on the other hand cannot flatten entirely against one channel wall; instead, the

extremities gravitate towards the patches, while the core of the polymer remains in the chan-

nel center. Eventually one arm detaches from its patch, hence releasing the whole polymer.

Then the whole macromolecule moves a bit further inside the channel, until it approaches

the next patch and the whole process repeats itself. This procedure is well-visible on the

basis of the plateaus in Figure 4.12, where the position of the dendrimer’s center of mass

is plotted against the time. These findings are remarkable, since now, in contrast to the

case of homogeneously attractive walls, the retardation is highly dependent on the shape of

the polymers. Hence, such a setup can be used to separate dilute linear/dendritic polymer
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4. Diffusion and Translocation in Porous Materials

Figure 4.11.: Color-coded potential landscape in the flow-gradient plane close by the channel
entrance. Purely repulsive walls (a), and repulsive walls covered with highly
attractive patches (b). The extension of the line shaped patches is along the
y-axis.

0 1000 2000 3000 4000
35

40

45

50

55

60

65

70

75

80

85
 

 z  
[

]

t  [ ]

 G4 center of mass
 N62 center of mass
 Channel start / end
 Attractive patch

Figure 4.12.: Spatiotemporal evolution of a N62-linear polymer’s (grey, dotted line), and a
G4-dendrimer’s (black, solid line) center of mass in a channel with L = 40.0
and D = 6.0 with Np = 10 attractive patches at g = 0.015.
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mixtures. We also note that, although the results presented here pertain to both walls being

decorated with the same patches that face each other, they remain essentially unchanged also

in the case of a single patterned wall.

Finally, to quantify this retardation effect more thoroughly, we measured the translocation

time τp in the presence of patches for two channels of different widths (D = 4.0 < 2RG and

D = 6.0 > 2RG), and derived the slowdown in the translocation of the polymers compared to

the case of purely repulsive walls. The results are plotted as a function of Np and are shown in

Figure 4.13. A quite remarkable slowdown is evident in both cases, where in the more narrow

channel a retardation by two orders of magnitude can be achieved for the case of Np = 20

patches. The relevance of the channel width D is due to the rather short-ranged nature of

the patch potential, therefore the broader the channel, the less important the presence of

patches on the channel walls. Concerning the interpatch spacing, we have shown that the

impact of the sticky patches vanishes for the both extreme cases L/Np → 0 (smooth walls)

and L/Np → ∞ (no patches). We therefore expect that the translocation time is maximal

when the interpatch spacing is of the order of the dendrimer size, since this configuration

allows the dendrimer to dock on one patch, while at the same time a few monomer can dock

on neighboring patches.
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Figure 4.13.: Slowdown factor of a G4-dendrimer in a channel of length L = 40.0 at g = 0.05,
plotted against the number of attractive patches Np.

55
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Complex, non-Newtonian fluids demonstrate an enormously rich rheological behavior under

shear and pressure driven flow, which leads to a variety of non-equilibrium structures. This

non-linearity makes complex fluids extremely challenging to understand from the fundamental

point of view. They show shear-banding [12], thixotropy [13], shear-thinning [14, 15] as well

as, in many cases, shear-thickening [14]. In addition, these materials bear high importance for

a wide variety of applications in, e.g., nanotechnology and micropatterning [17], microfluidics

[18], or shock absorption [19].

Shear often acts in a way that suppresses spatial order: shearing a crystal can gradually

reduce the three-dimensional periodicity of the same, bringing about a shear-induced disorder

(SID) transition to a uniform phase. The topic has attracted a great deal of attention also in

the context of atomic systems [139], aiming at understanding the sequence of states that lead

from an equilibrium crystal at zero shear, to a shear-molten state at high shear. The hitherto

explored scenarios on the succession of steady-states at increasing shear are dependent on the

type of inter-particle interactions, on crystal orientation in the cell, on concentration and, for

the case of charge-stabilized colloids, on salinity. Ackerson et al. [140–142] have performed

a combination of shear and SANS measurements on charge-stabilized colloids both for body

centered cubic (bcc) and for face centered cubic (fcc) lattices. The generic scheme under

which the SID comes about is a succession, with increasing shear-rate, proceeding from the

equilibrium crystal to a strained solid in which either twin bcc or zig-zag motions of successive

close packed planes are observed, to a sliding layer structure with two-dimensional order, and

finally to a fluid [143]. Subsequent experiments have confirmed the salient features of this

scenario, both for charged colloids [144–148] and for hard spheres [149–151]. A particularly

intriguing finding of the experimental investigations on charged colloids is the emergence

of short stringlike correlations between the colloids close to the SID-tranisitions without

spatial ordering of the same [140, 145]. Butler and Harowell [152] found in their simulations

of Yukawa crystals that, although these strings had no particular correlation in the flow-

vorticity plane, they showed hexagonal order in the gradient-vorticity plane.

On the other hand, steady shear can have the opposite effects on thermodynamically

metastable fluids. The latter are uniform phases that are separated by their equilibrium,

crystalline phase by a sufficiently high nucleation barrier, so that they either remain super-

cooled for macroscopically long times or get trapped into a glassy state. A characteristic

example is the dynamical arrest of soft colloids, such as star polymers or star-like micelles
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[153–157], which takes place in regions of the phase diagram that correspond to an equi-

librium fcc crystal. Shear can induce three-dimensional periodicity to such a supercooled

or arrested solution, accelerating thereby the nucleation rates in metastable liquids after the

cessation of shear. This shear-induced crystallization has been demonstrated convincingly for

soft colloids, and in particular for block copolymer micelles, in the seminal work of Mortensen,

Brown, and Nordén [158].

In addition to shear, another prominent prototype of non-equilibrium processes is trans-

port flow along channels, driven by a pressure gradient. Here, complex fluids are of particular

technological importance because the control of their flow properties has numerous applica-

tions. Characteristic examples are the directed assembly of mesoscale periodic structures

[159–162], the controlled synthesis and manipulation of monodisperse, soft colloidal particles

[163–167], the measurement of the elastic properties of the same [168], as well as the manufac-

turing of specific nanofluidic devices such as nanopumps [169] or moving-wall channels [170].

On the more fundamental side, recent research activity has focused on the transport flow

of colloidal gels [171–173] and of concentrated colloidal dispersions close to their jamming

point [174–179], as well as on the related issue of flow and filtration of Brownian colloidal or

non-Brownian, wet granular matter [180–183].

In this Chapter, we study the behavior of ultrasoft colloids under shear and transport

flow. The interaction potential of these particles is bounded, thus allowing full and multiple

particle overlap (see Section 3.3). First, we applied steady shear along the crystallographic

[100] and [111] direction, and analyzed the phase behavior as a function of the shear-rate for

various solute densities. Then in the second part of our analysis, we have studied the impact

of Poiseuille flow by conducting a series of simulations for different occupation numbers NC ,

crystallographic orientations and flow strengths.

5.1. Cluster Crystals under Shear

5.1.1. Shear-Induced String Formation

We considered an fcc cluster crystal, formed by clusters of overlapping particles which interact

via the GEM-8 potential (see Section 3.3). This crystal is exposed to shear forces through

parallel shearing walls that are parallel to the z (flow) direction, the x-axis being the gradient

and the y-axis the vorticity directions. We carried out the simulations in a cubic simulation

box, where the walls were separated by a distance of Lx = 11 σ in the gradient direction.

In addition, we applied periodic boundary conditions in the y- and z-direction, resulting in

a slit-like channel geometry (see Chapter 2 for details of the simulation). The system was
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5.1. Cluster Crystals under Shear

sheared along the crystallographic [100] or along the [111] plane at temperature kBT/ǫ = 0.2.

Thereby, the (100) surface is obtained by cutting the crystal parallel to the front surface of

the fcc cubic unit cell, leading to an arrangement of four-fold symmetry; the (111) surface

is obtained by slicing the crystal in such a way that the surface plane intersects the x-, y-

and z-axes at the same value, resulting in a particle arrangement of six-fold symmetry (see

Figure 5.1).

Figure 5.1.: Schematic representation of an face-centered cubic crystal’s (100) (left panel),
and (111) surface (right panel).

The system was investigated at three different state points with densities ρ = 2.6, 3.9, and

5.9 (corresponding to average cluster occupation numbers NC = 4, 6, and 9, respectively),

while we kept the solvent density fixed at ρs = 30 for all runs. Furthermore, the size of

the MPCD collision cells was set to the particle diameter a = σ throughout. As shown in

Figure 5.2, the system forms stable fcc cluster crystals in the (constrained) bulk phase at

these state points [184].

As we exposed the system to the shearing forces, we found the following striking form of

self-organization: within a certain range of shear-rate γ̇ ∈ [γ̇min, γ̇c] (to be specified below),

the cluster crystal transformed into an arrangement of parallel strings, which aligned in the

flow direction and formed a two-dimensional hexagonal lattice in the gradient-vorticity plane.

Along the strings, the particles displayed a disordered, liquid-like structure (see Figure 5.3).

In Brownian dynamics simulations in which hydrodynamics were not taken into account,

this string formation occurred for arbitrarily small γ̇, whereas in the MPCD simulations, we

obtained a nonlinear velocity profile and wall-slip (shear banding) for γ̇ < γ̇min
∼= 0.05, since

the shear flow was shielded by the outer layers of the crystals.

Within the above specified range of shear-rates, the formation of strings was independent

of the initial conditions, since it occurred both for ordered and for disordered starting config-

urations. More details about the transformation process were revealed by shearing with fixed

γ̇ at the two different orientations of the crystal specified above: for shear along the [100]
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5. Flow Properties of Cluster Crystals

Figure 5.2.: The (constrained) bulk phase diagram for the GEM-8 particles in the (ρ, T)-
plane [184]. Lines show the phase boundaries for the liquid (solid black) and
the fcc phase (dashed red). The gap in-between denotes the coexistence region.
Symbols show the investigated state points.

Figure 5.3.: (a) Vorticity-gradient and (b) flow-gradient views of the strings formed in a
cluster crystal under shear with a shear-rate γ̇ ∈ [γ̇min, γ̇c] (see text). Blue
spheres (not drawn to scale) represent GEM particles. In (a), a few centers
of mass of the strings are connected by straight lines, the red shading of the
resulting hexagonal tiles reflects the distance from the arbitrarily chosen central
string; a′ is the lattice constant of the triangular lattice formed by the strings.
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5.1. Cluster Crystals under Shear

direction, the cluster crystal completely melted shortly after shear was applied. The melting

process started from the center of the crystal and then expanded gradually towards the outer

layers. Eventually, the strings formed out of this transient melt. When shearing along the

[111] direction, the system took advantage of the fact that the ABC-stacking encountered in

the cluster crystal is very similar to the final ordering of the strings, c.f. Figure 5.3(a). Thus,

the crystal melted only along the (111) planes which, themselves, remained well-separated

from each other during the entire process. The fact that the transformation process was

“easier” in the latter case is reflected by the fact that the yield stress σ0 (see Table 5.1) is

lower when shearing in the [111] direction.

NC σ0 [ǫ/σ3] η1 [τǫ/σ3] η2 [τǫ/σ3] γ̇c,1 [τ−1] γ̇c,2 [τ−1]

4 [100] 7.60± 0.13 32.12± 0.41 39.81± 0.44 0.33 0.34
4 [111] 7.51± 0.12 30.94± 0.42 40.32± 0.34 0.30 0.35
6 [100] 10.81± 0.27 40.32± 0.68 50.97± 0.56 0.36 0.42
6 [111] 8.49± 0.31 39.86± 0.53 50.67± 0.51 0.35 0.42
9 [100] 16.30± 0.26 50.13± 0.68 69.70± 0.77 0.40 0.47
9 [111] 11.04± 0.14 49.60± 0.73 66.98± 0.93 0.42 0.47

Table 5.1.: Simulation results from shearing of GEM-8 cluster crystals at T = 0.2 for dif-
ferent cluster occupation numbers NC and crystal orientations in the shear cell,
indicated in the first column. Listed are the Bingham yield stress σ0, and the
shear viscosities η1 (of the string phase) and η2 (of the molten phase at high
shear). The value γ̇c,1 is an estimate for string-melting according to the Bingham
plastic model, while γ̇c,2 is obtained by identifying the minimum of dΦ/dγ̇ (see
text).

The formation of the strings, i.e. the loss of ordering parallel to the flow direction and

the subsequent triangular ordering perpendicular to the flow direction can be understood as

follows. The physical mechanism that stabilizes the GEM-particles in a three-dimensional

crystal is self-sustaining: the restoring force for any particle towards a lattice site is provided

by the neighboring clusters [82]. An applied shear distorts the clusters in the flow direction,

reducing thereby the magnitude of the restoring force. Since this process is self-amplifying,

a higher shear-rate distorts the clusters even more and reduces the restoring force concomi-

tantly, leading to melting along the flow direction and clusters start to flow. This process

is unique to penetrable colloids, since the presence of a hard core prohibits particle overlap.

In the string phase, each particle separated from a string of line density Λ by a distance R

experiences a repulsive potential:

U2d(R) = Λ

∫ ∞

−∞
U(r)dz. (5.1)
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5. Flow Properties of Cluster Crystals

The string-string interaction potential per unit length is then given by ΛU2d(R), which is

a bounded repulsion in two dimensions. Applying the analysis of Ref. [82], we find that

under their mutual repulsion, these strings now form a triangular crystal. For the case of the

GEM-8 potential at hand, the inter-string potential has a Fourier transform with a negative

minimum located at Kmin/kmin
∼= 1.28, where kmin and Kmin are the locations of the minima

of the Fourier transforms of U(r) and U2d(R), respectively. This implies that the lattice

constant of the ensuing triangular crystal is smaller than that of the original fcc-crystal, a

fact confirmed in our simulations by the emergence of additional layers of strings for shear

in the [100]-direction.

If the shear-rate then exceeds the density-dependent critical value of γ̇c, the system melts

and its shear viscosity η increases significantly (shear-thickening). Again, melting starts in the

center of the simulation box. The underlying mechanism that is responsible for this melting

process becomes evident from the MPCD simulations: for sufficiently high γ̇-values, particles

are able to overtake each other as they move along the strings, a phenomenon that is strongly

supported by hydrodynamic interactions since a tagged particle can move in the wake of its

preceding particle. Indeed, we have performed additional Brownian dynamics simulations,

in which hydrodynamics were ignored (see Section 2.2), and we were not able to observe this

shear-induced disorder transition for the range of shear-rates simulated. However, we expect

it to take place at some higher shear-rate, since thermal fluctuations will eventually lead

to a sufficiently large perturbation. In conjunction with the two-dimensional particle-string

interaction U2d(R) ∝ Λ, we are able to estimate the critical shear-rate γ̇c as follows. The

typical time scale t⊥ for any particle to deviate from the string in the perpendicular direction

by a distance a, is:

t⊥ ∼= 2π/ω, (5.2)

where ω is the oscillation frequency due to the superposition of the potentials:

∑

i

U2d(|R−Ri|), (5.3)

{Ri} being the vectors of the (nearest) neighbors in the hexagonal lattice and a being the

amplitude of the oscillations [82]. The corresponding time t‖ for a particle to move along the

same distance parallel to the string, once it has been displaced from the string laterally by

a, is thus given by:

t‖ ∼= a/(aγ̇) = γ̇−1. (5.4)

As long as the shear-rate is sufficiently small and t‖ ≫ t⊥ holds, shear does not destroy

the strings. However, when t‖ ∼= t⊥, particles start overtaking and string correlations are
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5.1. Cluster Crystals under Shear

destroyed. Taking the above expressions for t⊥ and t‖, we obtain the estimate γ̇c = ω/(2π).

Furthermore, since ω2 ∝ Λ ∝ NC holds [82], we finally get:

γ̇c = b
√

NC , (5.5)

where b is a numerical coefficient that depends on the detailed nature of U(r). For the system

at hand, this coefficient can be fitted to b = 0.18± 0.04.
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Figure 5.4.: Shear stress σxz(γ̇), reduced by the yield stress σ0, as obtained from the MPCD
simulations, for shear at the [100]-orientation (symbols). The full lines (string
state) and the dashed lines (molten state) are fits according to the Bingham plas-
tic. The inset shows the flux Ψ(γ̇) of particles across the simulation box, as ob-
tained from full MPCD (lines) and from BD without hydrodynamics (symbols).

From the simulations, the value of γ̇c can be estimated via two different routes: first, we

employ a macroscopic Bingham plastic model describing a viscoplastic material that behaves

as a rigid body at low stress but flows as a viscous fluid at high stress. Here, the shear stress

σxz is given by :

σxz(γ̇) = ηγ̇ + σ0, (5.6)

η being the shear viscosity and σ0 being the yield stress. Fitting our results to this model

leads to the values for σ0 and η summarized in Table 5.1. Furthermore, from the intersection

of the fitted curves in the two different regimes (see Figure 5.5), we obtain results for γ̇c.

The approximate character of the model is reflected in the fact that the identified values for
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γ̇c differ markedly for different crystal orientations at the same NC . Nevertheless, the model

serves as a good indicator.

Second, we consider the free volume fraction Φ(γ̇), which decreases as the system melts

out of the strings. During this transition, more particles are suddenly exposed to the flow,

leading to a dramatic increase in the fluid resistance. This is a unique property of this cluster

crystal, since usually the shear viscosity drops at shear melting. Here, we considered each

GEM-particle as a sphere of diameter σ and calculated the free volume Φ in each state by

straightforward counting. Results are shown in Figure 5.5, which shows Φ as a function

of γ̇. By identifying the minimum of dΦ/dγ̇, we obtain an additional estimate for γ̇c (see

Table 5.1). We find remarkable agreement with the theoretical estimate of Eq. (5.5) above,

e.g., for NC = 4 we obtain γ̇c = 0.36 (0.34) from theory (simulations), and the latter are

consistent with the γ̇c ∼
√
NC-scaling for the remaining NC values. In the string-phase, the

Φ(γ̇)-curves exhibit almost no NC-dependence, similarly to the equilibrium case, where the

free volume is also density-independent (at a given temperature) due to the fixed lattice-

constant [82]. As γ̇ exceeds γ̇c, the strings fluidize, which manifests itself in the rapid,

NC-dependent decrease of Φ(γ̇). The curves decay faster for higher NC and the inflection

points shift, as predicted by the theory, to higher shear-rates.
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Figure 5.5.: Free volume fraction of the GEM particles, Φ(γ̇), for the three systems inves-
tigated (as labeled). Results are shown for cluster crystals oriented in [100]
direction. Minima in dΦ/dγ̇ are indicated by vertical arrows.
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5.1. Cluster Crystals under Shear

5.1.2. Shear-Induced Crystallization

We then studied the possibility of accelerating the nucleation rates in undercooled liquids

through shear. The question of whether steady shear facilitates [158] or suppresses [185] the

nucleation of a crystal from the metastable melt is a longstanding debate, and it seems that

the answer is not universal, but instead strongly system dependent. For soft colloids, such

as copolymer micelles, experimental evidence supports the acceleration of nucleation due to

shear. Since the above mentioned strings formed out of both crystals and supercooled fluids,

shear provides a way to reduce the spatial symmetry, bringing thus the system closer to full,

three-dimensional broken translational invariance. This property opens up a unique pathway

to possible nucleation, since it offers the system the possibility to augment its departure from

full translational symmetry in a stepwise fashion, a possibility that is not present for hard

colloids.

To investigate these questions, we thus applied the following shear-protocol: We considered

supercooled fluids at the state points A, B, C (see Figure 5.2), and sheared them for a period

of τshear = 500. The shear computer experiments are conducted with γ̇ = 0.2, resulting in

spontaneous string formation. Systems that have been prepared in this way are henceforward

referred to as presheared. After the strings have emerged, we turned off the shear-flow and left

the system to rest (total simulation time τsim = 10000). Then we analyzed the equilibrated

structures, and compared them with those of unsheared, confined fluids of equal density and

temperature, by calculating the free volume fraction Φ, the one-particle density distributions

ρ(r), and the averaged bond order parameters Q̄4 and Q̄6 [188, 190] of the equilibrated final

structures.

Here, we first identified the clusters along the lines of Ref. [186], and then determined

the bond order parameters for the ideal fcc structure (Q̄fcc
4 = 0.135 ± 0.003 and Q̄fcc

6 =

0.264±0.004) and for the uniform liquid state (Q̄liq
4 = 0.110±0.003 and Q̄liq

6 = 0.125±0.003).

Finally we calculated the values of Q̄4 and Q̄6 for the presheared and unsheared systems and

compared them with our reference values. In what follows, all results are shown for the [100]-

orientation (unless explicitly stated otherwise), since the orientational dependence turned

out to be very weak.

The results for the free volume fraction and for the bond-order parameters are shown in

Table 5.2, and at a first glance, no effect of the different treatment is observable. However,

we have to keep in mind that the bond order parameters are a measure for the averaged

local crystalline order, and give only limited information about the global ordering of the

system. Evidently, a more appropriate measure of long-range order is called for, and this is

offered by the averaged one-particle density ρ(r) of the system. Indeed, and following also the

terminology of Ref. [184], we term a system as fluid for which the one-particle density has the
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NC Φ Q̄4 Q̄6

4 (presheared) 0.496 0.098 0.267
4 (unsheared) 0.494 0.101 0.268
6 (presheared) 0.506 0.094 0.252
6 (unsheared) 0.508 0.098 0.260
9 (presheared) 0.511 0.109 0.262
9 (unsheared) 0.512 0.110 0.254

Table 5.2.: Free volume fraction Φ and bond order parameters Q̄4 and Q̄6 for the presheared
and unsheared system.

same symmetry as the underlying Hamiltonian, and as crystalline one in which translational

symmetry is broken in a periodic fashion. Accordingly, systems for which ρ(r) = ρ(x) only,

are supercooled confined fluids, whereas if a density profile depending on all three spatial

coordinates, ρ(x, y, z), results, we talk about a solid. Naturally, in the latter case, spatial

periodicity in the y- and z-directions compatible with the fcc-crystal must also be present,

whereas in the x-direction only a finite number of fcc elementary cells can be present.

Figure 5.6.: Two-dimensional color coded density profiles for ρ = 3.9. The left panel shows
the distribution in the gradient-vorticity plane, while the right panel shows the
data in the gradient-flow plane. The top half of each image shows the unsheared
system, while the lower half shows the presheared system (after cessation of
shear).

Employing this criterion, a remarkable difference between the presheared and the unsheared

systems emerges, as can be seen in Figures 5.6 and 5.7: while the unsheared systems show

spatial modulation only in the x-direction, the lattice sites in the presheared systems are very

well separated from each other, and the latter easily find their way to crystallization after
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Figure 5.7.: Density profiles for ρ = 3.9 along the vorticity (y) and flow (z) direction. Con-
tinuous lines show results for the presheared setup, while dashed lines represent
the unsheared systems.

shear. This distinction is most pronounced for the system with the lowest density (ρ = 2.6),

but disappears completely for the densest one (ρ = 5.9), since the nucleation barrier decreases

as ρ grows, and thus preshearing is not necessary to accelerate crystallization anymore.

It can hence be argued that, for the Q±-systems, shear has a profound effect in bringing

about an effective lowering of the nucleation barrier, thereby accelerating the crystallization

rates. This happens through a particular dynamical pathway that involves first the breaking

of the symmetry in the gradient- and vorticity-directions through the formation of a two-

dimensional triangular lattice of strings, which then proceeds to relaxing towards a crystal

after the cessation of shear. The physical reason behind this pathway rests, again, on the

particular property of these systems to have an hidden propensity to an instability towards

spatial modulation with wavenumber kmin (see Section 3.3).

Whereas in the unsheared system this instability was not sufficient to induce immediate

crystallization, and the fluid thus remained trapped in a metastable phase for long times,

once shear had been applied, spatial modulation in two dimensions took place as the result

of the external drive. Along the flow direction, the strings had liquid-like ordering, which

was, however, only sustainable as long as shear was on. Once the latter ceased, the liquid-like

strings were not stable anymore, and the existing two-dimensional order offered an effective

“substrate” on which the particles along the string performed an essentially one-dimensional

nucleation, clumping into clusters and building up the thermodynamically stable crystal.

Naturally, the deeper we went into the region of stability of the solid, the less the effect of

shear was, since nucleation barriers decreased as the distance from the crystallization point

grew.
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5.2. Cluster Crystals under Poiseuille Flow

5.2.1. Flow Profiles and Crystal Transport

Before proceeding to a detailed description of the results of our numerical experiment, it

is worth anticipating on a qualitative level the behavior of the cluster crystal and of the

solvent under pressure flow conditions, on the basis of previously-known results and physical

argumentation. Suppose first that the external pressure gradient is strong enough, so that

the inserted cluster crystal (which is hydrodynamically coupled to the fluid) can be treated

as a perturbation, i.e., let us assume that the solvent velocity profile given by Eq. (2.18)

remains essentially unaffected by the solute. This implies that the latter is locally exposed

to shear rates given by:

γ̇(0)(x) =
∂v

(0)
z (x)

∂x
=

̺sg

2η
(Lx − 2x). (5.7)

Based on previous findings (see Section 5.1.1), we know that cluster crystals under shear

react by forming strings that are aligned along the flow direction and they self-assemble on

a triangular lattice on the gradient-vorticity plane. Accordingly, one could argue that such

strings also form under Poiseuille flow conditions. However, as can be seen from Eq. (5.7),

the shear-rate at the center of the channel vanishes. Given the fact that a small but finite

shear-rate is necessary for the formation of strings, this local analysis would imply that there

are a few (and, at any rate, at least one) crystalline layer(s) in the middle of the channel,

lying perpendicular to the gradient direction (i.e. on the flow-vorticity plane), which do not

melt. Instead, they remain intact in their crystallinity, and they are simply driven along by

the fluid flow. However, this scenario of simultaneous presence of two-dimensional crystalline

layers drifting on the (y, z)-plane and of parallel strings oriented along the z-axis is untenable.

Indeed, in such a case, the crystalline layers would act on the neighboring strings, located

immediately close to them along the gradient direction, as external potentials. Since the

relative velocities vrel of particles displaced along the gradient direction are non-vanishing,

these external potentials would feature periodic, spatiotemporal modulation along the flow-

direction. The potential acting on the strings would thus have the form of some function

f(z − vrelt), whose explicit expression depends on the interparticle interaction, spacing, and

cluster occupancy NC but it is otherwise irrelevant for the rest of the argument. However,

under the action of such an external potential, the strings would no longer be able to maintain

their spatial uniformity along the z-direction, and they would break up into clumps (see the

discussion on the acceleration of the nucleation rates in the preceding Section). Such a

breakup would then act as an additional external potential to the next neighboring strings,

with the result that they would also break up and so on.
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5.2. Cluster Crystals under Poiseuille Flow

The above considerations bring forward a property of the string phase that has already

been briefly addressed in the previous Section, namely that it is global : its stability rests

on the fact that the whole, macroscopically large domain of the system forms strings but

the latter cannot coexist with some other phase of different spatial symmetry in the sense

of a microphase separation between the two. Thus, a different scenario emerges, in which

the intact crystallinity of the central layers under Poiseuille flow causes a macroscopically

thick crystalline slab to be stable within the channel. This possibility is supported by the

fact that the solute acts back on the solvent, modifying its own velocity profile. Conse-

quently, if such a thick chunk of crystal would flow along the fluid in the channel, then the

modified solvent velocity, vz(x), would be forced, by symmetry arguments, to be flat (i.e.

essentially x-independent) far away from the walls. In such a case, the resulting local shear

rate γ̇(x) = ∂vz(x)/∂x would be vanishingly small in that flat region, preserving the in-

tactness of the crystalline structure. This scenario, though by no means proven on the basis

of the present physical argumentation alone, is at least free of internal contradictions, as the

preservation of the crystalline symmetry and the flatness of the solvent velocity profile are in

principle consistent with one another. And though the starting point of the argument was

formulated under the assumption of undistorted solvent velocity profiles, the whole Ansatz

evidently maintains its validity in the opposite case of weak external flow.

The results of our simulations fully confirm that indeed the above scenario materializes in

practice. They offer a prime example of the ways in which the properties of the suspended

particles bring about a dramatic modification of the flow properties of the pure solvent. In

contrast to shear experiments, transport flow does not necessarily destroy the crystallographic

order, but rather leads to a (slight) deformation and displacement of the crystal as a whole.

For further insight into the system’s flow behavior, it is worthwhile to have a look at the

velocity profile of the liquid. Figure 5.8 shows vz(x), that is the flow velocity in gradient

direction at g = 0.05. First of all, it is well visible that the velocity profile deviates strongly

from the parabolic shape it would have in the absence of the crystal; in fact, the fluid devel-

ops a profile that is very akin to plug flow, and which has been experimentally observed for

pressure-driven flow of both intermediate-density colloidal gels [171, 172] and concentrated

colloidal suspensions [176–178], including the transport through channels with spatial con-

strictions [173, 175, 179]. Moreover, the flat plateau broadens and its maximum drops with

increasing particle density ρ, reflecting the resistance exerted by the crystal on the fluid. We

can decompose this flow profile into three parts, namely two outer regions in which we find

an almost linear velocity gradient, and one inner regime in which the velocity is constant.

This in turn means that while an ordered slab of solute particles in the central area stream

with a steady velocity, the particles closer to the walls experience considerable shear forces
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Figure 5.8.: Velocity profile of the liquid in the presence of the GEM-crystal for the [100]-
orientation at g = 0.05 and for different values of NC , as labeled. The points are
results from the simulation, whereas the solid lines are fits according to Eq. (5.9).
The dashed line shows the profile for the pure solvent under the same value of the
external drive. The presence of the GEM particles results in a (weak) wall-slip,
which decreases with NC .

and hence lose their crystalline ordering.

The dependence of the velocity profiles on g will be analyzed in more detail in the following

Subsection. Here, we present further quantitative results for the behavior of the solute

particles under flow. We first look at the dependence of the free volume fraction Φ on g

(results are shown in Figure 5.9). In the equilibrium state with zero flow (g = 0), the

free volume fraction of the denser crystals is slightly lower than that of their more dilute

counterparts, due to thermal fluctuations. Upon increasing g, the corresponding Φ values

remain then constant, until they drop at a layer-melting transition, when the outermost

GEM-particles are released from their initial clusters. We can readily observe that these

transition points (indicated by the arrows) shift to higher g-values as NC is increased. Also

the fact that the fluid resistance is more pronounced for higher NC and less layers are liquefied

is reflected in the weaker decline of the respective curves.

In order to study the crystal structure in a more quantitative fashion, we have calculated

the averaged local bond order parameters, Q̄4 and Q̄6, for each density and plotted the results

as a function of g; the results are shown in Figure 5.10. The inspection of Q̄4 and Q̄6 reveals

that, although the crystal is slightly deformed as a whole, its local structural integrity is still
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Figure 5.9.: Free volume fraction of the GEM particles, Φ(g) for the [100]-orientation and for
different values of NC , as labeled. The arrows indicate the g-value, at which the
outermost layers melt for the first time.
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Figure 5.10.: Bond order parameters Q̄4 (left panel) and Q̄6 (right panel) as functions of
the gravitational force parameter g and for different values of NC , as labeled.
The symbols show the data at indicated occupancy number NC , while the lines
represent the reference bond order parameters for the fcc arrangement (solid
line) and the disordered arrangement (dashed line).
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preserved to a high extent. Moreover, the progression of Q̄4 supports our finding that the less

dense systems liquefy more easily, since the respective values show a distinct trend towards

Q̄liq
4 . This statement, however, has to be treated with caution, since the difference between

the values of the parameters of the ordered and uniform system is rather small.

5.2.2. Flow Quantization

A more detailed analysis of the velocity profiles and their dependence on g reveals a number

of striking features that are unique to the cluster crystals. The plug-flow dependence of

the velocity on x is, of course, not a feature unique to the latter: indeed, previous experi-

ments with both intermediate-density colloidal gels [171–173] and with concentrated colloidal

suspensions [176, 177, 179] have resulted into flows that have very similar shapes to the rep-

resentative results shown in Figure 5.8. In fact, a phenomenological approach exists, which

yields such plug-flows in conjunction with the Navier-Stokes equations, namely the Herschel-

Bulkley model [187], which is based on the following postulated dependence of the shear

stress σxz on the shear rate γ̇:

σxz = ηγ̇n + σ0, (5.8)

with the yield stress σ0, the viscosity η of the complex fluid and the shear-thinning exponent

n. The Herschel-Bulkley model has been applied to describe the plug-flow profiles in colloidal

disordered gels [171]. In our case, the underlying physics is different, so that an attempt to

describe the flux data with this model does not seem particularly advantageous. We resort

instead to an ad hoc fit of the velocity profiles with a function of the form:

vz(x) = A tanh(Bx) + A tanh(B(Lx − x)) + C, (5.9)

involving the fit parameters A, B and C. We emphasize that there is no underlying model

behind Eq. (5.9) above; we rather employ it as a straightforward tool to extract quantitative

information on three key characteristics of the plug flow, namely the height h of the velocity

profile, the width w of its flat part and the wall-slip velocity s. These are readily obtainable

from the fit parameters as:

h = 2A tanh(BLx/2) + C, (5.10)

w = Lx − 2/B, (5.11)

and
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5.2. Cluster Crystals under Poiseuille Flow

s = A tanh(BLx) + C. (5.12)

The typical quality of the fit can be seen in Figure 5.8. The results for the height, width and

wall-slip of the velocity profiles are summarized in Figure 5.11.
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Figure 5.11.: (a) The plateau height h (maximum of the velocity profile) of the plug flow
pattern of GEM-8 crystals driven by pressure, for crystals of different occu-
pancy NC , as a function of the magnitude of the driving force g. The height is
expressed in units of the maximum, v0, of the parabolic velocity profile in the
absence of the GEM-8 particles, see Eq. (2.19); (b) The width w of the flat part
of the velocity profile, for the same parameters as in (a); (c) the correspond-
ing wall-slip velocity s. All results refer to a slit of width Lx = 11σ, and the
positions of the arrows correspond to the ones in Figure 5.9.

The dependence of the plateau height onNC and g, Figure 5.11(a), reveals some remarkable

novel features. First, we notice that the presence of the crystal slows down the flow, at fixed

g, as compared to the pure solvent; this slowdown is more severe as the cluster occupancy

grows, since the presence of more GEM-8-particles increases the number of collisions with
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5. Flow Properties of Cluster Crystals

the solvent. Second, and focusing for now on the less dense crystal, NC = 4, we find the

existence of a two-stage process in the flow: for sufficiently small values of g, the flow profile

is independent of the strength of the external pressure drop, a feature akin to granular, non-

Brownian matter [175, 178], whereas at higher values of g the flux increases with it. Recently,

Campbell and Haw [178] established a similar behavior for the flow of concentrated colloidal

dispersions, in which, however, the crossover from colloidal to granular flow took place by

increasing the volume fraction of the suspension. Here, the transition occurs instead at fixed

concentration of the solute, and it takes the form of a dynamical “phase transition” with the

strength of the external field g as a control parameter. Even more remarkable is the evolution

of these phenomena when looked upon as functions of the occupancy NC . By increasing the

latter, the critical value gc denoting the transition between colloidal and granular-like flow

increases (see Figure 5.11(a) for NC = 6). Moreover, by going now to the most dense system,

NC = 9, a transition from the first to a second plateau is observed, and possibly even to

a third. Increasing the pressure drop induced via g leads to discrete values of the flux,

separated by well-defined jumps, which are caused by a successive melting of layers close to

the walls. The number of melted layers can be estimated from the corresponding value of w.

Whereas for low-occupancy crystals the melting of a layer leads to colloidal-flow behavior, for

high-occupancy numbers the scenario is self-repeating after successive melting of additional

layers, producing thereby a new plateau in which the flow of the system is granular-matter-

like. We call this remarkable behavior flow quantization, and we trace its appearance in the

particular nature of the cluster crystals. To the best of our knowledge, it has not yet been

seen for other, common colloidal systems.

The width of the plateau, see Figure 5.11(b), shows the signature of flow quantization even

more strongly than the plateau height. There, it can be seen that with each successive pair

of molten, lubricating layers at the edges of the system, the plug-like, flat part of the profile

becomes narrower, and that the width remains roughly constant until the next border layers

melt. This feature, allows us to gain control not only on the strength h of the flowing beam

but also on its focus w. Finally, the wall-slip velocity s, Figure 5.11(c), shows a constant

growth with g for the less dense system but it carries the signature of the discrete plateaus

for the denser ones, NC = 6 and NC = 9. It should be kept in mind, however, that s is a

small number and thus prone to errors in the fitting procedure.

Figure 5.12 shows the flux of solute particles Ψ(g) across the simulation box, i.e. the num-

ber of particles passing through the gradient-vorticity plane in unit time, and a significant

dependency on NC is clearly visible. While for very small g . 0.01 the curves collapse onto

each other, their progression differs distinctively with increasing g. For NC = 4, Ψ(g) is

almost completely linear, whereas for NC = 6 subtle kinks, and for NC = 9 very pronounced
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Figure 5.12.: Particle flux Ψ(g) as a function of the gravitational force g for the [100]-
orientation. The positions of the arrows are the same as in Figure 5.9.

jumps are noticeable. These non-linearities stem from the fact that with an increasing pres-

sure gradient the crystalline layers close to the walls melt and thus reduce the drag forces on

the remaining intact lattice. Since the potential energy of the cluster crystal is proportional

to the number of particles at each lattice site, the critical flow, at which the outermost layer

melts for the first time, increases with NC . Hence for small and intermediate g, the flux

of the thinner systems is higher, since the liquefied layers act as a lubricant. However as

g is increased further, the outer layers melt in the denser systems as well, and the respec-

tive fluxes catch up and eventually overtake. Finally it is noteworthy, that the plateaus in

Figure 5.11(a) translate here into linear curves due to the linear dependency of v0 on g.

Both the existence of a transition from granular to colloidal flow and the presence of

discrete plateaus are unique characteristics of the transport properties of cluster crystals.

It is reasonable to assume that the number of plateaus will increase and the constancy of

their values will become sharper for higher values of NC and also for higher widths Lx of the

confining channel (not studied here).
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In this work we have studied the non-equilibrium behavior of various soft matter systems by

extensive computer simulations and theoretical analysis. We have found that these systems

exhibit unique transport properties under confinement and that they react in a very peculiar

way to external forces, such as shear or pressure driven flow.

First, we systematically investigated the effect of confinement on the diffusion of rigid

tracer particles by FCS experiments and complementary Brownian dynamics simulations.

For this purpose, periodic porous nanostructures are excellent platforms, since the three

relevant scales – tracer radius a, pore diameter L, and cavity radius R (see Figure 3.1) –

along with particle-wall interactions can be tuned in well-defined ways. We examined the

diffusion law and the slowing down of particle diffusion as a function of a/R at the confining

environment of three i-opals characterized by the ratio L/R while keeping the particle-wall

interaction potential fixed. Brownian dynamics simulations predicted a normal Fickian dif-

fusion for all examined particles and i-opals with different geometrical confinements. The

translational diffusion dropped almost exponentially with the “frustration ratio” a/R at a

constant confinement environment. Relaxing the geometrical constraint (increase of L/R),

the slowdown was reduced due to the increasing particle escape rate from the cavity through

the opening. At vanishing a/R → 0 there was a residual slowing down (ζ0 ∼ 1.8) as the

particle remained confined. The predicted confined dynamics in i-opals was confirmed by the

present experiment. Only for the strongest confining medium and highly frustrated particles

an anomalous diffusion was observed. Under these severe conditions, the low but finite size

polydispersity can impact the diffusion mechanism.

The theoretical modeling and simulation revealed that the long-time motion of the tracer

particles in this highly ordered, porous nanostructure is strictly diffusive. In particular, the

diffusion of the quantum dots can be visualized as a succession of “bounces” against the

cavity walls, which delay the escape from the interior of the same, until a successful event

takes place in the cavity and the particle translocates to the interior of the adjacent one.

There, the process repeats itself and a random walk with a characteristic step length R and

characteristic time τesc results. Thus, the “bouncing-and-escape” succession within a cavity

is the mechanism responsible for the overall, measured and calculated, delay factors.

Based on these findings, we expect new material and nanostructure designs to emerge, as

well as a better understanding of existing devices to be gained. The slowdown factor paradigm

is scalable and hence can be applied to a wide range of nanostructured materials. For
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instance, an increase in interface and constrained diffusion can help to design compartments of

intrinsically long reaction/detection times. Emerging filters and membranes [88] increasingly

push for high surface areas to interact more effectively with any type of analytes. The large

interface model system studied here adds towards targeting of these needs. Variation of the

particle asphericity (from spheres to rods) and tuning of the interactions (charged particles,

soft interfacing of the walls) are two examples in the rich parameter space that is left to be

explored.

In the second part of this thesis, we employed a theoretical scaling analysis to establish

the independence of the current injection threshold into narrow channels for low-generation

dendrimers, which has been confirmed by hybrid computer simulations. We established that

the translocation times of dendrimers and linear polymers of the same molecular weight along

such channels were quite similar to one another as long as the channel walls were smooth.

However, wall granularity had dramatic effects both on the translocation times as such and on

the relative duration of transport between dendrimers and polymers. In particular, localized,

attractive linear patches brought forward for the dendrimers a kind of motion akin to “walking

along the wall”, with long plateaus of residence times on the attractive patches, whereas linear

polymers did not escape the patchy channel within simulation times.

Our findings establish that dendritic molecules are peculiar in their transport properties

along narrow channels and they express, also under flow, their unusual character as hybrids

between compact colloids and flexible polymeric objects, already known from their equilib-

rium behavior [73, 130, 132]. The long residence times of the dendrimers on the wall traps

open up the interesting possibility that, when the former are loaded with some chemical

cargo (e.g., a drug molecule), the latter could be delivered on the patch and be absorbed

there during the carrier’s residence time, while the blood flow “washes away” the empty

dendrimer afterwards. This topic, along with investigations on the effects of more complex

channel geometries and charge can be the subject of future investigations.

In the final part of this thesis, we studied the rheological properties of ultrasoft colloidal

cluster crystals. First we investigated their response to shear flow, and we discovered that

these systems respond to shear through a novel scenario: shear-banding occurs at low shear-

rates, followed by string formation, in which the flow-aligned strings formed by the inter-

penetrating particles order in a hexagonal lattice on the gradient-vorticity plane. Beyond

a critical shear-rate, the string phase melted into a disordered fluid with a concomitant in-

crease of the viscosity. This form of self-organization arises from penetrability: in contrast

to hard colloids [143], no zig-zag or sliding planes are necessary to relax the stresses, since

particles can go over one another. Cluster crystals emerge thereby as novel materials that

show unique and universal characteristics not only in equilibrium but also under external
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drive. The formation of ordered strings on a triangular lattice bears striking similarities

to the Abriskosov lattice of superconductors. Further, the emergence of long, connected

“wires” under shear can be seen as a type of a transition from an isolating (clusters) to a

shear-induced conducting material (strings). Additionally, we found that the existence of this

string phase offers the system an easy pathway towards crystallization, due to the existence

of partially broken spatial symmetry under shear. Once shear ceases, the next step towards

full, three-dimensional symmetry breaking happens instantaneously. In this way, an effective

extinction of the nucleation barrier is brought about, and an efficient way for crystallizing

these soft particles opens up.

Subsequently we analyzed the flow behavior of these cluster crystals under Poiseuille flow.

We found that the presence of the crystal drastically affects the flow pattern of the dispersion,

i.e. resulting into a pronounced flattening of the usually parabolic shape, and thus bringing

about what is known in literature as plug flow. In those regions of the channel where the

velocity profile was essentially flat, the solvent flowed with almost constant velocity and

the structural integrity of the whole lattice was preserved (aside from a weak distortion).

Close to the walls however, where the velocity profile was almost linear, the crystal liquefied.

Moreover, we discovered that the flow became quantized as the pressure drop along the

channel was increased. The flow-profile vs. pressure curves displayed broad plateaus with

sudden jumps between them, each corresponding to the melting of two additional layers

of the remaining cluster crystal slab which flowed with constant velocity in the center of

the channel. The width of the flat part of the velocity profile showed a similar discretized

evolution. This behavior bears on one hand some similarities to the flow of concentrated

colloidal suspensions or gels but on the other hand has also significant differences, which

render the cluster crystals unique among complex fluids in their transport flow behavior.

All these characteristics have their origin in the ultrasoft, penetrable and cluster-forming

nature of the Q±-class of systems. Our findings underline their highly unusual properties not

only in equilibrium but also under the influence of external fields. Future work should now

focus on the attempts to assemble these crystals on a microscopic basis and on appropriate

treatment of the dynamics of the same.
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A. Parameters

a lattice constant Section 2.3

a radius of tracer particle within inverse opal Eq. (3.1)

a acceleration of solute particle Eq. (2.3)

d wall thickness of inverse opal Table 3.1

D diffusion coefficient Section 2.3

D channel diameter Section 4.2.1

Ds short time diffusion coefficient Eq. (4.1)

E total internal energy Section 2.1

Ekin kinetic energy Section 2.1

Epot potential energy Section 2.1

F force on solute particle Eq. (2.2)

F force per unit volume Eq. (2.3.1)

F total free energy Eq. (4.12)

Fconf configurational contribution to F Eq. (4.12)

Fhyd hydrodynamic contribution to F Eq. (4.12)

g gravitational constant Eq. (2.18)

G(t) autocorrelation function Section 4.1

Gαβ gyration tensor Eq. (3.6)

Hij hydrodynamic tensor Eq. (2.6)

H Hamiltonian Eq. (2.1)

i particle index Eq. (2.1)

I moment of inertia of solute particle Eq. (2.33)

j particle index Eq. (2.2)

k wave number Section 3.3

kB Boltzmann’s constant Eq. (2.9)

L pore diameter of inverse opal Table 3.1

L channel length Section 4.2.2

Lx, Ly, Lz box lengths Chapter 2

L angular momentum of solute particle Eq. (2.33)

m mass of solute particle Eq. (2.1)

m′ mass of solvent particle Section 2.3
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A. Parameters

N number of solute particles Eq. (2.1)

NC cluster occupancy Section 3.3

Ns number of solvent particles Eq. (2.24)

p(. . . ) probability distribution Eq. (2.29)

Q̄ averaged bond order parameter Section 5.1.2

r distance Eq. (3.2)

r position of solute particle Eq. (2.1)

r′ position of solvent particle Eq. (2.11)

R cavity radius of inverse opal Table 3.1

RG radius of gyration Eq. (3.5)

Re Reynolds number Eq. (2.17)

t time Eq. (2.3)

T temperature Section 2.1

∆t timestep Eq. (2.3)

u average velocity of MPCD cell Eq. (2.12)

U (pair) potential Eq. (2.1)

v velocity of solute particle Eq. (2.1)

v′ velocity of solvent particle Eq. (2.11)

V volume Section 2.3

x gradient direction Section 2.3.1

y vorticity direction Section 2.3.1

z flow direction Section 2.3.1

α MPCD rotation angle Eq. (2.12)

α Cartesian component (x, y, z) Eq. (3.6)

β inverse temperature Eq. (2.29)

β Cartesian component (x, y, z) Eq. (3.6)

γ̇ shear-rate Section 2.3.2

ǫ energy parameter in pair potentials Eq. (3.1)

ζ slowdown factor Section 4.1

η dynamic viscosity Section 2.3

κ inverse of decay length Eq. (3.1)

λ mean free path of solvent particle Section 2.3

ν kinematic viscosity Section 2.3

ξ friction coefficient Eq. (2.6)

84



ρ solute number density Section 3.3

ρs solvent number density Eq. (2.15)

ρ(. . . ) density distribution Section 5.1.2

̺s solvent density Section 2.3

σ particle diameter Eq. (2.25)

σ0 yield stress Table 5.1

σ stress tensor Section 2.3.2

Φ free volume fraction Section 5.1.1

Ψ particle flux Section 5.1.1

Ω MPCD rotation Matrix Eq. (2.12)

∇ gradient with respect to positions Eq. (2.2)

d/dt total derivative with respect to time Eq. (2.2)

∂/∂x partial derivative with respect to space Eq. (5.7)

〈. . . 〉 average Section 2.2

Table A.1.: List of selected symbols.
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B. Data Analysis

B.1. Local Bond Order Parameters

When studying crystallization from undercooled liquids, it is crucial to be able to distinguish

particles that are part of the crystal from those that belong to the disordered phase. In fact,

two distinct broken symmetries distinguish crystalline solids from isotropic liquids: broken

translational invariance is measured by the phase of the periodic density modulations in a

solid, and a broken rotational symmetry is defined by the singled-out crystallographic axes.

These two symmetries are not independent, since rotating one fragment of a perfect crystal

disrupts not only orientational correlations, but translational correlations as well.

Steinhardt et al. have devised a method, that relies on the local environment of the particles

only, and that is independent of the specific crystal structure [188]. First, a set of spherical

harmonics is associated with every “bond” joining a particle to its near neighbors:

Qlm(r) = Ylm (θ(r), φ(r)) , (B.1)

where r denotes the midpoint of the bond, Ylm are the spherical harmonics, and θ and φ the

polar angles of the bond measured with respect to an arbitrary reference coordinate system.

Then, the order parameters are averaged over a suitable set of bonds in the sample:

Q̄lm = 〈Qlm(r)〉 . (B.2)

The first non-zero averages occur for l = 4 in samples with cubic four-fold symmetry and

for l = 6 in systems with icosahedral six-fold symmetry. Because the Qlm can be scrambled

drastically by changing to a rotated coordinated system, it is important to only consider

rotationally invariant combinations, such as:

Ql =

√

√

√

√

4π

2l + 1

l
∑

m=−l

∣

∣Q̄lm

∣

∣

2
, (B.3)

and:

Wl =

∑

m1+m2+m3=0

(

l l l

m1 m2 m3

)

(

∑m
l=−m

∣

∣Q̄lm

∣

∣

2
)3/2

, (B.4)
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where the term in the parentheses is the Wigner 3-j symbol [189].

Using this approach, we can determine the type of crystal surrounding each individual

particle. However, thermal fluctuations can smear out these order parameters so that it may

be difficult to distinguish local crystalline structures. Lechner et al. refined this recipe in

Ref. [190] by additionally taking into account the second shell around each particle. This

increase in the accuracy of the distinction of different structures is gained however at the

price of a coarsening of the spatial resolution. Nonetheless, we have decided to employ this

variant of averaged local bond order parameters, since the different crystal structures can be

distinguished considerably more accurate.

B.2. Cluster Analysis

Investigating the dynamics of a cluster crystal requires a thorough analysis of the individual

cluster objects. Therefore, we must decide on a reliable criterion to distinguish between

different clusters and to identify the affiliation of a particular particle to a cluster in an

unambiguous way at every step of the simulation. On this account, the inspection of the

radial pair distribution function g(r) provides a first indication. From Figure B.1 we can see

that g(r) exhibits a characteristic rise for small distances, and then decays rapidly until rmin

is reached.

The position of this minimum may serve as a measure of a cluster’s spatial extent and

allows us to determine the average cluster size, 〈NC〉, by [191]:

〈NC〉 = 1 + 4πρ

∫ rmin

0

g(r)r2dr. (B.5)

This criterion can undoubtedly be used to obtain a first, rough estimate for identifying those

particles that belong to a particular cluster. However, clusters do not have well-defined

boundaries, and thus g(r) does not vanish completely at rmin (see the inset of Figure B.1).

Particles migrating between two neighboring cluster sites of the cluster crystals are to be

made responsible for this effect.

In what follows, we present a refined version [186] of the cluster identification algorithm

originally presented in Ref. [83], which consists of the following four steps:

1. We start our procedure with the first particle and identify all surrounding particles

within a give cut-off radius rc as neighboring particles. This procedure is then repeated

for all remaining particles. As a first guess, we employ rc = rmin, a value which will be

corrected iteratively during the algorithm.
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Figure B.1.: Radial pair distribution function g(r) of a GEM-4 cluster crystal as a function
of distance r. From the inset we see that g(r) does not vanish completely at its
first minimum rmin.

2. With this information at hand, we head for the composition of the clusters. Therefore

we start again with the first particle and label all its neighbors, their respective neigh-

bors, and so on. Then we proceed to the next particle that has not been labeled yet

and finally arrive at a state, where all particles have been assigned to a cluster.

3. At this stage, the algorithm reproduces exactly the same results obtained in Ref. [83].

However, this procedure might provide misleading data: as particles move from one

cluster to another, the particles of these two clusters might now be counted to belong

to the set of neighbors of the hopping particle, merging thereby the two clusters.

At first glance it seems that these problems can be overcome by simply reducing rc, but

this choice does not solve the problem: on the one hand, at high densities, situations

can occur in which two or three particles are simultaneously hopping between clusters.

Thus, taking a smaller cut-off radius does not address the issue of particles merging

clusters. On the other hand, decreasing rc bears the risk of leaving particles without

any neighbors.

Therefore, we have employed a more sophisticated procedure, which does not solely rely

on the mere reduction of rc. To this end, we first introduce three check parameters Nmin
C

and Nmax
C , the expected minimum and maximum cluster sizes present in our system
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(roughly estimated from the cluster size distribution calculated after Step 1 and 2),

and Nl, the number of lattice sites in the system. Then all clusters that have been

identified in Step 2 will be reconsidered. If the size of one of them exceeds Nmax
C , the

corresponding collection of particles is isolated from the rest of the system, and the

search for neighbors is repeated with the remaining ensemble of particles. Particles

with less than Nmin
C neighbors will be treated in a similar manner, since these particles

are responsible for merging neighboring clusters.

4. Subsequently we ignore the excluded particles and identify the neighbors once again as

described in Step 2, giving disjoint clusters. Then we reintegrate the isolated particles

into the set and assign them to the closest clusters. Finally, the following checks are

made: (a) does the size of all newly established clusters lie within the range of Nmin
C

and Nmax
C , and (b) is the number of identified clusters equal to Nl? If either condition

is violated, the procedure is iterated with a reduced cut-off radius rc.

The success of the improved cluster analysis algorithm becomes apparent from the ensuing

cluster population distribution shown in Figure B.2. Peaks due to single particles and merged

clusters have vanished, reflecting the correct analysis of the cluster sizes distribution of the

system.
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Figure B.2.: Cluster size distribution NC for various state points. Left panel: distribution
calculated after Step 2 of the cluster analysis algorithm. The inset shows an
enlargement of the large-NC region, revealing the occurrence of merged clusters.
Right panel: distribution calculated after Step 4 of the cluster analysis algorithm.
The inset reveals the absence of merged clusters.
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C.1. Tracer Particles

One molecular dye (Alexa647) and three quantum dots (QD-X) with spherical shape and

different sizes were purchased from Invitrogen. Their hydrodynamic radii were measured

by fluorescence correlation spectroscopy in ultra dilute (nM) aqueous solutions at ambient

temperature. The structural characteristics of the molecular (T1.3) and particle-like (T8.8,

T9.2 and T9.8) probes are listed in Table C.1.

Tracers Alexa647 QD525 QD545 QD585

Code T1.3 T8.8 T9.2 T9.8
Rh (nm) 1.3 8.8 9.2 9.8
Core Molecular Dye CdSe CdSe CdSe
Shell N/A ZnS ZnS ZnS

Coating N/A
Amphiphilic Poly-
mer (unspecified)

Amphiphilic Poly-
mer (unspecified)

Amphiphilic Poly-
mer (unspecified)

Surface
Modification

N/A
Carboxylic groups
(c/a 100)

Carboxylic groups
(c/a 100)

Carboxylic groups
(c/a 100)

Table C.1.: Size and surface characteristics of the fluorescent particles.

C.2. Preparation of the Inverse Opals

HEPES (Sigma-Aldrich, pH 7.4, concentration 0.01M) filled inverse colloidal crystals were

prepared by codeposition of monodisperse colloidal polystyrene (PS) and silica (SiO2) nanopar-

ticles (LUDOX SM, Sigma Aldrich) on plasma treated glass slides (150µm thickness) [192].

PS particles with a diameter of 180 nm and 130 nm were used in aqueous suspension at a

concentration of 1 wt%, the concentration of the silica nanoparticles (radius 7 nm) was ad-

justed to be 0.3wt%. Vertical lifting deposition (VLD) was conducted at 20 ◦C, 50% RH at a

lifting speed of 400 nm/s. The samples were deposited on plasma treated glass slides (150µm

thickness). After VLD, the PS particles were removed by calcination for a few hours in a

tube oven at 450 ◦C in air (heating rate ∼ 10K/min). Three different i-opals were fabricated
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(Table 3.1) for the purpose of the present study: one (iO130-9/11) with nominal cavity di-

ameter 130 nm and two with 180 nm using different methods (codeposition and SolGel) for

SiO2 nanoparticle infiltration into the PS colloidal crystals (iO180-12/15 and iO180-10/15

respectively). Intentionally, the systems iO180-12/15 and iO130-9/11 were designed to pro-

vide periodic structures for diffusion through comparable holes but different cavity sizes.

Conversely, the samples iO180-12/15 and iO180-10/15 i-opals allow for the study of diffusion

in confining periodic structures with the same voids but different hole sizes; the latter sample

was prepared by filling the interstitial spaces between the PS particles with SolGel prior to

calcination. The SolGel filling led to a reduction of the pore diameter in the iO180-10/15

sample. The i-opal structures were characterized by SEM on a LEO Gemini 1530 micro-

scope (Carl Zeiss AG, Oberkochen, Germany) with acceleration voltage of 1 kV in secondary

electrons InLens detection mode. The actual cavity radius R and the hole diameter L were

obtained from the SEM images as seen in Figure C.1(a) for the iO130-9/11 system. As seen

in this Figure, cracks exist between blocks of ordered structure. These can be categorized

in large cracks between monoliths of i-opals and smaller internal cracks including point- and

line-defects. Whereas the micron sized cracks between monoliths can be assessed by SEM,

smaller cracks in the interior of an i-opal cannot be characterized directly.

Figure C.1.: Overview (a) and high magnification (b) SEM images for SEM of iO130-9/11.

C.3. Fluorescence Correlation Spectroscopy

All measurements were performed on a commercial FCS setup [193] (Carl Zeiss, Jena, Ger-

many) consisting of the module, ConfoCor 2, and an inverted microscope, Axiovert 200 model.

A 40x Plan Neofluar objective (numerical aperture 1.2; working distance 0.29mm) and ul-

trapure water (filtered through a MilliQ purifaction system, resistivity 18.2MOhm × cm)

as immersion liquid were used. The FCS experiment was concurrently performed with two
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tracers using excitation at 488 nm and 633 nm. The emission was collected after splitting

the signal by means of a NFT635 dichroic mirror, and filtering with a long-pass LP655 fil-

ter for the fluorescence light from the λ = 633 nm excitation (channel 1) and with a band

pass filter (BP560-615) for the fluorescence light at λ = 488 nm excitation (channel 2).

Avalanche photodiodes capable of single-photon counting were used for detection. Reusable

Attofluor chambers were employed for the measurements. All experiments were conducted at

21 ± 1 ◦C. In the experiment, the objective’s immersion medium was water with refractive

index n ≈ 1.33. For the water filled i-opal with a silica (n ≈ 1.45) filling volume fraction of

about 25%, the effective refractive index was n ≈ 1.36. Due to this small n-mismatch, the

estimated error of the diffusion times in the i-opals was less than 10% [194, 195].

Prior to observation, the samples were rinsed with ethanol, dried at room temperature,

and mounted in the Attofluor chambers. Then, 600µL of HEPES buffer was added, followed

by 150µL of T1.3 and 150µL of the QD, both at 120 nM, in order to achieve comparable con-

centration for both tracers. It took about 30min to reach constant fluorescence signal from a

homogeneous system. The time-dependent fluctuations of the fluorescent intensity δI(t) were

recorded and analyzed by an autocorrelation function G(t) = 1 + 〈δI(t′)δI(t′ + t)〉 / 〈I(t′)〉2.
The accumulation time was varied from about 3min, for diffusion in free solutions, and up

to about 10min, for diffusion in the i-opals. The necessary total accumulation duration was

subdivided in 30-seconds intervals in order to enable removal of occasionally spurious signals

due to aggregates.

In the FCS experiment, the fluorescent probes were excited by two different lasers, λ =

633 nm for T1.3 and λ = 488 nm for QDs, leading to slightly different probed volumes as

illustrated in Figure C.2. As it has been shown theoretically for an ensemble of identical,

freely diffusing fluorescent species, the FCS auto correlation function G(t) has the following

analytical form [101, 102]:

G(t) = 1 +
1

N

1
(

1 + t
τ

)

√

1 + t
τS2

. (C.1)

Here, N = 1/[G(t = 0) − 1] is the average number of species in the observation volume,

S = z0/r0 is the ratio between longitudinal and transversal dimensions of the observation

volume and τ is the diffusion time of the species, which is related to their diffusion coefficient,

D, through τ = r20/4D. Eq. (C.1) is derived assuming that the fluorescence properties of the

diffusing species do not change while they pass through the observation volume. However,

this assumption is often not true because various photophysical effects may lead to additional

fluctuations in the fluorescence intensity. Two types of photophysical effects applied in this

study. For the molecular probe T1.3 (see Table C.1), the dominating effect was the transition
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Figure C.2.: Scanning electron microscopy image of the inverse opal (iO180-12/15) (see Ta-
ble 3.1) along with the observation volumes in the FCS experiment for excitation
at the wavelength λ = 488 nm (azure) and λ = 633 nm (pink) respectively for
QD and T1.3.

of the molecule to the first excited triplet state. While staying at this rather long-living state,

the molecule appeared dark, an effect that led to fluctuations of the fluorescent intensity,

typically at the microsecond time scale. This resulted in an additional exponential decay in

the autocorrelation function G(t), which modifies to [101, 102]:

G(t) = 1 +

[

1 +
fT

1− fT
exp(−t/τT )

]

1

N

1
(

1 + t
τ

)

√

1 + t
τS2

, (C.2)

where fT and τT are the fraction and the decay time of the triplet state. Typically τT is in

the order of few µs. Eq. (C.2) leads to an excellent representation of the experimental G(t)

for T1.3 diffusing either in free aqueous solution or in the i-opals, as seen in Figure C.3 (solid

lines).

In the case of QDs, the photophysical effects were different. Instead of triplet kinetics,

they exhibited an on-off emission (blinking) with dark times ranging from nanoseconds to

seconds [196]. The blinking fluctuations are represented by a power-law time dependence

and Eq. (C.1) is now written as [196, 197]:

G(t) = 1 + A
(

1− Bt2−m
) 1

N

1
(

1 + t
τ

)

√

1 + t
τS2

, (C.3)

where A describes the overall amplitude of the blinking effect and B the strength of the power
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law dependence with the characteristic exponent m. Since N = A/[G(0) − 1] should be in-

variant of the intrinsic contribution, A = 1 holds. Additionally, since the blinking parameters

depend on the QD’s structure [196], environment, excitation intensity, and observation time,

both B > 0 and m have to be treated as floating parameters in the fitting procedure of

Eq. (C.3) to the experimental G(t). As seen in Figure C.3, the latter is very well described

by Eq. (C.3) yielding m ≈ 1.8, which is in good agreement with previously reported values

[196, 197].

The restricted environment exerted a clear slowdown effect on the center of mass motion

for both T1.3 and QDs as shown by the experimental autocorrelation function G(t) in the

iO180-12/15 i-opal (with L/R = 12/15) and in the free solution in Figure C.3.
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Figure C.3.: Experimental autocorrelation functions G(t) for the diffusion of the molecular
T1.3 and QD T8.8 tracer in the (iO180-12/15) i-opal and in the free aqueous
solution. Continuous lines denote the representation of G(t) by either Eq. (C.2)
(for the molecular tracer) or Eq. (C.3) (for the QD), as indicated by the shift of
the corresponding G(t) and the description in the plot.

In the case of the iO130-9/11 i-opal (with L/R = 9/11), for which an anomalous diffusion

was observed, G(t) for the QDs can be best fitted by a single non-Fickian process [118] taking

into account the blinking effect:

G(t) = 1 +
(

1− Bt2−m
) 1

N

1
[

1 +
(

t
τ

)χ]
√

1 +
(

t
τ

)χ 1
S2

. (C.4)

The exponent χ < 1 denotes a sub-diffusional behavior for the mean-square displacement,
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〈∆r2(t)〉 ∼ tχ. This situation is illustrated in Figure C.4 for the translational motion of T9.8

in free solution and in two i-opals. The shape of G(t) is clearly broader for the motion of T9.8

in the stronger confining environment of iO130-9/11 with a/R ≈ 0.18 than in iO180-10/15

and is well described by Eq. (C.4) with χ < 1.
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Figure C.4.: Experimental G(t) for T9.8 in two confining i-opals as opposed to its diffusion
in free solution. The solid lines denote the representation of G(t) by Eq. (C.3)
(in free solution and in iO180-12/15) and Eq. (C.4) (in iO130-9/11).

The big cracks mentioned in the previous section regarding the SEM images of Figure C.1,

had no effect on the FCS experiment since they were much larger than the focal volume

and could be easily recognized and hence avoided. The small internal cracks with typical

size ranging from a cavity length scale (completely open cage) up to the observation volume

would have caused detectable signal disturbances and would have been detected by scanning

different regions in the films. All recorded autocorrelation functions which had been system-

atically verified, represent structurally coherent regions at least over the lateral dimension

(∼ 300 nm) of the observation volume. Furthermore, autocorrelation functions from various

spots within the monolithic i-opal regions featured identical decay-curves, which exemplifies

the homogeneity of the internal i-opal structure.
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[46] Español, P. Hydrodynamics from dissipative particle dynamics. Phys. Rev. E 52,
1734–1742 (1995).
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